797f1d3114ef22684fed08d076e9d329d01c8807
[deliverable/linux.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 struct gfs2_extent {
61 struct gfs2_rbm rbm;
62 u32 len;
63 };
64
65 static const char valid_change[16] = {
66 /* current */
67 /* n */ 0, 1, 1, 1,
68 /* e */ 1, 0, 0, 0,
69 /* w */ 0, 0, 0, 1,
70 1, 0, 0, 0
71 };
72
73 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
74 const struct gfs2_inode *ip, bool nowrap,
75 const struct gfs2_alloc_parms *ap);
76
77
78 /**
79 * gfs2_setbit - Set a bit in the bitmaps
80 * @rbm: The position of the bit to set
81 * @do_clone: Also set the clone bitmap, if it exists
82 * @new_state: the new state of the block
83 *
84 */
85
86 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
87 unsigned char new_state)
88 {
89 unsigned char *byte1, *byte2, *end, cur_state;
90 struct gfs2_bitmap *bi = rbm_bi(rbm);
91 unsigned int buflen = bi->bi_len;
92 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
93
94 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
95 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
96
97 BUG_ON(byte1 >= end);
98
99 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
100
101 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
102 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
103 "new_state=%d\n", rbm->offset, cur_state, new_state);
104 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
105 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
106 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
107 bi->bi_offset, bi->bi_len);
108 dump_stack();
109 gfs2_consist_rgrpd(rbm->rgd);
110 return;
111 }
112 *byte1 ^= (cur_state ^ new_state) << bit;
113
114 if (do_clone && bi->bi_clone) {
115 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
116 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
117 *byte2 ^= (cur_state ^ new_state) << bit;
118 }
119 }
120
121 /**
122 * gfs2_testbit - test a bit in the bitmaps
123 * @rbm: The bit to test
124 *
125 * Returns: The two bit block state of the requested bit
126 */
127
128 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
129 {
130 struct gfs2_bitmap *bi = rbm_bi(rbm);
131 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
132 const u8 *byte;
133 unsigned int bit;
134
135 byte = buffer + (rbm->offset / GFS2_NBBY);
136 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
137
138 return (*byte >> bit) & GFS2_BIT_MASK;
139 }
140
141 /**
142 * gfs2_bit_search
143 * @ptr: Pointer to bitmap data
144 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
145 * @state: The state we are searching for
146 *
147 * We xor the bitmap data with a patter which is the bitwise opposite
148 * of what we are looking for, this gives rise to a pattern of ones
149 * wherever there is a match. Since we have two bits per entry, we
150 * take this pattern, shift it down by one place and then and it with
151 * the original. All the even bit positions (0,2,4, etc) then represent
152 * successful matches, so we mask with 0x55555..... to remove the unwanted
153 * odd bit positions.
154 *
155 * This allows searching of a whole u64 at once (32 blocks) with a
156 * single test (on 64 bit arches).
157 */
158
159 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
160 {
161 u64 tmp;
162 static const u64 search[] = {
163 [0] = 0xffffffffffffffffULL,
164 [1] = 0xaaaaaaaaaaaaaaaaULL,
165 [2] = 0x5555555555555555ULL,
166 [3] = 0x0000000000000000ULL,
167 };
168 tmp = le64_to_cpu(*ptr) ^ search[state];
169 tmp &= (tmp >> 1);
170 tmp &= mask;
171 return tmp;
172 }
173
174 /**
175 * rs_cmp - multi-block reservation range compare
176 * @blk: absolute file system block number of the new reservation
177 * @len: number of blocks in the new reservation
178 * @rs: existing reservation to compare against
179 *
180 * returns: 1 if the block range is beyond the reach of the reservation
181 * -1 if the block range is before the start of the reservation
182 * 0 if the block range overlaps with the reservation
183 */
184 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
185 {
186 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
187
188 if (blk >= startblk + rs->rs_free)
189 return 1;
190 if (blk + len - 1 < startblk)
191 return -1;
192 return 0;
193 }
194
195 /**
196 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
197 * a block in a given allocation state.
198 * @buf: the buffer that holds the bitmaps
199 * @len: the length (in bytes) of the buffer
200 * @goal: start search at this block's bit-pair (within @buffer)
201 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
202 *
203 * Scope of @goal and returned block number is only within this bitmap buffer,
204 * not entire rgrp or filesystem. @buffer will be offset from the actual
205 * beginning of a bitmap block buffer, skipping any header structures, but
206 * headers are always a multiple of 64 bits long so that the buffer is
207 * always aligned to a 64 bit boundary.
208 *
209 * The size of the buffer is in bytes, but is it assumed that it is
210 * always ok to read a complete multiple of 64 bits at the end
211 * of the block in case the end is no aligned to a natural boundary.
212 *
213 * Return: the block number (bitmap buffer scope) that was found
214 */
215
216 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
217 u32 goal, u8 state)
218 {
219 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
220 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
221 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
222 u64 tmp;
223 u64 mask = 0x5555555555555555ULL;
224 u32 bit;
225
226 /* Mask off bits we don't care about at the start of the search */
227 mask <<= spoint;
228 tmp = gfs2_bit_search(ptr, mask, state);
229 ptr++;
230 while(tmp == 0 && ptr < end) {
231 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
232 ptr++;
233 }
234 /* Mask off any bits which are more than len bytes from the start */
235 if (ptr == end && (len & (sizeof(u64) - 1)))
236 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
237 /* Didn't find anything, so return */
238 if (tmp == 0)
239 return BFITNOENT;
240 ptr--;
241 bit = __ffs64(tmp);
242 bit /= 2; /* two bits per entry in the bitmap */
243 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
244 }
245
246 /**
247 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
248 * @rbm: The rbm with rgd already set correctly
249 * @block: The block number (filesystem relative)
250 *
251 * This sets the bi and offset members of an rbm based on a
252 * resource group and a filesystem relative block number. The
253 * resource group must be set in the rbm on entry, the bi and
254 * offset members will be set by this function.
255 *
256 * Returns: 0 on success, or an error code
257 */
258
259 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
260 {
261 u64 rblock = block - rbm->rgd->rd_data0;
262
263 if (WARN_ON_ONCE(rblock > UINT_MAX))
264 return -EINVAL;
265 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
266 return -E2BIG;
267
268 rbm->bii = 0;
269 rbm->offset = (u32)(rblock);
270 /* Check if the block is within the first block */
271 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
272 return 0;
273
274 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
275 rbm->offset += (sizeof(struct gfs2_rgrp) -
276 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
277 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
278 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 return 0;
280 }
281
282 /**
283 * gfs2_rbm_incr - increment an rbm structure
284 * @rbm: The rbm with rgd already set correctly
285 *
286 * This function takes an existing rbm structure and increments it to the next
287 * viable block offset.
288 *
289 * Returns: If incrementing the offset would cause the rbm to go past the
290 * end of the rgrp, true is returned, otherwise false.
291 *
292 */
293
294 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
295 {
296 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
297 rbm->offset++;
298 return false;
299 }
300 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
301 return true;
302
303 rbm->offset = 0;
304 rbm->bii++;
305 return false;
306 }
307
308 /**
309 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
310 * @rbm: Position to search (value/result)
311 * @n_unaligned: Number of unaligned blocks to check
312 * @len: Decremented for each block found (terminate on zero)
313 *
314 * Returns: true if a non-free block is encountered
315 */
316
317 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
318 {
319 u32 n;
320 u8 res;
321
322 for (n = 0; n < n_unaligned; n++) {
323 res = gfs2_testbit(rbm);
324 if (res != GFS2_BLKST_FREE)
325 return true;
326 (*len)--;
327 if (*len == 0)
328 return true;
329 if (gfs2_rbm_incr(rbm))
330 return true;
331 }
332
333 return false;
334 }
335
336 /**
337 * gfs2_free_extlen - Return extent length of free blocks
338 * @rbm: Starting position
339 * @len: Max length to check
340 *
341 * Starting at the block specified by the rbm, see how many free blocks
342 * there are, not reading more than len blocks ahead. This can be done
343 * using memchr_inv when the blocks are byte aligned, but has to be done
344 * on a block by block basis in case of unaligned blocks. Also this
345 * function can cope with bitmap boundaries (although it must stop on
346 * a resource group boundary)
347 *
348 * Returns: Number of free blocks in the extent
349 */
350
351 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
352 {
353 struct gfs2_rbm rbm = *rrbm;
354 u32 n_unaligned = rbm.offset & 3;
355 u32 size = len;
356 u32 bytes;
357 u32 chunk_size;
358 u8 *ptr, *start, *end;
359 u64 block;
360 struct gfs2_bitmap *bi;
361
362 if (n_unaligned &&
363 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
364 goto out;
365
366 n_unaligned = len & 3;
367 /* Start is now byte aligned */
368 while (len > 3) {
369 bi = rbm_bi(&rbm);
370 start = bi->bi_bh->b_data;
371 if (bi->bi_clone)
372 start = bi->bi_clone;
373 end = start + bi->bi_bh->b_size;
374 start += bi->bi_offset;
375 BUG_ON(rbm.offset & 3);
376 start += (rbm.offset / GFS2_NBBY);
377 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
378 ptr = memchr_inv(start, 0, bytes);
379 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
380 chunk_size *= GFS2_NBBY;
381 BUG_ON(len < chunk_size);
382 len -= chunk_size;
383 block = gfs2_rbm_to_block(&rbm);
384 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
385 n_unaligned = 0;
386 break;
387 }
388 if (ptr) {
389 n_unaligned = 3;
390 break;
391 }
392 n_unaligned = len & 3;
393 }
394
395 /* Deal with any bits left over at the end */
396 if (n_unaligned)
397 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
398 out:
399 return size - len;
400 }
401
402 /**
403 * gfs2_bitcount - count the number of bits in a certain state
404 * @rgd: the resource group descriptor
405 * @buffer: the buffer that holds the bitmaps
406 * @buflen: the length (in bytes) of the buffer
407 * @state: the state of the block we're looking for
408 *
409 * Returns: The number of bits
410 */
411
412 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
413 unsigned int buflen, u8 state)
414 {
415 const u8 *byte = buffer;
416 const u8 *end = buffer + buflen;
417 const u8 state1 = state << 2;
418 const u8 state2 = state << 4;
419 const u8 state3 = state << 6;
420 u32 count = 0;
421
422 for (; byte < end; byte++) {
423 if (((*byte) & 0x03) == state)
424 count++;
425 if (((*byte) & 0x0C) == state1)
426 count++;
427 if (((*byte) & 0x30) == state2)
428 count++;
429 if (((*byte) & 0xC0) == state3)
430 count++;
431 }
432
433 return count;
434 }
435
436 /**
437 * gfs2_rgrp_verify - Verify that a resource group is consistent
438 * @rgd: the rgrp
439 *
440 */
441
442 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
443 {
444 struct gfs2_sbd *sdp = rgd->rd_sbd;
445 struct gfs2_bitmap *bi = NULL;
446 u32 length = rgd->rd_length;
447 u32 count[4], tmp;
448 int buf, x;
449
450 memset(count, 0, 4 * sizeof(u32));
451
452 /* Count # blocks in each of 4 possible allocation states */
453 for (buf = 0; buf < length; buf++) {
454 bi = rgd->rd_bits + buf;
455 for (x = 0; x < 4; x++)
456 count[x] += gfs2_bitcount(rgd,
457 bi->bi_bh->b_data +
458 bi->bi_offset,
459 bi->bi_len, x);
460 }
461
462 if (count[0] != rgd->rd_free) {
463 if (gfs2_consist_rgrpd(rgd))
464 fs_err(sdp, "free data mismatch: %u != %u\n",
465 count[0], rgd->rd_free);
466 return;
467 }
468
469 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
470 if (count[1] != tmp) {
471 if (gfs2_consist_rgrpd(rgd))
472 fs_err(sdp, "used data mismatch: %u != %u\n",
473 count[1], tmp);
474 return;
475 }
476
477 if (count[2] + count[3] != rgd->rd_dinodes) {
478 if (gfs2_consist_rgrpd(rgd))
479 fs_err(sdp, "used metadata mismatch: %u != %u\n",
480 count[2] + count[3], rgd->rd_dinodes);
481 return;
482 }
483 }
484
485 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
486 {
487 u64 first = rgd->rd_data0;
488 u64 last = first + rgd->rd_data;
489 return first <= block && block < last;
490 }
491
492 /**
493 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
494 * @sdp: The GFS2 superblock
495 * @blk: The data block number
496 * @exact: True if this needs to be an exact match
497 *
498 * Returns: The resource group, or NULL if not found
499 */
500
501 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
502 {
503 struct rb_node *n, *next;
504 struct gfs2_rgrpd *cur;
505
506 spin_lock(&sdp->sd_rindex_spin);
507 n = sdp->sd_rindex_tree.rb_node;
508 while (n) {
509 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
510 next = NULL;
511 if (blk < cur->rd_addr)
512 next = n->rb_left;
513 else if (blk >= cur->rd_data0 + cur->rd_data)
514 next = n->rb_right;
515 if (next == NULL) {
516 spin_unlock(&sdp->sd_rindex_spin);
517 if (exact) {
518 if (blk < cur->rd_addr)
519 return NULL;
520 if (blk >= cur->rd_data0 + cur->rd_data)
521 return NULL;
522 }
523 return cur;
524 }
525 n = next;
526 }
527 spin_unlock(&sdp->sd_rindex_spin);
528
529 return NULL;
530 }
531
532 /**
533 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
534 * @sdp: The GFS2 superblock
535 *
536 * Returns: The first rgrp in the filesystem
537 */
538
539 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
540 {
541 const struct rb_node *n;
542 struct gfs2_rgrpd *rgd;
543
544 spin_lock(&sdp->sd_rindex_spin);
545 n = rb_first(&sdp->sd_rindex_tree);
546 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
547 spin_unlock(&sdp->sd_rindex_spin);
548
549 return rgd;
550 }
551
552 /**
553 * gfs2_rgrpd_get_next - get the next RG
554 * @rgd: the resource group descriptor
555 *
556 * Returns: The next rgrp
557 */
558
559 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
560 {
561 struct gfs2_sbd *sdp = rgd->rd_sbd;
562 const struct rb_node *n;
563
564 spin_lock(&sdp->sd_rindex_spin);
565 n = rb_next(&rgd->rd_node);
566 if (n == NULL)
567 n = rb_first(&sdp->sd_rindex_tree);
568
569 if (unlikely(&rgd->rd_node == n)) {
570 spin_unlock(&sdp->sd_rindex_spin);
571 return NULL;
572 }
573 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
574 spin_unlock(&sdp->sd_rindex_spin);
575 return rgd;
576 }
577
578 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
579 {
580 int x;
581
582 for (x = 0; x < rgd->rd_length; x++) {
583 struct gfs2_bitmap *bi = rgd->rd_bits + x;
584 kfree(bi->bi_clone);
585 bi->bi_clone = NULL;
586 }
587 }
588
589 /**
590 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
591 * @ip: the inode for this reservation
592 */
593 int gfs2_rs_alloc(struct gfs2_inode *ip)
594 {
595 int error = 0;
596
597 down_write(&ip->i_rw_mutex);
598 if (ip->i_res)
599 goto out;
600
601 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
602 if (!ip->i_res) {
603 error = -ENOMEM;
604 goto out;
605 }
606
607 RB_CLEAR_NODE(&ip->i_res->rs_node);
608 out:
609 up_write(&ip->i_rw_mutex);
610 return error;
611 }
612
613 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
614 {
615 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
616 (unsigned long long)rs->rs_inum,
617 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
618 rs->rs_rbm.offset, rs->rs_free);
619 }
620
621 /**
622 * __rs_deltree - remove a multi-block reservation from the rgd tree
623 * @rs: The reservation to remove
624 *
625 */
626 static void __rs_deltree(struct gfs2_blkreserv *rs)
627 {
628 struct gfs2_rgrpd *rgd;
629
630 if (!gfs2_rs_active(rs))
631 return;
632
633 rgd = rs->rs_rbm.rgd;
634 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
635 rb_erase(&rs->rs_node, &rgd->rd_rstree);
636 RB_CLEAR_NODE(&rs->rs_node);
637
638 if (rs->rs_free) {
639 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
640
641 /* return reserved blocks to the rgrp */
642 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
643 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
644 /* The rgrp extent failure point is likely not to increase;
645 it will only do so if the freed blocks are somehow
646 contiguous with a span of free blocks that follows. Still,
647 it will force the number to be recalculated later. */
648 rgd->rd_extfail_pt += rs->rs_free;
649 rs->rs_free = 0;
650 clear_bit(GBF_FULL, &bi->bi_flags);
651 }
652 }
653
654 /**
655 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
656 * @rs: The reservation to remove
657 *
658 */
659 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
660 {
661 struct gfs2_rgrpd *rgd;
662
663 rgd = rs->rs_rbm.rgd;
664 if (rgd) {
665 spin_lock(&rgd->rd_rsspin);
666 __rs_deltree(rs);
667 spin_unlock(&rgd->rd_rsspin);
668 }
669 }
670
671 /**
672 * gfs2_rs_delete - delete a multi-block reservation
673 * @ip: The inode for this reservation
674 * @wcount: The inode's write count, or NULL
675 *
676 */
677 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
678 {
679 down_write(&ip->i_rw_mutex);
680 if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
681 gfs2_rs_deltree(ip->i_res);
682 BUG_ON(ip->i_res->rs_free);
683 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
684 ip->i_res = NULL;
685 }
686 up_write(&ip->i_rw_mutex);
687 }
688
689 /**
690 * return_all_reservations - return all reserved blocks back to the rgrp.
691 * @rgd: the rgrp that needs its space back
692 *
693 * We previously reserved a bunch of blocks for allocation. Now we need to
694 * give them back. This leave the reservation structures in tact, but removes
695 * all of their corresponding "no-fly zones".
696 */
697 static void return_all_reservations(struct gfs2_rgrpd *rgd)
698 {
699 struct rb_node *n;
700 struct gfs2_blkreserv *rs;
701
702 spin_lock(&rgd->rd_rsspin);
703 while ((n = rb_first(&rgd->rd_rstree))) {
704 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
705 __rs_deltree(rs);
706 }
707 spin_unlock(&rgd->rd_rsspin);
708 }
709
710 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
711 {
712 struct rb_node *n;
713 struct gfs2_rgrpd *rgd;
714 struct gfs2_glock *gl;
715
716 while ((n = rb_first(&sdp->sd_rindex_tree))) {
717 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
718 gl = rgd->rd_gl;
719
720 rb_erase(n, &sdp->sd_rindex_tree);
721
722 if (gl) {
723 spin_lock(&gl->gl_spin);
724 gl->gl_object = NULL;
725 spin_unlock(&gl->gl_spin);
726 gfs2_glock_add_to_lru(gl);
727 gfs2_glock_put(gl);
728 }
729
730 gfs2_free_clones(rgd);
731 kfree(rgd->rd_bits);
732 return_all_reservations(rgd);
733 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
734 }
735 }
736
737 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
738 {
739 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
740 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
741 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
742 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
743 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
744 }
745
746 /**
747 * gfs2_compute_bitstructs - Compute the bitmap sizes
748 * @rgd: The resource group descriptor
749 *
750 * Calculates bitmap descriptors, one for each block that contains bitmap data
751 *
752 * Returns: errno
753 */
754
755 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
756 {
757 struct gfs2_sbd *sdp = rgd->rd_sbd;
758 struct gfs2_bitmap *bi;
759 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
760 u32 bytes_left, bytes;
761 int x;
762
763 if (!length)
764 return -EINVAL;
765
766 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
767 if (!rgd->rd_bits)
768 return -ENOMEM;
769
770 bytes_left = rgd->rd_bitbytes;
771
772 for (x = 0; x < length; x++) {
773 bi = rgd->rd_bits + x;
774
775 bi->bi_flags = 0;
776 /* small rgrp; bitmap stored completely in header block */
777 if (length == 1) {
778 bytes = bytes_left;
779 bi->bi_offset = sizeof(struct gfs2_rgrp);
780 bi->bi_start = 0;
781 bi->bi_len = bytes;
782 bi->bi_blocks = bytes * GFS2_NBBY;
783 /* header block */
784 } else if (x == 0) {
785 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
786 bi->bi_offset = sizeof(struct gfs2_rgrp);
787 bi->bi_start = 0;
788 bi->bi_len = bytes;
789 bi->bi_blocks = bytes * GFS2_NBBY;
790 /* last block */
791 } else if (x + 1 == length) {
792 bytes = bytes_left;
793 bi->bi_offset = sizeof(struct gfs2_meta_header);
794 bi->bi_start = rgd->rd_bitbytes - bytes_left;
795 bi->bi_len = bytes;
796 bi->bi_blocks = bytes * GFS2_NBBY;
797 /* other blocks */
798 } else {
799 bytes = sdp->sd_sb.sb_bsize -
800 sizeof(struct gfs2_meta_header);
801 bi->bi_offset = sizeof(struct gfs2_meta_header);
802 bi->bi_start = rgd->rd_bitbytes - bytes_left;
803 bi->bi_len = bytes;
804 bi->bi_blocks = bytes * GFS2_NBBY;
805 }
806
807 bytes_left -= bytes;
808 }
809
810 if (bytes_left) {
811 gfs2_consist_rgrpd(rgd);
812 return -EIO;
813 }
814 bi = rgd->rd_bits + (length - 1);
815 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
816 if (gfs2_consist_rgrpd(rgd)) {
817 gfs2_rindex_print(rgd);
818 fs_err(sdp, "start=%u len=%u offset=%u\n",
819 bi->bi_start, bi->bi_len, bi->bi_offset);
820 }
821 return -EIO;
822 }
823
824 return 0;
825 }
826
827 /**
828 * gfs2_ri_total - Total up the file system space, according to the rindex.
829 * @sdp: the filesystem
830 *
831 */
832 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
833 {
834 u64 total_data = 0;
835 struct inode *inode = sdp->sd_rindex;
836 struct gfs2_inode *ip = GFS2_I(inode);
837 char buf[sizeof(struct gfs2_rindex)];
838 int error, rgrps;
839
840 for (rgrps = 0;; rgrps++) {
841 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
842
843 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
844 break;
845 error = gfs2_internal_read(ip, buf, &pos,
846 sizeof(struct gfs2_rindex));
847 if (error != sizeof(struct gfs2_rindex))
848 break;
849 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
850 }
851 return total_data;
852 }
853
854 static int rgd_insert(struct gfs2_rgrpd *rgd)
855 {
856 struct gfs2_sbd *sdp = rgd->rd_sbd;
857 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
858
859 /* Figure out where to put new node */
860 while (*newn) {
861 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
862 rd_node);
863
864 parent = *newn;
865 if (rgd->rd_addr < cur->rd_addr)
866 newn = &((*newn)->rb_left);
867 else if (rgd->rd_addr > cur->rd_addr)
868 newn = &((*newn)->rb_right);
869 else
870 return -EEXIST;
871 }
872
873 rb_link_node(&rgd->rd_node, parent, newn);
874 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
875 sdp->sd_rgrps++;
876 return 0;
877 }
878
879 /**
880 * read_rindex_entry - Pull in a new resource index entry from the disk
881 * @ip: Pointer to the rindex inode
882 *
883 * Returns: 0 on success, > 0 on EOF, error code otherwise
884 */
885
886 static int read_rindex_entry(struct gfs2_inode *ip)
887 {
888 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
889 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
890 struct gfs2_rindex buf;
891 int error;
892 struct gfs2_rgrpd *rgd;
893
894 if (pos >= i_size_read(&ip->i_inode))
895 return 1;
896
897 error = gfs2_internal_read(ip, (char *)&buf, &pos,
898 sizeof(struct gfs2_rindex));
899
900 if (error != sizeof(struct gfs2_rindex))
901 return (error == 0) ? 1 : error;
902
903 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
904 error = -ENOMEM;
905 if (!rgd)
906 return error;
907
908 rgd->rd_sbd = sdp;
909 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
910 rgd->rd_length = be32_to_cpu(buf.ri_length);
911 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
912 rgd->rd_data = be32_to_cpu(buf.ri_data);
913 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
914 spin_lock_init(&rgd->rd_rsspin);
915
916 error = compute_bitstructs(rgd);
917 if (error)
918 goto fail;
919
920 error = gfs2_glock_get(sdp, rgd->rd_addr,
921 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
922 if (error)
923 goto fail;
924
925 rgd->rd_gl->gl_object = rgd;
926 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
927 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
928 if (rgd->rd_data > sdp->sd_max_rg_data)
929 sdp->sd_max_rg_data = rgd->rd_data;
930 spin_lock(&sdp->sd_rindex_spin);
931 error = rgd_insert(rgd);
932 spin_unlock(&sdp->sd_rindex_spin);
933 if (!error)
934 return 0;
935
936 error = 0; /* someone else read in the rgrp; free it and ignore it */
937 gfs2_glock_put(rgd->rd_gl);
938
939 fail:
940 kfree(rgd->rd_bits);
941 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
942 return error;
943 }
944
945 /**
946 * gfs2_ri_update - Pull in a new resource index from the disk
947 * @ip: pointer to the rindex inode
948 *
949 * Returns: 0 on successful update, error code otherwise
950 */
951
952 static int gfs2_ri_update(struct gfs2_inode *ip)
953 {
954 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
955 int error;
956
957 do {
958 error = read_rindex_entry(ip);
959 } while (error == 0);
960
961 if (error < 0)
962 return error;
963
964 sdp->sd_rindex_uptodate = 1;
965 return 0;
966 }
967
968 /**
969 * gfs2_rindex_update - Update the rindex if required
970 * @sdp: The GFS2 superblock
971 *
972 * We grab a lock on the rindex inode to make sure that it doesn't
973 * change whilst we are performing an operation. We keep this lock
974 * for quite long periods of time compared to other locks. This
975 * doesn't matter, since it is shared and it is very, very rarely
976 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
977 *
978 * This makes sure that we're using the latest copy of the resource index
979 * special file, which might have been updated if someone expanded the
980 * filesystem (via gfs2_grow utility), which adds new resource groups.
981 *
982 * Returns: 0 on succeess, error code otherwise
983 */
984
985 int gfs2_rindex_update(struct gfs2_sbd *sdp)
986 {
987 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
988 struct gfs2_glock *gl = ip->i_gl;
989 struct gfs2_holder ri_gh;
990 int error = 0;
991 int unlock_required = 0;
992
993 /* Read new copy from disk if we don't have the latest */
994 if (!sdp->sd_rindex_uptodate) {
995 if (!gfs2_glock_is_locked_by_me(gl)) {
996 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
997 if (error)
998 return error;
999 unlock_required = 1;
1000 }
1001 if (!sdp->sd_rindex_uptodate)
1002 error = gfs2_ri_update(ip);
1003 if (unlock_required)
1004 gfs2_glock_dq_uninit(&ri_gh);
1005 }
1006
1007 return error;
1008 }
1009
1010 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1011 {
1012 const struct gfs2_rgrp *str = buf;
1013 u32 rg_flags;
1014
1015 rg_flags = be32_to_cpu(str->rg_flags);
1016 rg_flags &= ~GFS2_RDF_MASK;
1017 rgd->rd_flags &= GFS2_RDF_MASK;
1018 rgd->rd_flags |= rg_flags;
1019 rgd->rd_free = be32_to_cpu(str->rg_free);
1020 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1021 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1022 }
1023
1024 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1025 {
1026 struct gfs2_rgrp *str = buf;
1027
1028 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1029 str->rg_free = cpu_to_be32(rgd->rd_free);
1030 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1031 str->__pad = cpu_to_be32(0);
1032 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1033 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1034 }
1035
1036 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1037 {
1038 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1039 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1040
1041 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1042 rgl->rl_dinodes != str->rg_dinodes ||
1043 rgl->rl_igeneration != str->rg_igeneration)
1044 return 0;
1045 return 1;
1046 }
1047
1048 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1049 {
1050 const struct gfs2_rgrp *str = buf;
1051
1052 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1053 rgl->rl_flags = str->rg_flags;
1054 rgl->rl_free = str->rg_free;
1055 rgl->rl_dinodes = str->rg_dinodes;
1056 rgl->rl_igeneration = str->rg_igeneration;
1057 rgl->__pad = 0UL;
1058 }
1059
1060 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1061 {
1062 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1063 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1064 rgl->rl_unlinked = cpu_to_be32(unlinked);
1065 }
1066
1067 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1068 {
1069 struct gfs2_bitmap *bi;
1070 const u32 length = rgd->rd_length;
1071 const u8 *buffer = NULL;
1072 u32 i, goal, count = 0;
1073
1074 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1075 goal = 0;
1076 buffer = bi->bi_bh->b_data + bi->bi_offset;
1077 WARN_ON(!buffer_uptodate(bi->bi_bh));
1078 while (goal < bi->bi_len * GFS2_NBBY) {
1079 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1080 GFS2_BLKST_UNLINKED);
1081 if (goal == BFITNOENT)
1082 break;
1083 count++;
1084 goal++;
1085 }
1086 }
1087
1088 return count;
1089 }
1090
1091
1092 /**
1093 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1094 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1095 *
1096 * Read in all of a Resource Group's header and bitmap blocks.
1097 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1098 *
1099 * Returns: errno
1100 */
1101
1102 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1103 {
1104 struct gfs2_sbd *sdp = rgd->rd_sbd;
1105 struct gfs2_glock *gl = rgd->rd_gl;
1106 unsigned int length = rgd->rd_length;
1107 struct gfs2_bitmap *bi;
1108 unsigned int x, y;
1109 int error;
1110
1111 if (rgd->rd_bits[0].bi_bh != NULL)
1112 return 0;
1113
1114 for (x = 0; x < length; x++) {
1115 bi = rgd->rd_bits + x;
1116 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1117 if (error)
1118 goto fail;
1119 }
1120
1121 for (y = length; y--;) {
1122 bi = rgd->rd_bits + y;
1123 error = gfs2_meta_wait(sdp, bi->bi_bh);
1124 if (error)
1125 goto fail;
1126 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1127 GFS2_METATYPE_RG)) {
1128 error = -EIO;
1129 goto fail;
1130 }
1131 }
1132
1133 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1134 for (x = 0; x < length; x++)
1135 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1136 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1137 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1138 rgd->rd_free_clone = rgd->rd_free;
1139 /* max out the rgrp allocation failure point */
1140 rgd->rd_extfail_pt = rgd->rd_free;
1141 }
1142 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1143 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1144 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1145 rgd->rd_bits[0].bi_bh->b_data);
1146 }
1147 else if (sdp->sd_args.ar_rgrplvb) {
1148 if (!gfs2_rgrp_lvb_valid(rgd)){
1149 gfs2_consist_rgrpd(rgd);
1150 error = -EIO;
1151 goto fail;
1152 }
1153 if (rgd->rd_rgl->rl_unlinked == 0)
1154 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1155 }
1156 return 0;
1157
1158 fail:
1159 while (x--) {
1160 bi = rgd->rd_bits + x;
1161 brelse(bi->bi_bh);
1162 bi->bi_bh = NULL;
1163 gfs2_assert_warn(sdp, !bi->bi_clone);
1164 }
1165
1166 return error;
1167 }
1168
1169 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1170 {
1171 u32 rl_flags;
1172
1173 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1174 return 0;
1175
1176 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1177 return gfs2_rgrp_bh_get(rgd);
1178
1179 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1180 rl_flags &= ~GFS2_RDF_MASK;
1181 rgd->rd_flags &= GFS2_RDF_MASK;
1182 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1183 if (rgd->rd_rgl->rl_unlinked == 0)
1184 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1185 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1186 rgd->rd_free_clone = rgd->rd_free;
1187 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1188 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1189 return 0;
1190 }
1191
1192 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1193 {
1194 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1195 struct gfs2_sbd *sdp = rgd->rd_sbd;
1196
1197 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1198 return 0;
1199 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1200 }
1201
1202 /**
1203 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1204 * @gh: The glock holder for the resource group
1205 *
1206 */
1207
1208 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1209 {
1210 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1211 int x, length = rgd->rd_length;
1212
1213 for (x = 0; x < length; x++) {
1214 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1215 if (bi->bi_bh) {
1216 brelse(bi->bi_bh);
1217 bi->bi_bh = NULL;
1218 }
1219 }
1220
1221 }
1222
1223 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1224 struct buffer_head *bh,
1225 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1226 {
1227 struct super_block *sb = sdp->sd_vfs;
1228 u64 blk;
1229 sector_t start = 0;
1230 sector_t nr_blks = 0;
1231 int rv;
1232 unsigned int x;
1233 u32 trimmed = 0;
1234 u8 diff;
1235
1236 for (x = 0; x < bi->bi_len; x++) {
1237 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1238 clone += bi->bi_offset;
1239 clone += x;
1240 if (bh) {
1241 const u8 *orig = bh->b_data + bi->bi_offset + x;
1242 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1243 } else {
1244 diff = ~(*clone | (*clone >> 1));
1245 }
1246 diff &= 0x55;
1247 if (diff == 0)
1248 continue;
1249 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1250 while(diff) {
1251 if (diff & 1) {
1252 if (nr_blks == 0)
1253 goto start_new_extent;
1254 if ((start + nr_blks) != blk) {
1255 if (nr_blks >= minlen) {
1256 rv = sb_issue_discard(sb,
1257 start, nr_blks,
1258 GFP_NOFS, 0);
1259 if (rv)
1260 goto fail;
1261 trimmed += nr_blks;
1262 }
1263 nr_blks = 0;
1264 start_new_extent:
1265 start = blk;
1266 }
1267 nr_blks++;
1268 }
1269 diff >>= 2;
1270 blk++;
1271 }
1272 }
1273 if (nr_blks >= minlen) {
1274 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1275 if (rv)
1276 goto fail;
1277 trimmed += nr_blks;
1278 }
1279 if (ptrimmed)
1280 *ptrimmed = trimmed;
1281 return 0;
1282
1283 fail:
1284 if (sdp->sd_args.ar_discard)
1285 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1286 sdp->sd_args.ar_discard = 0;
1287 return -EIO;
1288 }
1289
1290 /**
1291 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1292 * @filp: Any file on the filesystem
1293 * @argp: Pointer to the arguments (also used to pass result)
1294 *
1295 * Returns: 0 on success, otherwise error code
1296 */
1297
1298 int gfs2_fitrim(struct file *filp, void __user *argp)
1299 {
1300 struct inode *inode = file_inode(filp);
1301 struct gfs2_sbd *sdp = GFS2_SB(inode);
1302 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1303 struct buffer_head *bh;
1304 struct gfs2_rgrpd *rgd;
1305 struct gfs2_rgrpd *rgd_end;
1306 struct gfs2_holder gh;
1307 struct fstrim_range r;
1308 int ret = 0;
1309 u64 amt;
1310 u64 trimmed = 0;
1311 u64 start, end, minlen;
1312 unsigned int x;
1313 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1314
1315 if (!capable(CAP_SYS_ADMIN))
1316 return -EPERM;
1317
1318 if (!blk_queue_discard(q))
1319 return -EOPNOTSUPP;
1320
1321 if (copy_from_user(&r, argp, sizeof(r)))
1322 return -EFAULT;
1323
1324 ret = gfs2_rindex_update(sdp);
1325 if (ret)
1326 return ret;
1327
1328 start = r.start >> bs_shift;
1329 end = start + (r.len >> bs_shift);
1330 minlen = max_t(u64, r.minlen,
1331 q->limits.discard_granularity) >> bs_shift;
1332
1333 if (end <= start || minlen > sdp->sd_max_rg_data)
1334 return -EINVAL;
1335
1336 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1337 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1338
1339 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1340 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1341 return -EINVAL; /* start is beyond the end of the fs */
1342
1343 while (1) {
1344
1345 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1346 if (ret)
1347 goto out;
1348
1349 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1350 /* Trim each bitmap in the rgrp */
1351 for (x = 0; x < rgd->rd_length; x++) {
1352 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1353 ret = gfs2_rgrp_send_discards(sdp,
1354 rgd->rd_data0, NULL, bi, minlen,
1355 &amt);
1356 if (ret) {
1357 gfs2_glock_dq_uninit(&gh);
1358 goto out;
1359 }
1360 trimmed += amt;
1361 }
1362
1363 /* Mark rgrp as having been trimmed */
1364 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1365 if (ret == 0) {
1366 bh = rgd->rd_bits[0].bi_bh;
1367 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1368 gfs2_trans_add_meta(rgd->rd_gl, bh);
1369 gfs2_rgrp_out(rgd, bh->b_data);
1370 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1371 gfs2_trans_end(sdp);
1372 }
1373 }
1374 gfs2_glock_dq_uninit(&gh);
1375
1376 if (rgd == rgd_end)
1377 break;
1378
1379 rgd = gfs2_rgrpd_get_next(rgd);
1380 }
1381
1382 out:
1383 r.len = trimmed << bs_shift;
1384 if (copy_to_user(argp, &r, sizeof(r)))
1385 return -EFAULT;
1386
1387 return ret;
1388 }
1389
1390 /**
1391 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1392 * @ip: the inode structure
1393 *
1394 */
1395 static void rs_insert(struct gfs2_inode *ip)
1396 {
1397 struct rb_node **newn, *parent = NULL;
1398 int rc;
1399 struct gfs2_blkreserv *rs = ip->i_res;
1400 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1401 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1402
1403 BUG_ON(gfs2_rs_active(rs));
1404
1405 spin_lock(&rgd->rd_rsspin);
1406 newn = &rgd->rd_rstree.rb_node;
1407 while (*newn) {
1408 struct gfs2_blkreserv *cur =
1409 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1410
1411 parent = *newn;
1412 rc = rs_cmp(fsblock, rs->rs_free, cur);
1413 if (rc > 0)
1414 newn = &((*newn)->rb_right);
1415 else if (rc < 0)
1416 newn = &((*newn)->rb_left);
1417 else {
1418 spin_unlock(&rgd->rd_rsspin);
1419 WARN_ON(1);
1420 return;
1421 }
1422 }
1423
1424 rb_link_node(&rs->rs_node, parent, newn);
1425 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1426
1427 /* Do our rgrp accounting for the reservation */
1428 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1429 spin_unlock(&rgd->rd_rsspin);
1430 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1431 }
1432
1433 /**
1434 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1435 * @rgd: the resource group descriptor
1436 * @ip: pointer to the inode for which we're reserving blocks
1437 * @ap: the allocation parameters
1438 *
1439 */
1440
1441 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1442 const struct gfs2_alloc_parms *ap)
1443 {
1444 struct gfs2_rbm rbm = { .rgd = rgd, };
1445 u64 goal;
1446 struct gfs2_blkreserv *rs = ip->i_res;
1447 u32 extlen;
1448 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1449 int ret;
1450 struct inode *inode = &ip->i_inode;
1451
1452 if (S_ISDIR(inode->i_mode))
1453 extlen = 1;
1454 else {
1455 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1456 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1457 }
1458 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1459 return;
1460
1461 /* Find bitmap block that contains bits for goal block */
1462 if (rgrp_contains_block(rgd, ip->i_goal))
1463 goal = ip->i_goal;
1464 else
1465 goal = rgd->rd_last_alloc + rgd->rd_data0;
1466
1467 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1468 return;
1469
1470 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1471 if (ret == 0) {
1472 rs->rs_rbm = rbm;
1473 rs->rs_free = extlen;
1474 rs->rs_inum = ip->i_no_addr;
1475 rs_insert(ip);
1476 } else {
1477 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1478 rgd->rd_last_alloc = 0;
1479 }
1480 }
1481
1482 /**
1483 * gfs2_next_unreserved_block - Return next block that is not reserved
1484 * @rgd: The resource group
1485 * @block: The starting block
1486 * @length: The required length
1487 * @ip: Ignore any reservations for this inode
1488 *
1489 * If the block does not appear in any reservation, then return the
1490 * block number unchanged. If it does appear in the reservation, then
1491 * keep looking through the tree of reservations in order to find the
1492 * first block number which is not reserved.
1493 */
1494
1495 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1496 u32 length,
1497 const struct gfs2_inode *ip)
1498 {
1499 struct gfs2_blkreserv *rs;
1500 struct rb_node *n;
1501 int rc;
1502
1503 spin_lock(&rgd->rd_rsspin);
1504 n = rgd->rd_rstree.rb_node;
1505 while (n) {
1506 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1507 rc = rs_cmp(block, length, rs);
1508 if (rc < 0)
1509 n = n->rb_left;
1510 else if (rc > 0)
1511 n = n->rb_right;
1512 else
1513 break;
1514 }
1515
1516 if (n) {
1517 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1518 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1519 n = n->rb_right;
1520 if (n == NULL)
1521 break;
1522 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1523 }
1524 }
1525
1526 spin_unlock(&rgd->rd_rsspin);
1527 return block;
1528 }
1529
1530 /**
1531 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1532 * @rbm: The current position in the resource group
1533 * @ip: The inode for which we are searching for blocks
1534 * @minext: The minimum extent length
1535 * @maxext: A pointer to the maximum extent structure
1536 *
1537 * This checks the current position in the rgrp to see whether there is
1538 * a reservation covering this block. If not then this function is a
1539 * no-op. If there is, then the position is moved to the end of the
1540 * contiguous reservation(s) so that we are pointing at the first
1541 * non-reserved block.
1542 *
1543 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1544 */
1545
1546 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1547 const struct gfs2_inode *ip,
1548 u32 minext,
1549 struct gfs2_extent *maxext)
1550 {
1551 u64 block = gfs2_rbm_to_block(rbm);
1552 u32 extlen = 1;
1553 u64 nblock;
1554 int ret;
1555
1556 /*
1557 * If we have a minimum extent length, then skip over any extent
1558 * which is less than the min extent length in size.
1559 */
1560 if (minext) {
1561 extlen = gfs2_free_extlen(rbm, minext);
1562 if (extlen <= maxext->len)
1563 goto fail;
1564 }
1565
1566 /*
1567 * Check the extent which has been found against the reservations
1568 * and skip if parts of it are already reserved
1569 */
1570 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1571 if (nblock == block) {
1572 if (!minext || extlen >= minext)
1573 return 0;
1574
1575 if (extlen > maxext->len) {
1576 maxext->len = extlen;
1577 maxext->rbm = *rbm;
1578 }
1579 fail:
1580 nblock = block + extlen;
1581 }
1582 ret = gfs2_rbm_from_block(rbm, nblock);
1583 if (ret < 0)
1584 return ret;
1585 return 1;
1586 }
1587
1588 /**
1589 * gfs2_rbm_find - Look for blocks of a particular state
1590 * @rbm: Value/result starting position and final position
1591 * @state: The state which we want to find
1592 * @minext: Pointer to the requested extent length (NULL for a single block)
1593 * This is updated to be the actual reservation size.
1594 * @ip: If set, check for reservations
1595 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1596 * around until we've reached the starting point.
1597 * @ap: the allocation parameters
1598 *
1599 * Side effects:
1600 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1601 * has no free blocks in it.
1602 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1603 * has come up short on a free block search.
1604 *
1605 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1606 */
1607
1608 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1609 const struct gfs2_inode *ip, bool nowrap,
1610 const struct gfs2_alloc_parms *ap)
1611 {
1612 struct buffer_head *bh;
1613 int initial_bii;
1614 u32 initial_offset;
1615 int first_bii = rbm->bii;
1616 u32 first_offset = rbm->offset;
1617 u32 offset;
1618 u8 *buffer;
1619 int n = 0;
1620 int iters = rbm->rgd->rd_length;
1621 int ret;
1622 struct gfs2_bitmap *bi;
1623 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1624
1625 /* If we are not starting at the beginning of a bitmap, then we
1626 * need to add one to the bitmap count to ensure that we search
1627 * the starting bitmap twice.
1628 */
1629 if (rbm->offset != 0)
1630 iters++;
1631
1632 while(1) {
1633 bi = rbm_bi(rbm);
1634 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1635 (state == GFS2_BLKST_FREE))
1636 goto next_bitmap;
1637
1638 bh = bi->bi_bh;
1639 buffer = bh->b_data + bi->bi_offset;
1640 WARN_ON(!buffer_uptodate(bh));
1641 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1642 buffer = bi->bi_clone + bi->bi_offset;
1643 initial_offset = rbm->offset;
1644 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1645 if (offset == BFITNOENT)
1646 goto bitmap_full;
1647 rbm->offset = offset;
1648 if (ip == NULL)
1649 return 0;
1650
1651 initial_bii = rbm->bii;
1652 ret = gfs2_reservation_check_and_update(rbm, ip,
1653 minext ? *minext : 0,
1654 &maxext);
1655 if (ret == 0)
1656 return 0;
1657 if (ret > 0) {
1658 n += (rbm->bii - initial_bii);
1659 goto next_iter;
1660 }
1661 if (ret == -E2BIG) {
1662 rbm->bii = 0;
1663 rbm->offset = 0;
1664 n += (rbm->bii - initial_bii);
1665 goto res_covered_end_of_rgrp;
1666 }
1667 return ret;
1668
1669 bitmap_full: /* Mark bitmap as full and fall through */
1670 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1671 struct gfs2_bitmap *bi = rbm_bi(rbm);
1672 set_bit(GBF_FULL, &bi->bi_flags);
1673 }
1674
1675 next_bitmap: /* Find next bitmap in the rgrp */
1676 rbm->offset = 0;
1677 rbm->bii++;
1678 if (rbm->bii == rbm->rgd->rd_length)
1679 rbm->bii = 0;
1680 res_covered_end_of_rgrp:
1681 if ((rbm->bii == 0) && nowrap)
1682 break;
1683 n++;
1684 next_iter:
1685 if (n >= iters)
1686 break;
1687 }
1688
1689 if (minext == NULL || state != GFS2_BLKST_FREE)
1690 return -ENOSPC;
1691
1692 /* If the extent was too small, and it's smaller than the smallest
1693 to have failed before, remember for future reference that it's
1694 useless to search this rgrp again for this amount or more. */
1695 if ((first_offset == 0) && (first_bii == 0) &&
1696 (*minext < rbm->rgd->rd_extfail_pt))
1697 rbm->rgd->rd_extfail_pt = *minext;
1698
1699 /* If the maximum extent we found is big enough to fulfill the
1700 minimum requirements, use it anyway. */
1701 if (maxext.len) {
1702 *rbm = maxext.rbm;
1703 *minext = maxext.len;
1704 return 0;
1705 }
1706
1707 return -ENOSPC;
1708 }
1709
1710 /**
1711 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1712 * @rgd: The rgrp
1713 * @last_unlinked: block address of the last dinode we unlinked
1714 * @skip: block address we should explicitly not unlink
1715 *
1716 * Returns: 0 if no error
1717 * The inode, if one has been found, in inode.
1718 */
1719
1720 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1721 {
1722 u64 block;
1723 struct gfs2_sbd *sdp = rgd->rd_sbd;
1724 struct gfs2_glock *gl;
1725 struct gfs2_inode *ip;
1726 int error;
1727 int found = 0;
1728 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1729
1730 while (1) {
1731 down_write(&sdp->sd_log_flush_lock);
1732 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1733 true, NULL);
1734 up_write(&sdp->sd_log_flush_lock);
1735 if (error == -ENOSPC)
1736 break;
1737 if (WARN_ON_ONCE(error))
1738 break;
1739
1740 block = gfs2_rbm_to_block(&rbm);
1741 if (gfs2_rbm_from_block(&rbm, block + 1))
1742 break;
1743 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1744 continue;
1745 if (block == skip)
1746 continue;
1747 *last_unlinked = block;
1748
1749 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1750 if (error)
1751 continue;
1752
1753 /* If the inode is already in cache, we can ignore it here
1754 * because the existing inode disposal code will deal with
1755 * it when all refs have gone away. Accessing gl_object like
1756 * this is not safe in general. Here it is ok because we do
1757 * not dereference the pointer, and we only need an approx
1758 * answer to whether it is NULL or not.
1759 */
1760 ip = gl->gl_object;
1761
1762 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1763 gfs2_glock_put(gl);
1764 else
1765 found++;
1766
1767 /* Limit reclaim to sensible number of tasks */
1768 if (found > NR_CPUS)
1769 return;
1770 }
1771
1772 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1773 return;
1774 }
1775
1776 /**
1777 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1778 * @rgd: The rgrp in question
1779 * @loops: An indication of how picky we can be (0=very, 1=less so)
1780 *
1781 * This function uses the recently added glock statistics in order to
1782 * figure out whether a parciular resource group is suffering from
1783 * contention from multiple nodes. This is done purely on the basis
1784 * of timings, since this is the only data we have to work with and
1785 * our aim here is to reject a resource group which is highly contended
1786 * but (very important) not to do this too often in order to ensure that
1787 * we do not land up introducing fragmentation by changing resource
1788 * groups when not actually required.
1789 *
1790 * The calculation is fairly simple, we want to know whether the SRTTB
1791 * (i.e. smoothed round trip time for blocking operations) to acquire
1792 * the lock for this rgrp's glock is significantly greater than the
1793 * time taken for resource groups on average. We introduce a margin in
1794 * the form of the variable @var which is computed as the sum of the two
1795 * respective variences, and multiplied by a factor depending on @loops
1796 * and whether we have a lot of data to base the decision on. This is
1797 * then tested against the square difference of the means in order to
1798 * decide whether the result is statistically significant or not.
1799 *
1800 * Returns: A boolean verdict on the congestion status
1801 */
1802
1803 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1804 {
1805 const struct gfs2_glock *gl = rgd->rd_gl;
1806 const struct gfs2_sbd *sdp = gl->gl_sbd;
1807 struct gfs2_lkstats *st;
1808 s64 r_dcount, l_dcount;
1809 s64 r_srttb, l_srttb;
1810 s64 srttb_diff;
1811 s64 sqr_diff;
1812 s64 var;
1813
1814 preempt_disable();
1815 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1816 r_srttb = st->stats[GFS2_LKS_SRTTB];
1817 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1818 var = st->stats[GFS2_LKS_SRTTVARB] +
1819 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1820 preempt_enable();
1821
1822 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1823 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1824
1825 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1826 return false;
1827
1828 srttb_diff = r_srttb - l_srttb;
1829 sqr_diff = srttb_diff * srttb_diff;
1830
1831 var *= 2;
1832 if (l_dcount < 8 || r_dcount < 8)
1833 var *= 2;
1834 if (loops == 1)
1835 var *= 2;
1836
1837 return ((srttb_diff < 0) && (sqr_diff > var));
1838 }
1839
1840 /**
1841 * gfs2_rgrp_used_recently
1842 * @rs: The block reservation with the rgrp to test
1843 * @msecs: The time limit in milliseconds
1844 *
1845 * Returns: True if the rgrp glock has been used within the time limit
1846 */
1847 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1848 u64 msecs)
1849 {
1850 u64 tdiff;
1851
1852 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1853 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1854
1855 return tdiff > (msecs * 1000 * 1000);
1856 }
1857
1858 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1859 {
1860 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1861 u32 skip;
1862
1863 get_random_bytes(&skip, sizeof(skip));
1864 return skip % sdp->sd_rgrps;
1865 }
1866
1867 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1868 {
1869 struct gfs2_rgrpd *rgd = *pos;
1870 struct gfs2_sbd *sdp = rgd->rd_sbd;
1871
1872 rgd = gfs2_rgrpd_get_next(rgd);
1873 if (rgd == NULL)
1874 rgd = gfs2_rgrpd_get_first(sdp);
1875 *pos = rgd;
1876 if (rgd != begin) /* If we didn't wrap */
1877 return true;
1878 return false;
1879 }
1880
1881 /**
1882 * gfs2_inplace_reserve - Reserve space in the filesystem
1883 * @ip: the inode to reserve space for
1884 * @ap: the allocation parameters
1885 *
1886 * Returns: errno
1887 */
1888
1889 int gfs2_inplace_reserve(struct gfs2_inode *ip, const struct gfs2_alloc_parms *ap)
1890 {
1891 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1892 struct gfs2_rgrpd *begin = NULL;
1893 struct gfs2_blkreserv *rs = ip->i_res;
1894 int error = 0, rg_locked, flags = 0;
1895 u64 last_unlinked = NO_BLOCK;
1896 int loops = 0;
1897 u32 skip = 0;
1898
1899 if (sdp->sd_args.ar_rgrplvb)
1900 flags |= GL_SKIP;
1901 if (gfs2_assert_warn(sdp, ap->target))
1902 return -EINVAL;
1903 if (gfs2_rs_active(rs)) {
1904 begin = rs->rs_rbm.rgd;
1905 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1906 rs->rs_rbm.rgd = begin = ip->i_rgd;
1907 } else {
1908 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1909 }
1910 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1911 skip = gfs2_orlov_skip(ip);
1912 if (rs->rs_rbm.rgd == NULL)
1913 return -EBADSLT;
1914
1915 while (loops < 3) {
1916 rg_locked = 1;
1917
1918 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1919 rg_locked = 0;
1920 if (skip && skip--)
1921 goto next_rgrp;
1922 if (!gfs2_rs_active(rs) && (loops < 2) &&
1923 gfs2_rgrp_used_recently(rs, 1000) &&
1924 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1925 goto next_rgrp;
1926 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1927 LM_ST_EXCLUSIVE, flags,
1928 &rs->rs_rgd_gh);
1929 if (unlikely(error))
1930 return error;
1931 if (!gfs2_rs_active(rs) && (loops < 2) &&
1932 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1933 goto skip_rgrp;
1934 if (sdp->sd_args.ar_rgrplvb) {
1935 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1936 if (unlikely(error)) {
1937 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1938 return error;
1939 }
1940 }
1941 }
1942
1943 /* Skip unuseable resource groups */
1944 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
1945 GFS2_RDF_ERROR)) ||
1946 (ap && (ap->target > rs->rs_rbm.rgd->rd_extfail_pt)))
1947 goto skip_rgrp;
1948
1949 if (sdp->sd_args.ar_rgrplvb)
1950 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1951
1952 /* Get a reservation if we don't already have one */
1953 if (!gfs2_rs_active(rs))
1954 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
1955
1956 /* Skip rgrps when we can't get a reservation on first pass */
1957 if (!gfs2_rs_active(rs) && (loops < 1))
1958 goto check_rgrp;
1959
1960 /* If rgrp has enough free space, use it */
1961 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target) {
1962 ip->i_rgd = rs->rs_rbm.rgd;
1963 return 0;
1964 }
1965
1966 check_rgrp:
1967 /* Check for unlinked inodes which can be reclaimed */
1968 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1969 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1970 ip->i_no_addr);
1971 skip_rgrp:
1972 /* Drop reservation, if we couldn't use reserved rgrp */
1973 if (gfs2_rs_active(rs))
1974 gfs2_rs_deltree(rs);
1975
1976 /* Unlock rgrp if required */
1977 if (!rg_locked)
1978 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1979 next_rgrp:
1980 /* Find the next rgrp, and continue looking */
1981 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1982 continue;
1983 if (skip)
1984 continue;
1985
1986 /* If we've scanned all the rgrps, but found no free blocks
1987 * then this checks for some less likely conditions before
1988 * trying again.
1989 */
1990 loops++;
1991 /* Check that fs hasn't grown if writing to rindex */
1992 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1993 error = gfs2_ri_update(ip);
1994 if (error)
1995 return error;
1996 }
1997 /* Flushing the log may release space */
1998 if (loops == 2)
1999 gfs2_log_flush(sdp, NULL);
2000 }
2001
2002 return -ENOSPC;
2003 }
2004
2005 /**
2006 * gfs2_inplace_release - release an inplace reservation
2007 * @ip: the inode the reservation was taken out on
2008 *
2009 * Release a reservation made by gfs2_inplace_reserve().
2010 */
2011
2012 void gfs2_inplace_release(struct gfs2_inode *ip)
2013 {
2014 struct gfs2_blkreserv *rs = ip->i_res;
2015
2016 if (rs->rs_rgd_gh.gh_gl)
2017 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2018 }
2019
2020 /**
2021 * gfs2_get_block_type - Check a block in a RG is of given type
2022 * @rgd: the resource group holding the block
2023 * @block: the block number
2024 *
2025 * Returns: The block type (GFS2_BLKST_*)
2026 */
2027
2028 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2029 {
2030 struct gfs2_rbm rbm = { .rgd = rgd, };
2031 int ret;
2032
2033 ret = gfs2_rbm_from_block(&rbm, block);
2034 WARN_ON_ONCE(ret != 0);
2035
2036 return gfs2_testbit(&rbm);
2037 }
2038
2039
2040 /**
2041 * gfs2_alloc_extent - allocate an extent from a given bitmap
2042 * @rbm: the resource group information
2043 * @dinode: TRUE if the first block we allocate is for a dinode
2044 * @n: The extent length (value/result)
2045 *
2046 * Add the bitmap buffer to the transaction.
2047 * Set the found bits to @new_state to change block's allocation state.
2048 */
2049 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2050 unsigned int *n)
2051 {
2052 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2053 const unsigned int elen = *n;
2054 u64 block;
2055 int ret;
2056
2057 *n = 1;
2058 block = gfs2_rbm_to_block(rbm);
2059 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2060 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2061 block++;
2062 while (*n < elen) {
2063 ret = gfs2_rbm_from_block(&pos, block);
2064 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2065 break;
2066 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2067 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2068 (*n)++;
2069 block++;
2070 }
2071 }
2072
2073 /**
2074 * rgblk_free - Change alloc state of given block(s)
2075 * @sdp: the filesystem
2076 * @bstart: the start of a run of blocks to free
2077 * @blen: the length of the block run (all must lie within ONE RG!)
2078 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2079 *
2080 * Returns: Resource group containing the block(s)
2081 */
2082
2083 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2084 u32 blen, unsigned char new_state)
2085 {
2086 struct gfs2_rbm rbm;
2087 struct gfs2_bitmap *bi;
2088
2089 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2090 if (!rbm.rgd) {
2091 if (gfs2_consist(sdp))
2092 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2093 return NULL;
2094 }
2095
2096 while (blen--) {
2097 gfs2_rbm_from_block(&rbm, bstart);
2098 bi = rbm_bi(&rbm);
2099 bstart++;
2100 if (!bi->bi_clone) {
2101 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2102 GFP_NOFS | __GFP_NOFAIL);
2103 memcpy(bi->bi_clone + bi->bi_offset,
2104 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2105 }
2106 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2107 gfs2_setbit(&rbm, false, new_state);
2108 }
2109
2110 return rbm.rgd;
2111 }
2112
2113 /**
2114 * gfs2_rgrp_dump - print out an rgrp
2115 * @seq: The iterator
2116 * @gl: The glock in question
2117 *
2118 */
2119
2120 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2121 {
2122 struct gfs2_rgrpd *rgd = gl->gl_object;
2123 struct gfs2_blkreserv *trs;
2124 const struct rb_node *n;
2125
2126 if (rgd == NULL)
2127 return 0;
2128 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2129 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2130 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2131 rgd->rd_reserved, rgd->rd_extfail_pt);
2132 spin_lock(&rgd->rd_rsspin);
2133 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2134 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2135 dump_rs(seq, trs);
2136 }
2137 spin_unlock(&rgd->rd_rsspin);
2138 return 0;
2139 }
2140
2141 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2142 {
2143 struct gfs2_sbd *sdp = rgd->rd_sbd;
2144 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2145 (unsigned long long)rgd->rd_addr);
2146 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2147 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2148 rgd->rd_flags |= GFS2_RDF_ERROR;
2149 }
2150
2151 /**
2152 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2153 * @ip: The inode we have just allocated blocks for
2154 * @rbm: The start of the allocated blocks
2155 * @len: The extent length
2156 *
2157 * Adjusts a reservation after an allocation has taken place. If the
2158 * reservation does not match the allocation, or if it is now empty
2159 * then it is removed.
2160 */
2161
2162 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2163 const struct gfs2_rbm *rbm, unsigned len)
2164 {
2165 struct gfs2_blkreserv *rs = ip->i_res;
2166 struct gfs2_rgrpd *rgd = rbm->rgd;
2167 unsigned rlen;
2168 u64 block;
2169 int ret;
2170
2171 spin_lock(&rgd->rd_rsspin);
2172 if (gfs2_rs_active(rs)) {
2173 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2174 block = gfs2_rbm_to_block(rbm);
2175 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2176 rlen = min(rs->rs_free, len);
2177 rs->rs_free -= rlen;
2178 rgd->rd_reserved -= rlen;
2179 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2180 if (rs->rs_free && !ret)
2181 goto out;
2182 }
2183 __rs_deltree(rs);
2184 }
2185 out:
2186 spin_unlock(&rgd->rd_rsspin);
2187 }
2188
2189 /**
2190 * gfs2_set_alloc_start - Set starting point for block allocation
2191 * @rbm: The rbm which will be set to the required location
2192 * @ip: The gfs2 inode
2193 * @dinode: Flag to say if allocation includes a new inode
2194 *
2195 * This sets the starting point from the reservation if one is active
2196 * otherwise it falls back to guessing a start point based on the
2197 * inode's goal block or the last allocation point in the rgrp.
2198 */
2199
2200 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2201 const struct gfs2_inode *ip, bool dinode)
2202 {
2203 u64 goal;
2204
2205 if (gfs2_rs_active(ip->i_res)) {
2206 *rbm = ip->i_res->rs_rbm;
2207 return;
2208 }
2209
2210 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2211 goal = ip->i_goal;
2212 else
2213 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2214
2215 gfs2_rbm_from_block(rbm, goal);
2216 }
2217
2218 /**
2219 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2220 * @ip: the inode to allocate the block for
2221 * @bn: Used to return the starting block number
2222 * @nblocks: requested number of blocks/extent length (value/result)
2223 * @dinode: 1 if we're allocating a dinode block, else 0
2224 * @generation: the generation number of the inode
2225 *
2226 * Returns: 0 or error
2227 */
2228
2229 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2230 bool dinode, u64 *generation)
2231 {
2232 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2233 struct buffer_head *dibh;
2234 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2235 unsigned int ndata;
2236 u64 block; /* block, within the file system scope */
2237 int error;
2238
2239 gfs2_set_alloc_start(&rbm, ip, dinode);
2240 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2241
2242 if (error == -ENOSPC) {
2243 gfs2_set_alloc_start(&rbm, ip, dinode);
2244 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2245 NULL);
2246 }
2247
2248 /* Since all blocks are reserved in advance, this shouldn't happen */
2249 if (error) {
2250 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2251 (unsigned long long)ip->i_no_addr, error, *nblocks,
2252 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2253 rbm.rgd->rd_extfail_pt);
2254 goto rgrp_error;
2255 }
2256
2257 gfs2_alloc_extent(&rbm, dinode, nblocks);
2258 block = gfs2_rbm_to_block(&rbm);
2259 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2260 if (gfs2_rs_active(ip->i_res))
2261 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2262 ndata = *nblocks;
2263 if (dinode)
2264 ndata--;
2265
2266 if (!dinode) {
2267 ip->i_goal = block + ndata - 1;
2268 error = gfs2_meta_inode_buffer(ip, &dibh);
2269 if (error == 0) {
2270 struct gfs2_dinode *di =
2271 (struct gfs2_dinode *)dibh->b_data;
2272 gfs2_trans_add_meta(ip->i_gl, dibh);
2273 di->di_goal_meta = di->di_goal_data =
2274 cpu_to_be64(ip->i_goal);
2275 brelse(dibh);
2276 }
2277 }
2278 if (rbm.rgd->rd_free < *nblocks) {
2279 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2280 goto rgrp_error;
2281 }
2282
2283 rbm.rgd->rd_free -= *nblocks;
2284 if (dinode) {
2285 rbm.rgd->rd_dinodes++;
2286 *generation = rbm.rgd->rd_igeneration++;
2287 if (*generation == 0)
2288 *generation = rbm.rgd->rd_igeneration++;
2289 }
2290
2291 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2292 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2293 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2294
2295 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2296 if (dinode)
2297 gfs2_trans_add_unrevoke(sdp, block, 1);
2298
2299 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2300
2301 rbm.rgd->rd_free_clone -= *nblocks;
2302 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2303 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2304 *bn = block;
2305 return 0;
2306
2307 rgrp_error:
2308 gfs2_rgrp_error(rbm.rgd);
2309 return -EIO;
2310 }
2311
2312 /**
2313 * __gfs2_free_blocks - free a contiguous run of block(s)
2314 * @ip: the inode these blocks are being freed from
2315 * @bstart: first block of a run of contiguous blocks
2316 * @blen: the length of the block run
2317 * @meta: 1 if the blocks represent metadata
2318 *
2319 */
2320
2321 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2322 {
2323 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2324 struct gfs2_rgrpd *rgd;
2325
2326 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2327 if (!rgd)
2328 return;
2329 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2330 rgd->rd_free += blen;
2331 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2332 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2333 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2334 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2335
2336 /* Directories keep their data in the metadata address space */
2337 if (meta || ip->i_depth)
2338 gfs2_meta_wipe(ip, bstart, blen);
2339 }
2340
2341 /**
2342 * gfs2_free_meta - free a contiguous run of data block(s)
2343 * @ip: the inode these blocks are being freed from
2344 * @bstart: first block of a run of contiguous blocks
2345 * @blen: the length of the block run
2346 *
2347 */
2348
2349 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2350 {
2351 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2352
2353 __gfs2_free_blocks(ip, bstart, blen, 1);
2354 gfs2_statfs_change(sdp, 0, +blen, 0);
2355 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2356 }
2357
2358 void gfs2_unlink_di(struct inode *inode)
2359 {
2360 struct gfs2_inode *ip = GFS2_I(inode);
2361 struct gfs2_sbd *sdp = GFS2_SB(inode);
2362 struct gfs2_rgrpd *rgd;
2363 u64 blkno = ip->i_no_addr;
2364
2365 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2366 if (!rgd)
2367 return;
2368 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2369 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2370 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2371 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2372 update_rgrp_lvb_unlinked(rgd, 1);
2373 }
2374
2375 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2376 {
2377 struct gfs2_sbd *sdp = rgd->rd_sbd;
2378 struct gfs2_rgrpd *tmp_rgd;
2379
2380 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2381 if (!tmp_rgd)
2382 return;
2383 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2384
2385 if (!rgd->rd_dinodes)
2386 gfs2_consist_rgrpd(rgd);
2387 rgd->rd_dinodes--;
2388 rgd->rd_free++;
2389
2390 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2391 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2392 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2393 update_rgrp_lvb_unlinked(rgd, -1);
2394
2395 gfs2_statfs_change(sdp, 0, +1, -1);
2396 }
2397
2398
2399 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2400 {
2401 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2402 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2403 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2404 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2405 }
2406
2407 /**
2408 * gfs2_check_blk_type - Check the type of a block
2409 * @sdp: The superblock
2410 * @no_addr: The block number to check
2411 * @type: The block type we are looking for
2412 *
2413 * Returns: 0 if the block type matches the expected type
2414 * -ESTALE if it doesn't match
2415 * or -ve errno if something went wrong while checking
2416 */
2417
2418 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2419 {
2420 struct gfs2_rgrpd *rgd;
2421 struct gfs2_holder rgd_gh;
2422 int error = -EINVAL;
2423
2424 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2425 if (!rgd)
2426 goto fail;
2427
2428 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2429 if (error)
2430 goto fail;
2431
2432 if (gfs2_get_block_type(rgd, no_addr) != type)
2433 error = -ESTALE;
2434
2435 gfs2_glock_dq_uninit(&rgd_gh);
2436 fail:
2437 return error;
2438 }
2439
2440 /**
2441 * gfs2_rlist_add - add a RG to a list of RGs
2442 * @ip: the inode
2443 * @rlist: the list of resource groups
2444 * @block: the block
2445 *
2446 * Figure out what RG a block belongs to and add that RG to the list
2447 *
2448 * FIXME: Don't use NOFAIL
2449 *
2450 */
2451
2452 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2453 u64 block)
2454 {
2455 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2456 struct gfs2_rgrpd *rgd;
2457 struct gfs2_rgrpd **tmp;
2458 unsigned int new_space;
2459 unsigned int x;
2460
2461 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2462 return;
2463
2464 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2465 rgd = ip->i_rgd;
2466 else
2467 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2468 if (!rgd) {
2469 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2470 return;
2471 }
2472 ip->i_rgd = rgd;
2473
2474 for (x = 0; x < rlist->rl_rgrps; x++)
2475 if (rlist->rl_rgd[x] == rgd)
2476 return;
2477
2478 if (rlist->rl_rgrps == rlist->rl_space) {
2479 new_space = rlist->rl_space + 10;
2480
2481 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2482 GFP_NOFS | __GFP_NOFAIL);
2483
2484 if (rlist->rl_rgd) {
2485 memcpy(tmp, rlist->rl_rgd,
2486 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2487 kfree(rlist->rl_rgd);
2488 }
2489
2490 rlist->rl_space = new_space;
2491 rlist->rl_rgd = tmp;
2492 }
2493
2494 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2495 }
2496
2497 /**
2498 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2499 * and initialize an array of glock holders for them
2500 * @rlist: the list of resource groups
2501 * @state: the lock state to acquire the RG lock in
2502 *
2503 * FIXME: Don't use NOFAIL
2504 *
2505 */
2506
2507 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2508 {
2509 unsigned int x;
2510
2511 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2512 GFP_NOFS | __GFP_NOFAIL);
2513 for (x = 0; x < rlist->rl_rgrps; x++)
2514 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2515 state, 0,
2516 &rlist->rl_ghs[x]);
2517 }
2518
2519 /**
2520 * gfs2_rlist_free - free a resource group list
2521 * @list: the list of resource groups
2522 *
2523 */
2524
2525 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2526 {
2527 unsigned int x;
2528
2529 kfree(rlist->rl_rgd);
2530
2531 if (rlist->rl_ghs) {
2532 for (x = 0; x < rlist->rl_rgrps; x++)
2533 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2534 kfree(rlist->rl_ghs);
2535 rlist->rl_ghs = NULL;
2536 }
2537 }
2538
This page took 0.082297 seconds and 4 git commands to generate.