GFS2: new function gfs2_rbm_incr
[deliverable/linux.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 static const char valid_change[16] = {
61 /* current */
62 /* n */ 0, 1, 1, 1,
63 /* e */ 1, 0, 0, 0,
64 /* w */ 0, 0, 0, 1,
65 1, 0, 0, 0
66 };
67
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69 const struct gfs2_inode *ip, bool nowrap);
70
71
72 /**
73 * gfs2_setbit - Set a bit in the bitmaps
74 * @rbm: The position of the bit to set
75 * @do_clone: Also set the clone bitmap, if it exists
76 * @new_state: the new state of the block
77 *
78 */
79
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 unsigned char new_state)
82 {
83 unsigned char *byte1, *byte2, *end, cur_state;
84 struct gfs2_bitmap *bi = rbm_bi(rbm);
85 unsigned int buflen = bi->bi_len;
86 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
87
88 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
89 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
90
91 BUG_ON(byte1 >= end);
92
93 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
94
95 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
96 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
97 "new_state=%d\n", rbm->offset, cur_state, new_state);
98 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
99 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 bi->bi_offset, bi->bi_len);
102 dump_stack();
103 gfs2_consist_rgrpd(rbm->rgd);
104 return;
105 }
106 *byte1 ^= (cur_state ^ new_state) << bit;
107
108 if (do_clone && bi->bi_clone) {
109 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 *byte2 ^= (cur_state ^ new_state) << bit;
112 }
113 }
114
115 /**
116 * gfs2_testbit - test a bit in the bitmaps
117 * @rbm: The bit to test
118 *
119 * Returns: The two bit block state of the requested bit
120 */
121
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 struct gfs2_bitmap *bi = rbm_bi(rbm);
125 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
126 const u8 *byte;
127 unsigned int bit;
128
129 byte = buffer + (rbm->offset / GFS2_NBBY);
130 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
131
132 return (*byte >> bit) & GFS2_BIT_MASK;
133 }
134
135 /**
136 * gfs2_bit_search
137 * @ptr: Pointer to bitmap data
138 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
139 * @state: The state we are searching for
140 *
141 * We xor the bitmap data with a patter which is the bitwise opposite
142 * of what we are looking for, this gives rise to a pattern of ones
143 * wherever there is a match. Since we have two bits per entry, we
144 * take this pattern, shift it down by one place and then and it with
145 * the original. All the even bit positions (0,2,4, etc) then represent
146 * successful matches, so we mask with 0x55555..... to remove the unwanted
147 * odd bit positions.
148 *
149 * This allows searching of a whole u64 at once (32 blocks) with a
150 * single test (on 64 bit arches).
151 */
152
153 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
154 {
155 u64 tmp;
156 static const u64 search[] = {
157 [0] = 0xffffffffffffffffULL,
158 [1] = 0xaaaaaaaaaaaaaaaaULL,
159 [2] = 0x5555555555555555ULL,
160 [3] = 0x0000000000000000ULL,
161 };
162 tmp = le64_to_cpu(*ptr) ^ search[state];
163 tmp &= (tmp >> 1);
164 tmp &= mask;
165 return tmp;
166 }
167
168 /**
169 * rs_cmp - multi-block reservation range compare
170 * @blk: absolute file system block number of the new reservation
171 * @len: number of blocks in the new reservation
172 * @rs: existing reservation to compare against
173 *
174 * returns: 1 if the block range is beyond the reach of the reservation
175 * -1 if the block range is before the start of the reservation
176 * 0 if the block range overlaps with the reservation
177 */
178 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
179 {
180 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
181
182 if (blk >= startblk + rs->rs_free)
183 return 1;
184 if (blk + len - 1 < startblk)
185 return -1;
186 return 0;
187 }
188
189 /**
190 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
191 * a block in a given allocation state.
192 * @buf: the buffer that holds the bitmaps
193 * @len: the length (in bytes) of the buffer
194 * @goal: start search at this block's bit-pair (within @buffer)
195 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
196 *
197 * Scope of @goal and returned block number is only within this bitmap buffer,
198 * not entire rgrp or filesystem. @buffer will be offset from the actual
199 * beginning of a bitmap block buffer, skipping any header structures, but
200 * headers are always a multiple of 64 bits long so that the buffer is
201 * always aligned to a 64 bit boundary.
202 *
203 * The size of the buffer is in bytes, but is it assumed that it is
204 * always ok to read a complete multiple of 64 bits at the end
205 * of the block in case the end is no aligned to a natural boundary.
206 *
207 * Return: the block number (bitmap buffer scope) that was found
208 */
209
210 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
211 u32 goal, u8 state)
212 {
213 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
214 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
215 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
216 u64 tmp;
217 u64 mask = 0x5555555555555555ULL;
218 u32 bit;
219
220 /* Mask off bits we don't care about at the start of the search */
221 mask <<= spoint;
222 tmp = gfs2_bit_search(ptr, mask, state);
223 ptr++;
224 while(tmp == 0 && ptr < end) {
225 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
226 ptr++;
227 }
228 /* Mask off any bits which are more than len bytes from the start */
229 if (ptr == end && (len & (sizeof(u64) - 1)))
230 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
231 /* Didn't find anything, so return */
232 if (tmp == 0)
233 return BFITNOENT;
234 ptr--;
235 bit = __ffs64(tmp);
236 bit /= 2; /* two bits per entry in the bitmap */
237 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
238 }
239
240 /**
241 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
242 * @rbm: The rbm with rgd already set correctly
243 * @block: The block number (filesystem relative)
244 *
245 * This sets the bi and offset members of an rbm based on a
246 * resource group and a filesystem relative block number. The
247 * resource group must be set in the rbm on entry, the bi and
248 * offset members will be set by this function.
249 *
250 * Returns: 0 on success, or an error code
251 */
252
253 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
254 {
255 u64 rblock = block - rbm->rgd->rd_data0;
256
257 if (WARN_ON_ONCE(rblock > UINT_MAX))
258 return -EINVAL;
259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 return -E2BIG;
261
262 rbm->bii = 0;
263 rbm->offset = (u32)(rblock);
264 /* Check if the block is within the first block */
265 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
266 return 0;
267
268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 rbm->offset += (sizeof(struct gfs2_rgrp) -
270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 return 0;
274 }
275
276 /**
277 * gfs2_rbm_incr - increment an rbm structure
278 * @rbm: The rbm with rgd already set correctly
279 *
280 * This function takes an existing rbm structure and increments it to the next
281 * viable block offset.
282 *
283 * Returns: If incrementing the offset would cause the rbm to go past the
284 * end of the rgrp, true is returned, otherwise false.
285 *
286 */
287
288 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
289 {
290 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
291 rbm->offset++;
292 return false;
293 }
294 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
295 return true;
296
297 rbm->offset = 0;
298 rbm->bii++;
299 return false;
300 }
301
302 /**
303 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
304 * @rbm: Position to search (value/result)
305 * @n_unaligned: Number of unaligned blocks to check
306 * @len: Decremented for each block found (terminate on zero)
307 *
308 * Returns: true if a non-free block is encountered
309 */
310
311 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
312 {
313 u32 n;
314 u8 res;
315
316 for (n = 0; n < n_unaligned; n++) {
317 res = gfs2_testbit(rbm);
318 if (res != GFS2_BLKST_FREE)
319 return true;
320 (*len)--;
321 if (*len == 0)
322 return true;
323 if (gfs2_rbm_incr(rbm))
324 return true;
325 }
326
327 return false;
328 }
329
330 /**
331 * gfs2_free_extlen - Return extent length of free blocks
332 * @rbm: Starting position
333 * @len: Max length to check
334 *
335 * Starting at the block specified by the rbm, see how many free blocks
336 * there are, not reading more than len blocks ahead. This can be done
337 * using memchr_inv when the blocks are byte aligned, but has to be done
338 * on a block by block basis in case of unaligned blocks. Also this
339 * function can cope with bitmap boundaries (although it must stop on
340 * a resource group boundary)
341 *
342 * Returns: Number of free blocks in the extent
343 */
344
345 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
346 {
347 struct gfs2_rbm rbm = *rrbm;
348 u32 n_unaligned = rbm.offset & 3;
349 u32 size = len;
350 u32 bytes;
351 u32 chunk_size;
352 u8 *ptr, *start, *end;
353 u64 block;
354 struct gfs2_bitmap *bi;
355
356 if (n_unaligned &&
357 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
358 goto out;
359
360 n_unaligned = len & 3;
361 /* Start is now byte aligned */
362 while (len > 3) {
363 bi = rbm_bi(&rbm);
364 start = bi->bi_bh->b_data;
365 if (bi->bi_clone)
366 start = bi->bi_clone;
367 end = start + bi->bi_bh->b_size;
368 start += bi->bi_offset;
369 BUG_ON(rbm.offset & 3);
370 start += (rbm.offset / GFS2_NBBY);
371 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
372 ptr = memchr_inv(start, 0, bytes);
373 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
374 chunk_size *= GFS2_NBBY;
375 BUG_ON(len < chunk_size);
376 len -= chunk_size;
377 block = gfs2_rbm_to_block(&rbm);
378 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
379 n_unaligned = 0;
380 break;
381 }
382 if (ptr) {
383 n_unaligned = 3;
384 break;
385 }
386 n_unaligned = len & 3;
387 }
388
389 /* Deal with any bits left over at the end */
390 if (n_unaligned)
391 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
392 out:
393 return size - len;
394 }
395
396 /**
397 * gfs2_bitcount - count the number of bits in a certain state
398 * @rgd: the resource group descriptor
399 * @buffer: the buffer that holds the bitmaps
400 * @buflen: the length (in bytes) of the buffer
401 * @state: the state of the block we're looking for
402 *
403 * Returns: The number of bits
404 */
405
406 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
407 unsigned int buflen, u8 state)
408 {
409 const u8 *byte = buffer;
410 const u8 *end = buffer + buflen;
411 const u8 state1 = state << 2;
412 const u8 state2 = state << 4;
413 const u8 state3 = state << 6;
414 u32 count = 0;
415
416 for (; byte < end; byte++) {
417 if (((*byte) & 0x03) == state)
418 count++;
419 if (((*byte) & 0x0C) == state1)
420 count++;
421 if (((*byte) & 0x30) == state2)
422 count++;
423 if (((*byte) & 0xC0) == state3)
424 count++;
425 }
426
427 return count;
428 }
429
430 /**
431 * gfs2_rgrp_verify - Verify that a resource group is consistent
432 * @rgd: the rgrp
433 *
434 */
435
436 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
437 {
438 struct gfs2_sbd *sdp = rgd->rd_sbd;
439 struct gfs2_bitmap *bi = NULL;
440 u32 length = rgd->rd_length;
441 u32 count[4], tmp;
442 int buf, x;
443
444 memset(count, 0, 4 * sizeof(u32));
445
446 /* Count # blocks in each of 4 possible allocation states */
447 for (buf = 0; buf < length; buf++) {
448 bi = rgd->rd_bits + buf;
449 for (x = 0; x < 4; x++)
450 count[x] += gfs2_bitcount(rgd,
451 bi->bi_bh->b_data +
452 bi->bi_offset,
453 bi->bi_len, x);
454 }
455
456 if (count[0] != rgd->rd_free) {
457 if (gfs2_consist_rgrpd(rgd))
458 fs_err(sdp, "free data mismatch: %u != %u\n",
459 count[0], rgd->rd_free);
460 return;
461 }
462
463 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
464 if (count[1] != tmp) {
465 if (gfs2_consist_rgrpd(rgd))
466 fs_err(sdp, "used data mismatch: %u != %u\n",
467 count[1], tmp);
468 return;
469 }
470
471 if (count[2] + count[3] != rgd->rd_dinodes) {
472 if (gfs2_consist_rgrpd(rgd))
473 fs_err(sdp, "used metadata mismatch: %u != %u\n",
474 count[2] + count[3], rgd->rd_dinodes);
475 return;
476 }
477 }
478
479 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
480 {
481 u64 first = rgd->rd_data0;
482 u64 last = first + rgd->rd_data;
483 return first <= block && block < last;
484 }
485
486 /**
487 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488 * @sdp: The GFS2 superblock
489 * @blk: The data block number
490 * @exact: True if this needs to be an exact match
491 *
492 * Returns: The resource group, or NULL if not found
493 */
494
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 struct rb_node *n, *next;
498 struct gfs2_rgrpd *cur;
499
500 spin_lock(&sdp->sd_rindex_spin);
501 n = sdp->sd_rindex_tree.rb_node;
502 while (n) {
503 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 next = NULL;
505 if (blk < cur->rd_addr)
506 next = n->rb_left;
507 else if (blk >= cur->rd_data0 + cur->rd_data)
508 next = n->rb_right;
509 if (next == NULL) {
510 spin_unlock(&sdp->sd_rindex_spin);
511 if (exact) {
512 if (blk < cur->rd_addr)
513 return NULL;
514 if (blk >= cur->rd_data0 + cur->rd_data)
515 return NULL;
516 }
517 return cur;
518 }
519 n = next;
520 }
521 spin_unlock(&sdp->sd_rindex_spin);
522
523 return NULL;
524 }
525
526 /**
527 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528 * @sdp: The GFS2 superblock
529 *
530 * Returns: The first rgrp in the filesystem
531 */
532
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 const struct rb_node *n;
536 struct gfs2_rgrpd *rgd;
537
538 spin_lock(&sdp->sd_rindex_spin);
539 n = rb_first(&sdp->sd_rindex_tree);
540 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 spin_unlock(&sdp->sd_rindex_spin);
542
543 return rgd;
544 }
545
546 /**
547 * gfs2_rgrpd_get_next - get the next RG
548 * @rgd: the resource group descriptor
549 *
550 * Returns: The next rgrp
551 */
552
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 struct gfs2_sbd *sdp = rgd->rd_sbd;
556 const struct rb_node *n;
557
558 spin_lock(&sdp->sd_rindex_spin);
559 n = rb_next(&rgd->rd_node);
560 if (n == NULL)
561 n = rb_first(&sdp->sd_rindex_tree);
562
563 if (unlikely(&rgd->rd_node == n)) {
564 spin_unlock(&sdp->sd_rindex_spin);
565 return NULL;
566 }
567 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 spin_unlock(&sdp->sd_rindex_spin);
569 return rgd;
570 }
571
572 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
573 {
574 int x;
575
576 for (x = 0; x < rgd->rd_length; x++) {
577 struct gfs2_bitmap *bi = rgd->rd_bits + x;
578 kfree(bi->bi_clone);
579 bi->bi_clone = NULL;
580 }
581 }
582
583 /**
584 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
585 * @ip: the inode for this reservation
586 */
587 int gfs2_rs_alloc(struct gfs2_inode *ip)
588 {
589 int error = 0;
590
591 down_write(&ip->i_rw_mutex);
592 if (ip->i_res)
593 goto out;
594
595 ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
596 if (!ip->i_res) {
597 error = -ENOMEM;
598 goto out;
599 }
600
601 RB_CLEAR_NODE(&ip->i_res->rs_node);
602 out:
603 up_write(&ip->i_rw_mutex);
604 return error;
605 }
606
607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
608 {
609 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
610 (unsigned long long)rs->rs_inum,
611 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
612 rs->rs_rbm.offset, rs->rs_free);
613 }
614
615 /**
616 * __rs_deltree - remove a multi-block reservation from the rgd tree
617 * @rs: The reservation to remove
618 *
619 */
620 static void __rs_deltree(struct gfs2_blkreserv *rs)
621 {
622 struct gfs2_rgrpd *rgd;
623
624 if (!gfs2_rs_active(rs))
625 return;
626
627 rgd = rs->rs_rbm.rgd;
628 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
629 rb_erase(&rs->rs_node, &rgd->rd_rstree);
630 RB_CLEAR_NODE(&rs->rs_node);
631
632 if (rs->rs_free) {
633 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
634
635 /* return reserved blocks to the rgrp */
636 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
637 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
638 rs->rs_free = 0;
639 clear_bit(GBF_FULL, &bi->bi_flags);
640 smp_mb__after_clear_bit();
641 }
642 }
643
644 /**
645 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
646 * @rs: The reservation to remove
647 *
648 */
649 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
650 {
651 struct gfs2_rgrpd *rgd;
652
653 rgd = rs->rs_rbm.rgd;
654 if (rgd) {
655 spin_lock(&rgd->rd_rsspin);
656 __rs_deltree(rs);
657 spin_unlock(&rgd->rd_rsspin);
658 }
659 }
660
661 /**
662 * gfs2_rs_delete - delete a multi-block reservation
663 * @ip: The inode for this reservation
664 *
665 */
666 void gfs2_rs_delete(struct gfs2_inode *ip)
667 {
668 struct inode *inode = &ip->i_inode;
669
670 down_write(&ip->i_rw_mutex);
671 if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) {
672 gfs2_rs_deltree(ip->i_res);
673 BUG_ON(ip->i_res->rs_free);
674 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
675 ip->i_res = NULL;
676 }
677 up_write(&ip->i_rw_mutex);
678 }
679
680 /**
681 * return_all_reservations - return all reserved blocks back to the rgrp.
682 * @rgd: the rgrp that needs its space back
683 *
684 * We previously reserved a bunch of blocks for allocation. Now we need to
685 * give them back. This leave the reservation structures in tact, but removes
686 * all of their corresponding "no-fly zones".
687 */
688 static void return_all_reservations(struct gfs2_rgrpd *rgd)
689 {
690 struct rb_node *n;
691 struct gfs2_blkreserv *rs;
692
693 spin_lock(&rgd->rd_rsspin);
694 while ((n = rb_first(&rgd->rd_rstree))) {
695 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
696 __rs_deltree(rs);
697 }
698 spin_unlock(&rgd->rd_rsspin);
699 }
700
701 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
702 {
703 struct rb_node *n;
704 struct gfs2_rgrpd *rgd;
705 struct gfs2_glock *gl;
706
707 while ((n = rb_first(&sdp->sd_rindex_tree))) {
708 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
709 gl = rgd->rd_gl;
710
711 rb_erase(n, &sdp->sd_rindex_tree);
712
713 if (gl) {
714 spin_lock(&gl->gl_spin);
715 gl->gl_object = NULL;
716 spin_unlock(&gl->gl_spin);
717 gfs2_glock_add_to_lru(gl);
718 gfs2_glock_put(gl);
719 }
720
721 gfs2_free_clones(rgd);
722 kfree(rgd->rd_bits);
723 return_all_reservations(rgd);
724 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
725 }
726 }
727
728 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
729 {
730 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
731 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
732 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
733 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
734 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
735 }
736
737 /**
738 * gfs2_compute_bitstructs - Compute the bitmap sizes
739 * @rgd: The resource group descriptor
740 *
741 * Calculates bitmap descriptors, one for each block that contains bitmap data
742 *
743 * Returns: errno
744 */
745
746 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
747 {
748 struct gfs2_sbd *sdp = rgd->rd_sbd;
749 struct gfs2_bitmap *bi;
750 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
751 u32 bytes_left, bytes;
752 int x;
753
754 if (!length)
755 return -EINVAL;
756
757 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
758 if (!rgd->rd_bits)
759 return -ENOMEM;
760
761 bytes_left = rgd->rd_bitbytes;
762
763 for (x = 0; x < length; x++) {
764 bi = rgd->rd_bits + x;
765
766 bi->bi_flags = 0;
767 /* small rgrp; bitmap stored completely in header block */
768 if (length == 1) {
769 bytes = bytes_left;
770 bi->bi_offset = sizeof(struct gfs2_rgrp);
771 bi->bi_start = 0;
772 bi->bi_len = bytes;
773 bi->bi_blocks = bytes * GFS2_NBBY;
774 /* header block */
775 } else if (x == 0) {
776 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
777 bi->bi_offset = sizeof(struct gfs2_rgrp);
778 bi->bi_start = 0;
779 bi->bi_len = bytes;
780 bi->bi_blocks = bytes * GFS2_NBBY;
781 /* last block */
782 } else if (x + 1 == length) {
783 bytes = bytes_left;
784 bi->bi_offset = sizeof(struct gfs2_meta_header);
785 bi->bi_start = rgd->rd_bitbytes - bytes_left;
786 bi->bi_len = bytes;
787 bi->bi_blocks = bytes * GFS2_NBBY;
788 /* other blocks */
789 } else {
790 bytes = sdp->sd_sb.sb_bsize -
791 sizeof(struct gfs2_meta_header);
792 bi->bi_offset = sizeof(struct gfs2_meta_header);
793 bi->bi_start = rgd->rd_bitbytes - bytes_left;
794 bi->bi_len = bytes;
795 bi->bi_blocks = bytes * GFS2_NBBY;
796 }
797
798 bytes_left -= bytes;
799 }
800
801 if (bytes_left) {
802 gfs2_consist_rgrpd(rgd);
803 return -EIO;
804 }
805 bi = rgd->rd_bits + (length - 1);
806 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
807 if (gfs2_consist_rgrpd(rgd)) {
808 gfs2_rindex_print(rgd);
809 fs_err(sdp, "start=%u len=%u offset=%u\n",
810 bi->bi_start, bi->bi_len, bi->bi_offset);
811 }
812 return -EIO;
813 }
814
815 return 0;
816 }
817
818 /**
819 * gfs2_ri_total - Total up the file system space, according to the rindex.
820 * @sdp: the filesystem
821 *
822 */
823 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
824 {
825 u64 total_data = 0;
826 struct inode *inode = sdp->sd_rindex;
827 struct gfs2_inode *ip = GFS2_I(inode);
828 char buf[sizeof(struct gfs2_rindex)];
829 int error, rgrps;
830
831 for (rgrps = 0;; rgrps++) {
832 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
833
834 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
835 break;
836 error = gfs2_internal_read(ip, buf, &pos,
837 sizeof(struct gfs2_rindex));
838 if (error != sizeof(struct gfs2_rindex))
839 break;
840 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
841 }
842 return total_data;
843 }
844
845 static int rgd_insert(struct gfs2_rgrpd *rgd)
846 {
847 struct gfs2_sbd *sdp = rgd->rd_sbd;
848 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
849
850 /* Figure out where to put new node */
851 while (*newn) {
852 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
853 rd_node);
854
855 parent = *newn;
856 if (rgd->rd_addr < cur->rd_addr)
857 newn = &((*newn)->rb_left);
858 else if (rgd->rd_addr > cur->rd_addr)
859 newn = &((*newn)->rb_right);
860 else
861 return -EEXIST;
862 }
863
864 rb_link_node(&rgd->rd_node, parent, newn);
865 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
866 sdp->sd_rgrps++;
867 return 0;
868 }
869
870 /**
871 * read_rindex_entry - Pull in a new resource index entry from the disk
872 * @ip: Pointer to the rindex inode
873 *
874 * Returns: 0 on success, > 0 on EOF, error code otherwise
875 */
876
877 static int read_rindex_entry(struct gfs2_inode *ip)
878 {
879 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
880 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
881 struct gfs2_rindex buf;
882 int error;
883 struct gfs2_rgrpd *rgd;
884
885 if (pos >= i_size_read(&ip->i_inode))
886 return 1;
887
888 error = gfs2_internal_read(ip, (char *)&buf, &pos,
889 sizeof(struct gfs2_rindex));
890
891 if (error != sizeof(struct gfs2_rindex))
892 return (error == 0) ? 1 : error;
893
894 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
895 error = -ENOMEM;
896 if (!rgd)
897 return error;
898
899 rgd->rd_sbd = sdp;
900 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
901 rgd->rd_length = be32_to_cpu(buf.ri_length);
902 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
903 rgd->rd_data = be32_to_cpu(buf.ri_data);
904 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
905 spin_lock_init(&rgd->rd_rsspin);
906
907 error = compute_bitstructs(rgd);
908 if (error)
909 goto fail;
910
911 error = gfs2_glock_get(sdp, rgd->rd_addr,
912 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
913 if (error)
914 goto fail;
915
916 rgd->rd_gl->gl_object = rgd;
917 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
918 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
919 if (rgd->rd_data > sdp->sd_max_rg_data)
920 sdp->sd_max_rg_data = rgd->rd_data;
921 spin_lock(&sdp->sd_rindex_spin);
922 error = rgd_insert(rgd);
923 spin_unlock(&sdp->sd_rindex_spin);
924 if (!error)
925 return 0;
926
927 error = 0; /* someone else read in the rgrp; free it and ignore it */
928 gfs2_glock_put(rgd->rd_gl);
929
930 fail:
931 kfree(rgd->rd_bits);
932 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
933 return error;
934 }
935
936 /**
937 * gfs2_ri_update - Pull in a new resource index from the disk
938 * @ip: pointer to the rindex inode
939 *
940 * Returns: 0 on successful update, error code otherwise
941 */
942
943 static int gfs2_ri_update(struct gfs2_inode *ip)
944 {
945 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
946 int error;
947
948 do {
949 error = read_rindex_entry(ip);
950 } while (error == 0);
951
952 if (error < 0)
953 return error;
954
955 sdp->sd_rindex_uptodate = 1;
956 return 0;
957 }
958
959 /**
960 * gfs2_rindex_update - Update the rindex if required
961 * @sdp: The GFS2 superblock
962 *
963 * We grab a lock on the rindex inode to make sure that it doesn't
964 * change whilst we are performing an operation. We keep this lock
965 * for quite long periods of time compared to other locks. This
966 * doesn't matter, since it is shared and it is very, very rarely
967 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
968 *
969 * This makes sure that we're using the latest copy of the resource index
970 * special file, which might have been updated if someone expanded the
971 * filesystem (via gfs2_grow utility), which adds new resource groups.
972 *
973 * Returns: 0 on succeess, error code otherwise
974 */
975
976 int gfs2_rindex_update(struct gfs2_sbd *sdp)
977 {
978 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
979 struct gfs2_glock *gl = ip->i_gl;
980 struct gfs2_holder ri_gh;
981 int error = 0;
982 int unlock_required = 0;
983
984 /* Read new copy from disk if we don't have the latest */
985 if (!sdp->sd_rindex_uptodate) {
986 if (!gfs2_glock_is_locked_by_me(gl)) {
987 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
988 if (error)
989 return error;
990 unlock_required = 1;
991 }
992 if (!sdp->sd_rindex_uptodate)
993 error = gfs2_ri_update(ip);
994 if (unlock_required)
995 gfs2_glock_dq_uninit(&ri_gh);
996 }
997
998 return error;
999 }
1000
1001 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1002 {
1003 const struct gfs2_rgrp *str = buf;
1004 u32 rg_flags;
1005
1006 rg_flags = be32_to_cpu(str->rg_flags);
1007 rg_flags &= ~GFS2_RDF_MASK;
1008 rgd->rd_flags &= GFS2_RDF_MASK;
1009 rgd->rd_flags |= rg_flags;
1010 rgd->rd_free = be32_to_cpu(str->rg_free);
1011 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1012 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1013 }
1014
1015 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1016 {
1017 struct gfs2_rgrp *str = buf;
1018
1019 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1020 str->rg_free = cpu_to_be32(rgd->rd_free);
1021 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1022 str->__pad = cpu_to_be32(0);
1023 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1024 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1025 }
1026
1027 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1028 {
1029 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1030 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1031
1032 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1033 rgl->rl_dinodes != str->rg_dinodes ||
1034 rgl->rl_igeneration != str->rg_igeneration)
1035 return 0;
1036 return 1;
1037 }
1038
1039 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1040 {
1041 const struct gfs2_rgrp *str = buf;
1042
1043 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1044 rgl->rl_flags = str->rg_flags;
1045 rgl->rl_free = str->rg_free;
1046 rgl->rl_dinodes = str->rg_dinodes;
1047 rgl->rl_igeneration = str->rg_igeneration;
1048 rgl->__pad = 0UL;
1049 }
1050
1051 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1052 {
1053 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1054 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1055 rgl->rl_unlinked = cpu_to_be32(unlinked);
1056 }
1057
1058 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1059 {
1060 struct gfs2_bitmap *bi;
1061 const u32 length = rgd->rd_length;
1062 const u8 *buffer = NULL;
1063 u32 i, goal, count = 0;
1064
1065 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1066 goal = 0;
1067 buffer = bi->bi_bh->b_data + bi->bi_offset;
1068 WARN_ON(!buffer_uptodate(bi->bi_bh));
1069 while (goal < bi->bi_len * GFS2_NBBY) {
1070 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1071 GFS2_BLKST_UNLINKED);
1072 if (goal == BFITNOENT)
1073 break;
1074 count++;
1075 goal++;
1076 }
1077 }
1078
1079 return count;
1080 }
1081
1082
1083 /**
1084 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1085 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1086 *
1087 * Read in all of a Resource Group's header and bitmap blocks.
1088 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1089 *
1090 * Returns: errno
1091 */
1092
1093 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1094 {
1095 struct gfs2_sbd *sdp = rgd->rd_sbd;
1096 struct gfs2_glock *gl = rgd->rd_gl;
1097 unsigned int length = rgd->rd_length;
1098 struct gfs2_bitmap *bi;
1099 unsigned int x, y;
1100 int error;
1101
1102 if (rgd->rd_bits[0].bi_bh != NULL)
1103 return 0;
1104
1105 for (x = 0; x < length; x++) {
1106 bi = rgd->rd_bits + x;
1107 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1108 if (error)
1109 goto fail;
1110 }
1111
1112 for (y = length; y--;) {
1113 bi = rgd->rd_bits + y;
1114 error = gfs2_meta_wait(sdp, bi->bi_bh);
1115 if (error)
1116 goto fail;
1117 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1118 GFS2_METATYPE_RG)) {
1119 error = -EIO;
1120 goto fail;
1121 }
1122 }
1123
1124 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1125 for (x = 0; x < length; x++)
1126 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1127 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1128 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1129 rgd->rd_free_clone = rgd->rd_free;
1130 }
1131 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1132 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1133 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1134 rgd->rd_bits[0].bi_bh->b_data);
1135 }
1136 else if (sdp->sd_args.ar_rgrplvb) {
1137 if (!gfs2_rgrp_lvb_valid(rgd)){
1138 gfs2_consist_rgrpd(rgd);
1139 error = -EIO;
1140 goto fail;
1141 }
1142 if (rgd->rd_rgl->rl_unlinked == 0)
1143 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1144 }
1145 return 0;
1146
1147 fail:
1148 while (x--) {
1149 bi = rgd->rd_bits + x;
1150 brelse(bi->bi_bh);
1151 bi->bi_bh = NULL;
1152 gfs2_assert_warn(sdp, !bi->bi_clone);
1153 }
1154
1155 return error;
1156 }
1157
1158 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1159 {
1160 u32 rl_flags;
1161
1162 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1163 return 0;
1164
1165 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1166 return gfs2_rgrp_bh_get(rgd);
1167
1168 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1169 rl_flags &= ~GFS2_RDF_MASK;
1170 rgd->rd_flags &= GFS2_RDF_MASK;
1171 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1172 if (rgd->rd_rgl->rl_unlinked == 0)
1173 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1174 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1175 rgd->rd_free_clone = rgd->rd_free;
1176 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1177 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1178 return 0;
1179 }
1180
1181 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1182 {
1183 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1184 struct gfs2_sbd *sdp = rgd->rd_sbd;
1185
1186 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1187 return 0;
1188 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1189 }
1190
1191 /**
1192 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1193 * @gh: The glock holder for the resource group
1194 *
1195 */
1196
1197 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1198 {
1199 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1200 int x, length = rgd->rd_length;
1201
1202 for (x = 0; x < length; x++) {
1203 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1204 if (bi->bi_bh) {
1205 brelse(bi->bi_bh);
1206 bi->bi_bh = NULL;
1207 }
1208 }
1209
1210 }
1211
1212 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1213 struct buffer_head *bh,
1214 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1215 {
1216 struct super_block *sb = sdp->sd_vfs;
1217 u64 blk;
1218 sector_t start = 0;
1219 sector_t nr_blks = 0;
1220 int rv;
1221 unsigned int x;
1222 u32 trimmed = 0;
1223 u8 diff;
1224
1225 for (x = 0; x < bi->bi_len; x++) {
1226 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1227 clone += bi->bi_offset;
1228 clone += x;
1229 if (bh) {
1230 const u8 *orig = bh->b_data + bi->bi_offset + x;
1231 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1232 } else {
1233 diff = ~(*clone | (*clone >> 1));
1234 }
1235 diff &= 0x55;
1236 if (diff == 0)
1237 continue;
1238 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1239 while(diff) {
1240 if (diff & 1) {
1241 if (nr_blks == 0)
1242 goto start_new_extent;
1243 if ((start + nr_blks) != blk) {
1244 if (nr_blks >= minlen) {
1245 rv = sb_issue_discard(sb,
1246 start, nr_blks,
1247 GFP_NOFS, 0);
1248 if (rv)
1249 goto fail;
1250 trimmed += nr_blks;
1251 }
1252 nr_blks = 0;
1253 start_new_extent:
1254 start = blk;
1255 }
1256 nr_blks++;
1257 }
1258 diff >>= 2;
1259 blk++;
1260 }
1261 }
1262 if (nr_blks >= minlen) {
1263 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1264 if (rv)
1265 goto fail;
1266 trimmed += nr_blks;
1267 }
1268 if (ptrimmed)
1269 *ptrimmed = trimmed;
1270 return 0;
1271
1272 fail:
1273 if (sdp->sd_args.ar_discard)
1274 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1275 sdp->sd_args.ar_discard = 0;
1276 return -EIO;
1277 }
1278
1279 /**
1280 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1281 * @filp: Any file on the filesystem
1282 * @argp: Pointer to the arguments (also used to pass result)
1283 *
1284 * Returns: 0 on success, otherwise error code
1285 */
1286
1287 int gfs2_fitrim(struct file *filp, void __user *argp)
1288 {
1289 struct inode *inode = file_inode(filp);
1290 struct gfs2_sbd *sdp = GFS2_SB(inode);
1291 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1292 struct buffer_head *bh;
1293 struct gfs2_rgrpd *rgd;
1294 struct gfs2_rgrpd *rgd_end;
1295 struct gfs2_holder gh;
1296 struct fstrim_range r;
1297 int ret = 0;
1298 u64 amt;
1299 u64 trimmed = 0;
1300 u64 start, end, minlen;
1301 unsigned int x;
1302 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1303
1304 if (!capable(CAP_SYS_ADMIN))
1305 return -EPERM;
1306
1307 if (!blk_queue_discard(q))
1308 return -EOPNOTSUPP;
1309
1310 if (copy_from_user(&r, argp, sizeof(r)))
1311 return -EFAULT;
1312
1313 ret = gfs2_rindex_update(sdp);
1314 if (ret)
1315 return ret;
1316
1317 start = r.start >> bs_shift;
1318 end = start + (r.len >> bs_shift);
1319 minlen = max_t(u64, r.minlen,
1320 q->limits.discard_granularity) >> bs_shift;
1321
1322 if (end <= start || minlen > sdp->sd_max_rg_data)
1323 return -EINVAL;
1324
1325 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1326 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1327
1328 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1329 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1330 return -EINVAL; /* start is beyond the end of the fs */
1331
1332 while (1) {
1333
1334 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1335 if (ret)
1336 goto out;
1337
1338 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1339 /* Trim each bitmap in the rgrp */
1340 for (x = 0; x < rgd->rd_length; x++) {
1341 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1342 ret = gfs2_rgrp_send_discards(sdp,
1343 rgd->rd_data0, NULL, bi, minlen,
1344 &amt);
1345 if (ret) {
1346 gfs2_glock_dq_uninit(&gh);
1347 goto out;
1348 }
1349 trimmed += amt;
1350 }
1351
1352 /* Mark rgrp as having been trimmed */
1353 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1354 if (ret == 0) {
1355 bh = rgd->rd_bits[0].bi_bh;
1356 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1357 gfs2_trans_add_meta(rgd->rd_gl, bh);
1358 gfs2_rgrp_out(rgd, bh->b_data);
1359 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1360 gfs2_trans_end(sdp);
1361 }
1362 }
1363 gfs2_glock_dq_uninit(&gh);
1364
1365 if (rgd == rgd_end)
1366 break;
1367
1368 rgd = gfs2_rgrpd_get_next(rgd);
1369 }
1370
1371 out:
1372 r.len = trimmed << bs_shift;
1373 if (copy_to_user(argp, &r, sizeof(r)))
1374 return -EFAULT;
1375
1376 return ret;
1377 }
1378
1379 /**
1380 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1381 * @ip: the inode structure
1382 *
1383 */
1384 static void rs_insert(struct gfs2_inode *ip)
1385 {
1386 struct rb_node **newn, *parent = NULL;
1387 int rc;
1388 struct gfs2_blkreserv *rs = ip->i_res;
1389 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1390 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1391
1392 BUG_ON(gfs2_rs_active(rs));
1393
1394 spin_lock(&rgd->rd_rsspin);
1395 newn = &rgd->rd_rstree.rb_node;
1396 while (*newn) {
1397 struct gfs2_blkreserv *cur =
1398 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1399
1400 parent = *newn;
1401 rc = rs_cmp(fsblock, rs->rs_free, cur);
1402 if (rc > 0)
1403 newn = &((*newn)->rb_right);
1404 else if (rc < 0)
1405 newn = &((*newn)->rb_left);
1406 else {
1407 spin_unlock(&rgd->rd_rsspin);
1408 WARN_ON(1);
1409 return;
1410 }
1411 }
1412
1413 rb_link_node(&rs->rs_node, parent, newn);
1414 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1415
1416 /* Do our rgrp accounting for the reservation */
1417 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1418 spin_unlock(&rgd->rd_rsspin);
1419 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1420 }
1421
1422 /**
1423 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1424 * @rgd: the resource group descriptor
1425 * @ip: pointer to the inode for which we're reserving blocks
1426 * @requested: number of blocks required for this allocation
1427 *
1428 */
1429
1430 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1431 unsigned requested)
1432 {
1433 struct gfs2_rbm rbm = { .rgd = rgd, };
1434 u64 goal;
1435 struct gfs2_blkreserv *rs = ip->i_res;
1436 u32 extlen;
1437 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1438 int ret;
1439 struct inode *inode = &ip->i_inode;
1440
1441 if (S_ISDIR(inode->i_mode))
1442 extlen = 1;
1443 else {
1444 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1445 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1446 }
1447 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1448 return;
1449
1450 /* Find bitmap block that contains bits for goal block */
1451 if (rgrp_contains_block(rgd, ip->i_goal))
1452 goal = ip->i_goal;
1453 else
1454 goal = rgd->rd_last_alloc + rgd->rd_data0;
1455
1456 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1457 return;
1458
1459 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1460 if (ret == 0) {
1461 rs->rs_rbm = rbm;
1462 rs->rs_free = extlen;
1463 rs->rs_inum = ip->i_no_addr;
1464 rs_insert(ip);
1465 } else {
1466 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1467 rgd->rd_last_alloc = 0;
1468 }
1469 }
1470
1471 /**
1472 * gfs2_next_unreserved_block - Return next block that is not reserved
1473 * @rgd: The resource group
1474 * @block: The starting block
1475 * @length: The required length
1476 * @ip: Ignore any reservations for this inode
1477 *
1478 * If the block does not appear in any reservation, then return the
1479 * block number unchanged. If it does appear in the reservation, then
1480 * keep looking through the tree of reservations in order to find the
1481 * first block number which is not reserved.
1482 */
1483
1484 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1485 u32 length,
1486 const struct gfs2_inode *ip)
1487 {
1488 struct gfs2_blkreserv *rs;
1489 struct rb_node *n;
1490 int rc;
1491
1492 spin_lock(&rgd->rd_rsspin);
1493 n = rgd->rd_rstree.rb_node;
1494 while (n) {
1495 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1496 rc = rs_cmp(block, length, rs);
1497 if (rc < 0)
1498 n = n->rb_left;
1499 else if (rc > 0)
1500 n = n->rb_right;
1501 else
1502 break;
1503 }
1504
1505 if (n) {
1506 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1507 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1508 n = n->rb_right;
1509 if (n == NULL)
1510 break;
1511 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1512 }
1513 }
1514
1515 spin_unlock(&rgd->rd_rsspin);
1516 return block;
1517 }
1518
1519 /**
1520 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1521 * @rbm: The current position in the resource group
1522 * @ip: The inode for which we are searching for blocks
1523 * @minext: The minimum extent length
1524 *
1525 * This checks the current position in the rgrp to see whether there is
1526 * a reservation covering this block. If not then this function is a
1527 * no-op. If there is, then the position is moved to the end of the
1528 * contiguous reservation(s) so that we are pointing at the first
1529 * non-reserved block.
1530 *
1531 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1532 */
1533
1534 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1535 const struct gfs2_inode *ip,
1536 u32 minext)
1537 {
1538 u64 block = gfs2_rbm_to_block(rbm);
1539 u32 extlen = 1;
1540 u64 nblock;
1541 int ret;
1542
1543 /*
1544 * If we have a minimum extent length, then skip over any extent
1545 * which is less than the min extent length in size.
1546 */
1547 if (minext) {
1548 extlen = gfs2_free_extlen(rbm, minext);
1549 nblock = block + extlen;
1550 if (extlen < minext)
1551 goto fail;
1552 }
1553
1554 /*
1555 * Check the extent which has been found against the reservations
1556 * and skip if parts of it are already reserved
1557 */
1558 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1559 if (nblock == block)
1560 return 0;
1561 fail:
1562 ret = gfs2_rbm_from_block(rbm, nblock);
1563 if (ret < 0)
1564 return ret;
1565 return 1;
1566 }
1567
1568 /**
1569 * gfs2_rbm_find - Look for blocks of a particular state
1570 * @rbm: Value/result starting position and final position
1571 * @state: The state which we want to find
1572 * @minext: The requested extent length (0 for a single block)
1573 * @ip: If set, check for reservations
1574 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1575 * around until we've reached the starting point.
1576 *
1577 * Side effects:
1578 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1579 * has no free blocks in it.
1580 *
1581 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1582 */
1583
1584 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1585 const struct gfs2_inode *ip, bool nowrap)
1586 {
1587 struct buffer_head *bh;
1588 int initial_bii;
1589 u32 initial_offset;
1590 u32 offset;
1591 u8 *buffer;
1592 int n = 0;
1593 int iters = rbm->rgd->rd_length;
1594 int ret;
1595 struct gfs2_bitmap *bi;
1596
1597 /* If we are not starting at the beginning of a bitmap, then we
1598 * need to add one to the bitmap count to ensure that we search
1599 * the starting bitmap twice.
1600 */
1601 if (rbm->offset != 0)
1602 iters++;
1603
1604 while(1) {
1605 bi = rbm_bi(rbm);
1606 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1607 (state == GFS2_BLKST_FREE))
1608 goto next_bitmap;
1609
1610 bh = bi->bi_bh;
1611 buffer = bh->b_data + bi->bi_offset;
1612 WARN_ON(!buffer_uptodate(bh));
1613 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1614 buffer = bi->bi_clone + bi->bi_offset;
1615 initial_offset = rbm->offset;
1616 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1617 if (offset == BFITNOENT)
1618 goto bitmap_full;
1619 rbm->offset = offset;
1620 if (ip == NULL)
1621 return 0;
1622
1623 initial_bii = rbm->bii;
1624 ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1625 if (ret == 0)
1626 return 0;
1627 if (ret > 0) {
1628 n += (rbm->bii - initial_bii);
1629 goto next_iter;
1630 }
1631 if (ret == -E2BIG) {
1632 rbm->bii = 0;
1633 rbm->offset = 0;
1634 n += (rbm->bii - initial_bii);
1635 goto res_covered_end_of_rgrp;
1636 }
1637 return ret;
1638
1639 bitmap_full: /* Mark bitmap as full and fall through */
1640 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) {
1641 struct gfs2_bitmap *bi = rbm_bi(rbm);
1642 set_bit(GBF_FULL, &bi->bi_flags);
1643 }
1644
1645 next_bitmap: /* Find next bitmap in the rgrp */
1646 rbm->offset = 0;
1647 rbm->bii++;
1648 if (rbm->bii == rbm->rgd->rd_length)
1649 rbm->bii = 0;
1650 res_covered_end_of_rgrp:
1651 if ((rbm->bii == 0) && nowrap)
1652 break;
1653 n++;
1654 next_iter:
1655 if (n >= iters)
1656 break;
1657 }
1658
1659 return -ENOSPC;
1660 }
1661
1662 /**
1663 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1664 * @rgd: The rgrp
1665 * @last_unlinked: block address of the last dinode we unlinked
1666 * @skip: block address we should explicitly not unlink
1667 *
1668 * Returns: 0 if no error
1669 * The inode, if one has been found, in inode.
1670 */
1671
1672 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1673 {
1674 u64 block;
1675 struct gfs2_sbd *sdp = rgd->rd_sbd;
1676 struct gfs2_glock *gl;
1677 struct gfs2_inode *ip;
1678 int error;
1679 int found = 0;
1680 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1681
1682 while (1) {
1683 down_write(&sdp->sd_log_flush_lock);
1684 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1685 up_write(&sdp->sd_log_flush_lock);
1686 if (error == -ENOSPC)
1687 break;
1688 if (WARN_ON_ONCE(error))
1689 break;
1690
1691 block = gfs2_rbm_to_block(&rbm);
1692 if (gfs2_rbm_from_block(&rbm, block + 1))
1693 break;
1694 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1695 continue;
1696 if (block == skip)
1697 continue;
1698 *last_unlinked = block;
1699
1700 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1701 if (error)
1702 continue;
1703
1704 /* If the inode is already in cache, we can ignore it here
1705 * because the existing inode disposal code will deal with
1706 * it when all refs have gone away. Accessing gl_object like
1707 * this is not safe in general. Here it is ok because we do
1708 * not dereference the pointer, and we only need an approx
1709 * answer to whether it is NULL or not.
1710 */
1711 ip = gl->gl_object;
1712
1713 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1714 gfs2_glock_put(gl);
1715 else
1716 found++;
1717
1718 /* Limit reclaim to sensible number of tasks */
1719 if (found > NR_CPUS)
1720 return;
1721 }
1722
1723 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1724 return;
1725 }
1726
1727 /**
1728 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1729 * @rgd: The rgrp in question
1730 * @loops: An indication of how picky we can be (0=very, 1=less so)
1731 *
1732 * This function uses the recently added glock statistics in order to
1733 * figure out whether a parciular resource group is suffering from
1734 * contention from multiple nodes. This is done purely on the basis
1735 * of timings, since this is the only data we have to work with and
1736 * our aim here is to reject a resource group which is highly contended
1737 * but (very important) not to do this too often in order to ensure that
1738 * we do not land up introducing fragmentation by changing resource
1739 * groups when not actually required.
1740 *
1741 * The calculation is fairly simple, we want to know whether the SRTTB
1742 * (i.e. smoothed round trip time for blocking operations) to acquire
1743 * the lock for this rgrp's glock is significantly greater than the
1744 * time taken for resource groups on average. We introduce a margin in
1745 * the form of the variable @var which is computed as the sum of the two
1746 * respective variences, and multiplied by a factor depending on @loops
1747 * and whether we have a lot of data to base the decision on. This is
1748 * then tested against the square difference of the means in order to
1749 * decide whether the result is statistically significant or not.
1750 *
1751 * Returns: A boolean verdict on the congestion status
1752 */
1753
1754 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1755 {
1756 const struct gfs2_glock *gl = rgd->rd_gl;
1757 const struct gfs2_sbd *sdp = gl->gl_sbd;
1758 struct gfs2_lkstats *st;
1759 s64 r_dcount, l_dcount;
1760 s64 r_srttb, l_srttb;
1761 s64 srttb_diff;
1762 s64 sqr_diff;
1763 s64 var;
1764
1765 preempt_disable();
1766 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1767 r_srttb = st->stats[GFS2_LKS_SRTTB];
1768 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1769 var = st->stats[GFS2_LKS_SRTTVARB] +
1770 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1771 preempt_enable();
1772
1773 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1774 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1775
1776 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1777 return false;
1778
1779 srttb_diff = r_srttb - l_srttb;
1780 sqr_diff = srttb_diff * srttb_diff;
1781
1782 var *= 2;
1783 if (l_dcount < 8 || r_dcount < 8)
1784 var *= 2;
1785 if (loops == 1)
1786 var *= 2;
1787
1788 return ((srttb_diff < 0) && (sqr_diff > var));
1789 }
1790
1791 /**
1792 * gfs2_rgrp_used_recently
1793 * @rs: The block reservation with the rgrp to test
1794 * @msecs: The time limit in milliseconds
1795 *
1796 * Returns: True if the rgrp glock has been used within the time limit
1797 */
1798 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1799 u64 msecs)
1800 {
1801 u64 tdiff;
1802
1803 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1804 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1805
1806 return tdiff > (msecs * 1000 * 1000);
1807 }
1808
1809 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1810 {
1811 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1812 u32 skip;
1813
1814 get_random_bytes(&skip, sizeof(skip));
1815 return skip % sdp->sd_rgrps;
1816 }
1817
1818 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1819 {
1820 struct gfs2_rgrpd *rgd = *pos;
1821 struct gfs2_sbd *sdp = rgd->rd_sbd;
1822
1823 rgd = gfs2_rgrpd_get_next(rgd);
1824 if (rgd == NULL)
1825 rgd = gfs2_rgrpd_get_first(sdp);
1826 *pos = rgd;
1827 if (rgd != begin) /* If we didn't wrap */
1828 return true;
1829 return false;
1830 }
1831
1832 /**
1833 * gfs2_inplace_reserve - Reserve space in the filesystem
1834 * @ip: the inode to reserve space for
1835 * @requested: the number of blocks to be reserved
1836 *
1837 * Returns: errno
1838 */
1839
1840 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1841 {
1842 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1843 struct gfs2_rgrpd *begin = NULL;
1844 struct gfs2_blkreserv *rs = ip->i_res;
1845 int error = 0, rg_locked, flags = 0;
1846 u64 last_unlinked = NO_BLOCK;
1847 int loops = 0;
1848 u32 skip = 0;
1849
1850 if (sdp->sd_args.ar_rgrplvb)
1851 flags |= GL_SKIP;
1852 if (gfs2_assert_warn(sdp, requested))
1853 return -EINVAL;
1854 if (gfs2_rs_active(rs)) {
1855 begin = rs->rs_rbm.rgd;
1856 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1857 rs->rs_rbm.rgd = begin = ip->i_rgd;
1858 } else {
1859 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1860 }
1861 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1862 skip = gfs2_orlov_skip(ip);
1863 if (rs->rs_rbm.rgd == NULL)
1864 return -EBADSLT;
1865
1866 while (loops < 3) {
1867 rg_locked = 1;
1868
1869 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1870 rg_locked = 0;
1871 if (skip && skip--)
1872 goto next_rgrp;
1873 if (!gfs2_rs_active(rs) && (loops < 2) &&
1874 gfs2_rgrp_used_recently(rs, 1000) &&
1875 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1876 goto next_rgrp;
1877 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1878 LM_ST_EXCLUSIVE, flags,
1879 &rs->rs_rgd_gh);
1880 if (unlikely(error))
1881 return error;
1882 if (!gfs2_rs_active(rs) && (loops < 2) &&
1883 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1884 goto skip_rgrp;
1885 if (sdp->sd_args.ar_rgrplvb) {
1886 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1887 if (unlikely(error)) {
1888 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1889 return error;
1890 }
1891 }
1892 }
1893
1894 /* Skip unuseable resource groups */
1895 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1896 goto skip_rgrp;
1897
1898 if (sdp->sd_args.ar_rgrplvb)
1899 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1900
1901 /* Get a reservation if we don't already have one */
1902 if (!gfs2_rs_active(rs))
1903 rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1904
1905 /* Skip rgrps when we can't get a reservation on first pass */
1906 if (!gfs2_rs_active(rs) && (loops < 1))
1907 goto check_rgrp;
1908
1909 /* If rgrp has enough free space, use it */
1910 if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1911 ip->i_rgd = rs->rs_rbm.rgd;
1912 return 0;
1913 }
1914
1915 /* Drop reservation, if we couldn't use reserved rgrp */
1916 if (gfs2_rs_active(rs))
1917 gfs2_rs_deltree(rs);
1918 check_rgrp:
1919 /* Check for unlinked inodes which can be reclaimed */
1920 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1921 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1922 ip->i_no_addr);
1923 skip_rgrp:
1924 /* Unlock rgrp if required */
1925 if (!rg_locked)
1926 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1927 next_rgrp:
1928 /* Find the next rgrp, and continue looking */
1929 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1930 continue;
1931 if (skip)
1932 continue;
1933
1934 /* If we've scanned all the rgrps, but found no free blocks
1935 * then this checks for some less likely conditions before
1936 * trying again.
1937 */
1938 loops++;
1939 /* Check that fs hasn't grown if writing to rindex */
1940 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1941 error = gfs2_ri_update(ip);
1942 if (error)
1943 return error;
1944 }
1945 /* Flushing the log may release space */
1946 if (loops == 2)
1947 gfs2_log_flush(sdp, NULL);
1948 }
1949
1950 return -ENOSPC;
1951 }
1952
1953 /**
1954 * gfs2_inplace_release - release an inplace reservation
1955 * @ip: the inode the reservation was taken out on
1956 *
1957 * Release a reservation made by gfs2_inplace_reserve().
1958 */
1959
1960 void gfs2_inplace_release(struct gfs2_inode *ip)
1961 {
1962 struct gfs2_blkreserv *rs = ip->i_res;
1963
1964 if (rs->rs_rgd_gh.gh_gl)
1965 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1966 }
1967
1968 /**
1969 * gfs2_get_block_type - Check a block in a RG is of given type
1970 * @rgd: the resource group holding the block
1971 * @block: the block number
1972 *
1973 * Returns: The block type (GFS2_BLKST_*)
1974 */
1975
1976 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1977 {
1978 struct gfs2_rbm rbm = { .rgd = rgd, };
1979 int ret;
1980
1981 ret = gfs2_rbm_from_block(&rbm, block);
1982 WARN_ON_ONCE(ret != 0);
1983
1984 return gfs2_testbit(&rbm);
1985 }
1986
1987
1988 /**
1989 * gfs2_alloc_extent - allocate an extent from a given bitmap
1990 * @rbm: the resource group information
1991 * @dinode: TRUE if the first block we allocate is for a dinode
1992 * @n: The extent length (value/result)
1993 *
1994 * Add the bitmap buffer to the transaction.
1995 * Set the found bits to @new_state to change block's allocation state.
1996 */
1997 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1998 unsigned int *n)
1999 {
2000 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2001 const unsigned int elen = *n;
2002 u64 block;
2003 int ret;
2004
2005 *n = 1;
2006 block = gfs2_rbm_to_block(rbm);
2007 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2008 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2009 block++;
2010 while (*n < elen) {
2011 ret = gfs2_rbm_from_block(&pos, block);
2012 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2013 break;
2014 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2015 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2016 (*n)++;
2017 block++;
2018 }
2019 }
2020
2021 /**
2022 * rgblk_free - Change alloc state of given block(s)
2023 * @sdp: the filesystem
2024 * @bstart: the start of a run of blocks to free
2025 * @blen: the length of the block run (all must lie within ONE RG!)
2026 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2027 *
2028 * Returns: Resource group containing the block(s)
2029 */
2030
2031 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2032 u32 blen, unsigned char new_state)
2033 {
2034 struct gfs2_rbm rbm;
2035 struct gfs2_bitmap *bi;
2036
2037 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2038 if (!rbm.rgd) {
2039 if (gfs2_consist(sdp))
2040 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2041 return NULL;
2042 }
2043
2044 while (blen--) {
2045 gfs2_rbm_from_block(&rbm, bstart);
2046 bi = rbm_bi(&rbm);
2047 bstart++;
2048 if (!bi->bi_clone) {
2049 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2050 GFP_NOFS | __GFP_NOFAIL);
2051 memcpy(bi->bi_clone + bi->bi_offset,
2052 bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
2053 }
2054 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2055 gfs2_setbit(&rbm, false, new_state);
2056 }
2057
2058 return rbm.rgd;
2059 }
2060
2061 /**
2062 * gfs2_rgrp_dump - print out an rgrp
2063 * @seq: The iterator
2064 * @gl: The glock in question
2065 *
2066 */
2067
2068 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2069 {
2070 struct gfs2_rgrpd *rgd = gl->gl_object;
2071 struct gfs2_blkreserv *trs;
2072 const struct rb_node *n;
2073
2074 if (rgd == NULL)
2075 return 0;
2076 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2077 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2078 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2079 rgd->rd_reserved);
2080 spin_lock(&rgd->rd_rsspin);
2081 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2082 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2083 dump_rs(seq, trs);
2084 }
2085 spin_unlock(&rgd->rd_rsspin);
2086 return 0;
2087 }
2088
2089 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2090 {
2091 struct gfs2_sbd *sdp = rgd->rd_sbd;
2092 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2093 (unsigned long long)rgd->rd_addr);
2094 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2095 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2096 rgd->rd_flags |= GFS2_RDF_ERROR;
2097 }
2098
2099 /**
2100 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2101 * @ip: The inode we have just allocated blocks for
2102 * @rbm: The start of the allocated blocks
2103 * @len: The extent length
2104 *
2105 * Adjusts a reservation after an allocation has taken place. If the
2106 * reservation does not match the allocation, or if it is now empty
2107 * then it is removed.
2108 */
2109
2110 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2111 const struct gfs2_rbm *rbm, unsigned len)
2112 {
2113 struct gfs2_blkreserv *rs = ip->i_res;
2114 struct gfs2_rgrpd *rgd = rbm->rgd;
2115 unsigned rlen;
2116 u64 block;
2117 int ret;
2118
2119 spin_lock(&rgd->rd_rsspin);
2120 if (gfs2_rs_active(rs)) {
2121 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2122 block = gfs2_rbm_to_block(rbm);
2123 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2124 rlen = min(rs->rs_free, len);
2125 rs->rs_free -= rlen;
2126 rgd->rd_reserved -= rlen;
2127 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2128 if (rs->rs_free && !ret)
2129 goto out;
2130 }
2131 __rs_deltree(rs);
2132 }
2133 out:
2134 spin_unlock(&rgd->rd_rsspin);
2135 }
2136
2137 /**
2138 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2139 * @ip: the inode to allocate the block for
2140 * @bn: Used to return the starting block number
2141 * @nblocks: requested number of blocks/extent length (value/result)
2142 * @dinode: 1 if we're allocating a dinode block, else 0
2143 * @generation: the generation number of the inode
2144 *
2145 * Returns: 0 or error
2146 */
2147
2148 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2149 bool dinode, u64 *generation)
2150 {
2151 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2152 struct buffer_head *dibh;
2153 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2154 unsigned int ndata;
2155 u64 goal;
2156 u64 block; /* block, within the file system scope */
2157 int error;
2158
2159 if (gfs2_rs_active(ip->i_res))
2160 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2161 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2162 goal = ip->i_goal;
2163 else
2164 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2165
2166 gfs2_rbm_from_block(&rbm, goal);
2167 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2168
2169 if (error == -ENOSPC) {
2170 gfs2_rbm_from_block(&rbm, goal);
2171 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2172 }
2173
2174 /* Since all blocks are reserved in advance, this shouldn't happen */
2175 if (error) {
2176 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2177 (unsigned long long)ip->i_no_addr, error, *nblocks,
2178 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2179 goto rgrp_error;
2180 }
2181
2182 gfs2_alloc_extent(&rbm, dinode, nblocks);
2183 block = gfs2_rbm_to_block(&rbm);
2184 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2185 if (gfs2_rs_active(ip->i_res))
2186 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2187 ndata = *nblocks;
2188 if (dinode)
2189 ndata--;
2190
2191 if (!dinode) {
2192 ip->i_goal = block + ndata - 1;
2193 error = gfs2_meta_inode_buffer(ip, &dibh);
2194 if (error == 0) {
2195 struct gfs2_dinode *di =
2196 (struct gfs2_dinode *)dibh->b_data;
2197 gfs2_trans_add_meta(ip->i_gl, dibh);
2198 di->di_goal_meta = di->di_goal_data =
2199 cpu_to_be64(ip->i_goal);
2200 brelse(dibh);
2201 }
2202 }
2203 if (rbm.rgd->rd_free < *nblocks) {
2204 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2205 goto rgrp_error;
2206 }
2207
2208 rbm.rgd->rd_free -= *nblocks;
2209 if (dinode) {
2210 rbm.rgd->rd_dinodes++;
2211 *generation = rbm.rgd->rd_igeneration++;
2212 if (*generation == 0)
2213 *generation = rbm.rgd->rd_igeneration++;
2214 }
2215
2216 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2217 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2218 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2219
2220 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2221 if (dinode)
2222 gfs2_trans_add_unrevoke(sdp, block, 1);
2223
2224 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2225
2226 rbm.rgd->rd_free_clone -= *nblocks;
2227 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2228 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2229 *bn = block;
2230 return 0;
2231
2232 rgrp_error:
2233 gfs2_rgrp_error(rbm.rgd);
2234 return -EIO;
2235 }
2236
2237 /**
2238 * __gfs2_free_blocks - free a contiguous run of block(s)
2239 * @ip: the inode these blocks are being freed from
2240 * @bstart: first block of a run of contiguous blocks
2241 * @blen: the length of the block run
2242 * @meta: 1 if the blocks represent metadata
2243 *
2244 */
2245
2246 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2247 {
2248 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2249 struct gfs2_rgrpd *rgd;
2250
2251 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2252 if (!rgd)
2253 return;
2254 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2255 rgd->rd_free += blen;
2256 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2257 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2258 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2259 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2260
2261 /* Directories keep their data in the metadata address space */
2262 if (meta || ip->i_depth)
2263 gfs2_meta_wipe(ip, bstart, blen);
2264 }
2265
2266 /**
2267 * gfs2_free_meta - free a contiguous run of data block(s)
2268 * @ip: the inode these blocks are being freed from
2269 * @bstart: first block of a run of contiguous blocks
2270 * @blen: the length of the block run
2271 *
2272 */
2273
2274 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2275 {
2276 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2277
2278 __gfs2_free_blocks(ip, bstart, blen, 1);
2279 gfs2_statfs_change(sdp, 0, +blen, 0);
2280 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2281 }
2282
2283 void gfs2_unlink_di(struct inode *inode)
2284 {
2285 struct gfs2_inode *ip = GFS2_I(inode);
2286 struct gfs2_sbd *sdp = GFS2_SB(inode);
2287 struct gfs2_rgrpd *rgd;
2288 u64 blkno = ip->i_no_addr;
2289
2290 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2291 if (!rgd)
2292 return;
2293 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2294 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2295 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2296 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2297 update_rgrp_lvb_unlinked(rgd, 1);
2298 }
2299
2300 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2301 {
2302 struct gfs2_sbd *sdp = rgd->rd_sbd;
2303 struct gfs2_rgrpd *tmp_rgd;
2304
2305 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2306 if (!tmp_rgd)
2307 return;
2308 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2309
2310 if (!rgd->rd_dinodes)
2311 gfs2_consist_rgrpd(rgd);
2312 rgd->rd_dinodes--;
2313 rgd->rd_free++;
2314
2315 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2316 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2317 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2318 update_rgrp_lvb_unlinked(rgd, -1);
2319
2320 gfs2_statfs_change(sdp, 0, +1, -1);
2321 }
2322
2323
2324 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2325 {
2326 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2327 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2328 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2329 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2330 }
2331
2332 /**
2333 * gfs2_check_blk_type - Check the type of a block
2334 * @sdp: The superblock
2335 * @no_addr: The block number to check
2336 * @type: The block type we are looking for
2337 *
2338 * Returns: 0 if the block type matches the expected type
2339 * -ESTALE if it doesn't match
2340 * or -ve errno if something went wrong while checking
2341 */
2342
2343 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2344 {
2345 struct gfs2_rgrpd *rgd;
2346 struct gfs2_holder rgd_gh;
2347 int error = -EINVAL;
2348
2349 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2350 if (!rgd)
2351 goto fail;
2352
2353 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2354 if (error)
2355 goto fail;
2356
2357 if (gfs2_get_block_type(rgd, no_addr) != type)
2358 error = -ESTALE;
2359
2360 gfs2_glock_dq_uninit(&rgd_gh);
2361 fail:
2362 return error;
2363 }
2364
2365 /**
2366 * gfs2_rlist_add - add a RG to a list of RGs
2367 * @ip: the inode
2368 * @rlist: the list of resource groups
2369 * @block: the block
2370 *
2371 * Figure out what RG a block belongs to and add that RG to the list
2372 *
2373 * FIXME: Don't use NOFAIL
2374 *
2375 */
2376
2377 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2378 u64 block)
2379 {
2380 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2381 struct gfs2_rgrpd *rgd;
2382 struct gfs2_rgrpd **tmp;
2383 unsigned int new_space;
2384 unsigned int x;
2385
2386 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2387 return;
2388
2389 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2390 rgd = ip->i_rgd;
2391 else
2392 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2393 if (!rgd) {
2394 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2395 return;
2396 }
2397 ip->i_rgd = rgd;
2398
2399 for (x = 0; x < rlist->rl_rgrps; x++)
2400 if (rlist->rl_rgd[x] == rgd)
2401 return;
2402
2403 if (rlist->rl_rgrps == rlist->rl_space) {
2404 new_space = rlist->rl_space + 10;
2405
2406 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2407 GFP_NOFS | __GFP_NOFAIL);
2408
2409 if (rlist->rl_rgd) {
2410 memcpy(tmp, rlist->rl_rgd,
2411 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2412 kfree(rlist->rl_rgd);
2413 }
2414
2415 rlist->rl_space = new_space;
2416 rlist->rl_rgd = tmp;
2417 }
2418
2419 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2420 }
2421
2422 /**
2423 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2424 * and initialize an array of glock holders for them
2425 * @rlist: the list of resource groups
2426 * @state: the lock state to acquire the RG lock in
2427 *
2428 * FIXME: Don't use NOFAIL
2429 *
2430 */
2431
2432 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2433 {
2434 unsigned int x;
2435
2436 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2437 GFP_NOFS | __GFP_NOFAIL);
2438 for (x = 0; x < rlist->rl_rgrps; x++)
2439 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2440 state, 0,
2441 &rlist->rl_ghs[x]);
2442 }
2443
2444 /**
2445 * gfs2_rlist_free - free a resource group list
2446 * @list: the list of resource groups
2447 *
2448 */
2449
2450 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2451 {
2452 unsigned int x;
2453
2454 kfree(rlist->rl_rgd);
2455
2456 if (rlist->rl_ghs) {
2457 for (x = 0; x < rlist->rl_rgrps; x++)
2458 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2459 kfree(rlist->rl_ghs);
2460 rlist->rl_ghs = NULL;
2461 }
2462 }
2463
This page took 0.137379 seconds and 6 git commands to generate.