direct_IO: remove rw from a_ops->direct_IO()
[deliverable/linux.git] / fs / fuse / file.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20
21 static const struct file_operations fuse_direct_io_file_operations;
22
23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
24 int opcode, struct fuse_open_out *outargp)
25 {
26 struct fuse_open_in inarg;
27 FUSE_ARGS(args);
28
29 memset(&inarg, 0, sizeof(inarg));
30 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
31 if (!fc->atomic_o_trunc)
32 inarg.flags &= ~O_TRUNC;
33 args.in.h.opcode = opcode;
34 args.in.h.nodeid = nodeid;
35 args.in.numargs = 1;
36 args.in.args[0].size = sizeof(inarg);
37 args.in.args[0].value = &inarg;
38 args.out.numargs = 1;
39 args.out.args[0].size = sizeof(*outargp);
40 args.out.args[0].value = outargp;
41
42 return fuse_simple_request(fc, &args);
43 }
44
45 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
46 {
47 struct fuse_file *ff;
48
49 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
50 if (unlikely(!ff))
51 return NULL;
52
53 ff->fc = fc;
54 ff->reserved_req = fuse_request_alloc(0);
55 if (unlikely(!ff->reserved_req)) {
56 kfree(ff);
57 return NULL;
58 }
59
60 INIT_LIST_HEAD(&ff->write_entry);
61 atomic_set(&ff->count, 0);
62 RB_CLEAR_NODE(&ff->polled_node);
63 init_waitqueue_head(&ff->poll_wait);
64
65 spin_lock(&fc->lock);
66 ff->kh = ++fc->khctr;
67 spin_unlock(&fc->lock);
68
69 return ff;
70 }
71
72 void fuse_file_free(struct fuse_file *ff)
73 {
74 fuse_request_free(ff->reserved_req);
75 kfree(ff);
76 }
77
78 struct fuse_file *fuse_file_get(struct fuse_file *ff)
79 {
80 atomic_inc(&ff->count);
81 return ff;
82 }
83
84 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
85 {
86 iput(req->misc.release.inode);
87 }
88
89 static void fuse_file_put(struct fuse_file *ff, bool sync)
90 {
91 if (atomic_dec_and_test(&ff->count)) {
92 struct fuse_req *req = ff->reserved_req;
93
94 if (ff->fc->no_open) {
95 /*
96 * Drop the release request when client does not
97 * implement 'open'
98 */
99 req->background = 0;
100 iput(req->misc.release.inode);
101 fuse_put_request(ff->fc, req);
102 } else if (sync) {
103 req->background = 0;
104 fuse_request_send(ff->fc, req);
105 iput(req->misc.release.inode);
106 fuse_put_request(ff->fc, req);
107 } else {
108 req->end = fuse_release_end;
109 req->background = 1;
110 fuse_request_send_background(ff->fc, req);
111 }
112 kfree(ff);
113 }
114 }
115
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 bool isdir)
118 {
119 struct fuse_file *ff;
120 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121
122 ff = fuse_file_alloc(fc);
123 if (!ff)
124 return -ENOMEM;
125
126 ff->fh = 0;
127 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
128 if (!fc->no_open || isdir) {
129 struct fuse_open_out outarg;
130 int err;
131
132 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
133 if (!err) {
134 ff->fh = outarg.fh;
135 ff->open_flags = outarg.open_flags;
136
137 } else if (err != -ENOSYS || isdir) {
138 fuse_file_free(ff);
139 return err;
140 } else {
141 fc->no_open = 1;
142 }
143 }
144
145 if (isdir)
146 ff->open_flags &= ~FOPEN_DIRECT_IO;
147
148 ff->nodeid = nodeid;
149 file->private_data = fuse_file_get(ff);
150
151 return 0;
152 }
153 EXPORT_SYMBOL_GPL(fuse_do_open);
154
155 static void fuse_link_write_file(struct file *file)
156 {
157 struct inode *inode = file_inode(file);
158 struct fuse_conn *fc = get_fuse_conn(inode);
159 struct fuse_inode *fi = get_fuse_inode(inode);
160 struct fuse_file *ff = file->private_data;
161 /*
162 * file may be written through mmap, so chain it onto the
163 * inodes's write_file list
164 */
165 spin_lock(&fc->lock);
166 if (list_empty(&ff->write_entry))
167 list_add(&ff->write_entry, &fi->write_files);
168 spin_unlock(&fc->lock);
169 }
170
171 void fuse_finish_open(struct inode *inode, struct file *file)
172 {
173 struct fuse_file *ff = file->private_data;
174 struct fuse_conn *fc = get_fuse_conn(inode);
175
176 if (ff->open_flags & FOPEN_DIRECT_IO)
177 file->f_op = &fuse_direct_io_file_operations;
178 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
179 invalidate_inode_pages2(inode->i_mapping);
180 if (ff->open_flags & FOPEN_NONSEEKABLE)
181 nonseekable_open(inode, file);
182 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
183 struct fuse_inode *fi = get_fuse_inode(inode);
184
185 spin_lock(&fc->lock);
186 fi->attr_version = ++fc->attr_version;
187 i_size_write(inode, 0);
188 spin_unlock(&fc->lock);
189 fuse_invalidate_attr(inode);
190 if (fc->writeback_cache)
191 file_update_time(file);
192 }
193 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
194 fuse_link_write_file(file);
195 }
196
197 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
198 {
199 struct fuse_conn *fc = get_fuse_conn(inode);
200 int err;
201 bool lock_inode = (file->f_flags & O_TRUNC) &&
202 fc->atomic_o_trunc &&
203 fc->writeback_cache;
204
205 err = generic_file_open(inode, file);
206 if (err)
207 return err;
208
209 if (lock_inode)
210 mutex_lock(&inode->i_mutex);
211
212 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
213
214 if (!err)
215 fuse_finish_open(inode, file);
216
217 if (lock_inode)
218 mutex_unlock(&inode->i_mutex);
219
220 return err;
221 }
222
223 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
224 {
225 struct fuse_conn *fc = ff->fc;
226 struct fuse_req *req = ff->reserved_req;
227 struct fuse_release_in *inarg = &req->misc.release.in;
228
229 spin_lock(&fc->lock);
230 list_del(&ff->write_entry);
231 if (!RB_EMPTY_NODE(&ff->polled_node))
232 rb_erase(&ff->polled_node, &fc->polled_files);
233 spin_unlock(&fc->lock);
234
235 wake_up_interruptible_all(&ff->poll_wait);
236
237 inarg->fh = ff->fh;
238 inarg->flags = flags;
239 req->in.h.opcode = opcode;
240 req->in.h.nodeid = ff->nodeid;
241 req->in.numargs = 1;
242 req->in.args[0].size = sizeof(struct fuse_release_in);
243 req->in.args[0].value = inarg;
244 }
245
246 void fuse_release_common(struct file *file, int opcode)
247 {
248 struct fuse_file *ff;
249 struct fuse_req *req;
250
251 ff = file->private_data;
252 if (unlikely(!ff))
253 return;
254
255 req = ff->reserved_req;
256 fuse_prepare_release(ff, file->f_flags, opcode);
257
258 if (ff->flock) {
259 struct fuse_release_in *inarg = &req->misc.release.in;
260 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
261 inarg->lock_owner = fuse_lock_owner_id(ff->fc,
262 (fl_owner_t) file);
263 }
264 /* Hold inode until release is finished */
265 req->misc.release.inode = igrab(file_inode(file));
266
267 /*
268 * Normally this will send the RELEASE request, however if
269 * some asynchronous READ or WRITE requests are outstanding,
270 * the sending will be delayed.
271 *
272 * Make the release synchronous if this is a fuseblk mount,
273 * synchronous RELEASE is allowed (and desirable) in this case
274 * because the server can be trusted not to screw up.
275 */
276 fuse_file_put(ff, ff->fc->destroy_req != NULL);
277 }
278
279 static int fuse_open(struct inode *inode, struct file *file)
280 {
281 return fuse_open_common(inode, file, false);
282 }
283
284 static int fuse_release(struct inode *inode, struct file *file)
285 {
286 struct fuse_conn *fc = get_fuse_conn(inode);
287
288 /* see fuse_vma_close() for !writeback_cache case */
289 if (fc->writeback_cache)
290 write_inode_now(inode, 1);
291
292 fuse_release_common(file, FUSE_RELEASE);
293
294 /* return value is ignored by VFS */
295 return 0;
296 }
297
298 void fuse_sync_release(struct fuse_file *ff, int flags)
299 {
300 WARN_ON(atomic_read(&ff->count) > 1);
301 fuse_prepare_release(ff, flags, FUSE_RELEASE);
302 ff->reserved_req->force = 1;
303 ff->reserved_req->background = 0;
304 fuse_request_send(ff->fc, ff->reserved_req);
305 fuse_put_request(ff->fc, ff->reserved_req);
306 kfree(ff);
307 }
308 EXPORT_SYMBOL_GPL(fuse_sync_release);
309
310 /*
311 * Scramble the ID space with XTEA, so that the value of the files_struct
312 * pointer is not exposed to userspace.
313 */
314 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
315 {
316 u32 *k = fc->scramble_key;
317 u64 v = (unsigned long) id;
318 u32 v0 = v;
319 u32 v1 = v >> 32;
320 u32 sum = 0;
321 int i;
322
323 for (i = 0; i < 32; i++) {
324 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
325 sum += 0x9E3779B9;
326 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
327 }
328
329 return (u64) v0 + ((u64) v1 << 32);
330 }
331
332 /*
333 * Check if any page in a range is under writeback
334 *
335 * This is currently done by walking the list of writepage requests
336 * for the inode, which can be pretty inefficient.
337 */
338 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
339 pgoff_t idx_to)
340 {
341 struct fuse_conn *fc = get_fuse_conn(inode);
342 struct fuse_inode *fi = get_fuse_inode(inode);
343 struct fuse_req *req;
344 bool found = false;
345
346 spin_lock(&fc->lock);
347 list_for_each_entry(req, &fi->writepages, writepages_entry) {
348 pgoff_t curr_index;
349
350 BUG_ON(req->inode != inode);
351 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
352 if (idx_from < curr_index + req->num_pages &&
353 curr_index <= idx_to) {
354 found = true;
355 break;
356 }
357 }
358 spin_unlock(&fc->lock);
359
360 return found;
361 }
362
363 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
364 {
365 return fuse_range_is_writeback(inode, index, index);
366 }
367
368 /*
369 * Wait for page writeback to be completed.
370 *
371 * Since fuse doesn't rely on the VM writeback tracking, this has to
372 * use some other means.
373 */
374 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
375 {
376 struct fuse_inode *fi = get_fuse_inode(inode);
377
378 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
379 return 0;
380 }
381
382 /*
383 * Wait for all pending writepages on the inode to finish.
384 *
385 * This is currently done by blocking further writes with FUSE_NOWRITE
386 * and waiting for all sent writes to complete.
387 *
388 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
389 * could conflict with truncation.
390 */
391 static void fuse_sync_writes(struct inode *inode)
392 {
393 fuse_set_nowrite(inode);
394 fuse_release_nowrite(inode);
395 }
396
397 static int fuse_flush(struct file *file, fl_owner_t id)
398 {
399 struct inode *inode = file_inode(file);
400 struct fuse_conn *fc = get_fuse_conn(inode);
401 struct fuse_file *ff = file->private_data;
402 struct fuse_req *req;
403 struct fuse_flush_in inarg;
404 int err;
405
406 if (is_bad_inode(inode))
407 return -EIO;
408
409 if (fc->no_flush)
410 return 0;
411
412 err = write_inode_now(inode, 1);
413 if (err)
414 return err;
415
416 mutex_lock(&inode->i_mutex);
417 fuse_sync_writes(inode);
418 mutex_unlock(&inode->i_mutex);
419
420 req = fuse_get_req_nofail_nopages(fc, file);
421 memset(&inarg, 0, sizeof(inarg));
422 inarg.fh = ff->fh;
423 inarg.lock_owner = fuse_lock_owner_id(fc, id);
424 req->in.h.opcode = FUSE_FLUSH;
425 req->in.h.nodeid = get_node_id(inode);
426 req->in.numargs = 1;
427 req->in.args[0].size = sizeof(inarg);
428 req->in.args[0].value = &inarg;
429 req->force = 1;
430 fuse_request_send(fc, req);
431 err = req->out.h.error;
432 fuse_put_request(fc, req);
433 if (err == -ENOSYS) {
434 fc->no_flush = 1;
435 err = 0;
436 }
437 return err;
438 }
439
440 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
441 int datasync, int isdir)
442 {
443 struct inode *inode = file->f_mapping->host;
444 struct fuse_conn *fc = get_fuse_conn(inode);
445 struct fuse_file *ff = file->private_data;
446 FUSE_ARGS(args);
447 struct fuse_fsync_in inarg;
448 int err;
449
450 if (is_bad_inode(inode))
451 return -EIO;
452
453 mutex_lock(&inode->i_mutex);
454
455 /*
456 * Start writeback against all dirty pages of the inode, then
457 * wait for all outstanding writes, before sending the FSYNC
458 * request.
459 */
460 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
461 if (err)
462 goto out;
463
464 fuse_sync_writes(inode);
465 err = sync_inode_metadata(inode, 1);
466 if (err)
467 goto out;
468
469 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
470 goto out;
471
472 memset(&inarg, 0, sizeof(inarg));
473 inarg.fh = ff->fh;
474 inarg.fsync_flags = datasync ? 1 : 0;
475 args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
476 args.in.h.nodeid = get_node_id(inode);
477 args.in.numargs = 1;
478 args.in.args[0].size = sizeof(inarg);
479 args.in.args[0].value = &inarg;
480 err = fuse_simple_request(fc, &args);
481 if (err == -ENOSYS) {
482 if (isdir)
483 fc->no_fsyncdir = 1;
484 else
485 fc->no_fsync = 1;
486 err = 0;
487 }
488 out:
489 mutex_unlock(&inode->i_mutex);
490 return err;
491 }
492
493 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
494 int datasync)
495 {
496 return fuse_fsync_common(file, start, end, datasync, 0);
497 }
498
499 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
500 size_t count, int opcode)
501 {
502 struct fuse_read_in *inarg = &req->misc.read.in;
503 struct fuse_file *ff = file->private_data;
504
505 inarg->fh = ff->fh;
506 inarg->offset = pos;
507 inarg->size = count;
508 inarg->flags = file->f_flags;
509 req->in.h.opcode = opcode;
510 req->in.h.nodeid = ff->nodeid;
511 req->in.numargs = 1;
512 req->in.args[0].size = sizeof(struct fuse_read_in);
513 req->in.args[0].value = inarg;
514 req->out.argvar = 1;
515 req->out.numargs = 1;
516 req->out.args[0].size = count;
517 }
518
519 static void fuse_release_user_pages(struct fuse_req *req, int write)
520 {
521 unsigned i;
522
523 for (i = 0; i < req->num_pages; i++) {
524 struct page *page = req->pages[i];
525 if (write)
526 set_page_dirty_lock(page);
527 put_page(page);
528 }
529 }
530
531 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
532 {
533 if (io->err)
534 return io->err;
535
536 if (io->bytes >= 0 && io->write)
537 return -EIO;
538
539 return io->bytes < 0 ? io->size : io->bytes;
540 }
541
542 /**
543 * In case of short read, the caller sets 'pos' to the position of
544 * actual end of fuse request in IO request. Otherwise, if bytes_requested
545 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
546 *
547 * An example:
548 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
549 * both submitted asynchronously. The first of them was ACKed by userspace as
550 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
551 * second request was ACKed as short, e.g. only 1K was read, resulting in
552 * pos == 33K.
553 *
554 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
555 * will be equal to the length of the longest contiguous fragment of
556 * transferred data starting from the beginning of IO request.
557 */
558 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
559 {
560 bool is_sync = is_sync_kiocb(io->iocb);
561 int left;
562
563 spin_lock(&io->lock);
564 if (err)
565 io->err = io->err ? : err;
566 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
567 io->bytes = pos;
568
569 left = --io->reqs;
570 if (!left && is_sync)
571 complete(io->done);
572 spin_unlock(&io->lock);
573
574 if (!left && !is_sync) {
575 ssize_t res = fuse_get_res_by_io(io);
576
577 if (res >= 0) {
578 struct inode *inode = file_inode(io->iocb->ki_filp);
579 struct fuse_conn *fc = get_fuse_conn(inode);
580 struct fuse_inode *fi = get_fuse_inode(inode);
581
582 spin_lock(&fc->lock);
583 fi->attr_version = ++fc->attr_version;
584 spin_unlock(&fc->lock);
585 }
586
587 io->iocb->ki_complete(io->iocb, res, 0);
588 kfree(io);
589 }
590 }
591
592 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
593 {
594 struct fuse_io_priv *io = req->io;
595 ssize_t pos = -1;
596
597 fuse_release_user_pages(req, !io->write);
598
599 if (io->write) {
600 if (req->misc.write.in.size != req->misc.write.out.size)
601 pos = req->misc.write.in.offset - io->offset +
602 req->misc.write.out.size;
603 } else {
604 if (req->misc.read.in.size != req->out.args[0].size)
605 pos = req->misc.read.in.offset - io->offset +
606 req->out.args[0].size;
607 }
608
609 fuse_aio_complete(io, req->out.h.error, pos);
610 }
611
612 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
613 size_t num_bytes, struct fuse_io_priv *io)
614 {
615 spin_lock(&io->lock);
616 io->size += num_bytes;
617 io->reqs++;
618 spin_unlock(&io->lock);
619
620 req->io = io;
621 req->end = fuse_aio_complete_req;
622
623 __fuse_get_request(req);
624 fuse_request_send_background(fc, req);
625
626 return num_bytes;
627 }
628
629 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
630 loff_t pos, size_t count, fl_owner_t owner)
631 {
632 struct file *file = io->file;
633 struct fuse_file *ff = file->private_data;
634 struct fuse_conn *fc = ff->fc;
635
636 fuse_read_fill(req, file, pos, count, FUSE_READ);
637 if (owner != NULL) {
638 struct fuse_read_in *inarg = &req->misc.read.in;
639
640 inarg->read_flags |= FUSE_READ_LOCKOWNER;
641 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
642 }
643
644 if (io->async)
645 return fuse_async_req_send(fc, req, count, io);
646
647 fuse_request_send(fc, req);
648 return req->out.args[0].size;
649 }
650
651 static void fuse_read_update_size(struct inode *inode, loff_t size,
652 u64 attr_ver)
653 {
654 struct fuse_conn *fc = get_fuse_conn(inode);
655 struct fuse_inode *fi = get_fuse_inode(inode);
656
657 spin_lock(&fc->lock);
658 if (attr_ver == fi->attr_version && size < inode->i_size &&
659 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
660 fi->attr_version = ++fc->attr_version;
661 i_size_write(inode, size);
662 }
663 spin_unlock(&fc->lock);
664 }
665
666 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
667 u64 attr_ver)
668 {
669 size_t num_read = req->out.args[0].size;
670 struct fuse_conn *fc = get_fuse_conn(inode);
671
672 if (fc->writeback_cache) {
673 /*
674 * A hole in a file. Some data after the hole are in page cache,
675 * but have not reached the client fs yet. So, the hole is not
676 * present there.
677 */
678 int i;
679 int start_idx = num_read >> PAGE_CACHE_SHIFT;
680 size_t off = num_read & (PAGE_CACHE_SIZE - 1);
681
682 for (i = start_idx; i < req->num_pages; i++) {
683 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
684 off = 0;
685 }
686 } else {
687 loff_t pos = page_offset(req->pages[0]) + num_read;
688 fuse_read_update_size(inode, pos, attr_ver);
689 }
690 }
691
692 static int fuse_do_readpage(struct file *file, struct page *page)
693 {
694 struct fuse_io_priv io = { .async = 0, .file = file };
695 struct inode *inode = page->mapping->host;
696 struct fuse_conn *fc = get_fuse_conn(inode);
697 struct fuse_req *req;
698 size_t num_read;
699 loff_t pos = page_offset(page);
700 size_t count = PAGE_CACHE_SIZE;
701 u64 attr_ver;
702 int err;
703
704 /*
705 * Page writeback can extend beyond the lifetime of the
706 * page-cache page, so make sure we read a properly synced
707 * page.
708 */
709 fuse_wait_on_page_writeback(inode, page->index);
710
711 req = fuse_get_req(fc, 1);
712 if (IS_ERR(req))
713 return PTR_ERR(req);
714
715 attr_ver = fuse_get_attr_version(fc);
716
717 req->out.page_zeroing = 1;
718 req->out.argpages = 1;
719 req->num_pages = 1;
720 req->pages[0] = page;
721 req->page_descs[0].length = count;
722 num_read = fuse_send_read(req, &io, pos, count, NULL);
723 err = req->out.h.error;
724
725 if (!err) {
726 /*
727 * Short read means EOF. If file size is larger, truncate it
728 */
729 if (num_read < count)
730 fuse_short_read(req, inode, attr_ver);
731
732 SetPageUptodate(page);
733 }
734
735 fuse_put_request(fc, req);
736
737 return err;
738 }
739
740 static int fuse_readpage(struct file *file, struct page *page)
741 {
742 struct inode *inode = page->mapping->host;
743 int err;
744
745 err = -EIO;
746 if (is_bad_inode(inode))
747 goto out;
748
749 err = fuse_do_readpage(file, page);
750 fuse_invalidate_atime(inode);
751 out:
752 unlock_page(page);
753 return err;
754 }
755
756 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
757 {
758 int i;
759 size_t count = req->misc.read.in.size;
760 size_t num_read = req->out.args[0].size;
761 struct address_space *mapping = NULL;
762
763 for (i = 0; mapping == NULL && i < req->num_pages; i++)
764 mapping = req->pages[i]->mapping;
765
766 if (mapping) {
767 struct inode *inode = mapping->host;
768
769 /*
770 * Short read means EOF. If file size is larger, truncate it
771 */
772 if (!req->out.h.error && num_read < count)
773 fuse_short_read(req, inode, req->misc.read.attr_ver);
774
775 fuse_invalidate_atime(inode);
776 }
777
778 for (i = 0; i < req->num_pages; i++) {
779 struct page *page = req->pages[i];
780 if (!req->out.h.error)
781 SetPageUptodate(page);
782 else
783 SetPageError(page);
784 unlock_page(page);
785 page_cache_release(page);
786 }
787 if (req->ff)
788 fuse_file_put(req->ff, false);
789 }
790
791 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
792 {
793 struct fuse_file *ff = file->private_data;
794 struct fuse_conn *fc = ff->fc;
795 loff_t pos = page_offset(req->pages[0]);
796 size_t count = req->num_pages << PAGE_CACHE_SHIFT;
797
798 req->out.argpages = 1;
799 req->out.page_zeroing = 1;
800 req->out.page_replace = 1;
801 fuse_read_fill(req, file, pos, count, FUSE_READ);
802 req->misc.read.attr_ver = fuse_get_attr_version(fc);
803 if (fc->async_read) {
804 req->ff = fuse_file_get(ff);
805 req->end = fuse_readpages_end;
806 fuse_request_send_background(fc, req);
807 } else {
808 fuse_request_send(fc, req);
809 fuse_readpages_end(fc, req);
810 fuse_put_request(fc, req);
811 }
812 }
813
814 struct fuse_fill_data {
815 struct fuse_req *req;
816 struct file *file;
817 struct inode *inode;
818 unsigned nr_pages;
819 };
820
821 static int fuse_readpages_fill(void *_data, struct page *page)
822 {
823 struct fuse_fill_data *data = _data;
824 struct fuse_req *req = data->req;
825 struct inode *inode = data->inode;
826 struct fuse_conn *fc = get_fuse_conn(inode);
827
828 fuse_wait_on_page_writeback(inode, page->index);
829
830 if (req->num_pages &&
831 (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
832 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
833 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
834 int nr_alloc = min_t(unsigned, data->nr_pages,
835 FUSE_MAX_PAGES_PER_REQ);
836 fuse_send_readpages(req, data->file);
837 if (fc->async_read)
838 req = fuse_get_req_for_background(fc, nr_alloc);
839 else
840 req = fuse_get_req(fc, nr_alloc);
841
842 data->req = req;
843 if (IS_ERR(req)) {
844 unlock_page(page);
845 return PTR_ERR(req);
846 }
847 }
848
849 if (WARN_ON(req->num_pages >= req->max_pages)) {
850 fuse_put_request(fc, req);
851 return -EIO;
852 }
853
854 page_cache_get(page);
855 req->pages[req->num_pages] = page;
856 req->page_descs[req->num_pages].length = PAGE_SIZE;
857 req->num_pages++;
858 data->nr_pages--;
859 return 0;
860 }
861
862 static int fuse_readpages(struct file *file, struct address_space *mapping,
863 struct list_head *pages, unsigned nr_pages)
864 {
865 struct inode *inode = mapping->host;
866 struct fuse_conn *fc = get_fuse_conn(inode);
867 struct fuse_fill_data data;
868 int err;
869 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
870
871 err = -EIO;
872 if (is_bad_inode(inode))
873 goto out;
874
875 data.file = file;
876 data.inode = inode;
877 if (fc->async_read)
878 data.req = fuse_get_req_for_background(fc, nr_alloc);
879 else
880 data.req = fuse_get_req(fc, nr_alloc);
881 data.nr_pages = nr_pages;
882 err = PTR_ERR(data.req);
883 if (IS_ERR(data.req))
884 goto out;
885
886 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
887 if (!err) {
888 if (data.req->num_pages)
889 fuse_send_readpages(data.req, file);
890 else
891 fuse_put_request(fc, data.req);
892 }
893 out:
894 return err;
895 }
896
897 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
898 {
899 struct inode *inode = iocb->ki_filp->f_mapping->host;
900 struct fuse_conn *fc = get_fuse_conn(inode);
901
902 /*
903 * In auto invalidate mode, always update attributes on read.
904 * Otherwise, only update if we attempt to read past EOF (to ensure
905 * i_size is up to date).
906 */
907 if (fc->auto_inval_data ||
908 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
909 int err;
910 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
911 if (err)
912 return err;
913 }
914
915 return generic_file_read_iter(iocb, to);
916 }
917
918 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
919 loff_t pos, size_t count)
920 {
921 struct fuse_write_in *inarg = &req->misc.write.in;
922 struct fuse_write_out *outarg = &req->misc.write.out;
923
924 inarg->fh = ff->fh;
925 inarg->offset = pos;
926 inarg->size = count;
927 req->in.h.opcode = FUSE_WRITE;
928 req->in.h.nodeid = ff->nodeid;
929 req->in.numargs = 2;
930 if (ff->fc->minor < 9)
931 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
932 else
933 req->in.args[0].size = sizeof(struct fuse_write_in);
934 req->in.args[0].value = inarg;
935 req->in.args[1].size = count;
936 req->out.numargs = 1;
937 req->out.args[0].size = sizeof(struct fuse_write_out);
938 req->out.args[0].value = outarg;
939 }
940
941 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
942 loff_t pos, size_t count, fl_owner_t owner)
943 {
944 struct file *file = io->file;
945 struct fuse_file *ff = file->private_data;
946 struct fuse_conn *fc = ff->fc;
947 struct fuse_write_in *inarg = &req->misc.write.in;
948
949 fuse_write_fill(req, ff, pos, count);
950 inarg->flags = file->f_flags;
951 if (owner != NULL) {
952 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
953 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
954 }
955
956 if (io->async)
957 return fuse_async_req_send(fc, req, count, io);
958
959 fuse_request_send(fc, req);
960 return req->misc.write.out.size;
961 }
962
963 bool fuse_write_update_size(struct inode *inode, loff_t pos)
964 {
965 struct fuse_conn *fc = get_fuse_conn(inode);
966 struct fuse_inode *fi = get_fuse_inode(inode);
967 bool ret = false;
968
969 spin_lock(&fc->lock);
970 fi->attr_version = ++fc->attr_version;
971 if (pos > inode->i_size) {
972 i_size_write(inode, pos);
973 ret = true;
974 }
975 spin_unlock(&fc->lock);
976
977 return ret;
978 }
979
980 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
981 struct inode *inode, loff_t pos,
982 size_t count)
983 {
984 size_t res;
985 unsigned offset;
986 unsigned i;
987 struct fuse_io_priv io = { .async = 0, .file = file };
988
989 for (i = 0; i < req->num_pages; i++)
990 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
991
992 res = fuse_send_write(req, &io, pos, count, NULL);
993
994 offset = req->page_descs[0].offset;
995 count = res;
996 for (i = 0; i < req->num_pages; i++) {
997 struct page *page = req->pages[i];
998
999 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
1000 SetPageUptodate(page);
1001
1002 if (count > PAGE_CACHE_SIZE - offset)
1003 count -= PAGE_CACHE_SIZE - offset;
1004 else
1005 count = 0;
1006 offset = 0;
1007
1008 unlock_page(page);
1009 page_cache_release(page);
1010 }
1011
1012 return res;
1013 }
1014
1015 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1016 struct address_space *mapping,
1017 struct iov_iter *ii, loff_t pos)
1018 {
1019 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1020 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1021 size_t count = 0;
1022 int err;
1023
1024 req->in.argpages = 1;
1025 req->page_descs[0].offset = offset;
1026
1027 do {
1028 size_t tmp;
1029 struct page *page;
1030 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1031 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1032 iov_iter_count(ii));
1033
1034 bytes = min_t(size_t, bytes, fc->max_write - count);
1035
1036 again:
1037 err = -EFAULT;
1038 if (iov_iter_fault_in_readable(ii, bytes))
1039 break;
1040
1041 err = -ENOMEM;
1042 page = grab_cache_page_write_begin(mapping, index, 0);
1043 if (!page)
1044 break;
1045
1046 if (mapping_writably_mapped(mapping))
1047 flush_dcache_page(page);
1048
1049 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1050 flush_dcache_page(page);
1051
1052 if (!tmp) {
1053 unlock_page(page);
1054 page_cache_release(page);
1055 bytes = min(bytes, iov_iter_single_seg_count(ii));
1056 goto again;
1057 }
1058
1059 err = 0;
1060 req->pages[req->num_pages] = page;
1061 req->page_descs[req->num_pages].length = tmp;
1062 req->num_pages++;
1063
1064 iov_iter_advance(ii, tmp);
1065 count += tmp;
1066 pos += tmp;
1067 offset += tmp;
1068 if (offset == PAGE_CACHE_SIZE)
1069 offset = 0;
1070
1071 if (!fc->big_writes)
1072 break;
1073 } while (iov_iter_count(ii) && count < fc->max_write &&
1074 req->num_pages < req->max_pages && offset == 0);
1075
1076 return count > 0 ? count : err;
1077 }
1078
1079 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1080 {
1081 return min_t(unsigned,
1082 ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1083 (pos >> PAGE_CACHE_SHIFT) + 1,
1084 FUSE_MAX_PAGES_PER_REQ);
1085 }
1086
1087 static ssize_t fuse_perform_write(struct file *file,
1088 struct address_space *mapping,
1089 struct iov_iter *ii, loff_t pos)
1090 {
1091 struct inode *inode = mapping->host;
1092 struct fuse_conn *fc = get_fuse_conn(inode);
1093 struct fuse_inode *fi = get_fuse_inode(inode);
1094 int err = 0;
1095 ssize_t res = 0;
1096
1097 if (is_bad_inode(inode))
1098 return -EIO;
1099
1100 if (inode->i_size < pos + iov_iter_count(ii))
1101 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1102
1103 do {
1104 struct fuse_req *req;
1105 ssize_t count;
1106 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1107
1108 req = fuse_get_req(fc, nr_pages);
1109 if (IS_ERR(req)) {
1110 err = PTR_ERR(req);
1111 break;
1112 }
1113
1114 count = fuse_fill_write_pages(req, mapping, ii, pos);
1115 if (count <= 0) {
1116 err = count;
1117 } else {
1118 size_t num_written;
1119
1120 num_written = fuse_send_write_pages(req, file, inode,
1121 pos, count);
1122 err = req->out.h.error;
1123 if (!err) {
1124 res += num_written;
1125 pos += num_written;
1126
1127 /* break out of the loop on short write */
1128 if (num_written != count)
1129 err = -EIO;
1130 }
1131 }
1132 fuse_put_request(fc, req);
1133 } while (!err && iov_iter_count(ii));
1134
1135 if (res > 0)
1136 fuse_write_update_size(inode, pos);
1137
1138 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1139 fuse_invalidate_attr(inode);
1140
1141 return res > 0 ? res : err;
1142 }
1143
1144 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1145 {
1146 struct file *file = iocb->ki_filp;
1147 struct address_space *mapping = file->f_mapping;
1148 size_t count = iov_iter_count(from);
1149 ssize_t written = 0;
1150 ssize_t written_buffered = 0;
1151 struct inode *inode = mapping->host;
1152 ssize_t err;
1153 loff_t endbyte = 0;
1154 loff_t pos = iocb->ki_pos;
1155
1156 if (get_fuse_conn(inode)->writeback_cache) {
1157 /* Update size (EOF optimization) and mode (SUID clearing) */
1158 err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1159 if (err)
1160 return err;
1161
1162 return generic_file_write_iter(iocb, from);
1163 }
1164
1165 mutex_lock(&inode->i_mutex);
1166
1167 /* We can write back this queue in page reclaim */
1168 current->backing_dev_info = inode_to_bdi(inode);
1169
1170 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1171 if (err)
1172 goto out;
1173
1174 if (count == 0)
1175 goto out;
1176
1177 iov_iter_truncate(from, count);
1178 err = file_remove_suid(file);
1179 if (err)
1180 goto out;
1181
1182 err = file_update_time(file);
1183 if (err)
1184 goto out;
1185
1186 if (file->f_flags & O_DIRECT) {
1187 written = generic_file_direct_write(iocb, from, pos);
1188 if (written < 0 || !iov_iter_count(from))
1189 goto out;
1190
1191 pos += written;
1192
1193 written_buffered = fuse_perform_write(file, mapping, from, pos);
1194 if (written_buffered < 0) {
1195 err = written_buffered;
1196 goto out;
1197 }
1198 endbyte = pos + written_buffered - 1;
1199
1200 err = filemap_write_and_wait_range(file->f_mapping, pos,
1201 endbyte);
1202 if (err)
1203 goto out;
1204
1205 invalidate_mapping_pages(file->f_mapping,
1206 pos >> PAGE_CACHE_SHIFT,
1207 endbyte >> PAGE_CACHE_SHIFT);
1208
1209 written += written_buffered;
1210 iocb->ki_pos = pos + written_buffered;
1211 } else {
1212 written = fuse_perform_write(file, mapping, from, pos);
1213 if (written >= 0)
1214 iocb->ki_pos = pos + written;
1215 }
1216 out:
1217 current->backing_dev_info = NULL;
1218 mutex_unlock(&inode->i_mutex);
1219
1220 return written ? written : err;
1221 }
1222
1223 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1224 unsigned index, unsigned nr_pages)
1225 {
1226 int i;
1227
1228 for (i = index; i < index + nr_pages; i++)
1229 req->page_descs[i].length = PAGE_SIZE -
1230 req->page_descs[i].offset;
1231 }
1232
1233 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1234 {
1235 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1236 }
1237
1238 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1239 size_t max_size)
1240 {
1241 return min(iov_iter_single_seg_count(ii), max_size);
1242 }
1243
1244 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1245 size_t *nbytesp, int write)
1246 {
1247 size_t nbytes = 0; /* # bytes already packed in req */
1248
1249 /* Special case for kernel I/O: can copy directly into the buffer */
1250 if (ii->type & ITER_KVEC) {
1251 unsigned long user_addr = fuse_get_user_addr(ii);
1252 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1253
1254 if (write)
1255 req->in.args[1].value = (void *) user_addr;
1256 else
1257 req->out.args[0].value = (void *) user_addr;
1258
1259 iov_iter_advance(ii, frag_size);
1260 *nbytesp = frag_size;
1261 return 0;
1262 }
1263
1264 while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1265 unsigned npages;
1266 size_t start;
1267 ssize_t ret = iov_iter_get_pages(ii,
1268 &req->pages[req->num_pages],
1269 *nbytesp - nbytes,
1270 req->max_pages - req->num_pages,
1271 &start);
1272 if (ret < 0)
1273 return ret;
1274
1275 iov_iter_advance(ii, ret);
1276 nbytes += ret;
1277
1278 ret += start;
1279 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1280
1281 req->page_descs[req->num_pages].offset = start;
1282 fuse_page_descs_length_init(req, req->num_pages, npages);
1283
1284 req->num_pages += npages;
1285 req->page_descs[req->num_pages - 1].length -=
1286 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1287 }
1288
1289 if (write)
1290 req->in.argpages = 1;
1291 else
1292 req->out.argpages = 1;
1293
1294 *nbytesp = nbytes;
1295
1296 return 0;
1297 }
1298
1299 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1300 {
1301 return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1302 }
1303
1304 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1305 loff_t *ppos, int flags)
1306 {
1307 int write = flags & FUSE_DIO_WRITE;
1308 int cuse = flags & FUSE_DIO_CUSE;
1309 struct file *file = io->file;
1310 struct inode *inode = file->f_mapping->host;
1311 struct fuse_file *ff = file->private_data;
1312 struct fuse_conn *fc = ff->fc;
1313 size_t nmax = write ? fc->max_write : fc->max_read;
1314 loff_t pos = *ppos;
1315 size_t count = iov_iter_count(iter);
1316 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1317 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1318 ssize_t res = 0;
1319 struct fuse_req *req;
1320
1321 if (io->async)
1322 req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1323 else
1324 req = fuse_get_req(fc, fuse_iter_npages(iter));
1325 if (IS_ERR(req))
1326 return PTR_ERR(req);
1327
1328 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1329 if (!write)
1330 mutex_lock(&inode->i_mutex);
1331 fuse_sync_writes(inode);
1332 if (!write)
1333 mutex_unlock(&inode->i_mutex);
1334 }
1335
1336 while (count) {
1337 size_t nres;
1338 fl_owner_t owner = current->files;
1339 size_t nbytes = min(count, nmax);
1340 int err = fuse_get_user_pages(req, iter, &nbytes, write);
1341 if (err) {
1342 res = err;
1343 break;
1344 }
1345
1346 if (write)
1347 nres = fuse_send_write(req, io, pos, nbytes, owner);
1348 else
1349 nres = fuse_send_read(req, io, pos, nbytes, owner);
1350
1351 if (!io->async)
1352 fuse_release_user_pages(req, !write);
1353 if (req->out.h.error) {
1354 if (!res)
1355 res = req->out.h.error;
1356 break;
1357 } else if (nres > nbytes) {
1358 res = -EIO;
1359 break;
1360 }
1361 count -= nres;
1362 res += nres;
1363 pos += nres;
1364 if (nres != nbytes)
1365 break;
1366 if (count) {
1367 fuse_put_request(fc, req);
1368 if (io->async)
1369 req = fuse_get_req_for_background(fc,
1370 fuse_iter_npages(iter));
1371 else
1372 req = fuse_get_req(fc, fuse_iter_npages(iter));
1373 if (IS_ERR(req))
1374 break;
1375 }
1376 }
1377 if (!IS_ERR(req))
1378 fuse_put_request(fc, req);
1379 if (res > 0)
1380 *ppos = pos;
1381
1382 return res;
1383 }
1384 EXPORT_SYMBOL_GPL(fuse_direct_io);
1385
1386 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1387 struct iov_iter *iter,
1388 loff_t *ppos)
1389 {
1390 ssize_t res;
1391 struct file *file = io->file;
1392 struct inode *inode = file_inode(file);
1393
1394 if (is_bad_inode(inode))
1395 return -EIO;
1396
1397 res = fuse_direct_io(io, iter, ppos, 0);
1398
1399 fuse_invalidate_attr(inode);
1400
1401 return res;
1402 }
1403
1404 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1405 {
1406 struct fuse_io_priv io = { .async = 0, .file = iocb->ki_filp };
1407 return __fuse_direct_read(&io, to, &iocb->ki_pos);
1408 }
1409
1410 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1411 {
1412 struct file *file = iocb->ki_filp;
1413 struct inode *inode = file_inode(file);
1414 struct fuse_io_priv io = { .async = 0, .file = file };
1415 size_t count = iov_iter_count(from);
1416 ssize_t res;
1417
1418 if (is_bad_inode(inode))
1419 return -EIO;
1420
1421 /* Don't allow parallel writes to the same file */
1422 mutex_lock(&inode->i_mutex);
1423 res = generic_write_checks(file, &iocb->ki_pos, &count, 0);
1424 if (!res) {
1425 iov_iter_truncate(from, count);
1426 res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1427 }
1428 fuse_invalidate_attr(inode);
1429 if (res > 0)
1430 fuse_write_update_size(inode, iocb->ki_pos);
1431 mutex_unlock(&inode->i_mutex);
1432
1433 return res;
1434 }
1435
1436 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1437 {
1438 int i;
1439
1440 for (i = 0; i < req->num_pages; i++)
1441 __free_page(req->pages[i]);
1442
1443 if (req->ff)
1444 fuse_file_put(req->ff, false);
1445 }
1446
1447 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1448 {
1449 struct inode *inode = req->inode;
1450 struct fuse_inode *fi = get_fuse_inode(inode);
1451 struct backing_dev_info *bdi = inode_to_bdi(inode);
1452 int i;
1453
1454 list_del(&req->writepages_entry);
1455 for (i = 0; i < req->num_pages; i++) {
1456 dec_bdi_stat(bdi, BDI_WRITEBACK);
1457 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1458 bdi_writeout_inc(bdi);
1459 }
1460 wake_up(&fi->page_waitq);
1461 }
1462
1463 /* Called under fc->lock, may release and reacquire it */
1464 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1465 loff_t size)
1466 __releases(fc->lock)
1467 __acquires(fc->lock)
1468 {
1469 struct fuse_inode *fi = get_fuse_inode(req->inode);
1470 struct fuse_write_in *inarg = &req->misc.write.in;
1471 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1472
1473 if (!fc->connected)
1474 goto out_free;
1475
1476 if (inarg->offset + data_size <= size) {
1477 inarg->size = data_size;
1478 } else if (inarg->offset < size) {
1479 inarg->size = size - inarg->offset;
1480 } else {
1481 /* Got truncated off completely */
1482 goto out_free;
1483 }
1484
1485 req->in.args[1].size = inarg->size;
1486 fi->writectr++;
1487 fuse_request_send_background_locked(fc, req);
1488 return;
1489
1490 out_free:
1491 fuse_writepage_finish(fc, req);
1492 spin_unlock(&fc->lock);
1493 fuse_writepage_free(fc, req);
1494 fuse_put_request(fc, req);
1495 spin_lock(&fc->lock);
1496 }
1497
1498 /*
1499 * If fi->writectr is positive (no truncate or fsync going on) send
1500 * all queued writepage requests.
1501 *
1502 * Called with fc->lock
1503 */
1504 void fuse_flush_writepages(struct inode *inode)
1505 __releases(fc->lock)
1506 __acquires(fc->lock)
1507 {
1508 struct fuse_conn *fc = get_fuse_conn(inode);
1509 struct fuse_inode *fi = get_fuse_inode(inode);
1510 size_t crop = i_size_read(inode);
1511 struct fuse_req *req;
1512
1513 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1514 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1515 list_del_init(&req->list);
1516 fuse_send_writepage(fc, req, crop);
1517 }
1518 }
1519
1520 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1521 {
1522 struct inode *inode = req->inode;
1523 struct fuse_inode *fi = get_fuse_inode(inode);
1524
1525 mapping_set_error(inode->i_mapping, req->out.h.error);
1526 spin_lock(&fc->lock);
1527 while (req->misc.write.next) {
1528 struct fuse_conn *fc = get_fuse_conn(inode);
1529 struct fuse_write_in *inarg = &req->misc.write.in;
1530 struct fuse_req *next = req->misc.write.next;
1531 req->misc.write.next = next->misc.write.next;
1532 next->misc.write.next = NULL;
1533 next->ff = fuse_file_get(req->ff);
1534 list_add(&next->writepages_entry, &fi->writepages);
1535
1536 /*
1537 * Skip fuse_flush_writepages() to make it easy to crop requests
1538 * based on primary request size.
1539 *
1540 * 1st case (trivial): there are no concurrent activities using
1541 * fuse_set/release_nowrite. Then we're on safe side because
1542 * fuse_flush_writepages() would call fuse_send_writepage()
1543 * anyway.
1544 *
1545 * 2nd case: someone called fuse_set_nowrite and it is waiting
1546 * now for completion of all in-flight requests. This happens
1547 * rarely and no more than once per page, so this should be
1548 * okay.
1549 *
1550 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1551 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1552 * that fuse_set_nowrite returned implies that all in-flight
1553 * requests were completed along with all of their secondary
1554 * requests. Further primary requests are blocked by negative
1555 * writectr. Hence there cannot be any in-flight requests and
1556 * no invocations of fuse_writepage_end() while we're in
1557 * fuse_set_nowrite..fuse_release_nowrite section.
1558 */
1559 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1560 }
1561 fi->writectr--;
1562 fuse_writepage_finish(fc, req);
1563 spin_unlock(&fc->lock);
1564 fuse_writepage_free(fc, req);
1565 }
1566
1567 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1568 struct fuse_inode *fi)
1569 {
1570 struct fuse_file *ff = NULL;
1571
1572 spin_lock(&fc->lock);
1573 if (!list_empty(&fi->write_files)) {
1574 ff = list_entry(fi->write_files.next, struct fuse_file,
1575 write_entry);
1576 fuse_file_get(ff);
1577 }
1578 spin_unlock(&fc->lock);
1579
1580 return ff;
1581 }
1582
1583 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1584 struct fuse_inode *fi)
1585 {
1586 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1587 WARN_ON(!ff);
1588 return ff;
1589 }
1590
1591 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1592 {
1593 struct fuse_conn *fc = get_fuse_conn(inode);
1594 struct fuse_inode *fi = get_fuse_inode(inode);
1595 struct fuse_file *ff;
1596 int err;
1597
1598 ff = __fuse_write_file_get(fc, fi);
1599 err = fuse_flush_times(inode, ff);
1600 if (ff)
1601 fuse_file_put(ff, 0);
1602
1603 return err;
1604 }
1605
1606 static int fuse_writepage_locked(struct page *page)
1607 {
1608 struct address_space *mapping = page->mapping;
1609 struct inode *inode = mapping->host;
1610 struct fuse_conn *fc = get_fuse_conn(inode);
1611 struct fuse_inode *fi = get_fuse_inode(inode);
1612 struct fuse_req *req;
1613 struct page *tmp_page;
1614 int error = -ENOMEM;
1615
1616 set_page_writeback(page);
1617
1618 req = fuse_request_alloc_nofs(1);
1619 if (!req)
1620 goto err;
1621
1622 req->background = 1; /* writeback always goes to bg_queue */
1623 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1624 if (!tmp_page)
1625 goto err_free;
1626
1627 error = -EIO;
1628 req->ff = fuse_write_file_get(fc, fi);
1629 if (!req->ff)
1630 goto err_nofile;
1631
1632 fuse_write_fill(req, req->ff, page_offset(page), 0);
1633
1634 copy_highpage(tmp_page, page);
1635 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1636 req->misc.write.next = NULL;
1637 req->in.argpages = 1;
1638 req->num_pages = 1;
1639 req->pages[0] = tmp_page;
1640 req->page_descs[0].offset = 0;
1641 req->page_descs[0].length = PAGE_SIZE;
1642 req->end = fuse_writepage_end;
1643 req->inode = inode;
1644
1645 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK);
1646 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1647
1648 spin_lock(&fc->lock);
1649 list_add(&req->writepages_entry, &fi->writepages);
1650 list_add_tail(&req->list, &fi->queued_writes);
1651 fuse_flush_writepages(inode);
1652 spin_unlock(&fc->lock);
1653
1654 end_page_writeback(page);
1655
1656 return 0;
1657
1658 err_nofile:
1659 __free_page(tmp_page);
1660 err_free:
1661 fuse_request_free(req);
1662 err:
1663 end_page_writeback(page);
1664 return error;
1665 }
1666
1667 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1668 {
1669 int err;
1670
1671 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1672 /*
1673 * ->writepages() should be called for sync() and friends. We
1674 * should only get here on direct reclaim and then we are
1675 * allowed to skip a page which is already in flight
1676 */
1677 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1678
1679 redirty_page_for_writepage(wbc, page);
1680 return 0;
1681 }
1682
1683 err = fuse_writepage_locked(page);
1684 unlock_page(page);
1685
1686 return err;
1687 }
1688
1689 struct fuse_fill_wb_data {
1690 struct fuse_req *req;
1691 struct fuse_file *ff;
1692 struct inode *inode;
1693 struct page **orig_pages;
1694 };
1695
1696 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1697 {
1698 struct fuse_req *req = data->req;
1699 struct inode *inode = data->inode;
1700 struct fuse_conn *fc = get_fuse_conn(inode);
1701 struct fuse_inode *fi = get_fuse_inode(inode);
1702 int num_pages = req->num_pages;
1703 int i;
1704
1705 req->ff = fuse_file_get(data->ff);
1706 spin_lock(&fc->lock);
1707 list_add_tail(&req->list, &fi->queued_writes);
1708 fuse_flush_writepages(inode);
1709 spin_unlock(&fc->lock);
1710
1711 for (i = 0; i < num_pages; i++)
1712 end_page_writeback(data->orig_pages[i]);
1713 }
1714
1715 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1716 struct page *page)
1717 {
1718 struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1719 struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1720 struct fuse_req *tmp;
1721 struct fuse_req *old_req;
1722 bool found = false;
1723 pgoff_t curr_index;
1724
1725 BUG_ON(new_req->num_pages != 0);
1726
1727 spin_lock(&fc->lock);
1728 list_del(&new_req->writepages_entry);
1729 list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1730 BUG_ON(old_req->inode != new_req->inode);
1731 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1732 if (curr_index <= page->index &&
1733 page->index < curr_index + old_req->num_pages) {
1734 found = true;
1735 break;
1736 }
1737 }
1738 if (!found) {
1739 list_add(&new_req->writepages_entry, &fi->writepages);
1740 goto out_unlock;
1741 }
1742
1743 new_req->num_pages = 1;
1744 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1745 BUG_ON(tmp->inode != new_req->inode);
1746 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1747 if (tmp->num_pages == 1 &&
1748 curr_index == page->index) {
1749 old_req = tmp;
1750 }
1751 }
1752
1753 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT ||
1754 old_req->state == FUSE_REQ_PENDING)) {
1755 struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1756
1757 copy_highpage(old_req->pages[0], page);
1758 spin_unlock(&fc->lock);
1759
1760 dec_bdi_stat(bdi, BDI_WRITEBACK);
1761 dec_zone_page_state(page, NR_WRITEBACK_TEMP);
1762 bdi_writeout_inc(bdi);
1763 fuse_writepage_free(fc, new_req);
1764 fuse_request_free(new_req);
1765 goto out;
1766 } else {
1767 new_req->misc.write.next = old_req->misc.write.next;
1768 old_req->misc.write.next = new_req;
1769 }
1770 out_unlock:
1771 spin_unlock(&fc->lock);
1772 out:
1773 return found;
1774 }
1775
1776 static int fuse_writepages_fill(struct page *page,
1777 struct writeback_control *wbc, void *_data)
1778 {
1779 struct fuse_fill_wb_data *data = _data;
1780 struct fuse_req *req = data->req;
1781 struct inode *inode = data->inode;
1782 struct fuse_conn *fc = get_fuse_conn(inode);
1783 struct page *tmp_page;
1784 bool is_writeback;
1785 int err;
1786
1787 if (!data->ff) {
1788 err = -EIO;
1789 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1790 if (!data->ff)
1791 goto out_unlock;
1792 }
1793
1794 /*
1795 * Being under writeback is unlikely but possible. For example direct
1796 * read to an mmaped fuse file will set the page dirty twice; once when
1797 * the pages are faulted with get_user_pages(), and then after the read
1798 * completed.
1799 */
1800 is_writeback = fuse_page_is_writeback(inode, page->index);
1801
1802 if (req && req->num_pages &&
1803 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1804 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1805 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1806 fuse_writepages_send(data);
1807 data->req = NULL;
1808 }
1809 err = -ENOMEM;
1810 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1811 if (!tmp_page)
1812 goto out_unlock;
1813
1814 /*
1815 * The page must not be redirtied until the writeout is completed
1816 * (i.e. userspace has sent a reply to the write request). Otherwise
1817 * there could be more than one temporary page instance for each real
1818 * page.
1819 *
1820 * This is ensured by holding the page lock in page_mkwrite() while
1821 * checking fuse_page_is_writeback(). We already hold the page lock
1822 * since clear_page_dirty_for_io() and keep it held until we add the
1823 * request to the fi->writepages list and increment req->num_pages.
1824 * After this fuse_page_is_writeback() will indicate that the page is
1825 * under writeback, so we can release the page lock.
1826 */
1827 if (data->req == NULL) {
1828 struct fuse_inode *fi = get_fuse_inode(inode);
1829
1830 err = -ENOMEM;
1831 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1832 if (!req) {
1833 __free_page(tmp_page);
1834 goto out_unlock;
1835 }
1836
1837 fuse_write_fill(req, data->ff, page_offset(page), 0);
1838 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1839 req->misc.write.next = NULL;
1840 req->in.argpages = 1;
1841 req->background = 1;
1842 req->num_pages = 0;
1843 req->end = fuse_writepage_end;
1844 req->inode = inode;
1845
1846 spin_lock(&fc->lock);
1847 list_add(&req->writepages_entry, &fi->writepages);
1848 spin_unlock(&fc->lock);
1849
1850 data->req = req;
1851 }
1852 set_page_writeback(page);
1853
1854 copy_highpage(tmp_page, page);
1855 req->pages[req->num_pages] = tmp_page;
1856 req->page_descs[req->num_pages].offset = 0;
1857 req->page_descs[req->num_pages].length = PAGE_SIZE;
1858
1859 inc_bdi_stat(inode_to_bdi(inode), BDI_WRITEBACK);
1860 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1861
1862 err = 0;
1863 if (is_writeback && fuse_writepage_in_flight(req, page)) {
1864 end_page_writeback(page);
1865 data->req = NULL;
1866 goto out_unlock;
1867 }
1868 data->orig_pages[req->num_pages] = page;
1869
1870 /*
1871 * Protected by fc->lock against concurrent access by
1872 * fuse_page_is_writeback().
1873 */
1874 spin_lock(&fc->lock);
1875 req->num_pages++;
1876 spin_unlock(&fc->lock);
1877
1878 out_unlock:
1879 unlock_page(page);
1880
1881 return err;
1882 }
1883
1884 static int fuse_writepages(struct address_space *mapping,
1885 struct writeback_control *wbc)
1886 {
1887 struct inode *inode = mapping->host;
1888 struct fuse_fill_wb_data data;
1889 int err;
1890
1891 err = -EIO;
1892 if (is_bad_inode(inode))
1893 goto out;
1894
1895 data.inode = inode;
1896 data.req = NULL;
1897 data.ff = NULL;
1898
1899 err = -ENOMEM;
1900 data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1901 sizeof(struct page *),
1902 GFP_NOFS);
1903 if (!data.orig_pages)
1904 goto out;
1905
1906 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1907 if (data.req) {
1908 /* Ignore errors if we can write at least one page */
1909 BUG_ON(!data.req->num_pages);
1910 fuse_writepages_send(&data);
1911 err = 0;
1912 }
1913 if (data.ff)
1914 fuse_file_put(data.ff, false);
1915
1916 kfree(data.orig_pages);
1917 out:
1918 return err;
1919 }
1920
1921 /*
1922 * It's worthy to make sure that space is reserved on disk for the write,
1923 * but how to implement it without killing performance need more thinking.
1924 */
1925 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1926 loff_t pos, unsigned len, unsigned flags,
1927 struct page **pagep, void **fsdata)
1928 {
1929 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1930 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1931 struct page *page;
1932 loff_t fsize;
1933 int err = -ENOMEM;
1934
1935 WARN_ON(!fc->writeback_cache);
1936
1937 page = grab_cache_page_write_begin(mapping, index, flags);
1938 if (!page)
1939 goto error;
1940
1941 fuse_wait_on_page_writeback(mapping->host, page->index);
1942
1943 if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
1944 goto success;
1945 /*
1946 * Check if the start this page comes after the end of file, in which
1947 * case the readpage can be optimized away.
1948 */
1949 fsize = i_size_read(mapping->host);
1950 if (fsize <= (pos & PAGE_CACHE_MASK)) {
1951 size_t off = pos & ~PAGE_CACHE_MASK;
1952 if (off)
1953 zero_user_segment(page, 0, off);
1954 goto success;
1955 }
1956 err = fuse_do_readpage(file, page);
1957 if (err)
1958 goto cleanup;
1959 success:
1960 *pagep = page;
1961 return 0;
1962
1963 cleanup:
1964 unlock_page(page);
1965 page_cache_release(page);
1966 error:
1967 return err;
1968 }
1969
1970 static int fuse_write_end(struct file *file, struct address_space *mapping,
1971 loff_t pos, unsigned len, unsigned copied,
1972 struct page *page, void *fsdata)
1973 {
1974 struct inode *inode = page->mapping->host;
1975
1976 if (!PageUptodate(page)) {
1977 /* Zero any unwritten bytes at the end of the page */
1978 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
1979 if (endoff)
1980 zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
1981 SetPageUptodate(page);
1982 }
1983
1984 fuse_write_update_size(inode, pos + copied);
1985 set_page_dirty(page);
1986 unlock_page(page);
1987 page_cache_release(page);
1988
1989 return copied;
1990 }
1991
1992 static int fuse_launder_page(struct page *page)
1993 {
1994 int err = 0;
1995 if (clear_page_dirty_for_io(page)) {
1996 struct inode *inode = page->mapping->host;
1997 err = fuse_writepage_locked(page);
1998 if (!err)
1999 fuse_wait_on_page_writeback(inode, page->index);
2000 }
2001 return err;
2002 }
2003
2004 /*
2005 * Write back dirty pages now, because there may not be any suitable
2006 * open files later
2007 */
2008 static void fuse_vma_close(struct vm_area_struct *vma)
2009 {
2010 filemap_write_and_wait(vma->vm_file->f_mapping);
2011 }
2012
2013 /*
2014 * Wait for writeback against this page to complete before allowing it
2015 * to be marked dirty again, and hence written back again, possibly
2016 * before the previous writepage completed.
2017 *
2018 * Block here, instead of in ->writepage(), so that the userspace fs
2019 * can only block processes actually operating on the filesystem.
2020 *
2021 * Otherwise unprivileged userspace fs would be able to block
2022 * unrelated:
2023 *
2024 * - page migration
2025 * - sync(2)
2026 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2027 */
2028 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2029 {
2030 struct page *page = vmf->page;
2031 struct inode *inode = file_inode(vma->vm_file);
2032
2033 file_update_time(vma->vm_file);
2034 lock_page(page);
2035 if (page->mapping != inode->i_mapping) {
2036 unlock_page(page);
2037 return VM_FAULT_NOPAGE;
2038 }
2039
2040 fuse_wait_on_page_writeback(inode, page->index);
2041 return VM_FAULT_LOCKED;
2042 }
2043
2044 static const struct vm_operations_struct fuse_file_vm_ops = {
2045 .close = fuse_vma_close,
2046 .fault = filemap_fault,
2047 .map_pages = filemap_map_pages,
2048 .page_mkwrite = fuse_page_mkwrite,
2049 };
2050
2051 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2052 {
2053 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2054 fuse_link_write_file(file);
2055
2056 file_accessed(file);
2057 vma->vm_ops = &fuse_file_vm_ops;
2058 return 0;
2059 }
2060
2061 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2062 {
2063 /* Can't provide the coherency needed for MAP_SHARED */
2064 if (vma->vm_flags & VM_MAYSHARE)
2065 return -ENODEV;
2066
2067 invalidate_inode_pages2(file->f_mapping);
2068
2069 return generic_file_mmap(file, vma);
2070 }
2071
2072 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2073 struct file_lock *fl)
2074 {
2075 switch (ffl->type) {
2076 case F_UNLCK:
2077 break;
2078
2079 case F_RDLCK:
2080 case F_WRLCK:
2081 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2082 ffl->end < ffl->start)
2083 return -EIO;
2084
2085 fl->fl_start = ffl->start;
2086 fl->fl_end = ffl->end;
2087 fl->fl_pid = ffl->pid;
2088 break;
2089
2090 default:
2091 return -EIO;
2092 }
2093 fl->fl_type = ffl->type;
2094 return 0;
2095 }
2096
2097 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2098 const struct file_lock *fl, int opcode, pid_t pid,
2099 int flock, struct fuse_lk_in *inarg)
2100 {
2101 struct inode *inode = file_inode(file);
2102 struct fuse_conn *fc = get_fuse_conn(inode);
2103 struct fuse_file *ff = file->private_data;
2104
2105 memset(inarg, 0, sizeof(*inarg));
2106 inarg->fh = ff->fh;
2107 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2108 inarg->lk.start = fl->fl_start;
2109 inarg->lk.end = fl->fl_end;
2110 inarg->lk.type = fl->fl_type;
2111 inarg->lk.pid = pid;
2112 if (flock)
2113 inarg->lk_flags |= FUSE_LK_FLOCK;
2114 args->in.h.opcode = opcode;
2115 args->in.h.nodeid = get_node_id(inode);
2116 args->in.numargs = 1;
2117 args->in.args[0].size = sizeof(*inarg);
2118 args->in.args[0].value = inarg;
2119 }
2120
2121 static int fuse_getlk(struct file *file, struct file_lock *fl)
2122 {
2123 struct inode *inode = file_inode(file);
2124 struct fuse_conn *fc = get_fuse_conn(inode);
2125 FUSE_ARGS(args);
2126 struct fuse_lk_in inarg;
2127 struct fuse_lk_out outarg;
2128 int err;
2129
2130 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2131 args.out.numargs = 1;
2132 args.out.args[0].size = sizeof(outarg);
2133 args.out.args[0].value = &outarg;
2134 err = fuse_simple_request(fc, &args);
2135 if (!err)
2136 err = convert_fuse_file_lock(&outarg.lk, fl);
2137
2138 return err;
2139 }
2140
2141 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2142 {
2143 struct inode *inode = file_inode(file);
2144 struct fuse_conn *fc = get_fuse_conn(inode);
2145 FUSE_ARGS(args);
2146 struct fuse_lk_in inarg;
2147 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2148 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2149 int err;
2150
2151 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2152 /* NLM needs asynchronous locks, which we don't support yet */
2153 return -ENOLCK;
2154 }
2155
2156 /* Unlock on close is handled by the flush method */
2157 if (fl->fl_flags & FL_CLOSE)
2158 return 0;
2159
2160 fuse_lk_fill(&args, file, fl, opcode, pid, flock, &inarg);
2161 err = fuse_simple_request(fc, &args);
2162
2163 /* locking is restartable */
2164 if (err == -EINTR)
2165 err = -ERESTARTSYS;
2166
2167 return err;
2168 }
2169
2170 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2171 {
2172 struct inode *inode = file_inode(file);
2173 struct fuse_conn *fc = get_fuse_conn(inode);
2174 int err;
2175
2176 if (cmd == F_CANCELLK) {
2177 err = 0;
2178 } else if (cmd == F_GETLK) {
2179 if (fc->no_lock) {
2180 posix_test_lock(file, fl);
2181 err = 0;
2182 } else
2183 err = fuse_getlk(file, fl);
2184 } else {
2185 if (fc->no_lock)
2186 err = posix_lock_file(file, fl, NULL);
2187 else
2188 err = fuse_setlk(file, fl, 0);
2189 }
2190 return err;
2191 }
2192
2193 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2194 {
2195 struct inode *inode = file_inode(file);
2196 struct fuse_conn *fc = get_fuse_conn(inode);
2197 int err;
2198
2199 if (fc->no_flock) {
2200 err = flock_lock_file_wait(file, fl);
2201 } else {
2202 struct fuse_file *ff = file->private_data;
2203
2204 /* emulate flock with POSIX locks */
2205 ff->flock = true;
2206 err = fuse_setlk(file, fl, 1);
2207 }
2208
2209 return err;
2210 }
2211
2212 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2213 {
2214 struct inode *inode = mapping->host;
2215 struct fuse_conn *fc = get_fuse_conn(inode);
2216 FUSE_ARGS(args);
2217 struct fuse_bmap_in inarg;
2218 struct fuse_bmap_out outarg;
2219 int err;
2220
2221 if (!inode->i_sb->s_bdev || fc->no_bmap)
2222 return 0;
2223
2224 memset(&inarg, 0, sizeof(inarg));
2225 inarg.block = block;
2226 inarg.blocksize = inode->i_sb->s_blocksize;
2227 args.in.h.opcode = FUSE_BMAP;
2228 args.in.h.nodeid = get_node_id(inode);
2229 args.in.numargs = 1;
2230 args.in.args[0].size = sizeof(inarg);
2231 args.in.args[0].value = &inarg;
2232 args.out.numargs = 1;
2233 args.out.args[0].size = sizeof(outarg);
2234 args.out.args[0].value = &outarg;
2235 err = fuse_simple_request(fc, &args);
2236 if (err == -ENOSYS)
2237 fc->no_bmap = 1;
2238
2239 return err ? 0 : outarg.block;
2240 }
2241
2242 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2243 {
2244 loff_t retval;
2245 struct inode *inode = file_inode(file);
2246
2247 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2248 if (whence == SEEK_CUR || whence == SEEK_SET)
2249 return generic_file_llseek(file, offset, whence);
2250
2251 mutex_lock(&inode->i_mutex);
2252 retval = fuse_update_attributes(inode, NULL, file, NULL);
2253 if (!retval)
2254 retval = generic_file_llseek(file, offset, whence);
2255 mutex_unlock(&inode->i_mutex);
2256
2257 return retval;
2258 }
2259
2260 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2261 unsigned int nr_segs, size_t bytes, bool to_user)
2262 {
2263 struct iov_iter ii;
2264 int page_idx = 0;
2265
2266 if (!bytes)
2267 return 0;
2268
2269 iov_iter_init(&ii, to_user ? READ : WRITE, iov, nr_segs, bytes);
2270
2271 while (iov_iter_count(&ii)) {
2272 struct page *page = pages[page_idx++];
2273 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2274 void *kaddr;
2275
2276 kaddr = kmap(page);
2277
2278 while (todo) {
2279 char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2280 size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2281 size_t copy = min(todo, iov_len);
2282 size_t left;
2283
2284 if (!to_user)
2285 left = copy_from_user(kaddr, uaddr, copy);
2286 else
2287 left = copy_to_user(uaddr, kaddr, copy);
2288
2289 if (unlikely(left))
2290 return -EFAULT;
2291
2292 iov_iter_advance(&ii, copy);
2293 todo -= copy;
2294 kaddr += copy;
2295 }
2296
2297 kunmap(page);
2298 }
2299
2300 return 0;
2301 }
2302
2303 /*
2304 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2305 * ABI was defined to be 'struct iovec' which is different on 32bit
2306 * and 64bit. Fortunately we can determine which structure the server
2307 * used from the size of the reply.
2308 */
2309 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2310 size_t transferred, unsigned count,
2311 bool is_compat)
2312 {
2313 #ifdef CONFIG_COMPAT
2314 if (count * sizeof(struct compat_iovec) == transferred) {
2315 struct compat_iovec *ciov = src;
2316 unsigned i;
2317
2318 /*
2319 * With this interface a 32bit server cannot support
2320 * non-compat (i.e. ones coming from 64bit apps) ioctl
2321 * requests
2322 */
2323 if (!is_compat)
2324 return -EINVAL;
2325
2326 for (i = 0; i < count; i++) {
2327 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2328 dst[i].iov_len = ciov[i].iov_len;
2329 }
2330 return 0;
2331 }
2332 #endif
2333
2334 if (count * sizeof(struct iovec) != transferred)
2335 return -EIO;
2336
2337 memcpy(dst, src, transferred);
2338 return 0;
2339 }
2340
2341 /* Make sure iov_length() won't overflow */
2342 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2343 {
2344 size_t n;
2345 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2346
2347 for (n = 0; n < count; n++, iov++) {
2348 if (iov->iov_len > (size_t) max)
2349 return -ENOMEM;
2350 max -= iov->iov_len;
2351 }
2352 return 0;
2353 }
2354
2355 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2356 void *src, size_t transferred, unsigned count,
2357 bool is_compat)
2358 {
2359 unsigned i;
2360 struct fuse_ioctl_iovec *fiov = src;
2361
2362 if (fc->minor < 16) {
2363 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2364 count, is_compat);
2365 }
2366
2367 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2368 return -EIO;
2369
2370 for (i = 0; i < count; i++) {
2371 /* Did the server supply an inappropriate value? */
2372 if (fiov[i].base != (unsigned long) fiov[i].base ||
2373 fiov[i].len != (unsigned long) fiov[i].len)
2374 return -EIO;
2375
2376 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2377 dst[i].iov_len = (size_t) fiov[i].len;
2378
2379 #ifdef CONFIG_COMPAT
2380 if (is_compat &&
2381 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2382 (compat_size_t) dst[i].iov_len != fiov[i].len))
2383 return -EIO;
2384 #endif
2385 }
2386
2387 return 0;
2388 }
2389
2390
2391 /*
2392 * For ioctls, there is no generic way to determine how much memory
2393 * needs to be read and/or written. Furthermore, ioctls are allowed
2394 * to dereference the passed pointer, so the parameter requires deep
2395 * copying but FUSE has no idea whatsoever about what to copy in or
2396 * out.
2397 *
2398 * This is solved by allowing FUSE server to retry ioctl with
2399 * necessary in/out iovecs. Let's assume the ioctl implementation
2400 * needs to read in the following structure.
2401 *
2402 * struct a {
2403 * char *buf;
2404 * size_t buflen;
2405 * }
2406 *
2407 * On the first callout to FUSE server, inarg->in_size and
2408 * inarg->out_size will be NULL; then, the server completes the ioctl
2409 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2410 * the actual iov array to
2411 *
2412 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2413 *
2414 * which tells FUSE to copy in the requested area and retry the ioctl.
2415 * On the second round, the server has access to the structure and
2416 * from that it can tell what to look for next, so on the invocation,
2417 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2418 *
2419 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2420 * { .iov_base = a.buf, .iov_len = a.buflen } }
2421 *
2422 * FUSE will copy both struct a and the pointed buffer from the
2423 * process doing the ioctl and retry ioctl with both struct a and the
2424 * buffer.
2425 *
2426 * This time, FUSE server has everything it needs and completes ioctl
2427 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2428 *
2429 * Copying data out works the same way.
2430 *
2431 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2432 * automatically initializes in and out iovs by decoding @cmd with
2433 * _IOC_* macros and the server is not allowed to request RETRY. This
2434 * limits ioctl data transfers to well-formed ioctls and is the forced
2435 * behavior for all FUSE servers.
2436 */
2437 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2438 unsigned int flags)
2439 {
2440 struct fuse_file *ff = file->private_data;
2441 struct fuse_conn *fc = ff->fc;
2442 struct fuse_ioctl_in inarg = {
2443 .fh = ff->fh,
2444 .cmd = cmd,
2445 .arg = arg,
2446 .flags = flags
2447 };
2448 struct fuse_ioctl_out outarg;
2449 struct fuse_req *req = NULL;
2450 struct page **pages = NULL;
2451 struct iovec *iov_page = NULL;
2452 struct iovec *in_iov = NULL, *out_iov = NULL;
2453 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2454 size_t in_size, out_size, transferred;
2455 int err;
2456
2457 #if BITS_PER_LONG == 32
2458 inarg.flags |= FUSE_IOCTL_32BIT;
2459 #else
2460 if (flags & FUSE_IOCTL_COMPAT)
2461 inarg.flags |= FUSE_IOCTL_32BIT;
2462 #endif
2463
2464 /* assume all the iovs returned by client always fits in a page */
2465 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2466
2467 err = -ENOMEM;
2468 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2469 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2470 if (!pages || !iov_page)
2471 goto out;
2472
2473 /*
2474 * If restricted, initialize IO parameters as encoded in @cmd.
2475 * RETRY from server is not allowed.
2476 */
2477 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2478 struct iovec *iov = iov_page;
2479
2480 iov->iov_base = (void __user *)arg;
2481 iov->iov_len = _IOC_SIZE(cmd);
2482
2483 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2484 in_iov = iov;
2485 in_iovs = 1;
2486 }
2487
2488 if (_IOC_DIR(cmd) & _IOC_READ) {
2489 out_iov = iov;
2490 out_iovs = 1;
2491 }
2492 }
2493
2494 retry:
2495 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2496 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2497
2498 /*
2499 * Out data can be used either for actual out data or iovs,
2500 * make sure there always is at least one page.
2501 */
2502 out_size = max_t(size_t, out_size, PAGE_SIZE);
2503 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2504
2505 /* make sure there are enough buffer pages and init request with them */
2506 err = -ENOMEM;
2507 if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2508 goto out;
2509 while (num_pages < max_pages) {
2510 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2511 if (!pages[num_pages])
2512 goto out;
2513 num_pages++;
2514 }
2515
2516 req = fuse_get_req(fc, num_pages);
2517 if (IS_ERR(req)) {
2518 err = PTR_ERR(req);
2519 req = NULL;
2520 goto out;
2521 }
2522 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2523 req->num_pages = num_pages;
2524 fuse_page_descs_length_init(req, 0, req->num_pages);
2525
2526 /* okay, let's send it to the client */
2527 req->in.h.opcode = FUSE_IOCTL;
2528 req->in.h.nodeid = ff->nodeid;
2529 req->in.numargs = 1;
2530 req->in.args[0].size = sizeof(inarg);
2531 req->in.args[0].value = &inarg;
2532 if (in_size) {
2533 req->in.numargs++;
2534 req->in.args[1].size = in_size;
2535 req->in.argpages = 1;
2536
2537 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2538 false);
2539 if (err)
2540 goto out;
2541 }
2542
2543 req->out.numargs = 2;
2544 req->out.args[0].size = sizeof(outarg);
2545 req->out.args[0].value = &outarg;
2546 req->out.args[1].size = out_size;
2547 req->out.argpages = 1;
2548 req->out.argvar = 1;
2549
2550 fuse_request_send(fc, req);
2551 err = req->out.h.error;
2552 transferred = req->out.args[1].size;
2553 fuse_put_request(fc, req);
2554 req = NULL;
2555 if (err)
2556 goto out;
2557
2558 /* did it ask for retry? */
2559 if (outarg.flags & FUSE_IOCTL_RETRY) {
2560 void *vaddr;
2561
2562 /* no retry if in restricted mode */
2563 err = -EIO;
2564 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2565 goto out;
2566
2567 in_iovs = outarg.in_iovs;
2568 out_iovs = outarg.out_iovs;
2569
2570 /*
2571 * Make sure things are in boundary, separate checks
2572 * are to protect against overflow.
2573 */
2574 err = -ENOMEM;
2575 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2576 out_iovs > FUSE_IOCTL_MAX_IOV ||
2577 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2578 goto out;
2579
2580 vaddr = kmap_atomic(pages[0]);
2581 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2582 transferred, in_iovs + out_iovs,
2583 (flags & FUSE_IOCTL_COMPAT) != 0);
2584 kunmap_atomic(vaddr);
2585 if (err)
2586 goto out;
2587
2588 in_iov = iov_page;
2589 out_iov = in_iov + in_iovs;
2590
2591 err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2592 if (err)
2593 goto out;
2594
2595 err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2596 if (err)
2597 goto out;
2598
2599 goto retry;
2600 }
2601
2602 err = -EIO;
2603 if (transferred > inarg.out_size)
2604 goto out;
2605
2606 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2607 out:
2608 if (req)
2609 fuse_put_request(fc, req);
2610 free_page((unsigned long) iov_page);
2611 while (num_pages)
2612 __free_page(pages[--num_pages]);
2613 kfree(pages);
2614
2615 return err ? err : outarg.result;
2616 }
2617 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2618
2619 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2620 unsigned long arg, unsigned int flags)
2621 {
2622 struct inode *inode = file_inode(file);
2623 struct fuse_conn *fc = get_fuse_conn(inode);
2624
2625 if (!fuse_allow_current_process(fc))
2626 return -EACCES;
2627
2628 if (is_bad_inode(inode))
2629 return -EIO;
2630
2631 return fuse_do_ioctl(file, cmd, arg, flags);
2632 }
2633
2634 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2635 unsigned long arg)
2636 {
2637 return fuse_ioctl_common(file, cmd, arg, 0);
2638 }
2639
2640 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2641 unsigned long arg)
2642 {
2643 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2644 }
2645
2646 /*
2647 * All files which have been polled are linked to RB tree
2648 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2649 * find the matching one.
2650 */
2651 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2652 struct rb_node **parent_out)
2653 {
2654 struct rb_node **link = &fc->polled_files.rb_node;
2655 struct rb_node *last = NULL;
2656
2657 while (*link) {
2658 struct fuse_file *ff;
2659
2660 last = *link;
2661 ff = rb_entry(last, struct fuse_file, polled_node);
2662
2663 if (kh < ff->kh)
2664 link = &last->rb_left;
2665 else if (kh > ff->kh)
2666 link = &last->rb_right;
2667 else
2668 return link;
2669 }
2670
2671 if (parent_out)
2672 *parent_out = last;
2673 return link;
2674 }
2675
2676 /*
2677 * The file is about to be polled. Make sure it's on the polled_files
2678 * RB tree. Note that files once added to the polled_files tree are
2679 * not removed before the file is released. This is because a file
2680 * polled once is likely to be polled again.
2681 */
2682 static void fuse_register_polled_file(struct fuse_conn *fc,
2683 struct fuse_file *ff)
2684 {
2685 spin_lock(&fc->lock);
2686 if (RB_EMPTY_NODE(&ff->polled_node)) {
2687 struct rb_node **link, *uninitialized_var(parent);
2688
2689 link = fuse_find_polled_node(fc, ff->kh, &parent);
2690 BUG_ON(*link);
2691 rb_link_node(&ff->polled_node, parent, link);
2692 rb_insert_color(&ff->polled_node, &fc->polled_files);
2693 }
2694 spin_unlock(&fc->lock);
2695 }
2696
2697 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2698 {
2699 struct fuse_file *ff = file->private_data;
2700 struct fuse_conn *fc = ff->fc;
2701 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2702 struct fuse_poll_out outarg;
2703 FUSE_ARGS(args);
2704 int err;
2705
2706 if (fc->no_poll)
2707 return DEFAULT_POLLMASK;
2708
2709 poll_wait(file, &ff->poll_wait, wait);
2710 inarg.events = (__u32)poll_requested_events(wait);
2711
2712 /*
2713 * Ask for notification iff there's someone waiting for it.
2714 * The client may ignore the flag and always notify.
2715 */
2716 if (waitqueue_active(&ff->poll_wait)) {
2717 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2718 fuse_register_polled_file(fc, ff);
2719 }
2720
2721 args.in.h.opcode = FUSE_POLL;
2722 args.in.h.nodeid = ff->nodeid;
2723 args.in.numargs = 1;
2724 args.in.args[0].size = sizeof(inarg);
2725 args.in.args[0].value = &inarg;
2726 args.out.numargs = 1;
2727 args.out.args[0].size = sizeof(outarg);
2728 args.out.args[0].value = &outarg;
2729 err = fuse_simple_request(fc, &args);
2730
2731 if (!err)
2732 return outarg.revents;
2733 if (err == -ENOSYS) {
2734 fc->no_poll = 1;
2735 return DEFAULT_POLLMASK;
2736 }
2737 return POLLERR;
2738 }
2739 EXPORT_SYMBOL_GPL(fuse_file_poll);
2740
2741 /*
2742 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2743 * wakes up the poll waiters.
2744 */
2745 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2746 struct fuse_notify_poll_wakeup_out *outarg)
2747 {
2748 u64 kh = outarg->kh;
2749 struct rb_node **link;
2750
2751 spin_lock(&fc->lock);
2752
2753 link = fuse_find_polled_node(fc, kh, NULL);
2754 if (*link) {
2755 struct fuse_file *ff;
2756
2757 ff = rb_entry(*link, struct fuse_file, polled_node);
2758 wake_up_interruptible_sync(&ff->poll_wait);
2759 }
2760
2761 spin_unlock(&fc->lock);
2762 return 0;
2763 }
2764
2765 static void fuse_do_truncate(struct file *file)
2766 {
2767 struct inode *inode = file->f_mapping->host;
2768 struct iattr attr;
2769
2770 attr.ia_valid = ATTR_SIZE;
2771 attr.ia_size = i_size_read(inode);
2772
2773 attr.ia_file = file;
2774 attr.ia_valid |= ATTR_FILE;
2775
2776 fuse_do_setattr(inode, &attr, file);
2777 }
2778
2779 static inline loff_t fuse_round_up(loff_t off)
2780 {
2781 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2782 }
2783
2784 static ssize_t
2785 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
2786 {
2787 DECLARE_COMPLETION_ONSTACK(wait);
2788 ssize_t ret = 0;
2789 struct file *file = iocb->ki_filp;
2790 struct fuse_file *ff = file->private_data;
2791 bool async_dio = ff->fc->async_dio;
2792 loff_t pos = 0;
2793 struct inode *inode;
2794 loff_t i_size;
2795 size_t count = iov_iter_count(iter);
2796 struct fuse_io_priv *io;
2797
2798 pos = offset;
2799 inode = file->f_mapping->host;
2800 i_size = i_size_read(inode);
2801
2802 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2803 return 0;
2804
2805 /* optimization for short read */
2806 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2807 if (offset >= i_size)
2808 return 0;
2809 count = min_t(loff_t, count, fuse_round_up(i_size - offset));
2810 iov_iter_truncate(iter, count);
2811 }
2812
2813 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2814 if (!io)
2815 return -ENOMEM;
2816 spin_lock_init(&io->lock);
2817 io->reqs = 1;
2818 io->bytes = -1;
2819 io->size = 0;
2820 io->offset = offset;
2821 io->write = (iov_iter_rw(iter) == WRITE);
2822 io->err = 0;
2823 io->file = file;
2824 /*
2825 * By default, we want to optimize all I/Os with async request
2826 * submission to the client filesystem if supported.
2827 */
2828 io->async = async_dio;
2829 io->iocb = iocb;
2830
2831 /*
2832 * We cannot asynchronously extend the size of a file. We have no method
2833 * to wait on real async I/O requests, so we must submit this request
2834 * synchronously.
2835 */
2836 if (!is_sync_kiocb(iocb) && (offset + count > i_size) &&
2837 iov_iter_rw(iter) == WRITE)
2838 io->async = false;
2839
2840 if (io->async && is_sync_kiocb(iocb))
2841 io->done = &wait;
2842
2843 if (iov_iter_rw(iter) == WRITE) {
2844 ret = generic_write_checks(file, &pos, &count, 0);
2845 if (!ret) {
2846 iov_iter_truncate(iter, count);
2847 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2848 }
2849
2850 fuse_invalidate_attr(inode);
2851 } else {
2852 ret = __fuse_direct_read(io, iter, &pos);
2853 }
2854
2855 if (io->async) {
2856 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2857
2858 /* we have a non-extending, async request, so return */
2859 if (!is_sync_kiocb(iocb))
2860 return -EIOCBQUEUED;
2861
2862 wait_for_completion(&wait);
2863 ret = fuse_get_res_by_io(io);
2864 }
2865
2866 kfree(io);
2867
2868 if (iov_iter_rw(iter) == WRITE) {
2869 if (ret > 0)
2870 fuse_write_update_size(inode, pos);
2871 else if (ret < 0 && offset + count > i_size)
2872 fuse_do_truncate(file);
2873 }
2874
2875 return ret;
2876 }
2877
2878 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2879 loff_t length)
2880 {
2881 struct fuse_file *ff = file->private_data;
2882 struct inode *inode = file_inode(file);
2883 struct fuse_inode *fi = get_fuse_inode(inode);
2884 struct fuse_conn *fc = ff->fc;
2885 FUSE_ARGS(args);
2886 struct fuse_fallocate_in inarg = {
2887 .fh = ff->fh,
2888 .offset = offset,
2889 .length = length,
2890 .mode = mode
2891 };
2892 int err;
2893 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2894 (mode & FALLOC_FL_PUNCH_HOLE);
2895
2896 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2897 return -EOPNOTSUPP;
2898
2899 if (fc->no_fallocate)
2900 return -EOPNOTSUPP;
2901
2902 if (lock_inode) {
2903 mutex_lock(&inode->i_mutex);
2904 if (mode & FALLOC_FL_PUNCH_HOLE) {
2905 loff_t endbyte = offset + length - 1;
2906 err = filemap_write_and_wait_range(inode->i_mapping,
2907 offset, endbyte);
2908 if (err)
2909 goto out;
2910
2911 fuse_sync_writes(inode);
2912 }
2913 }
2914
2915 if (!(mode & FALLOC_FL_KEEP_SIZE))
2916 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2917
2918 args.in.h.opcode = FUSE_FALLOCATE;
2919 args.in.h.nodeid = ff->nodeid;
2920 args.in.numargs = 1;
2921 args.in.args[0].size = sizeof(inarg);
2922 args.in.args[0].value = &inarg;
2923 err = fuse_simple_request(fc, &args);
2924 if (err == -ENOSYS) {
2925 fc->no_fallocate = 1;
2926 err = -EOPNOTSUPP;
2927 }
2928 if (err)
2929 goto out;
2930
2931 /* we could have extended the file */
2932 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2933 bool changed = fuse_write_update_size(inode, offset + length);
2934
2935 if (changed && fc->writeback_cache)
2936 file_update_time(file);
2937 }
2938
2939 if (mode & FALLOC_FL_PUNCH_HOLE)
2940 truncate_pagecache_range(inode, offset, offset + length - 1);
2941
2942 fuse_invalidate_attr(inode);
2943
2944 out:
2945 if (!(mode & FALLOC_FL_KEEP_SIZE))
2946 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2947
2948 if (lock_inode)
2949 mutex_unlock(&inode->i_mutex);
2950
2951 return err;
2952 }
2953
2954 static const struct file_operations fuse_file_operations = {
2955 .llseek = fuse_file_llseek,
2956 .read_iter = fuse_file_read_iter,
2957 .write_iter = fuse_file_write_iter,
2958 .mmap = fuse_file_mmap,
2959 .open = fuse_open,
2960 .flush = fuse_flush,
2961 .release = fuse_release,
2962 .fsync = fuse_fsync,
2963 .lock = fuse_file_lock,
2964 .flock = fuse_file_flock,
2965 .splice_read = generic_file_splice_read,
2966 .unlocked_ioctl = fuse_file_ioctl,
2967 .compat_ioctl = fuse_file_compat_ioctl,
2968 .poll = fuse_file_poll,
2969 .fallocate = fuse_file_fallocate,
2970 };
2971
2972 static const struct file_operations fuse_direct_io_file_operations = {
2973 .llseek = fuse_file_llseek,
2974 .read_iter = fuse_direct_read_iter,
2975 .write_iter = fuse_direct_write_iter,
2976 .mmap = fuse_direct_mmap,
2977 .open = fuse_open,
2978 .flush = fuse_flush,
2979 .release = fuse_release,
2980 .fsync = fuse_fsync,
2981 .lock = fuse_file_lock,
2982 .flock = fuse_file_flock,
2983 .unlocked_ioctl = fuse_file_ioctl,
2984 .compat_ioctl = fuse_file_compat_ioctl,
2985 .poll = fuse_file_poll,
2986 .fallocate = fuse_file_fallocate,
2987 /* no splice_read */
2988 };
2989
2990 static const struct address_space_operations fuse_file_aops = {
2991 .readpage = fuse_readpage,
2992 .writepage = fuse_writepage,
2993 .writepages = fuse_writepages,
2994 .launder_page = fuse_launder_page,
2995 .readpages = fuse_readpages,
2996 .set_page_dirty = __set_page_dirty_nobuffers,
2997 .bmap = fuse_bmap,
2998 .direct_IO = fuse_direct_IO,
2999 .write_begin = fuse_write_begin,
3000 .write_end = fuse_write_end,
3001 };
3002
3003 void fuse_init_file_inode(struct inode *inode)
3004 {
3005 inode->i_fop = &fuse_file_operations;
3006 inode->i_data.a_ops = &fuse_file_aops;
3007 }
This page took 0.108049 seconds and 5 git commands to generate.