fs/namei.c: new helper (path_cleanup())
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 return -ENXIO;
120 }
121
122 /**
123 * inode_init_always - perform inode structure intialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 i_uid_write(inode, 0);
145 i_gid_write(inode, 0);
146 atomic_set(&inode->i_writecount, 0);
147 inode->i_size = 0;
148 inode->i_blocks = 0;
149 inode->i_bytes = 0;
150 inode->i_generation = 0;
151 #ifdef CONFIG_QUOTA
152 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
153 #endif
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
159
160 if (security_inode_alloc(inode))
161 goto out;
162 spin_lock_init(&inode->i_lock);
163 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
164
165 mutex_init(&inode->i_mutex);
166 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
167
168 atomic_set(&inode->i_dio_count, 0);
169
170 mapping->a_ops = &empty_aops;
171 mapping->host = inode;
172 mapping->flags = 0;
173 atomic_set(&mapping->i_mmap_writable, 0);
174 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
175 mapping->private_data = NULL;
176 mapping->backing_dev_info = &default_backing_dev_info;
177 mapping->writeback_index = 0;
178
179 /*
180 * If the block_device provides a backing_dev_info for client
181 * inodes then use that. Otherwise the inode share the bdev's
182 * backing_dev_info.
183 */
184 if (sb->s_bdev) {
185 struct backing_dev_info *bdi;
186
187 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
188 mapping->backing_dev_info = bdi;
189 }
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204 out:
205 return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208
209 static struct inode *alloc_inode(struct super_block *sb)
210 {
211 struct inode *inode;
212
213 if (sb->s_op->alloc_inode)
214 inode = sb->s_op->alloc_inode(sb);
215 else
216 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
217
218 if (!inode)
219 return NULL;
220
221 if (unlikely(inode_init_always(sb, inode))) {
222 if (inode->i_sb->s_op->destroy_inode)
223 inode->i_sb->s_op->destroy_inode(inode);
224 else
225 kmem_cache_free(inode_cachep, inode);
226 return NULL;
227 }
228
229 return inode;
230 }
231
232 void free_inode_nonrcu(struct inode *inode)
233 {
234 kmem_cache_free(inode_cachep, inode);
235 }
236 EXPORT_SYMBOL(free_inode_nonrcu);
237
238 void __destroy_inode(struct inode *inode)
239 {
240 BUG_ON(inode_has_buffers(inode));
241 security_inode_free(inode);
242 fsnotify_inode_delete(inode);
243 if (!inode->i_nlink) {
244 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
245 atomic_long_dec(&inode->i_sb->s_remove_count);
246 }
247
248 #ifdef CONFIG_FS_POSIX_ACL
249 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
250 posix_acl_release(inode->i_acl);
251 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
252 posix_acl_release(inode->i_default_acl);
253 #endif
254 this_cpu_dec(nr_inodes);
255 }
256 EXPORT_SYMBOL(__destroy_inode);
257
258 static void i_callback(struct rcu_head *head)
259 {
260 struct inode *inode = container_of(head, struct inode, i_rcu);
261 kmem_cache_free(inode_cachep, inode);
262 }
263
264 static void destroy_inode(struct inode *inode)
265 {
266 BUG_ON(!list_empty(&inode->i_lru));
267 __destroy_inode(inode);
268 if (inode->i_sb->s_op->destroy_inode)
269 inode->i_sb->s_op->destroy_inode(inode);
270 else
271 call_rcu(&inode->i_rcu, i_callback);
272 }
273
274 /**
275 * drop_nlink - directly drop an inode's link count
276 * @inode: inode
277 *
278 * This is a low-level filesystem helper to replace any
279 * direct filesystem manipulation of i_nlink. In cases
280 * where we are attempting to track writes to the
281 * filesystem, a decrement to zero means an imminent
282 * write when the file is truncated and actually unlinked
283 * on the filesystem.
284 */
285 void drop_nlink(struct inode *inode)
286 {
287 WARN_ON(inode->i_nlink == 0);
288 inode->__i_nlink--;
289 if (!inode->i_nlink)
290 atomic_long_inc(&inode->i_sb->s_remove_count);
291 }
292 EXPORT_SYMBOL(drop_nlink);
293
294 /**
295 * clear_nlink - directly zero an inode's link count
296 * @inode: inode
297 *
298 * This is a low-level filesystem helper to replace any
299 * direct filesystem manipulation of i_nlink. See
300 * drop_nlink() for why we care about i_nlink hitting zero.
301 */
302 void clear_nlink(struct inode *inode)
303 {
304 if (inode->i_nlink) {
305 inode->__i_nlink = 0;
306 atomic_long_inc(&inode->i_sb->s_remove_count);
307 }
308 }
309 EXPORT_SYMBOL(clear_nlink);
310
311 /**
312 * set_nlink - directly set an inode's link count
313 * @inode: inode
314 * @nlink: new nlink (should be non-zero)
315 *
316 * This is a low-level filesystem helper to replace any
317 * direct filesystem manipulation of i_nlink.
318 */
319 void set_nlink(struct inode *inode, unsigned int nlink)
320 {
321 if (!nlink) {
322 clear_nlink(inode);
323 } else {
324 /* Yes, some filesystems do change nlink from zero to one */
325 if (inode->i_nlink == 0)
326 atomic_long_dec(&inode->i_sb->s_remove_count);
327
328 inode->__i_nlink = nlink;
329 }
330 }
331 EXPORT_SYMBOL(set_nlink);
332
333 /**
334 * inc_nlink - directly increment an inode's link count
335 * @inode: inode
336 *
337 * This is a low-level filesystem helper to replace any
338 * direct filesystem manipulation of i_nlink. Currently,
339 * it is only here for parity with dec_nlink().
340 */
341 void inc_nlink(struct inode *inode)
342 {
343 if (unlikely(inode->i_nlink == 0)) {
344 WARN_ON(!(inode->i_state & I_LINKABLE));
345 atomic_long_dec(&inode->i_sb->s_remove_count);
346 }
347
348 inode->__i_nlink++;
349 }
350 EXPORT_SYMBOL(inc_nlink);
351
352 void address_space_init_once(struct address_space *mapping)
353 {
354 memset(mapping, 0, sizeof(*mapping));
355 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
356 spin_lock_init(&mapping->tree_lock);
357 mutex_init(&mapping->i_mmap_mutex);
358 INIT_LIST_HEAD(&mapping->private_list);
359 spin_lock_init(&mapping->private_lock);
360 mapping->i_mmap = RB_ROOT;
361 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
362 }
363 EXPORT_SYMBOL(address_space_init_once);
364
365 /*
366 * These are initializations that only need to be done
367 * once, because the fields are idempotent across use
368 * of the inode, so let the slab aware of that.
369 */
370 void inode_init_once(struct inode *inode)
371 {
372 memset(inode, 0, sizeof(*inode));
373 INIT_HLIST_NODE(&inode->i_hash);
374 INIT_LIST_HEAD(&inode->i_devices);
375 INIT_LIST_HEAD(&inode->i_wb_list);
376 INIT_LIST_HEAD(&inode->i_lru);
377 address_space_init_once(&inode->i_data);
378 i_size_ordered_init(inode);
379 #ifdef CONFIG_FSNOTIFY
380 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
381 #endif
382 }
383 EXPORT_SYMBOL(inode_init_once);
384
385 static void init_once(void *foo)
386 {
387 struct inode *inode = (struct inode *) foo;
388
389 inode_init_once(inode);
390 }
391
392 /*
393 * inode->i_lock must be held
394 */
395 void __iget(struct inode *inode)
396 {
397 atomic_inc(&inode->i_count);
398 }
399
400 /*
401 * get additional reference to inode; caller must already hold one.
402 */
403 void ihold(struct inode *inode)
404 {
405 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
406 }
407 EXPORT_SYMBOL(ihold);
408
409 static void inode_lru_list_add(struct inode *inode)
410 {
411 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
412 this_cpu_inc(nr_unused);
413 }
414
415 /*
416 * Add inode to LRU if needed (inode is unused and clean).
417 *
418 * Needs inode->i_lock held.
419 */
420 void inode_add_lru(struct inode *inode)
421 {
422 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
423 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
424 inode_lru_list_add(inode);
425 }
426
427
428 static void inode_lru_list_del(struct inode *inode)
429 {
430
431 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 this_cpu_dec(nr_unused);
433 }
434
435 /**
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
438 */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
453 }
454 }
455
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 unsigned long tmp;
459
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
464 }
465
466 /**
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
471 *
472 * Add an inode to the inode hash for this superblock.
473 */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485
486 /**
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
489 *
490 * Remove an inode from the superblock.
491 */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501
502 void clear_inode(struct inode *inode)
503 {
504 might_sleep();
505 /*
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
509 */
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 BUG_ON(inode->i_data.nrshadows);
513 spin_unlock_irq(&inode->i_data.tree_lock);
514 BUG_ON(!list_empty(&inode->i_data.private_list));
515 BUG_ON(!(inode->i_state & I_FREEING));
516 BUG_ON(inode->i_state & I_CLEAR);
517 /* don't need i_lock here, no concurrent mods to i_state */
518 inode->i_state = I_FREEING | I_CLEAR;
519 }
520 EXPORT_SYMBOL(clear_inode);
521
522 /*
523 * Free the inode passed in, removing it from the lists it is still connected
524 * to. We remove any pages still attached to the inode and wait for any IO that
525 * is still in progress before finally destroying the inode.
526 *
527 * An inode must already be marked I_FREEING so that we avoid the inode being
528 * moved back onto lists if we race with other code that manipulates the lists
529 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 *
531 * An inode must already be removed from the LRU list before being evicted from
532 * the cache. This should occur atomically with setting the I_FREEING state
533 * flag, so no inodes here should ever be on the LRU when being evicted.
534 */
535 static void evict(struct inode *inode)
536 {
537 const struct super_operations *op = inode->i_sb->s_op;
538
539 BUG_ON(!(inode->i_state & I_FREEING));
540 BUG_ON(!list_empty(&inode->i_lru));
541
542 if (!list_empty(&inode->i_wb_list))
543 inode_wb_list_del(inode);
544
545 inode_sb_list_del(inode);
546
547 /*
548 * Wait for flusher thread to be done with the inode so that filesystem
549 * does not start destroying it while writeback is still running. Since
550 * the inode has I_FREEING set, flusher thread won't start new work on
551 * the inode. We just have to wait for running writeback to finish.
552 */
553 inode_wait_for_writeback(inode);
554
555 if (op->evict_inode) {
556 op->evict_inode(inode);
557 } else {
558 truncate_inode_pages_final(&inode->i_data);
559 clear_inode(inode);
560 }
561 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
562 bd_forget(inode);
563 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
564 cd_forget(inode);
565
566 remove_inode_hash(inode);
567
568 spin_lock(&inode->i_lock);
569 wake_up_bit(&inode->i_state, __I_NEW);
570 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
571 spin_unlock(&inode->i_lock);
572
573 destroy_inode(inode);
574 }
575
576 /*
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
579 *
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
582 */
583 static void dispose_list(struct list_head *head)
584 {
585 while (!list_empty(head)) {
586 struct inode *inode;
587
588 inode = list_first_entry(head, struct inode, i_lru);
589 list_del_init(&inode->i_lru);
590
591 evict(inode);
592 }
593 }
594
595 /**
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
598 *
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
603 */
604 void evict_inodes(struct super_block *sb)
605 {
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
608
609 spin_lock(&inode_sb_list_lock);
610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 if (atomic_read(&inode->i_count))
612 continue;
613
614 spin_lock(&inode->i_lock);
615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 spin_unlock(&inode->i_lock);
617 continue;
618 }
619
620 inode->i_state |= I_FREEING;
621 inode_lru_list_del(inode);
622 spin_unlock(&inode->i_lock);
623 list_add(&inode->i_lru, &dispose);
624 }
625 spin_unlock(&inode_sb_list_lock);
626
627 dispose_list(&dispose);
628 }
629
630 /**
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
634 *
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638 * them as busy.
639 */
640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
641 {
642 int busy = 0;
643 struct inode *inode, *next;
644 LIST_HEAD(dispose);
645
646 spin_lock(&inode_sb_list_lock);
647 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 spin_lock(&inode->i_lock);
649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 spin_unlock(&inode->i_lock);
651 continue;
652 }
653 if (inode->i_state & I_DIRTY && !kill_dirty) {
654 spin_unlock(&inode->i_lock);
655 busy = 1;
656 continue;
657 }
658 if (atomic_read(&inode->i_count)) {
659 spin_unlock(&inode->i_lock);
660 busy = 1;
661 continue;
662 }
663
664 inode->i_state |= I_FREEING;
665 inode_lru_list_del(inode);
666 spin_unlock(&inode->i_lock);
667 list_add(&inode->i_lru, &dispose);
668 }
669 spin_unlock(&inode_sb_list_lock);
670
671 dispose_list(&dispose);
672
673 return busy;
674 }
675
676 /*
677 * Isolate the inode from the LRU in preparation for freeing it.
678 *
679 * Any inodes which are pinned purely because of attached pagecache have their
680 * pagecache removed. If the inode has metadata buffers attached to
681 * mapping->private_list then try to remove them.
682 *
683 * If the inode has the I_REFERENCED flag set, then it means that it has been
684 * used recently - the flag is set in iput_final(). When we encounter such an
685 * inode, clear the flag and move it to the back of the LRU so it gets another
686 * pass through the LRU before it gets reclaimed. This is necessary because of
687 * the fact we are doing lazy LRU updates to minimise lock contention so the
688 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
689 * with this flag set because they are the inodes that are out of order.
690 */
691 static enum lru_status
692 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
693 {
694 struct list_head *freeable = arg;
695 struct inode *inode = container_of(item, struct inode, i_lru);
696
697 /*
698 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
699 * If we fail to get the lock, just skip it.
700 */
701 if (!spin_trylock(&inode->i_lock))
702 return LRU_SKIP;
703
704 /*
705 * Referenced or dirty inodes are still in use. Give them another pass
706 * through the LRU as we canot reclaim them now.
707 */
708 if (atomic_read(&inode->i_count) ||
709 (inode->i_state & ~I_REFERENCED)) {
710 list_del_init(&inode->i_lru);
711 spin_unlock(&inode->i_lock);
712 this_cpu_dec(nr_unused);
713 return LRU_REMOVED;
714 }
715
716 /* recently referenced inodes get one more pass */
717 if (inode->i_state & I_REFERENCED) {
718 inode->i_state &= ~I_REFERENCED;
719 spin_unlock(&inode->i_lock);
720 return LRU_ROTATE;
721 }
722
723 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
724 __iget(inode);
725 spin_unlock(&inode->i_lock);
726 spin_unlock(lru_lock);
727 if (remove_inode_buffers(inode)) {
728 unsigned long reap;
729 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
730 if (current_is_kswapd())
731 __count_vm_events(KSWAPD_INODESTEAL, reap);
732 else
733 __count_vm_events(PGINODESTEAL, reap);
734 if (current->reclaim_state)
735 current->reclaim_state->reclaimed_slab += reap;
736 }
737 iput(inode);
738 spin_lock(lru_lock);
739 return LRU_RETRY;
740 }
741
742 WARN_ON(inode->i_state & I_NEW);
743 inode->i_state |= I_FREEING;
744 list_move(&inode->i_lru, freeable);
745 spin_unlock(&inode->i_lock);
746
747 this_cpu_dec(nr_unused);
748 return LRU_REMOVED;
749 }
750
751 /*
752 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
753 * This is called from the superblock shrinker function with a number of inodes
754 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
755 * then are freed outside inode_lock by dispose_list().
756 */
757 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
758 int nid)
759 {
760 LIST_HEAD(freeable);
761 long freed;
762
763 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
764 &freeable, &nr_to_scan);
765 dispose_list(&freeable);
766 return freed;
767 }
768
769 static void __wait_on_freeing_inode(struct inode *inode);
770 /*
771 * Called with the inode lock held.
772 */
773 static struct inode *find_inode(struct super_block *sb,
774 struct hlist_head *head,
775 int (*test)(struct inode *, void *),
776 void *data)
777 {
778 struct inode *inode = NULL;
779
780 repeat:
781 hlist_for_each_entry(inode, head, i_hash) {
782 if (inode->i_sb != sb)
783 continue;
784 if (!test(inode, data))
785 continue;
786 spin_lock(&inode->i_lock);
787 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
788 __wait_on_freeing_inode(inode);
789 goto repeat;
790 }
791 __iget(inode);
792 spin_unlock(&inode->i_lock);
793 return inode;
794 }
795 return NULL;
796 }
797
798 /*
799 * find_inode_fast is the fast path version of find_inode, see the comment at
800 * iget_locked for details.
801 */
802 static struct inode *find_inode_fast(struct super_block *sb,
803 struct hlist_head *head, unsigned long ino)
804 {
805 struct inode *inode = NULL;
806
807 repeat:
808 hlist_for_each_entry(inode, head, i_hash) {
809 if (inode->i_ino != ino)
810 continue;
811 if (inode->i_sb != sb)
812 continue;
813 spin_lock(&inode->i_lock);
814 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
815 __wait_on_freeing_inode(inode);
816 goto repeat;
817 }
818 __iget(inode);
819 spin_unlock(&inode->i_lock);
820 return inode;
821 }
822 return NULL;
823 }
824
825 /*
826 * Each cpu owns a range of LAST_INO_BATCH numbers.
827 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
828 * to renew the exhausted range.
829 *
830 * This does not significantly increase overflow rate because every CPU can
831 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
832 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
833 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
834 * overflow rate by 2x, which does not seem too significant.
835 *
836 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
837 * error if st_ino won't fit in target struct field. Use 32bit counter
838 * here to attempt to avoid that.
839 */
840 #define LAST_INO_BATCH 1024
841 static DEFINE_PER_CPU(unsigned int, last_ino);
842
843 unsigned int get_next_ino(void)
844 {
845 unsigned int *p = &get_cpu_var(last_ino);
846 unsigned int res = *p;
847
848 #ifdef CONFIG_SMP
849 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
850 static atomic_t shared_last_ino;
851 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
852
853 res = next - LAST_INO_BATCH;
854 }
855 #endif
856
857 *p = ++res;
858 put_cpu_var(last_ino);
859 return res;
860 }
861 EXPORT_SYMBOL(get_next_ino);
862
863 /**
864 * new_inode_pseudo - obtain an inode
865 * @sb: superblock
866 *
867 * Allocates a new inode for given superblock.
868 * Inode wont be chained in superblock s_inodes list
869 * This means :
870 * - fs can't be unmount
871 * - quotas, fsnotify, writeback can't work
872 */
873 struct inode *new_inode_pseudo(struct super_block *sb)
874 {
875 struct inode *inode = alloc_inode(sb);
876
877 if (inode) {
878 spin_lock(&inode->i_lock);
879 inode->i_state = 0;
880 spin_unlock(&inode->i_lock);
881 INIT_LIST_HEAD(&inode->i_sb_list);
882 }
883 return inode;
884 }
885
886 /**
887 * new_inode - obtain an inode
888 * @sb: superblock
889 *
890 * Allocates a new inode for given superblock. The default gfp_mask
891 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
892 * If HIGHMEM pages are unsuitable or it is known that pages allocated
893 * for the page cache are not reclaimable or migratable,
894 * mapping_set_gfp_mask() must be called with suitable flags on the
895 * newly created inode's mapping
896 *
897 */
898 struct inode *new_inode(struct super_block *sb)
899 {
900 struct inode *inode;
901
902 spin_lock_prefetch(&inode_sb_list_lock);
903
904 inode = new_inode_pseudo(sb);
905 if (inode)
906 inode_sb_list_add(inode);
907 return inode;
908 }
909 EXPORT_SYMBOL(new_inode);
910
911 #ifdef CONFIG_DEBUG_LOCK_ALLOC
912 void lockdep_annotate_inode_mutex_key(struct inode *inode)
913 {
914 if (S_ISDIR(inode->i_mode)) {
915 struct file_system_type *type = inode->i_sb->s_type;
916
917 /* Set new key only if filesystem hasn't already changed it */
918 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
919 /*
920 * ensure nobody is actually holding i_mutex
921 */
922 mutex_destroy(&inode->i_mutex);
923 mutex_init(&inode->i_mutex);
924 lockdep_set_class(&inode->i_mutex,
925 &type->i_mutex_dir_key);
926 }
927 }
928 }
929 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
930 #endif
931
932 /**
933 * unlock_new_inode - clear the I_NEW state and wake up any waiters
934 * @inode: new inode to unlock
935 *
936 * Called when the inode is fully initialised to clear the new state of the
937 * inode and wake up anyone waiting for the inode to finish initialisation.
938 */
939 void unlock_new_inode(struct inode *inode)
940 {
941 lockdep_annotate_inode_mutex_key(inode);
942 spin_lock(&inode->i_lock);
943 WARN_ON(!(inode->i_state & I_NEW));
944 inode->i_state &= ~I_NEW;
945 smp_mb();
946 wake_up_bit(&inode->i_state, __I_NEW);
947 spin_unlock(&inode->i_lock);
948 }
949 EXPORT_SYMBOL(unlock_new_inode);
950
951 /**
952 * lock_two_nondirectories - take two i_mutexes on non-directory objects
953 *
954 * Lock any non-NULL argument that is not a directory.
955 * Zero, one or two objects may be locked by this function.
956 *
957 * @inode1: first inode to lock
958 * @inode2: second inode to lock
959 */
960 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
961 {
962 if (inode1 > inode2)
963 swap(inode1, inode2);
964
965 if (inode1 && !S_ISDIR(inode1->i_mode))
966 mutex_lock(&inode1->i_mutex);
967 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
968 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
969 }
970 EXPORT_SYMBOL(lock_two_nondirectories);
971
972 /**
973 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
974 * @inode1: first inode to unlock
975 * @inode2: second inode to unlock
976 */
977 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
978 {
979 if (inode1 && !S_ISDIR(inode1->i_mode))
980 mutex_unlock(&inode1->i_mutex);
981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
982 mutex_unlock(&inode2->i_mutex);
983 }
984 EXPORT_SYMBOL(unlock_two_nondirectories);
985
986 /**
987 * iget5_locked - obtain an inode from a mounted file system
988 * @sb: super block of file system
989 * @hashval: hash value (usually inode number) to get
990 * @test: callback used for comparisons between inodes
991 * @set: callback used to initialize a new struct inode
992 * @data: opaque data pointer to pass to @test and @set
993 *
994 * Search for the inode specified by @hashval and @data in the inode cache,
995 * and if present it is return it with an increased reference count. This is
996 * a generalized version of iget_locked() for file systems where the inode
997 * number is not sufficient for unique identification of an inode.
998 *
999 * If the inode is not in cache, allocate a new inode and return it locked,
1000 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1001 * before unlocking it via unlock_new_inode().
1002 *
1003 * Note both @test and @set are called with the inode_hash_lock held, so can't
1004 * sleep.
1005 */
1006 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1007 int (*test)(struct inode *, void *),
1008 int (*set)(struct inode *, void *), void *data)
1009 {
1010 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1011 struct inode *inode;
1012
1013 spin_lock(&inode_hash_lock);
1014 inode = find_inode(sb, head, test, data);
1015 spin_unlock(&inode_hash_lock);
1016
1017 if (inode) {
1018 wait_on_inode(inode);
1019 return inode;
1020 }
1021
1022 inode = alloc_inode(sb);
1023 if (inode) {
1024 struct inode *old;
1025
1026 spin_lock(&inode_hash_lock);
1027 /* We released the lock, so.. */
1028 old = find_inode(sb, head, test, data);
1029 if (!old) {
1030 if (set(inode, data))
1031 goto set_failed;
1032
1033 spin_lock(&inode->i_lock);
1034 inode->i_state = I_NEW;
1035 hlist_add_head(&inode->i_hash, head);
1036 spin_unlock(&inode->i_lock);
1037 inode_sb_list_add(inode);
1038 spin_unlock(&inode_hash_lock);
1039
1040 /* Return the locked inode with I_NEW set, the
1041 * caller is responsible for filling in the contents
1042 */
1043 return inode;
1044 }
1045
1046 /*
1047 * Uhhuh, somebody else created the same inode under
1048 * us. Use the old inode instead of the one we just
1049 * allocated.
1050 */
1051 spin_unlock(&inode_hash_lock);
1052 destroy_inode(inode);
1053 inode = old;
1054 wait_on_inode(inode);
1055 }
1056 return inode;
1057
1058 set_failed:
1059 spin_unlock(&inode_hash_lock);
1060 destroy_inode(inode);
1061 return NULL;
1062 }
1063 EXPORT_SYMBOL(iget5_locked);
1064
1065 /**
1066 * iget_locked - obtain an inode from a mounted file system
1067 * @sb: super block of file system
1068 * @ino: inode number to get
1069 *
1070 * Search for the inode specified by @ino in the inode cache and if present
1071 * return it with an increased reference count. This is for file systems
1072 * where the inode number is sufficient for unique identification of an inode.
1073 *
1074 * If the inode is not in cache, allocate a new inode and return it locked,
1075 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1076 * before unlocking it via unlock_new_inode().
1077 */
1078 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1079 {
1080 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1081 struct inode *inode;
1082
1083 spin_lock(&inode_hash_lock);
1084 inode = find_inode_fast(sb, head, ino);
1085 spin_unlock(&inode_hash_lock);
1086 if (inode) {
1087 wait_on_inode(inode);
1088 return inode;
1089 }
1090
1091 inode = alloc_inode(sb);
1092 if (inode) {
1093 struct inode *old;
1094
1095 spin_lock(&inode_hash_lock);
1096 /* We released the lock, so.. */
1097 old = find_inode_fast(sb, head, ino);
1098 if (!old) {
1099 inode->i_ino = ino;
1100 spin_lock(&inode->i_lock);
1101 inode->i_state = I_NEW;
1102 hlist_add_head(&inode->i_hash, head);
1103 spin_unlock(&inode->i_lock);
1104 inode_sb_list_add(inode);
1105 spin_unlock(&inode_hash_lock);
1106
1107 /* Return the locked inode with I_NEW set, the
1108 * caller is responsible for filling in the contents
1109 */
1110 return inode;
1111 }
1112
1113 /*
1114 * Uhhuh, somebody else created the same inode under
1115 * us. Use the old inode instead of the one we just
1116 * allocated.
1117 */
1118 spin_unlock(&inode_hash_lock);
1119 destroy_inode(inode);
1120 inode = old;
1121 wait_on_inode(inode);
1122 }
1123 return inode;
1124 }
1125 EXPORT_SYMBOL(iget_locked);
1126
1127 /*
1128 * search the inode cache for a matching inode number.
1129 * If we find one, then the inode number we are trying to
1130 * allocate is not unique and so we should not use it.
1131 *
1132 * Returns 1 if the inode number is unique, 0 if it is not.
1133 */
1134 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1135 {
1136 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1137 struct inode *inode;
1138
1139 spin_lock(&inode_hash_lock);
1140 hlist_for_each_entry(inode, b, i_hash) {
1141 if (inode->i_ino == ino && inode->i_sb == sb) {
1142 spin_unlock(&inode_hash_lock);
1143 return 0;
1144 }
1145 }
1146 spin_unlock(&inode_hash_lock);
1147
1148 return 1;
1149 }
1150
1151 /**
1152 * iunique - get a unique inode number
1153 * @sb: superblock
1154 * @max_reserved: highest reserved inode number
1155 *
1156 * Obtain an inode number that is unique on the system for a given
1157 * superblock. This is used by file systems that have no natural
1158 * permanent inode numbering system. An inode number is returned that
1159 * is higher than the reserved limit but unique.
1160 *
1161 * BUGS:
1162 * With a large number of inodes live on the file system this function
1163 * currently becomes quite slow.
1164 */
1165 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1166 {
1167 /*
1168 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1169 * error if st_ino won't fit in target struct field. Use 32bit counter
1170 * here to attempt to avoid that.
1171 */
1172 static DEFINE_SPINLOCK(iunique_lock);
1173 static unsigned int counter;
1174 ino_t res;
1175
1176 spin_lock(&iunique_lock);
1177 do {
1178 if (counter <= max_reserved)
1179 counter = max_reserved + 1;
1180 res = counter++;
1181 } while (!test_inode_iunique(sb, res));
1182 spin_unlock(&iunique_lock);
1183
1184 return res;
1185 }
1186 EXPORT_SYMBOL(iunique);
1187
1188 struct inode *igrab(struct inode *inode)
1189 {
1190 spin_lock(&inode->i_lock);
1191 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1192 __iget(inode);
1193 spin_unlock(&inode->i_lock);
1194 } else {
1195 spin_unlock(&inode->i_lock);
1196 /*
1197 * Handle the case where s_op->clear_inode is not been
1198 * called yet, and somebody is calling igrab
1199 * while the inode is getting freed.
1200 */
1201 inode = NULL;
1202 }
1203 return inode;
1204 }
1205 EXPORT_SYMBOL(igrab);
1206
1207 /**
1208 * ilookup5_nowait - search for an inode in the inode cache
1209 * @sb: super block of file system to search
1210 * @hashval: hash value (usually inode number) to search for
1211 * @test: callback used for comparisons between inodes
1212 * @data: opaque data pointer to pass to @test
1213 *
1214 * Search for the inode specified by @hashval and @data in the inode cache.
1215 * If the inode is in the cache, the inode is returned with an incremented
1216 * reference count.
1217 *
1218 * Note: I_NEW is not waited upon so you have to be very careful what you do
1219 * with the returned inode. You probably should be using ilookup5() instead.
1220 *
1221 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1222 */
1223 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1224 int (*test)(struct inode *, void *), void *data)
1225 {
1226 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1227 struct inode *inode;
1228
1229 spin_lock(&inode_hash_lock);
1230 inode = find_inode(sb, head, test, data);
1231 spin_unlock(&inode_hash_lock);
1232
1233 return inode;
1234 }
1235 EXPORT_SYMBOL(ilookup5_nowait);
1236
1237 /**
1238 * ilookup5 - search for an inode in the inode cache
1239 * @sb: super block of file system to search
1240 * @hashval: hash value (usually inode number) to search for
1241 * @test: callback used for comparisons between inodes
1242 * @data: opaque data pointer to pass to @test
1243 *
1244 * Search for the inode specified by @hashval and @data in the inode cache,
1245 * and if the inode is in the cache, return the inode with an incremented
1246 * reference count. Waits on I_NEW before returning the inode.
1247 * returned with an incremented reference count.
1248 *
1249 * This is a generalized version of ilookup() for file systems where the
1250 * inode number is not sufficient for unique identification of an inode.
1251 *
1252 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1253 */
1254 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1255 int (*test)(struct inode *, void *), void *data)
1256 {
1257 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1258
1259 if (inode)
1260 wait_on_inode(inode);
1261 return inode;
1262 }
1263 EXPORT_SYMBOL(ilookup5);
1264
1265 /**
1266 * ilookup - search for an inode in the inode cache
1267 * @sb: super block of file system to search
1268 * @ino: inode number to search for
1269 *
1270 * Search for the inode @ino in the inode cache, and if the inode is in the
1271 * cache, the inode is returned with an incremented reference count.
1272 */
1273 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1274 {
1275 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1276 struct inode *inode;
1277
1278 spin_lock(&inode_hash_lock);
1279 inode = find_inode_fast(sb, head, ino);
1280 spin_unlock(&inode_hash_lock);
1281
1282 if (inode)
1283 wait_on_inode(inode);
1284 return inode;
1285 }
1286 EXPORT_SYMBOL(ilookup);
1287
1288 int insert_inode_locked(struct inode *inode)
1289 {
1290 struct super_block *sb = inode->i_sb;
1291 ino_t ino = inode->i_ino;
1292 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1293
1294 while (1) {
1295 struct inode *old = NULL;
1296 spin_lock(&inode_hash_lock);
1297 hlist_for_each_entry(old, head, i_hash) {
1298 if (old->i_ino != ino)
1299 continue;
1300 if (old->i_sb != sb)
1301 continue;
1302 spin_lock(&old->i_lock);
1303 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1304 spin_unlock(&old->i_lock);
1305 continue;
1306 }
1307 break;
1308 }
1309 if (likely(!old)) {
1310 spin_lock(&inode->i_lock);
1311 inode->i_state |= I_NEW;
1312 hlist_add_head(&inode->i_hash, head);
1313 spin_unlock(&inode->i_lock);
1314 spin_unlock(&inode_hash_lock);
1315 return 0;
1316 }
1317 __iget(old);
1318 spin_unlock(&old->i_lock);
1319 spin_unlock(&inode_hash_lock);
1320 wait_on_inode(old);
1321 if (unlikely(!inode_unhashed(old))) {
1322 iput(old);
1323 return -EBUSY;
1324 }
1325 iput(old);
1326 }
1327 }
1328 EXPORT_SYMBOL(insert_inode_locked);
1329
1330 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1331 int (*test)(struct inode *, void *), void *data)
1332 {
1333 struct super_block *sb = inode->i_sb;
1334 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1335
1336 while (1) {
1337 struct inode *old = NULL;
1338
1339 spin_lock(&inode_hash_lock);
1340 hlist_for_each_entry(old, head, i_hash) {
1341 if (old->i_sb != sb)
1342 continue;
1343 if (!test(old, data))
1344 continue;
1345 spin_lock(&old->i_lock);
1346 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1347 spin_unlock(&old->i_lock);
1348 continue;
1349 }
1350 break;
1351 }
1352 if (likely(!old)) {
1353 spin_lock(&inode->i_lock);
1354 inode->i_state |= I_NEW;
1355 hlist_add_head(&inode->i_hash, head);
1356 spin_unlock(&inode->i_lock);
1357 spin_unlock(&inode_hash_lock);
1358 return 0;
1359 }
1360 __iget(old);
1361 spin_unlock(&old->i_lock);
1362 spin_unlock(&inode_hash_lock);
1363 wait_on_inode(old);
1364 if (unlikely(!inode_unhashed(old))) {
1365 iput(old);
1366 return -EBUSY;
1367 }
1368 iput(old);
1369 }
1370 }
1371 EXPORT_SYMBOL(insert_inode_locked4);
1372
1373
1374 int generic_delete_inode(struct inode *inode)
1375 {
1376 return 1;
1377 }
1378 EXPORT_SYMBOL(generic_delete_inode);
1379
1380 /*
1381 * Called when we're dropping the last reference
1382 * to an inode.
1383 *
1384 * Call the FS "drop_inode()" function, defaulting to
1385 * the legacy UNIX filesystem behaviour. If it tells
1386 * us to evict inode, do so. Otherwise, retain inode
1387 * in cache if fs is alive, sync and evict if fs is
1388 * shutting down.
1389 */
1390 static void iput_final(struct inode *inode)
1391 {
1392 struct super_block *sb = inode->i_sb;
1393 const struct super_operations *op = inode->i_sb->s_op;
1394 int drop;
1395
1396 WARN_ON(inode->i_state & I_NEW);
1397
1398 if (op->drop_inode)
1399 drop = op->drop_inode(inode);
1400 else
1401 drop = generic_drop_inode(inode);
1402
1403 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1404 inode->i_state |= I_REFERENCED;
1405 inode_add_lru(inode);
1406 spin_unlock(&inode->i_lock);
1407 return;
1408 }
1409
1410 if (!drop) {
1411 inode->i_state |= I_WILL_FREE;
1412 spin_unlock(&inode->i_lock);
1413 write_inode_now(inode, 1);
1414 spin_lock(&inode->i_lock);
1415 WARN_ON(inode->i_state & I_NEW);
1416 inode->i_state &= ~I_WILL_FREE;
1417 }
1418
1419 inode->i_state |= I_FREEING;
1420 if (!list_empty(&inode->i_lru))
1421 inode_lru_list_del(inode);
1422 spin_unlock(&inode->i_lock);
1423
1424 evict(inode);
1425 }
1426
1427 /**
1428 * iput - put an inode
1429 * @inode: inode to put
1430 *
1431 * Puts an inode, dropping its usage count. If the inode use count hits
1432 * zero, the inode is then freed and may also be destroyed.
1433 *
1434 * Consequently, iput() can sleep.
1435 */
1436 void iput(struct inode *inode)
1437 {
1438 if (inode) {
1439 BUG_ON(inode->i_state & I_CLEAR);
1440
1441 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1442 iput_final(inode);
1443 }
1444 }
1445 EXPORT_SYMBOL(iput);
1446
1447 /**
1448 * bmap - find a block number in a file
1449 * @inode: inode of file
1450 * @block: block to find
1451 *
1452 * Returns the block number on the device holding the inode that
1453 * is the disk block number for the block of the file requested.
1454 * That is, asked for block 4 of inode 1 the function will return the
1455 * disk block relative to the disk start that holds that block of the
1456 * file.
1457 */
1458 sector_t bmap(struct inode *inode, sector_t block)
1459 {
1460 sector_t res = 0;
1461 if (inode->i_mapping->a_ops->bmap)
1462 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1463 return res;
1464 }
1465 EXPORT_SYMBOL(bmap);
1466
1467 /*
1468 * With relative atime, only update atime if the previous atime is
1469 * earlier than either the ctime or mtime or if at least a day has
1470 * passed since the last atime update.
1471 */
1472 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1473 struct timespec now)
1474 {
1475
1476 if (!(mnt->mnt_flags & MNT_RELATIME))
1477 return 1;
1478 /*
1479 * Is mtime younger than atime? If yes, update atime:
1480 */
1481 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1482 return 1;
1483 /*
1484 * Is ctime younger than atime? If yes, update atime:
1485 */
1486 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1487 return 1;
1488
1489 /*
1490 * Is the previous atime value older than a day? If yes,
1491 * update atime:
1492 */
1493 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1494 return 1;
1495 /*
1496 * Good, we can skip the atime update:
1497 */
1498 return 0;
1499 }
1500
1501 /*
1502 * This does the actual work of updating an inodes time or version. Must have
1503 * had called mnt_want_write() before calling this.
1504 */
1505 static int update_time(struct inode *inode, struct timespec *time, int flags)
1506 {
1507 if (inode->i_op->update_time)
1508 return inode->i_op->update_time(inode, time, flags);
1509
1510 if (flags & S_ATIME)
1511 inode->i_atime = *time;
1512 if (flags & S_VERSION)
1513 inode_inc_iversion(inode);
1514 if (flags & S_CTIME)
1515 inode->i_ctime = *time;
1516 if (flags & S_MTIME)
1517 inode->i_mtime = *time;
1518 mark_inode_dirty_sync(inode);
1519 return 0;
1520 }
1521
1522 /**
1523 * touch_atime - update the access time
1524 * @path: the &struct path to update
1525 *
1526 * Update the accessed time on an inode and mark it for writeback.
1527 * This function automatically handles read only file systems and media,
1528 * as well as the "noatime" flag and inode specific "noatime" markers.
1529 */
1530 void touch_atime(const struct path *path)
1531 {
1532 struct vfsmount *mnt = path->mnt;
1533 struct inode *inode = path->dentry->d_inode;
1534 struct timespec now;
1535
1536 if (inode->i_flags & S_NOATIME)
1537 return;
1538 if (IS_NOATIME(inode))
1539 return;
1540 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1541 return;
1542
1543 if (mnt->mnt_flags & MNT_NOATIME)
1544 return;
1545 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1546 return;
1547
1548 now = current_fs_time(inode->i_sb);
1549
1550 if (!relatime_need_update(mnt, inode, now))
1551 return;
1552
1553 if (timespec_equal(&inode->i_atime, &now))
1554 return;
1555
1556 if (!sb_start_write_trylock(inode->i_sb))
1557 return;
1558
1559 if (__mnt_want_write(mnt))
1560 goto skip_update;
1561 /*
1562 * File systems can error out when updating inodes if they need to
1563 * allocate new space to modify an inode (such is the case for
1564 * Btrfs), but since we touch atime while walking down the path we
1565 * really don't care if we failed to update the atime of the file,
1566 * so just ignore the return value.
1567 * We may also fail on filesystems that have the ability to make parts
1568 * of the fs read only, e.g. subvolumes in Btrfs.
1569 */
1570 update_time(inode, &now, S_ATIME);
1571 __mnt_drop_write(mnt);
1572 skip_update:
1573 sb_end_write(inode->i_sb);
1574 }
1575 EXPORT_SYMBOL(touch_atime);
1576
1577 /*
1578 * The logic we want is
1579 *
1580 * if suid or (sgid and xgrp)
1581 * remove privs
1582 */
1583 int should_remove_suid(struct dentry *dentry)
1584 {
1585 umode_t mode = dentry->d_inode->i_mode;
1586 int kill = 0;
1587
1588 /* suid always must be killed */
1589 if (unlikely(mode & S_ISUID))
1590 kill = ATTR_KILL_SUID;
1591
1592 /*
1593 * sgid without any exec bits is just a mandatory locking mark; leave
1594 * it alone. If some exec bits are set, it's a real sgid; kill it.
1595 */
1596 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1597 kill |= ATTR_KILL_SGID;
1598
1599 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1600 return kill;
1601
1602 return 0;
1603 }
1604 EXPORT_SYMBOL(should_remove_suid);
1605
1606 static int __remove_suid(struct dentry *dentry, int kill)
1607 {
1608 struct iattr newattrs;
1609
1610 newattrs.ia_valid = ATTR_FORCE | kill;
1611 /*
1612 * Note we call this on write, so notify_change will not
1613 * encounter any conflicting delegations:
1614 */
1615 return notify_change(dentry, &newattrs, NULL);
1616 }
1617
1618 int file_remove_suid(struct file *file)
1619 {
1620 struct dentry *dentry = file->f_path.dentry;
1621 struct inode *inode = dentry->d_inode;
1622 int killsuid;
1623 int killpriv;
1624 int error = 0;
1625
1626 /* Fast path for nothing security related */
1627 if (IS_NOSEC(inode))
1628 return 0;
1629
1630 killsuid = should_remove_suid(dentry);
1631 killpriv = security_inode_need_killpriv(dentry);
1632
1633 if (killpriv < 0)
1634 return killpriv;
1635 if (killpriv)
1636 error = security_inode_killpriv(dentry);
1637 if (!error && killsuid)
1638 error = __remove_suid(dentry, killsuid);
1639 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1640 inode->i_flags |= S_NOSEC;
1641
1642 return error;
1643 }
1644 EXPORT_SYMBOL(file_remove_suid);
1645
1646 /**
1647 * file_update_time - update mtime and ctime time
1648 * @file: file accessed
1649 *
1650 * Update the mtime and ctime members of an inode and mark the inode
1651 * for writeback. Note that this function is meant exclusively for
1652 * usage in the file write path of filesystems, and filesystems may
1653 * choose to explicitly ignore update via this function with the
1654 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1655 * timestamps are handled by the server. This can return an error for
1656 * file systems who need to allocate space in order to update an inode.
1657 */
1658
1659 int file_update_time(struct file *file)
1660 {
1661 struct inode *inode = file_inode(file);
1662 struct timespec now;
1663 int sync_it = 0;
1664 int ret;
1665
1666 /* First try to exhaust all avenues to not sync */
1667 if (IS_NOCMTIME(inode))
1668 return 0;
1669
1670 now = current_fs_time(inode->i_sb);
1671 if (!timespec_equal(&inode->i_mtime, &now))
1672 sync_it = S_MTIME;
1673
1674 if (!timespec_equal(&inode->i_ctime, &now))
1675 sync_it |= S_CTIME;
1676
1677 if (IS_I_VERSION(inode))
1678 sync_it |= S_VERSION;
1679
1680 if (!sync_it)
1681 return 0;
1682
1683 /* Finally allowed to write? Takes lock. */
1684 if (__mnt_want_write_file(file))
1685 return 0;
1686
1687 ret = update_time(inode, &now, sync_it);
1688 __mnt_drop_write_file(file);
1689
1690 return ret;
1691 }
1692 EXPORT_SYMBOL(file_update_time);
1693
1694 int inode_needs_sync(struct inode *inode)
1695 {
1696 if (IS_SYNC(inode))
1697 return 1;
1698 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1699 return 1;
1700 return 0;
1701 }
1702 EXPORT_SYMBOL(inode_needs_sync);
1703
1704 /*
1705 * If we try to find an inode in the inode hash while it is being
1706 * deleted, we have to wait until the filesystem completes its
1707 * deletion before reporting that it isn't found. This function waits
1708 * until the deletion _might_ have completed. Callers are responsible
1709 * to recheck inode state.
1710 *
1711 * It doesn't matter if I_NEW is not set initially, a call to
1712 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1713 * will DTRT.
1714 */
1715 static void __wait_on_freeing_inode(struct inode *inode)
1716 {
1717 wait_queue_head_t *wq;
1718 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1719 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1720 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1721 spin_unlock(&inode->i_lock);
1722 spin_unlock(&inode_hash_lock);
1723 schedule();
1724 finish_wait(wq, &wait.wait);
1725 spin_lock(&inode_hash_lock);
1726 }
1727
1728 static __initdata unsigned long ihash_entries;
1729 static int __init set_ihash_entries(char *str)
1730 {
1731 if (!str)
1732 return 0;
1733 ihash_entries = simple_strtoul(str, &str, 0);
1734 return 1;
1735 }
1736 __setup("ihash_entries=", set_ihash_entries);
1737
1738 /*
1739 * Initialize the waitqueues and inode hash table.
1740 */
1741 void __init inode_init_early(void)
1742 {
1743 unsigned int loop;
1744
1745 /* If hashes are distributed across NUMA nodes, defer
1746 * hash allocation until vmalloc space is available.
1747 */
1748 if (hashdist)
1749 return;
1750
1751 inode_hashtable =
1752 alloc_large_system_hash("Inode-cache",
1753 sizeof(struct hlist_head),
1754 ihash_entries,
1755 14,
1756 HASH_EARLY,
1757 &i_hash_shift,
1758 &i_hash_mask,
1759 0,
1760 0);
1761
1762 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1763 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1764 }
1765
1766 void __init inode_init(void)
1767 {
1768 unsigned int loop;
1769
1770 /* inode slab cache */
1771 inode_cachep = kmem_cache_create("inode_cache",
1772 sizeof(struct inode),
1773 0,
1774 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1775 SLAB_MEM_SPREAD),
1776 init_once);
1777
1778 /* Hash may have been set up in inode_init_early */
1779 if (!hashdist)
1780 return;
1781
1782 inode_hashtable =
1783 alloc_large_system_hash("Inode-cache",
1784 sizeof(struct hlist_head),
1785 ihash_entries,
1786 14,
1787 0,
1788 &i_hash_shift,
1789 &i_hash_mask,
1790 0,
1791 0);
1792
1793 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1794 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1795 }
1796
1797 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1798 {
1799 inode->i_mode = mode;
1800 if (S_ISCHR(mode)) {
1801 inode->i_fop = &def_chr_fops;
1802 inode->i_rdev = rdev;
1803 } else if (S_ISBLK(mode)) {
1804 inode->i_fop = &def_blk_fops;
1805 inode->i_rdev = rdev;
1806 } else if (S_ISFIFO(mode))
1807 inode->i_fop = &pipefifo_fops;
1808 else if (S_ISSOCK(mode))
1809 ; /* leave it no_open_fops */
1810 else
1811 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1812 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1813 inode->i_ino);
1814 }
1815 EXPORT_SYMBOL(init_special_inode);
1816
1817 /**
1818 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1819 * @inode: New inode
1820 * @dir: Directory inode
1821 * @mode: mode of the new inode
1822 */
1823 void inode_init_owner(struct inode *inode, const struct inode *dir,
1824 umode_t mode)
1825 {
1826 inode->i_uid = current_fsuid();
1827 if (dir && dir->i_mode & S_ISGID) {
1828 inode->i_gid = dir->i_gid;
1829 if (S_ISDIR(mode))
1830 mode |= S_ISGID;
1831 } else
1832 inode->i_gid = current_fsgid();
1833 inode->i_mode = mode;
1834 }
1835 EXPORT_SYMBOL(inode_init_owner);
1836
1837 /**
1838 * inode_owner_or_capable - check current task permissions to inode
1839 * @inode: inode being checked
1840 *
1841 * Return true if current either has CAP_FOWNER in a namespace with the
1842 * inode owner uid mapped, or owns the file.
1843 */
1844 bool inode_owner_or_capable(const struct inode *inode)
1845 {
1846 struct user_namespace *ns;
1847
1848 if (uid_eq(current_fsuid(), inode->i_uid))
1849 return true;
1850
1851 ns = current_user_ns();
1852 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1853 return true;
1854 return false;
1855 }
1856 EXPORT_SYMBOL(inode_owner_or_capable);
1857
1858 /*
1859 * Direct i/o helper functions
1860 */
1861 static void __inode_dio_wait(struct inode *inode)
1862 {
1863 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1864 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1865
1866 do {
1867 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1868 if (atomic_read(&inode->i_dio_count))
1869 schedule();
1870 } while (atomic_read(&inode->i_dio_count));
1871 finish_wait(wq, &q.wait);
1872 }
1873
1874 /**
1875 * inode_dio_wait - wait for outstanding DIO requests to finish
1876 * @inode: inode to wait for
1877 *
1878 * Waits for all pending direct I/O requests to finish so that we can
1879 * proceed with a truncate or equivalent operation.
1880 *
1881 * Must be called under a lock that serializes taking new references
1882 * to i_dio_count, usually by inode->i_mutex.
1883 */
1884 void inode_dio_wait(struct inode *inode)
1885 {
1886 if (atomic_read(&inode->i_dio_count))
1887 __inode_dio_wait(inode);
1888 }
1889 EXPORT_SYMBOL(inode_dio_wait);
1890
1891 /*
1892 * inode_dio_done - signal finish of a direct I/O requests
1893 * @inode: inode the direct I/O happens on
1894 *
1895 * This is called once we've finished processing a direct I/O request,
1896 * and is used to wake up callers waiting for direct I/O to be quiesced.
1897 */
1898 void inode_dio_done(struct inode *inode)
1899 {
1900 if (atomic_dec_and_test(&inode->i_dio_count))
1901 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1902 }
1903 EXPORT_SYMBOL(inode_dio_done);
1904
1905 /*
1906 * inode_set_flags - atomically set some inode flags
1907 *
1908 * Note: the caller should be holding i_mutex, or else be sure that
1909 * they have exclusive access to the inode structure (i.e., while the
1910 * inode is being instantiated). The reason for the cmpxchg() loop
1911 * --- which wouldn't be necessary if all code paths which modify
1912 * i_flags actually followed this rule, is that there is at least one
1913 * code path which doesn't today --- for example,
1914 * __generic_file_aio_write() calls file_remove_suid() without holding
1915 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1916 *
1917 * In the long run, i_mutex is overkill, and we should probably look
1918 * at using the i_lock spinlock to protect i_flags, and then make sure
1919 * it is so documented in include/linux/fs.h and that all code follows
1920 * the locking convention!!
1921 */
1922 void inode_set_flags(struct inode *inode, unsigned int flags,
1923 unsigned int mask)
1924 {
1925 unsigned int old_flags, new_flags;
1926
1927 WARN_ON_ONCE(flags & ~mask);
1928 do {
1929 old_flags = ACCESS_ONCE(inode->i_flags);
1930 new_flags = (old_flags & ~mask) | flags;
1931 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1932 new_flags) != old_flags));
1933 }
1934 EXPORT_SYMBOL(inode_set_flags);
This page took 0.071523 seconds and 5 git commands to generate.