Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / fs / gfs2 / aops.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
24
25 #include "gfs2.h"
26 #include "incore.h"
27 #include "bmap.h"
28 #include "glock.h"
29 #include "inode.h"
30 #include "log.h"
31 #include "meta_io.h"
32 #include "quota.h"
33 #include "trans.h"
34 #include "rgrp.h"
35 #include "super.h"
36 #include "util.h"
37 #include "glops.h"
38
39
40 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
41 unsigned int from, unsigned int to)
42 {
43 struct buffer_head *head = page_buffers(page);
44 unsigned int bsize = head->b_size;
45 struct buffer_head *bh;
46 unsigned int start, end;
47
48 for (bh = head, start = 0; bh != head || !start;
49 bh = bh->b_this_page, start = end) {
50 end = start + bsize;
51 if (end <= from || start >= to)
52 continue;
53 if (gfs2_is_jdata(ip))
54 set_buffer_uptodate(bh);
55 gfs2_trans_add_data(ip->i_gl, bh);
56 }
57 }
58
59 /**
60 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
61 * @inode: The inode
62 * @lblock: The block number to look up
63 * @bh_result: The buffer head to return the result in
64 * @create: Non-zero if we may add block to the file
65 *
66 * Returns: errno
67 */
68
69 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
70 struct buffer_head *bh_result, int create)
71 {
72 int error;
73
74 error = gfs2_block_map(inode, lblock, bh_result, 0);
75 if (error)
76 return error;
77 if (!buffer_mapped(bh_result))
78 return -EIO;
79 return 0;
80 }
81
82 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
83 struct buffer_head *bh_result, int create)
84 {
85 return gfs2_block_map(inode, lblock, bh_result, 0);
86 }
87
88 /**
89 * gfs2_writepage_common - Common bits of writepage
90 * @page: The page to be written
91 * @wbc: The writeback control
92 *
93 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
94 */
95
96 static int gfs2_writepage_common(struct page *page,
97 struct writeback_control *wbc)
98 {
99 struct inode *inode = page->mapping->host;
100 struct gfs2_inode *ip = GFS2_I(inode);
101 struct gfs2_sbd *sdp = GFS2_SB(inode);
102 loff_t i_size = i_size_read(inode);
103 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
104 unsigned offset;
105
106 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
107 goto out;
108 if (current->journal_info)
109 goto redirty;
110 /* Is the page fully outside i_size? (truncate in progress) */
111 offset = i_size & (PAGE_CACHE_SIZE-1);
112 if (page->index > end_index || (page->index == end_index && !offset)) {
113 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
114 goto out;
115 }
116 return 1;
117 redirty:
118 redirty_page_for_writepage(wbc, page);
119 out:
120 unlock_page(page);
121 return 0;
122 }
123
124 /**
125 * gfs2_writepage - Write page for writeback mappings
126 * @page: The page
127 * @wbc: The writeback control
128 *
129 */
130
131 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
132 {
133 int ret;
134
135 ret = gfs2_writepage_common(page, wbc);
136 if (ret <= 0)
137 return ret;
138
139 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141
142 /**
143 * __gfs2_jdata_writepage - The core of jdata writepage
144 * @page: The page to write
145 * @wbc: The writeback control
146 *
147 * This is shared between writepage and writepages and implements the
148 * core of the writepage operation. If a transaction is required then
149 * PageChecked will have been set and the transaction will have
150 * already been started before this is called.
151 */
152
153 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 struct inode *inode = page->mapping->host;
156 struct gfs2_inode *ip = GFS2_I(inode);
157 struct gfs2_sbd *sdp = GFS2_SB(inode);
158
159 if (PageChecked(page)) {
160 ClearPageChecked(page);
161 if (!page_has_buffers(page)) {
162 create_empty_buffers(page, inode->i_sb->s_blocksize,
163 (1 << BH_Dirty)|(1 << BH_Uptodate));
164 }
165 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
166 }
167 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
168 }
169
170 /**
171 * gfs2_jdata_writepage - Write complete page
172 * @page: Page to write
173 *
174 * Returns: errno
175 *
176 */
177
178 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 struct inode *inode = page->mapping->host;
181 struct gfs2_sbd *sdp = GFS2_SB(inode);
182 int ret;
183 int done_trans = 0;
184
185 if (PageChecked(page)) {
186 if (wbc->sync_mode != WB_SYNC_ALL)
187 goto out_ignore;
188 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
189 if (ret)
190 goto out_ignore;
191 done_trans = 1;
192 }
193 ret = gfs2_writepage_common(page, wbc);
194 if (ret > 0)
195 ret = __gfs2_jdata_writepage(page, wbc);
196 if (done_trans)
197 gfs2_trans_end(sdp);
198 return ret;
199
200 out_ignore:
201 redirty_page_for_writepage(wbc, page);
202 unlock_page(page);
203 return 0;
204 }
205
206 /**
207 * gfs2_writepages - Write a bunch of dirty pages back to disk
208 * @mapping: The mapping to write
209 * @wbc: Write-back control
210 *
211 * Used for both ordered and writeback modes.
212 */
213 static int gfs2_writepages(struct address_space *mapping,
214 struct writeback_control *wbc)
215 {
216 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
217 }
218
219 /**
220 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
221 * @mapping: The mapping
222 * @wbc: The writeback control
223 * @writepage: The writepage function to call for each page
224 * @pvec: The vector of pages
225 * @nr_pages: The number of pages to write
226 *
227 * Returns: non-zero if loop should terminate, zero otherwise
228 */
229
230 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
231 struct writeback_control *wbc,
232 struct pagevec *pvec,
233 int nr_pages, pgoff_t end)
234 {
235 struct inode *inode = mapping->host;
236 struct gfs2_sbd *sdp = GFS2_SB(inode);
237 loff_t i_size = i_size_read(inode);
238 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
239 unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
240 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
241 int i;
242 int ret;
243
244 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
245 if (ret < 0)
246 return ret;
247
248 for(i = 0; i < nr_pages; i++) {
249 struct page *page = pvec->pages[i];
250
251 lock_page(page);
252
253 if (unlikely(page->mapping != mapping)) {
254 unlock_page(page);
255 continue;
256 }
257
258 if (!wbc->range_cyclic && page->index > end) {
259 ret = 1;
260 unlock_page(page);
261 continue;
262 }
263
264 if (wbc->sync_mode != WB_SYNC_NONE)
265 wait_on_page_writeback(page);
266
267 if (PageWriteback(page) ||
268 !clear_page_dirty_for_io(page)) {
269 unlock_page(page);
270 continue;
271 }
272
273 /* Is the page fully outside i_size? (truncate in progress) */
274 if (page->index > end_index || (page->index == end_index && !offset)) {
275 page->mapping->a_ops->invalidatepage(page, 0,
276 PAGE_CACHE_SIZE);
277 unlock_page(page);
278 continue;
279 }
280
281 ret = __gfs2_jdata_writepage(page, wbc);
282
283 if (ret || (--(wbc->nr_to_write) <= 0))
284 ret = 1;
285 }
286 gfs2_trans_end(sdp);
287 return ret;
288 }
289
290 /**
291 * gfs2_write_cache_jdata - Like write_cache_pages but different
292 * @mapping: The mapping to write
293 * @wbc: The writeback control
294 * @writepage: The writepage function to call
295 * @data: The data to pass to writepage
296 *
297 * The reason that we use our own function here is that we need to
298 * start transactions before we grab page locks. This allows us
299 * to get the ordering right.
300 */
301
302 static int gfs2_write_cache_jdata(struct address_space *mapping,
303 struct writeback_control *wbc)
304 {
305 int ret = 0;
306 int done = 0;
307 struct pagevec pvec;
308 int nr_pages;
309 pgoff_t index;
310 pgoff_t end;
311 int scanned = 0;
312 int range_whole = 0;
313
314 pagevec_init(&pvec, 0);
315 if (wbc->range_cyclic) {
316 index = mapping->writeback_index; /* Start from prev offset */
317 end = -1;
318 } else {
319 index = wbc->range_start >> PAGE_CACHE_SHIFT;
320 end = wbc->range_end >> PAGE_CACHE_SHIFT;
321 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
322 range_whole = 1;
323 scanned = 1;
324 }
325
326 retry:
327 while (!done && (index <= end) &&
328 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
329 PAGECACHE_TAG_DIRTY,
330 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
331 scanned = 1;
332 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
333 if (ret)
334 done = 1;
335 if (ret > 0)
336 ret = 0;
337
338 pagevec_release(&pvec);
339 cond_resched();
340 }
341
342 if (!scanned && !done) {
343 /*
344 * We hit the last page and there is more work to be done: wrap
345 * back to the start of the file
346 */
347 scanned = 1;
348 index = 0;
349 goto retry;
350 }
351
352 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
353 mapping->writeback_index = index;
354 return ret;
355 }
356
357
358 /**
359 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
360 * @mapping: The mapping to write
361 * @wbc: The writeback control
362 *
363 */
364
365 static int gfs2_jdata_writepages(struct address_space *mapping,
366 struct writeback_control *wbc)
367 {
368 struct gfs2_inode *ip = GFS2_I(mapping->host);
369 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
370 int ret;
371
372 ret = gfs2_write_cache_jdata(mapping, wbc);
373 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
374 gfs2_log_flush(sdp, ip->i_gl);
375 ret = gfs2_write_cache_jdata(mapping, wbc);
376 }
377 return ret;
378 }
379
380 /**
381 * stuffed_readpage - Fill in a Linux page with stuffed file data
382 * @ip: the inode
383 * @page: the page
384 *
385 * Returns: errno
386 */
387
388 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
389 {
390 struct buffer_head *dibh;
391 u64 dsize = i_size_read(&ip->i_inode);
392 void *kaddr;
393 int error;
394
395 /*
396 * Due to the order of unstuffing files and ->fault(), we can be
397 * asked for a zero page in the case of a stuffed file being extended,
398 * so we need to supply one here. It doesn't happen often.
399 */
400 if (unlikely(page->index)) {
401 zero_user(page, 0, PAGE_CACHE_SIZE);
402 SetPageUptodate(page);
403 return 0;
404 }
405
406 error = gfs2_meta_inode_buffer(ip, &dibh);
407 if (error)
408 return error;
409
410 kaddr = kmap_atomic(page);
411 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
412 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
413 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
414 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
415 kunmap_atomic(kaddr);
416 flush_dcache_page(page);
417 brelse(dibh);
418 SetPageUptodate(page);
419
420 return 0;
421 }
422
423
424 /**
425 * __gfs2_readpage - readpage
426 * @file: The file to read a page for
427 * @page: The page to read
428 *
429 * This is the core of gfs2's readpage. Its used by the internal file
430 * reading code as in that case we already hold the glock. Also its
431 * called by gfs2_readpage() once the required lock has been granted.
432 *
433 */
434
435 static int __gfs2_readpage(void *file, struct page *page)
436 {
437 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
438 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
439 int error;
440
441 if (gfs2_is_stuffed(ip)) {
442 error = stuffed_readpage(ip, page);
443 unlock_page(page);
444 } else {
445 error = mpage_readpage(page, gfs2_block_map);
446 }
447
448 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
449 return -EIO;
450
451 return error;
452 }
453
454 /**
455 * gfs2_readpage - read a page of a file
456 * @file: The file to read
457 * @page: The page of the file
458 *
459 * This deals with the locking required. We have to unlock and
460 * relock the page in order to get the locking in the right
461 * order.
462 */
463
464 static int gfs2_readpage(struct file *file, struct page *page)
465 {
466 struct address_space *mapping = page->mapping;
467 struct gfs2_inode *ip = GFS2_I(mapping->host);
468 struct gfs2_holder gh;
469 int error;
470
471 unlock_page(page);
472 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
473 error = gfs2_glock_nq(&gh);
474 if (unlikely(error))
475 goto out;
476 error = AOP_TRUNCATED_PAGE;
477 lock_page(page);
478 if (page->mapping == mapping && !PageUptodate(page))
479 error = __gfs2_readpage(file, page);
480 else
481 unlock_page(page);
482 gfs2_glock_dq(&gh);
483 out:
484 gfs2_holder_uninit(&gh);
485 if (error && error != AOP_TRUNCATED_PAGE)
486 lock_page(page);
487 return error;
488 }
489
490 /**
491 * gfs2_internal_read - read an internal file
492 * @ip: The gfs2 inode
493 * @buf: The buffer to fill
494 * @pos: The file position
495 * @size: The amount to read
496 *
497 */
498
499 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
500 unsigned size)
501 {
502 struct address_space *mapping = ip->i_inode.i_mapping;
503 unsigned long index = *pos / PAGE_CACHE_SIZE;
504 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
505 unsigned copied = 0;
506 unsigned amt;
507 struct page *page;
508 void *p;
509
510 do {
511 amt = size - copied;
512 if (offset + size > PAGE_CACHE_SIZE)
513 amt = PAGE_CACHE_SIZE - offset;
514 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
515 if (IS_ERR(page))
516 return PTR_ERR(page);
517 p = kmap_atomic(page);
518 memcpy(buf + copied, p + offset, amt);
519 kunmap_atomic(p);
520 mark_page_accessed(page);
521 page_cache_release(page);
522 copied += amt;
523 index++;
524 offset = 0;
525 } while(copied < size);
526 (*pos) += size;
527 return size;
528 }
529
530 /**
531 * gfs2_readpages - Read a bunch of pages at once
532 *
533 * Some notes:
534 * 1. This is only for readahead, so we can simply ignore any things
535 * which are slightly inconvenient (such as locking conflicts between
536 * the page lock and the glock) and return having done no I/O. Its
537 * obviously not something we'd want to do on too regular a basis.
538 * Any I/O we ignore at this time will be done via readpage later.
539 * 2. We don't handle stuffed files here we let readpage do the honours.
540 * 3. mpage_readpages() does most of the heavy lifting in the common case.
541 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
542 */
543
544 static int gfs2_readpages(struct file *file, struct address_space *mapping,
545 struct list_head *pages, unsigned nr_pages)
546 {
547 struct inode *inode = mapping->host;
548 struct gfs2_inode *ip = GFS2_I(inode);
549 struct gfs2_sbd *sdp = GFS2_SB(inode);
550 struct gfs2_holder gh;
551 int ret;
552
553 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
554 ret = gfs2_glock_nq(&gh);
555 if (unlikely(ret))
556 goto out_uninit;
557 if (!gfs2_is_stuffed(ip))
558 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
559 gfs2_glock_dq(&gh);
560 out_uninit:
561 gfs2_holder_uninit(&gh);
562 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
563 ret = -EIO;
564 return ret;
565 }
566
567 /**
568 * gfs2_write_begin - Begin to write to a file
569 * @file: The file to write to
570 * @mapping: The mapping in which to write
571 * @pos: The file offset at which to start writing
572 * @len: Length of the write
573 * @flags: Various flags
574 * @pagep: Pointer to return the page
575 * @fsdata: Pointer to return fs data (unused by GFS2)
576 *
577 * Returns: errno
578 */
579
580 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
581 loff_t pos, unsigned len, unsigned flags,
582 struct page **pagep, void **fsdata)
583 {
584 struct gfs2_inode *ip = GFS2_I(mapping->host);
585 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
586 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
587 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
588 unsigned requested = 0;
589 int alloc_required;
590 int error = 0;
591 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
592 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
593 struct page *page;
594
595 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
596 error = gfs2_glock_nq(&ip->i_gh);
597 if (unlikely(error))
598 goto out_uninit;
599 if (&ip->i_inode == sdp->sd_rindex) {
600 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
601 GL_NOCACHE, &m_ip->i_gh);
602 if (unlikely(error)) {
603 gfs2_glock_dq(&ip->i_gh);
604 goto out_uninit;
605 }
606 }
607
608 alloc_required = gfs2_write_alloc_required(ip, pos, len);
609
610 if (alloc_required || gfs2_is_jdata(ip))
611 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
612
613 if (alloc_required) {
614 error = gfs2_quota_lock_check(ip);
615 if (error)
616 goto out_unlock;
617
618 requested = data_blocks + ind_blocks;
619 error = gfs2_inplace_reserve(ip, requested, 0);
620 if (error)
621 goto out_qunlock;
622 }
623
624 rblocks = RES_DINODE + ind_blocks;
625 if (gfs2_is_jdata(ip))
626 rblocks += data_blocks ? data_blocks : 1;
627 if (ind_blocks || data_blocks)
628 rblocks += RES_STATFS + RES_QUOTA;
629 if (&ip->i_inode == sdp->sd_rindex)
630 rblocks += 2 * RES_STATFS;
631 if (alloc_required)
632 rblocks += gfs2_rg_blocks(ip, requested);
633
634 error = gfs2_trans_begin(sdp, rblocks,
635 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
636 if (error)
637 goto out_trans_fail;
638
639 error = -ENOMEM;
640 flags |= AOP_FLAG_NOFS;
641 page = grab_cache_page_write_begin(mapping, index, flags);
642 *pagep = page;
643 if (unlikely(!page))
644 goto out_endtrans;
645
646 if (gfs2_is_stuffed(ip)) {
647 error = 0;
648 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
649 error = gfs2_unstuff_dinode(ip, page);
650 if (error == 0)
651 goto prepare_write;
652 } else if (!PageUptodate(page)) {
653 error = stuffed_readpage(ip, page);
654 }
655 goto out;
656 }
657
658 prepare_write:
659 error = __block_write_begin(page, from, len, gfs2_block_map);
660 out:
661 if (error == 0)
662 return 0;
663
664 unlock_page(page);
665 page_cache_release(page);
666
667 gfs2_trans_end(sdp);
668 if (pos + len > ip->i_inode.i_size)
669 gfs2_trim_blocks(&ip->i_inode);
670 goto out_trans_fail;
671
672 out_endtrans:
673 gfs2_trans_end(sdp);
674 out_trans_fail:
675 if (alloc_required) {
676 gfs2_inplace_release(ip);
677 out_qunlock:
678 gfs2_quota_unlock(ip);
679 }
680 out_unlock:
681 if (&ip->i_inode == sdp->sd_rindex) {
682 gfs2_glock_dq(&m_ip->i_gh);
683 gfs2_holder_uninit(&m_ip->i_gh);
684 }
685 gfs2_glock_dq(&ip->i_gh);
686 out_uninit:
687 gfs2_holder_uninit(&ip->i_gh);
688 return error;
689 }
690
691 /**
692 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
693 * @inode: the rindex inode
694 */
695 static void adjust_fs_space(struct inode *inode)
696 {
697 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
698 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
699 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
700 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
701 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
702 struct buffer_head *m_bh, *l_bh;
703 u64 fs_total, new_free;
704
705 /* Total up the file system space, according to the latest rindex. */
706 fs_total = gfs2_ri_total(sdp);
707 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
708 return;
709
710 spin_lock(&sdp->sd_statfs_spin);
711 gfs2_statfs_change_in(m_sc, m_bh->b_data +
712 sizeof(struct gfs2_dinode));
713 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
714 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
715 else
716 new_free = 0;
717 spin_unlock(&sdp->sd_statfs_spin);
718 fs_warn(sdp, "File system extended by %llu blocks.\n",
719 (unsigned long long)new_free);
720 gfs2_statfs_change(sdp, new_free, new_free, 0);
721
722 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
723 goto out;
724 update_statfs(sdp, m_bh, l_bh);
725 brelse(l_bh);
726 out:
727 brelse(m_bh);
728 }
729
730 /**
731 * gfs2_stuffed_write_end - Write end for stuffed files
732 * @inode: The inode
733 * @dibh: The buffer_head containing the on-disk inode
734 * @pos: The file position
735 * @len: The length of the write
736 * @copied: How much was actually copied by the VFS
737 * @page: The page
738 *
739 * This copies the data from the page into the inode block after
740 * the inode data structure itself.
741 *
742 * Returns: errno
743 */
744 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
745 loff_t pos, unsigned len, unsigned copied,
746 struct page *page)
747 {
748 struct gfs2_inode *ip = GFS2_I(inode);
749 struct gfs2_sbd *sdp = GFS2_SB(inode);
750 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
751 u64 to = pos + copied;
752 void *kaddr;
753 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
754
755 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
756 kaddr = kmap_atomic(page);
757 memcpy(buf + pos, kaddr + pos, copied);
758 memset(kaddr + pos + copied, 0, len - copied);
759 flush_dcache_page(page);
760 kunmap_atomic(kaddr);
761
762 if (!PageUptodate(page))
763 SetPageUptodate(page);
764 unlock_page(page);
765 page_cache_release(page);
766
767 if (copied) {
768 if (inode->i_size < to)
769 i_size_write(inode, to);
770 mark_inode_dirty(inode);
771 }
772
773 if (inode == sdp->sd_rindex) {
774 adjust_fs_space(inode);
775 sdp->sd_rindex_uptodate = 0;
776 }
777
778 brelse(dibh);
779 gfs2_trans_end(sdp);
780 if (inode == sdp->sd_rindex) {
781 gfs2_glock_dq(&m_ip->i_gh);
782 gfs2_holder_uninit(&m_ip->i_gh);
783 }
784 gfs2_glock_dq(&ip->i_gh);
785 gfs2_holder_uninit(&ip->i_gh);
786 return copied;
787 }
788
789 /**
790 * gfs2_write_end
791 * @file: The file to write to
792 * @mapping: The address space to write to
793 * @pos: The file position
794 * @len: The length of the data
795 * @copied:
796 * @page: The page that has been written
797 * @fsdata: The fsdata (unused in GFS2)
798 *
799 * The main write_end function for GFS2. We have a separate one for
800 * stuffed files as they are slightly different, otherwise we just
801 * put our locking around the VFS provided functions.
802 *
803 * Returns: errno
804 */
805
806 static int gfs2_write_end(struct file *file, struct address_space *mapping,
807 loff_t pos, unsigned len, unsigned copied,
808 struct page *page, void *fsdata)
809 {
810 struct inode *inode = page->mapping->host;
811 struct gfs2_inode *ip = GFS2_I(inode);
812 struct gfs2_sbd *sdp = GFS2_SB(inode);
813 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
814 struct buffer_head *dibh;
815 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
816 unsigned int to = from + len;
817 int ret;
818 struct gfs2_trans *tr = current->journal_info;
819 BUG_ON(!tr);
820
821 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
822
823 ret = gfs2_meta_inode_buffer(ip, &dibh);
824 if (unlikely(ret)) {
825 unlock_page(page);
826 page_cache_release(page);
827 goto failed;
828 }
829
830 if (gfs2_is_stuffed(ip))
831 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
832
833 if (!gfs2_is_writeback(ip))
834 gfs2_page_add_databufs(ip, page, from, to);
835
836 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
837 if (tr->tr_num_buf_new)
838 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
839 else
840 gfs2_trans_add_meta(ip->i_gl, dibh);
841
842
843 if (inode == sdp->sd_rindex) {
844 adjust_fs_space(inode);
845 sdp->sd_rindex_uptodate = 0;
846 }
847
848 brelse(dibh);
849 failed:
850 gfs2_trans_end(sdp);
851 gfs2_inplace_release(ip);
852 if (ip->i_res->rs_qa_qd_num)
853 gfs2_quota_unlock(ip);
854 if (inode == sdp->sd_rindex) {
855 gfs2_glock_dq(&m_ip->i_gh);
856 gfs2_holder_uninit(&m_ip->i_gh);
857 }
858 gfs2_glock_dq(&ip->i_gh);
859 gfs2_holder_uninit(&ip->i_gh);
860 return ret;
861 }
862
863 /**
864 * gfs2_set_page_dirty - Page dirtying function
865 * @page: The page to dirty
866 *
867 * Returns: 1 if it dirtyed the page, or 0 otherwise
868 */
869
870 static int gfs2_set_page_dirty(struct page *page)
871 {
872 SetPageChecked(page);
873 return __set_page_dirty_buffers(page);
874 }
875
876 /**
877 * gfs2_bmap - Block map function
878 * @mapping: Address space info
879 * @lblock: The block to map
880 *
881 * Returns: The disk address for the block or 0 on hole or error
882 */
883
884 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
885 {
886 struct gfs2_inode *ip = GFS2_I(mapping->host);
887 struct gfs2_holder i_gh;
888 sector_t dblock = 0;
889 int error;
890
891 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
892 if (error)
893 return 0;
894
895 if (!gfs2_is_stuffed(ip))
896 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
897
898 gfs2_glock_dq_uninit(&i_gh);
899
900 return dblock;
901 }
902
903 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
904 {
905 struct gfs2_bufdata *bd;
906
907 lock_buffer(bh);
908 gfs2_log_lock(sdp);
909 clear_buffer_dirty(bh);
910 bd = bh->b_private;
911 if (bd) {
912 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
913 list_del_init(&bd->bd_list);
914 else
915 gfs2_remove_from_journal(bh, current->journal_info, 0);
916 }
917 bh->b_bdev = NULL;
918 clear_buffer_mapped(bh);
919 clear_buffer_req(bh);
920 clear_buffer_new(bh);
921 gfs2_log_unlock(sdp);
922 unlock_buffer(bh);
923 }
924
925 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
926 unsigned int length)
927 {
928 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
929 unsigned int stop = offset + length;
930 int partial_page = (offset || length < PAGE_CACHE_SIZE);
931 struct buffer_head *bh, *head;
932 unsigned long pos = 0;
933
934 BUG_ON(!PageLocked(page));
935 if (!partial_page)
936 ClearPageChecked(page);
937 if (!page_has_buffers(page))
938 goto out;
939
940 bh = head = page_buffers(page);
941 do {
942 if (pos + bh->b_size > stop)
943 return;
944
945 if (offset <= pos)
946 gfs2_discard(sdp, bh);
947 pos += bh->b_size;
948 bh = bh->b_this_page;
949 } while (bh != head);
950 out:
951 if (!partial_page)
952 try_to_release_page(page, 0);
953 }
954
955 /**
956 * gfs2_ok_for_dio - check that dio is valid on this file
957 * @ip: The inode
958 * @rw: READ or WRITE
959 * @offset: The offset at which we are reading or writing
960 *
961 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
962 * 1 (to accept the i/o request)
963 */
964 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
965 {
966 /*
967 * Should we return an error here? I can't see that O_DIRECT for
968 * a stuffed file makes any sense. For now we'll silently fall
969 * back to buffered I/O
970 */
971 if (gfs2_is_stuffed(ip))
972 return 0;
973
974 if (offset >= i_size_read(&ip->i_inode))
975 return 0;
976 return 1;
977 }
978
979
980
981 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
982 const struct iovec *iov, loff_t offset,
983 unsigned long nr_segs)
984 {
985 struct file *file = iocb->ki_filp;
986 struct inode *inode = file->f_mapping->host;
987 struct gfs2_inode *ip = GFS2_I(inode);
988 struct gfs2_holder gh;
989 int rv;
990
991 /*
992 * Deferred lock, even if its a write, since we do no allocation
993 * on this path. All we need change is atime, and this lock mode
994 * ensures that other nodes have flushed their buffered read caches
995 * (i.e. their page cache entries for this inode). We do not,
996 * unfortunately have the option of only flushing a range like
997 * the VFS does.
998 */
999 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1000 rv = gfs2_glock_nq(&gh);
1001 if (rv)
1002 return rv;
1003 rv = gfs2_ok_for_dio(ip, rw, offset);
1004 if (rv != 1)
1005 goto out; /* dio not valid, fall back to buffered i/o */
1006
1007 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1008 offset, nr_segs, gfs2_get_block_direct,
1009 NULL, NULL, 0);
1010 out:
1011 gfs2_glock_dq(&gh);
1012 gfs2_holder_uninit(&gh);
1013 return rv;
1014 }
1015
1016 /**
1017 * gfs2_releasepage - free the metadata associated with a page
1018 * @page: the page that's being released
1019 * @gfp_mask: passed from Linux VFS, ignored by us
1020 *
1021 * Call try_to_free_buffers() if the buffers in this page can be
1022 * released.
1023 *
1024 * Returns: 0
1025 */
1026
1027 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1028 {
1029 struct address_space *mapping = page->mapping;
1030 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1031 struct buffer_head *bh, *head;
1032 struct gfs2_bufdata *bd;
1033
1034 if (!page_has_buffers(page))
1035 return 0;
1036
1037 gfs2_log_lock(sdp);
1038 spin_lock(&sdp->sd_ail_lock);
1039 head = bh = page_buffers(page);
1040 do {
1041 if (atomic_read(&bh->b_count))
1042 goto cannot_release;
1043 bd = bh->b_private;
1044 if (bd && bd->bd_tr)
1045 goto cannot_release;
1046 if (buffer_pinned(bh) || buffer_dirty(bh))
1047 goto not_possible;
1048 bh = bh->b_this_page;
1049 } while(bh != head);
1050 spin_unlock(&sdp->sd_ail_lock);
1051 gfs2_log_unlock(sdp);
1052
1053 head = bh = page_buffers(page);
1054 do {
1055 gfs2_log_lock(sdp);
1056 bd = bh->b_private;
1057 if (bd) {
1058 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1059 if (!list_empty(&bd->bd_list)) {
1060 if (!buffer_pinned(bh))
1061 list_del_init(&bd->bd_list);
1062 else
1063 bd = NULL;
1064 }
1065 if (bd)
1066 bd->bd_bh = NULL;
1067 bh->b_private = NULL;
1068 }
1069 gfs2_log_unlock(sdp);
1070 if (bd)
1071 kmem_cache_free(gfs2_bufdata_cachep, bd);
1072
1073 bh = bh->b_this_page;
1074 } while (bh != head);
1075
1076 return try_to_free_buffers(page);
1077
1078 not_possible: /* Should never happen */
1079 WARN_ON(buffer_dirty(bh));
1080 WARN_ON(buffer_pinned(bh));
1081 cannot_release:
1082 spin_unlock(&sdp->sd_ail_lock);
1083 gfs2_log_unlock(sdp);
1084 return 0;
1085 }
1086
1087 static const struct address_space_operations gfs2_writeback_aops = {
1088 .writepage = gfs2_writepage,
1089 .writepages = gfs2_writepages,
1090 .readpage = gfs2_readpage,
1091 .readpages = gfs2_readpages,
1092 .write_begin = gfs2_write_begin,
1093 .write_end = gfs2_write_end,
1094 .bmap = gfs2_bmap,
1095 .invalidatepage = gfs2_invalidatepage,
1096 .releasepage = gfs2_releasepage,
1097 .direct_IO = gfs2_direct_IO,
1098 .migratepage = buffer_migrate_page,
1099 .is_partially_uptodate = block_is_partially_uptodate,
1100 .error_remove_page = generic_error_remove_page,
1101 };
1102
1103 static const struct address_space_operations gfs2_ordered_aops = {
1104 .writepage = gfs2_writepage,
1105 .writepages = gfs2_writepages,
1106 .readpage = gfs2_readpage,
1107 .readpages = gfs2_readpages,
1108 .write_begin = gfs2_write_begin,
1109 .write_end = gfs2_write_end,
1110 .set_page_dirty = gfs2_set_page_dirty,
1111 .bmap = gfs2_bmap,
1112 .invalidatepage = gfs2_invalidatepage,
1113 .releasepage = gfs2_releasepage,
1114 .direct_IO = gfs2_direct_IO,
1115 .migratepage = buffer_migrate_page,
1116 .is_partially_uptodate = block_is_partially_uptodate,
1117 .error_remove_page = generic_error_remove_page,
1118 };
1119
1120 static const struct address_space_operations gfs2_jdata_aops = {
1121 .writepage = gfs2_jdata_writepage,
1122 .writepages = gfs2_jdata_writepages,
1123 .readpage = gfs2_readpage,
1124 .readpages = gfs2_readpages,
1125 .write_begin = gfs2_write_begin,
1126 .write_end = gfs2_write_end,
1127 .set_page_dirty = gfs2_set_page_dirty,
1128 .bmap = gfs2_bmap,
1129 .invalidatepage = gfs2_invalidatepage,
1130 .releasepage = gfs2_releasepage,
1131 .is_partially_uptodate = block_is_partially_uptodate,
1132 .error_remove_page = generic_error_remove_page,
1133 };
1134
1135 void gfs2_set_aops(struct inode *inode)
1136 {
1137 struct gfs2_inode *ip = GFS2_I(inode);
1138
1139 if (gfs2_is_writeback(ip))
1140 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1141 else if (gfs2_is_ordered(ip))
1142 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1143 else if (gfs2_is_jdata(ip))
1144 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1145 else
1146 BUG();
1147 }
1148
This page took 0.052991 seconds and 6 git commands to generate.