Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 return -ENXIO;
120 }
121
122 /**
123 * inode_init_always - perform inode structure intialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 i_uid_write(inode, 0);
145 i_gid_write(inode, 0);
146 atomic_set(&inode->i_writecount, 0);
147 inode->i_size = 0;
148 inode->i_blocks = 0;
149 inode->i_bytes = 0;
150 inode->i_generation = 0;
151 inode->i_pipe = NULL;
152 inode->i_bdev = NULL;
153 inode->i_cdev = NULL;
154 inode->i_rdev = 0;
155 inode->dirtied_when = 0;
156
157 if (security_inode_alloc(inode))
158 goto out;
159 spin_lock_init(&inode->i_lock);
160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161
162 mutex_init(&inode->i_mutex);
163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164
165 atomic_set(&inode->i_dio_count, 0);
166
167 mapping->a_ops = &empty_aops;
168 mapping->host = inode;
169 mapping->flags = 0;
170 atomic_set(&mapping->i_mmap_writable, 0);
171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 mapping->private_data = NULL;
173 mapping->backing_dev_info = &default_backing_dev_info;
174 mapping->writeback_index = 0;
175
176 /*
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
179 * backing_dev_info.
180 */
181 if (sb->s_bdev) {
182 struct backing_dev_info *bdi;
183
184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 mapping->backing_dev_info = bdi;
186 }
187 inode->i_private = NULL;
188 inode->i_mapping = mapping;
189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193
194 #ifdef CONFIG_FSNOTIFY
195 inode->i_fsnotify_mask = 0;
196 #endif
197
198 this_cpu_inc(nr_inodes);
199
200 return 0;
201 out:
202 return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205
206 static struct inode *alloc_inode(struct super_block *sb)
207 {
208 struct inode *inode;
209
210 if (sb->s_op->alloc_inode)
211 inode = sb->s_op->alloc_inode(sb);
212 else
213 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214
215 if (!inode)
216 return NULL;
217
218 if (unlikely(inode_init_always(sb, inode))) {
219 if (inode->i_sb->s_op->destroy_inode)
220 inode->i_sb->s_op->destroy_inode(inode);
221 else
222 kmem_cache_free(inode_cachep, inode);
223 return NULL;
224 }
225
226 return inode;
227 }
228
229 void free_inode_nonrcu(struct inode *inode)
230 {
231 kmem_cache_free(inode_cachep, inode);
232 }
233 EXPORT_SYMBOL(free_inode_nonrcu);
234
235 void __destroy_inode(struct inode *inode)
236 {
237 BUG_ON(inode_has_buffers(inode));
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 if (!inode->i_nlink) {
241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 atomic_long_dec(&inode->i_sb->s_remove_count);
243 }
244
245 #ifdef CONFIG_FS_POSIX_ACL
246 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
247 posix_acl_release(inode->i_acl);
248 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
249 posix_acl_release(inode->i_default_acl);
250 #endif
251 this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254
255 static void i_callback(struct rcu_head *head)
256 {
257 struct inode *inode = container_of(head, struct inode, i_rcu);
258 kmem_cache_free(inode_cachep, inode);
259 }
260
261 static void destroy_inode(struct inode *inode)
262 {
263 BUG_ON(!list_empty(&inode->i_lru));
264 __destroy_inode(inode);
265 if (inode->i_sb->s_op->destroy_inode)
266 inode->i_sb->s_op->destroy_inode(inode);
267 else
268 call_rcu(&inode->i_rcu, i_callback);
269 }
270
271 /**
272 * drop_nlink - directly drop an inode's link count
273 * @inode: inode
274 *
275 * This is a low-level filesystem helper to replace any
276 * direct filesystem manipulation of i_nlink. In cases
277 * where we are attempting to track writes to the
278 * filesystem, a decrement to zero means an imminent
279 * write when the file is truncated and actually unlinked
280 * on the filesystem.
281 */
282 void drop_nlink(struct inode *inode)
283 {
284 WARN_ON(inode->i_nlink == 0);
285 inode->__i_nlink--;
286 if (!inode->i_nlink)
287 atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290
291 /**
292 * clear_nlink - directly zero an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. See
297 * drop_nlink() for why we care about i_nlink hitting zero.
298 */
299 void clear_nlink(struct inode *inode)
300 {
301 if (inode->i_nlink) {
302 inode->__i_nlink = 0;
303 atomic_long_inc(&inode->i_sb->s_remove_count);
304 }
305 }
306 EXPORT_SYMBOL(clear_nlink);
307
308 /**
309 * set_nlink - directly set an inode's link count
310 * @inode: inode
311 * @nlink: new nlink (should be non-zero)
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink.
315 */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 if (!nlink) {
319 clear_nlink(inode);
320 } else {
321 /* Yes, some filesystems do change nlink from zero to one */
322 if (inode->i_nlink == 0)
323 atomic_long_dec(&inode->i_sb->s_remove_count);
324
325 inode->__i_nlink = nlink;
326 }
327 }
328 EXPORT_SYMBOL(set_nlink);
329
330 /**
331 * inc_nlink - directly increment an inode's link count
332 * @inode: inode
333 *
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink. Currently,
336 * it is only here for parity with dec_nlink().
337 */
338 void inc_nlink(struct inode *inode)
339 {
340 if (unlikely(inode->i_nlink == 0)) {
341 WARN_ON(!(inode->i_state & I_LINKABLE));
342 atomic_long_dec(&inode->i_sb->s_remove_count);
343 }
344
345 inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348
349 void address_space_init_once(struct address_space *mapping)
350 {
351 memset(mapping, 0, sizeof(*mapping));
352 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
353 spin_lock_init(&mapping->tree_lock);
354 init_rwsem(&mapping->i_mmap_rwsem);
355 INIT_LIST_HEAD(&mapping->private_list);
356 spin_lock_init(&mapping->private_lock);
357 mapping->i_mmap = RB_ROOT;
358 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
359 }
360 EXPORT_SYMBOL(address_space_init_once);
361
362 /*
363 * These are initializations that only need to be done
364 * once, because the fields are idempotent across use
365 * of the inode, so let the slab aware of that.
366 */
367 void inode_init_once(struct inode *inode)
368 {
369 memset(inode, 0, sizeof(*inode));
370 INIT_HLIST_NODE(&inode->i_hash);
371 INIT_LIST_HEAD(&inode->i_devices);
372 INIT_LIST_HEAD(&inode->i_wb_list);
373 INIT_LIST_HEAD(&inode->i_lru);
374 address_space_init_once(&inode->i_data);
375 i_size_ordered_init(inode);
376 #ifdef CONFIG_FSNOTIFY
377 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
378 #endif
379 }
380 EXPORT_SYMBOL(inode_init_once);
381
382 static void init_once(void *foo)
383 {
384 struct inode *inode = (struct inode *) foo;
385
386 inode_init_once(inode);
387 }
388
389 /*
390 * inode->i_lock must be held
391 */
392 void __iget(struct inode *inode)
393 {
394 atomic_inc(&inode->i_count);
395 }
396
397 /*
398 * get additional reference to inode; caller must already hold one.
399 */
400 void ihold(struct inode *inode)
401 {
402 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
403 }
404 EXPORT_SYMBOL(ihold);
405
406 static void inode_lru_list_add(struct inode *inode)
407 {
408 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
409 this_cpu_inc(nr_unused);
410 }
411
412 /*
413 * Add inode to LRU if needed (inode is unused and clean).
414 *
415 * Needs inode->i_lock held.
416 */
417 void inode_add_lru(struct inode *inode)
418 {
419 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
421 inode_lru_list_add(inode);
422 }
423
424
425 static void inode_lru_list_del(struct inode *inode)
426 {
427
428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 this_cpu_dec(nr_unused);
430 }
431
432 /**
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
435 */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 spin_lock(&inode_sb_list_lock);
439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 spin_unlock(&inode_sb_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 if (!list_empty(&inode->i_sb_list)) {
447 spin_lock(&inode_sb_list_lock);
448 list_del_init(&inode->i_sb_list);
449 spin_unlock(&inode_sb_list_lock);
450 }
451 }
452
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 unsigned long tmp;
456
457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 L1_CACHE_BYTES;
459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 return tmp & i_hash_mask;
461 }
462
463 /**
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
467 * inode_hashtable.
468 *
469 * Add an inode to the inode hash for this superblock.
470 */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474
475 spin_lock(&inode_hash_lock);
476 spin_lock(&inode->i_lock);
477 hlist_add_head(&inode->i_hash, b);
478 spin_unlock(&inode->i_lock);
479 spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482
483 /**
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
486 *
487 * Remove an inode from the superblock.
488 */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 spin_lock(&inode_hash_lock);
492 spin_lock(&inode->i_lock);
493 hlist_del_init(&inode->i_hash);
494 spin_unlock(&inode->i_lock);
495 spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498
499 void clear_inode(struct inode *inode)
500 {
501 might_sleep();
502 /*
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
506 */
507 spin_lock_irq(&inode->i_data.tree_lock);
508 BUG_ON(inode->i_data.nrpages);
509 BUG_ON(inode->i_data.nrshadows);
510 spin_unlock_irq(&inode->i_data.tree_lock);
511 BUG_ON(!list_empty(&inode->i_data.private_list));
512 BUG_ON(!(inode->i_state & I_FREEING));
513 BUG_ON(inode->i_state & I_CLEAR);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518
519 /*
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
523 *
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
527 *
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
531 */
532 static void evict(struct inode *inode)
533 {
534 const struct super_operations *op = inode->i_sb->s_op;
535
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
538
539 if (!list_empty(&inode->i_wb_list))
540 inode_wb_list_del(inode);
541
542 inode_sb_list_del(inode);
543
544 /*
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
549 */
550 inode_wait_for_writeback(inode);
551
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
557 }
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
562
563 remove_inode_hash(inode);
564
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
569
570 destroy_inode(inode);
571 }
572
573 /*
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
576 *
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
579 */
580 static void dispose_list(struct list_head *head)
581 {
582 while (!list_empty(head)) {
583 struct inode *inode;
584
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
587
588 evict(inode);
589 }
590 }
591
592 /**
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
595 *
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
600 */
601 void evict_inodes(struct super_block *sb)
602 {
603 struct inode *inode, *next;
604 LIST_HEAD(dispose);
605
606 spin_lock(&inode_sb_list_lock);
607 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 if (atomic_read(&inode->i_count))
609 continue;
610
611 spin_lock(&inode->i_lock);
612 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 spin_unlock(&inode->i_lock);
614 continue;
615 }
616
617 inode->i_state |= I_FREEING;
618 inode_lru_list_del(inode);
619 spin_unlock(&inode->i_lock);
620 list_add(&inode->i_lru, &dispose);
621 }
622 spin_unlock(&inode_sb_list_lock);
623
624 dispose_list(&dispose);
625 }
626
627 /**
628 * invalidate_inodes - attempt to free all inodes on a superblock
629 * @sb: superblock to operate on
630 * @kill_dirty: flag to guide handling of dirty inodes
631 *
632 * Attempts to free all inodes for a given superblock. If there were any
633 * busy inodes return a non-zero value, else zero.
634 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
635 * them as busy.
636 */
637 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
638 {
639 int busy = 0;
640 struct inode *inode, *next;
641 LIST_HEAD(dispose);
642
643 spin_lock(&inode_sb_list_lock);
644 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 spin_lock(&inode->i_lock);
646 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 spin_unlock(&inode->i_lock);
648 continue;
649 }
650 if (inode->i_state & I_DIRTY && !kill_dirty) {
651 spin_unlock(&inode->i_lock);
652 busy = 1;
653 continue;
654 }
655 if (atomic_read(&inode->i_count)) {
656 spin_unlock(&inode->i_lock);
657 busy = 1;
658 continue;
659 }
660
661 inode->i_state |= I_FREEING;
662 inode_lru_list_del(inode);
663 spin_unlock(&inode->i_lock);
664 list_add(&inode->i_lru, &dispose);
665 }
666 spin_unlock(&inode_sb_list_lock);
667
668 dispose_list(&dispose);
669
670 return busy;
671 }
672
673 /*
674 * Isolate the inode from the LRU in preparation for freeing it.
675 *
676 * Any inodes which are pinned purely because of attached pagecache have their
677 * pagecache removed. If the inode has metadata buffers attached to
678 * mapping->private_list then try to remove them.
679 *
680 * If the inode has the I_REFERENCED flag set, then it means that it has been
681 * used recently - the flag is set in iput_final(). When we encounter such an
682 * inode, clear the flag and move it to the back of the LRU so it gets another
683 * pass through the LRU before it gets reclaimed. This is necessary because of
684 * the fact we are doing lazy LRU updates to minimise lock contention so the
685 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686 * with this flag set because they are the inodes that are out of order.
687 */
688 static enum lru_status
689 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
690 {
691 struct list_head *freeable = arg;
692 struct inode *inode = container_of(item, struct inode, i_lru);
693
694 /*
695 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 * If we fail to get the lock, just skip it.
697 */
698 if (!spin_trylock(&inode->i_lock))
699 return LRU_SKIP;
700
701 /*
702 * Referenced or dirty inodes are still in use. Give them another pass
703 * through the LRU as we canot reclaim them now.
704 */
705 if (atomic_read(&inode->i_count) ||
706 (inode->i_state & ~I_REFERENCED)) {
707 list_del_init(&inode->i_lru);
708 spin_unlock(&inode->i_lock);
709 this_cpu_dec(nr_unused);
710 return LRU_REMOVED;
711 }
712
713 /* recently referenced inodes get one more pass */
714 if (inode->i_state & I_REFERENCED) {
715 inode->i_state &= ~I_REFERENCED;
716 spin_unlock(&inode->i_lock);
717 return LRU_ROTATE;
718 }
719
720 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
721 __iget(inode);
722 spin_unlock(&inode->i_lock);
723 spin_unlock(lru_lock);
724 if (remove_inode_buffers(inode)) {
725 unsigned long reap;
726 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
727 if (current_is_kswapd())
728 __count_vm_events(KSWAPD_INODESTEAL, reap);
729 else
730 __count_vm_events(PGINODESTEAL, reap);
731 if (current->reclaim_state)
732 current->reclaim_state->reclaimed_slab += reap;
733 }
734 iput(inode);
735 spin_lock(lru_lock);
736 return LRU_RETRY;
737 }
738
739 WARN_ON(inode->i_state & I_NEW);
740 inode->i_state |= I_FREEING;
741 list_move(&inode->i_lru, freeable);
742 spin_unlock(&inode->i_lock);
743
744 this_cpu_dec(nr_unused);
745 return LRU_REMOVED;
746 }
747
748 /*
749 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750 * This is called from the superblock shrinker function with a number of inodes
751 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752 * then are freed outside inode_lock by dispose_list().
753 */
754 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
755 int nid)
756 {
757 LIST_HEAD(freeable);
758 long freed;
759
760 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
761 &freeable, &nr_to_scan);
762 dispose_list(&freeable);
763 return freed;
764 }
765
766 static void __wait_on_freeing_inode(struct inode *inode);
767 /*
768 * Called with the inode lock held.
769 */
770 static struct inode *find_inode(struct super_block *sb,
771 struct hlist_head *head,
772 int (*test)(struct inode *, void *),
773 void *data)
774 {
775 struct inode *inode = NULL;
776
777 repeat:
778 hlist_for_each_entry(inode, head, i_hash) {
779 if (inode->i_sb != sb)
780 continue;
781 if (!test(inode, data))
782 continue;
783 spin_lock(&inode->i_lock);
784 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
785 __wait_on_freeing_inode(inode);
786 goto repeat;
787 }
788 __iget(inode);
789 spin_unlock(&inode->i_lock);
790 return inode;
791 }
792 return NULL;
793 }
794
795 /*
796 * find_inode_fast is the fast path version of find_inode, see the comment at
797 * iget_locked for details.
798 */
799 static struct inode *find_inode_fast(struct super_block *sb,
800 struct hlist_head *head, unsigned long ino)
801 {
802 struct inode *inode = NULL;
803
804 repeat:
805 hlist_for_each_entry(inode, head, i_hash) {
806 if (inode->i_ino != ino)
807 continue;
808 if (inode->i_sb != sb)
809 continue;
810 spin_lock(&inode->i_lock);
811 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
812 __wait_on_freeing_inode(inode);
813 goto repeat;
814 }
815 __iget(inode);
816 spin_unlock(&inode->i_lock);
817 return inode;
818 }
819 return NULL;
820 }
821
822 /*
823 * Each cpu owns a range of LAST_INO_BATCH numbers.
824 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
825 * to renew the exhausted range.
826 *
827 * This does not significantly increase overflow rate because every CPU can
828 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
829 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
830 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
831 * overflow rate by 2x, which does not seem too significant.
832 *
833 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
834 * error if st_ino won't fit in target struct field. Use 32bit counter
835 * here to attempt to avoid that.
836 */
837 #define LAST_INO_BATCH 1024
838 static DEFINE_PER_CPU(unsigned int, last_ino);
839
840 unsigned int get_next_ino(void)
841 {
842 unsigned int *p = &get_cpu_var(last_ino);
843 unsigned int res = *p;
844
845 #ifdef CONFIG_SMP
846 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
847 static atomic_t shared_last_ino;
848 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
849
850 res = next - LAST_INO_BATCH;
851 }
852 #endif
853
854 *p = ++res;
855 put_cpu_var(last_ino);
856 return res;
857 }
858 EXPORT_SYMBOL(get_next_ino);
859
860 /**
861 * new_inode_pseudo - obtain an inode
862 * @sb: superblock
863 *
864 * Allocates a new inode for given superblock.
865 * Inode wont be chained in superblock s_inodes list
866 * This means :
867 * - fs can't be unmount
868 * - quotas, fsnotify, writeback can't work
869 */
870 struct inode *new_inode_pseudo(struct super_block *sb)
871 {
872 struct inode *inode = alloc_inode(sb);
873
874 if (inode) {
875 spin_lock(&inode->i_lock);
876 inode->i_state = 0;
877 spin_unlock(&inode->i_lock);
878 INIT_LIST_HEAD(&inode->i_sb_list);
879 }
880 return inode;
881 }
882
883 /**
884 * new_inode - obtain an inode
885 * @sb: superblock
886 *
887 * Allocates a new inode for given superblock. The default gfp_mask
888 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
889 * If HIGHMEM pages are unsuitable or it is known that pages allocated
890 * for the page cache are not reclaimable or migratable,
891 * mapping_set_gfp_mask() must be called with suitable flags on the
892 * newly created inode's mapping
893 *
894 */
895 struct inode *new_inode(struct super_block *sb)
896 {
897 struct inode *inode;
898
899 spin_lock_prefetch(&inode_sb_list_lock);
900
901 inode = new_inode_pseudo(sb);
902 if (inode)
903 inode_sb_list_add(inode);
904 return inode;
905 }
906 EXPORT_SYMBOL(new_inode);
907
908 #ifdef CONFIG_DEBUG_LOCK_ALLOC
909 void lockdep_annotate_inode_mutex_key(struct inode *inode)
910 {
911 if (S_ISDIR(inode->i_mode)) {
912 struct file_system_type *type = inode->i_sb->s_type;
913
914 /* Set new key only if filesystem hasn't already changed it */
915 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
916 /*
917 * ensure nobody is actually holding i_mutex
918 */
919 mutex_destroy(&inode->i_mutex);
920 mutex_init(&inode->i_mutex);
921 lockdep_set_class(&inode->i_mutex,
922 &type->i_mutex_dir_key);
923 }
924 }
925 }
926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
927 #endif
928
929 /**
930 * unlock_new_inode - clear the I_NEW state and wake up any waiters
931 * @inode: new inode to unlock
932 *
933 * Called when the inode is fully initialised to clear the new state of the
934 * inode and wake up anyone waiting for the inode to finish initialisation.
935 */
936 void unlock_new_inode(struct inode *inode)
937 {
938 lockdep_annotate_inode_mutex_key(inode);
939 spin_lock(&inode->i_lock);
940 WARN_ON(!(inode->i_state & I_NEW));
941 inode->i_state &= ~I_NEW;
942 smp_mb();
943 wake_up_bit(&inode->i_state, __I_NEW);
944 spin_unlock(&inode->i_lock);
945 }
946 EXPORT_SYMBOL(unlock_new_inode);
947
948 /**
949 * lock_two_nondirectories - take two i_mutexes on non-directory objects
950 *
951 * Lock any non-NULL argument that is not a directory.
952 * Zero, one or two objects may be locked by this function.
953 *
954 * @inode1: first inode to lock
955 * @inode2: second inode to lock
956 */
957 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
958 {
959 if (inode1 > inode2)
960 swap(inode1, inode2);
961
962 if (inode1 && !S_ISDIR(inode1->i_mode))
963 mutex_lock(&inode1->i_mutex);
964 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
965 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
966 }
967 EXPORT_SYMBOL(lock_two_nondirectories);
968
969 /**
970 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
971 * @inode1: first inode to unlock
972 * @inode2: second inode to unlock
973 */
974 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 if (inode1 && !S_ISDIR(inode1->i_mode))
977 mutex_unlock(&inode1->i_mutex);
978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 mutex_unlock(&inode2->i_mutex);
980 }
981 EXPORT_SYMBOL(unlock_two_nondirectories);
982
983 /**
984 * iget5_locked - obtain an inode from a mounted file system
985 * @sb: super block of file system
986 * @hashval: hash value (usually inode number) to get
987 * @test: callback used for comparisons between inodes
988 * @set: callback used to initialize a new struct inode
989 * @data: opaque data pointer to pass to @test and @set
990 *
991 * Search for the inode specified by @hashval and @data in the inode cache,
992 * and if present it is return it with an increased reference count. This is
993 * a generalized version of iget_locked() for file systems where the inode
994 * number is not sufficient for unique identification of an inode.
995 *
996 * If the inode is not in cache, allocate a new inode and return it locked,
997 * hashed, and with the I_NEW flag set. The file system gets to fill it in
998 * before unlocking it via unlock_new_inode().
999 *
1000 * Note both @test and @set are called with the inode_hash_lock held, so can't
1001 * sleep.
1002 */
1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1004 int (*test)(struct inode *, void *),
1005 int (*set)(struct inode *, void *), void *data)
1006 {
1007 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1008 struct inode *inode;
1009
1010 spin_lock(&inode_hash_lock);
1011 inode = find_inode(sb, head, test, data);
1012 spin_unlock(&inode_hash_lock);
1013
1014 if (inode) {
1015 wait_on_inode(inode);
1016 return inode;
1017 }
1018
1019 inode = alloc_inode(sb);
1020 if (inode) {
1021 struct inode *old;
1022
1023 spin_lock(&inode_hash_lock);
1024 /* We released the lock, so.. */
1025 old = find_inode(sb, head, test, data);
1026 if (!old) {
1027 if (set(inode, data))
1028 goto set_failed;
1029
1030 spin_lock(&inode->i_lock);
1031 inode->i_state = I_NEW;
1032 hlist_add_head(&inode->i_hash, head);
1033 spin_unlock(&inode->i_lock);
1034 inode_sb_list_add(inode);
1035 spin_unlock(&inode_hash_lock);
1036
1037 /* Return the locked inode with I_NEW set, the
1038 * caller is responsible for filling in the contents
1039 */
1040 return inode;
1041 }
1042
1043 /*
1044 * Uhhuh, somebody else created the same inode under
1045 * us. Use the old inode instead of the one we just
1046 * allocated.
1047 */
1048 spin_unlock(&inode_hash_lock);
1049 destroy_inode(inode);
1050 inode = old;
1051 wait_on_inode(inode);
1052 }
1053 return inode;
1054
1055 set_failed:
1056 spin_unlock(&inode_hash_lock);
1057 destroy_inode(inode);
1058 return NULL;
1059 }
1060 EXPORT_SYMBOL(iget5_locked);
1061
1062 /**
1063 * iget_locked - obtain an inode from a mounted file system
1064 * @sb: super block of file system
1065 * @ino: inode number to get
1066 *
1067 * Search for the inode specified by @ino in the inode cache and if present
1068 * return it with an increased reference count. This is for file systems
1069 * where the inode number is sufficient for unique identification of an inode.
1070 *
1071 * If the inode is not in cache, allocate a new inode and return it locked,
1072 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1073 * before unlocking it via unlock_new_inode().
1074 */
1075 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 {
1077 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1078 struct inode *inode;
1079
1080 spin_lock(&inode_hash_lock);
1081 inode = find_inode_fast(sb, head, ino);
1082 spin_unlock(&inode_hash_lock);
1083 if (inode) {
1084 wait_on_inode(inode);
1085 return inode;
1086 }
1087
1088 inode = alloc_inode(sb);
1089 if (inode) {
1090 struct inode *old;
1091
1092 spin_lock(&inode_hash_lock);
1093 /* We released the lock, so.. */
1094 old = find_inode_fast(sb, head, ino);
1095 if (!old) {
1096 inode->i_ino = ino;
1097 spin_lock(&inode->i_lock);
1098 inode->i_state = I_NEW;
1099 hlist_add_head(&inode->i_hash, head);
1100 spin_unlock(&inode->i_lock);
1101 inode_sb_list_add(inode);
1102 spin_unlock(&inode_hash_lock);
1103
1104 /* Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1106 */
1107 return inode;
1108 }
1109
1110 /*
1111 * Uhhuh, somebody else created the same inode under
1112 * us. Use the old inode instead of the one we just
1113 * allocated.
1114 */
1115 spin_unlock(&inode_hash_lock);
1116 destroy_inode(inode);
1117 inode = old;
1118 wait_on_inode(inode);
1119 }
1120 return inode;
1121 }
1122 EXPORT_SYMBOL(iget_locked);
1123
1124 /*
1125 * search the inode cache for a matching inode number.
1126 * If we find one, then the inode number we are trying to
1127 * allocate is not unique and so we should not use it.
1128 *
1129 * Returns 1 if the inode number is unique, 0 if it is not.
1130 */
1131 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1132 {
1133 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1134 struct inode *inode;
1135
1136 spin_lock(&inode_hash_lock);
1137 hlist_for_each_entry(inode, b, i_hash) {
1138 if (inode->i_ino == ino && inode->i_sb == sb) {
1139 spin_unlock(&inode_hash_lock);
1140 return 0;
1141 }
1142 }
1143 spin_unlock(&inode_hash_lock);
1144
1145 return 1;
1146 }
1147
1148 /**
1149 * iunique - get a unique inode number
1150 * @sb: superblock
1151 * @max_reserved: highest reserved inode number
1152 *
1153 * Obtain an inode number that is unique on the system for a given
1154 * superblock. This is used by file systems that have no natural
1155 * permanent inode numbering system. An inode number is returned that
1156 * is higher than the reserved limit but unique.
1157 *
1158 * BUGS:
1159 * With a large number of inodes live on the file system this function
1160 * currently becomes quite slow.
1161 */
1162 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1163 {
1164 /*
1165 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1166 * error if st_ino won't fit in target struct field. Use 32bit counter
1167 * here to attempt to avoid that.
1168 */
1169 static DEFINE_SPINLOCK(iunique_lock);
1170 static unsigned int counter;
1171 ino_t res;
1172
1173 spin_lock(&iunique_lock);
1174 do {
1175 if (counter <= max_reserved)
1176 counter = max_reserved + 1;
1177 res = counter++;
1178 } while (!test_inode_iunique(sb, res));
1179 spin_unlock(&iunique_lock);
1180
1181 return res;
1182 }
1183 EXPORT_SYMBOL(iunique);
1184
1185 struct inode *igrab(struct inode *inode)
1186 {
1187 spin_lock(&inode->i_lock);
1188 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1189 __iget(inode);
1190 spin_unlock(&inode->i_lock);
1191 } else {
1192 spin_unlock(&inode->i_lock);
1193 /*
1194 * Handle the case where s_op->clear_inode is not been
1195 * called yet, and somebody is calling igrab
1196 * while the inode is getting freed.
1197 */
1198 inode = NULL;
1199 }
1200 return inode;
1201 }
1202 EXPORT_SYMBOL(igrab);
1203
1204 /**
1205 * ilookup5_nowait - search for an inode in the inode cache
1206 * @sb: super block of file system to search
1207 * @hashval: hash value (usually inode number) to search for
1208 * @test: callback used for comparisons between inodes
1209 * @data: opaque data pointer to pass to @test
1210 *
1211 * Search for the inode specified by @hashval and @data in the inode cache.
1212 * If the inode is in the cache, the inode is returned with an incremented
1213 * reference count.
1214 *
1215 * Note: I_NEW is not waited upon so you have to be very careful what you do
1216 * with the returned inode. You probably should be using ilookup5() instead.
1217 *
1218 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219 */
1220 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1221 int (*test)(struct inode *, void *), void *data)
1222 {
1223 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1224 struct inode *inode;
1225
1226 spin_lock(&inode_hash_lock);
1227 inode = find_inode(sb, head, test, data);
1228 spin_unlock(&inode_hash_lock);
1229
1230 return inode;
1231 }
1232 EXPORT_SYMBOL(ilookup5_nowait);
1233
1234 /**
1235 * ilookup5 - search for an inode in the inode cache
1236 * @sb: super block of file system to search
1237 * @hashval: hash value (usually inode number) to search for
1238 * @test: callback used for comparisons between inodes
1239 * @data: opaque data pointer to pass to @test
1240 *
1241 * Search for the inode specified by @hashval and @data in the inode cache,
1242 * and if the inode is in the cache, return the inode with an incremented
1243 * reference count. Waits on I_NEW before returning the inode.
1244 * returned with an incremented reference count.
1245 *
1246 * This is a generalized version of ilookup() for file systems where the
1247 * inode number is not sufficient for unique identification of an inode.
1248 *
1249 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250 */
1251 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1252 int (*test)(struct inode *, void *), void *data)
1253 {
1254 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1255
1256 if (inode)
1257 wait_on_inode(inode);
1258 return inode;
1259 }
1260 EXPORT_SYMBOL(ilookup5);
1261
1262 /**
1263 * ilookup - search for an inode in the inode cache
1264 * @sb: super block of file system to search
1265 * @ino: inode number to search for
1266 *
1267 * Search for the inode @ino in the inode cache, and if the inode is in the
1268 * cache, the inode is returned with an incremented reference count.
1269 */
1270 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1271 {
1272 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1273 struct inode *inode;
1274
1275 spin_lock(&inode_hash_lock);
1276 inode = find_inode_fast(sb, head, ino);
1277 spin_unlock(&inode_hash_lock);
1278
1279 if (inode)
1280 wait_on_inode(inode);
1281 return inode;
1282 }
1283 EXPORT_SYMBOL(ilookup);
1284
1285 int insert_inode_locked(struct inode *inode)
1286 {
1287 struct super_block *sb = inode->i_sb;
1288 ino_t ino = inode->i_ino;
1289 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1290
1291 while (1) {
1292 struct inode *old = NULL;
1293 spin_lock(&inode_hash_lock);
1294 hlist_for_each_entry(old, head, i_hash) {
1295 if (old->i_ino != ino)
1296 continue;
1297 if (old->i_sb != sb)
1298 continue;
1299 spin_lock(&old->i_lock);
1300 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1301 spin_unlock(&old->i_lock);
1302 continue;
1303 }
1304 break;
1305 }
1306 if (likely(!old)) {
1307 spin_lock(&inode->i_lock);
1308 inode->i_state |= I_NEW;
1309 hlist_add_head(&inode->i_hash, head);
1310 spin_unlock(&inode->i_lock);
1311 spin_unlock(&inode_hash_lock);
1312 return 0;
1313 }
1314 __iget(old);
1315 spin_unlock(&old->i_lock);
1316 spin_unlock(&inode_hash_lock);
1317 wait_on_inode(old);
1318 if (unlikely(!inode_unhashed(old))) {
1319 iput(old);
1320 return -EBUSY;
1321 }
1322 iput(old);
1323 }
1324 }
1325 EXPORT_SYMBOL(insert_inode_locked);
1326
1327 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1328 int (*test)(struct inode *, void *), void *data)
1329 {
1330 struct super_block *sb = inode->i_sb;
1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332
1333 while (1) {
1334 struct inode *old = NULL;
1335
1336 spin_lock(&inode_hash_lock);
1337 hlist_for_each_entry(old, head, i_hash) {
1338 if (old->i_sb != sb)
1339 continue;
1340 if (!test(old, data))
1341 continue;
1342 spin_lock(&old->i_lock);
1343 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1344 spin_unlock(&old->i_lock);
1345 continue;
1346 }
1347 break;
1348 }
1349 if (likely(!old)) {
1350 spin_lock(&inode->i_lock);
1351 inode->i_state |= I_NEW;
1352 hlist_add_head(&inode->i_hash, head);
1353 spin_unlock(&inode->i_lock);
1354 spin_unlock(&inode_hash_lock);
1355 return 0;
1356 }
1357 __iget(old);
1358 spin_unlock(&old->i_lock);
1359 spin_unlock(&inode_hash_lock);
1360 wait_on_inode(old);
1361 if (unlikely(!inode_unhashed(old))) {
1362 iput(old);
1363 return -EBUSY;
1364 }
1365 iput(old);
1366 }
1367 }
1368 EXPORT_SYMBOL(insert_inode_locked4);
1369
1370
1371 int generic_delete_inode(struct inode *inode)
1372 {
1373 return 1;
1374 }
1375 EXPORT_SYMBOL(generic_delete_inode);
1376
1377 /*
1378 * Called when we're dropping the last reference
1379 * to an inode.
1380 *
1381 * Call the FS "drop_inode()" function, defaulting to
1382 * the legacy UNIX filesystem behaviour. If it tells
1383 * us to evict inode, do so. Otherwise, retain inode
1384 * in cache if fs is alive, sync and evict if fs is
1385 * shutting down.
1386 */
1387 static void iput_final(struct inode *inode)
1388 {
1389 struct super_block *sb = inode->i_sb;
1390 const struct super_operations *op = inode->i_sb->s_op;
1391 int drop;
1392
1393 WARN_ON(inode->i_state & I_NEW);
1394
1395 if (op->drop_inode)
1396 drop = op->drop_inode(inode);
1397 else
1398 drop = generic_drop_inode(inode);
1399
1400 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1401 inode->i_state |= I_REFERENCED;
1402 inode_add_lru(inode);
1403 spin_unlock(&inode->i_lock);
1404 return;
1405 }
1406
1407 if (!drop) {
1408 inode->i_state |= I_WILL_FREE;
1409 spin_unlock(&inode->i_lock);
1410 write_inode_now(inode, 1);
1411 spin_lock(&inode->i_lock);
1412 WARN_ON(inode->i_state & I_NEW);
1413 inode->i_state &= ~I_WILL_FREE;
1414 }
1415
1416 inode->i_state |= I_FREEING;
1417 if (!list_empty(&inode->i_lru))
1418 inode_lru_list_del(inode);
1419 spin_unlock(&inode->i_lock);
1420
1421 evict(inode);
1422 }
1423
1424 /**
1425 * iput - put an inode
1426 * @inode: inode to put
1427 *
1428 * Puts an inode, dropping its usage count. If the inode use count hits
1429 * zero, the inode is then freed and may also be destroyed.
1430 *
1431 * Consequently, iput() can sleep.
1432 */
1433 void iput(struct inode *inode)
1434 {
1435 if (inode) {
1436 BUG_ON(inode->i_state & I_CLEAR);
1437
1438 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1439 iput_final(inode);
1440 }
1441 }
1442 EXPORT_SYMBOL(iput);
1443
1444 /**
1445 * bmap - find a block number in a file
1446 * @inode: inode of file
1447 * @block: block to find
1448 *
1449 * Returns the block number on the device holding the inode that
1450 * is the disk block number for the block of the file requested.
1451 * That is, asked for block 4 of inode 1 the function will return the
1452 * disk block relative to the disk start that holds that block of the
1453 * file.
1454 */
1455 sector_t bmap(struct inode *inode, sector_t block)
1456 {
1457 sector_t res = 0;
1458 if (inode->i_mapping->a_ops->bmap)
1459 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1460 return res;
1461 }
1462 EXPORT_SYMBOL(bmap);
1463
1464 /*
1465 * With relative atime, only update atime if the previous atime is
1466 * earlier than either the ctime or mtime or if at least a day has
1467 * passed since the last atime update.
1468 */
1469 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1470 struct timespec now)
1471 {
1472
1473 if (!(mnt->mnt_flags & MNT_RELATIME))
1474 return 1;
1475 /*
1476 * Is mtime younger than atime? If yes, update atime:
1477 */
1478 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1479 return 1;
1480 /*
1481 * Is ctime younger than atime? If yes, update atime:
1482 */
1483 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484 return 1;
1485
1486 /*
1487 * Is the previous atime value older than a day? If yes,
1488 * update atime:
1489 */
1490 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1491 return 1;
1492 /*
1493 * Good, we can skip the atime update:
1494 */
1495 return 0;
1496 }
1497
1498 /*
1499 * This does the actual work of updating an inodes time or version. Must have
1500 * had called mnt_want_write() before calling this.
1501 */
1502 static int update_time(struct inode *inode, struct timespec *time, int flags)
1503 {
1504 if (inode->i_op->update_time)
1505 return inode->i_op->update_time(inode, time, flags);
1506
1507 if (flags & S_ATIME)
1508 inode->i_atime = *time;
1509 if (flags & S_VERSION)
1510 inode_inc_iversion(inode);
1511 if (flags & S_CTIME)
1512 inode->i_ctime = *time;
1513 if (flags & S_MTIME)
1514 inode->i_mtime = *time;
1515 mark_inode_dirty_sync(inode);
1516 return 0;
1517 }
1518
1519 /**
1520 * touch_atime - update the access time
1521 * @path: the &struct path to update
1522 *
1523 * Update the accessed time on an inode and mark it for writeback.
1524 * This function automatically handles read only file systems and media,
1525 * as well as the "noatime" flag and inode specific "noatime" markers.
1526 */
1527 void touch_atime(const struct path *path)
1528 {
1529 struct vfsmount *mnt = path->mnt;
1530 struct inode *inode = path->dentry->d_inode;
1531 struct timespec now;
1532
1533 if (inode->i_flags & S_NOATIME)
1534 return;
1535 if (IS_NOATIME(inode))
1536 return;
1537 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1538 return;
1539
1540 if (mnt->mnt_flags & MNT_NOATIME)
1541 return;
1542 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1543 return;
1544
1545 now = current_fs_time(inode->i_sb);
1546
1547 if (!relatime_need_update(mnt, inode, now))
1548 return;
1549
1550 if (timespec_equal(&inode->i_atime, &now))
1551 return;
1552
1553 if (!sb_start_write_trylock(inode->i_sb))
1554 return;
1555
1556 if (__mnt_want_write(mnt))
1557 goto skip_update;
1558 /*
1559 * File systems can error out when updating inodes if they need to
1560 * allocate new space to modify an inode (such is the case for
1561 * Btrfs), but since we touch atime while walking down the path we
1562 * really don't care if we failed to update the atime of the file,
1563 * so just ignore the return value.
1564 * We may also fail on filesystems that have the ability to make parts
1565 * of the fs read only, e.g. subvolumes in Btrfs.
1566 */
1567 update_time(inode, &now, S_ATIME);
1568 __mnt_drop_write(mnt);
1569 skip_update:
1570 sb_end_write(inode->i_sb);
1571 }
1572 EXPORT_SYMBOL(touch_atime);
1573
1574 /*
1575 * The logic we want is
1576 *
1577 * if suid or (sgid and xgrp)
1578 * remove privs
1579 */
1580 int should_remove_suid(struct dentry *dentry)
1581 {
1582 umode_t mode = dentry->d_inode->i_mode;
1583 int kill = 0;
1584
1585 /* suid always must be killed */
1586 if (unlikely(mode & S_ISUID))
1587 kill = ATTR_KILL_SUID;
1588
1589 /*
1590 * sgid without any exec bits is just a mandatory locking mark; leave
1591 * it alone. If some exec bits are set, it's a real sgid; kill it.
1592 */
1593 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1594 kill |= ATTR_KILL_SGID;
1595
1596 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1597 return kill;
1598
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(should_remove_suid);
1602
1603 static int __remove_suid(struct dentry *dentry, int kill)
1604 {
1605 struct iattr newattrs;
1606
1607 newattrs.ia_valid = ATTR_FORCE | kill;
1608 /*
1609 * Note we call this on write, so notify_change will not
1610 * encounter any conflicting delegations:
1611 */
1612 return notify_change(dentry, &newattrs, NULL);
1613 }
1614
1615 int file_remove_suid(struct file *file)
1616 {
1617 struct dentry *dentry = file->f_path.dentry;
1618 struct inode *inode = dentry->d_inode;
1619 int killsuid;
1620 int killpriv;
1621 int error = 0;
1622
1623 /* Fast path for nothing security related */
1624 if (IS_NOSEC(inode))
1625 return 0;
1626
1627 killsuid = should_remove_suid(dentry);
1628 killpriv = security_inode_need_killpriv(dentry);
1629
1630 if (killpriv < 0)
1631 return killpriv;
1632 if (killpriv)
1633 error = security_inode_killpriv(dentry);
1634 if (!error && killsuid)
1635 error = __remove_suid(dentry, killsuid);
1636 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1637 inode->i_flags |= S_NOSEC;
1638
1639 return error;
1640 }
1641 EXPORT_SYMBOL(file_remove_suid);
1642
1643 /**
1644 * file_update_time - update mtime and ctime time
1645 * @file: file accessed
1646 *
1647 * Update the mtime and ctime members of an inode and mark the inode
1648 * for writeback. Note that this function is meant exclusively for
1649 * usage in the file write path of filesystems, and filesystems may
1650 * choose to explicitly ignore update via this function with the
1651 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1652 * timestamps are handled by the server. This can return an error for
1653 * file systems who need to allocate space in order to update an inode.
1654 */
1655
1656 int file_update_time(struct file *file)
1657 {
1658 struct inode *inode = file_inode(file);
1659 struct timespec now;
1660 int sync_it = 0;
1661 int ret;
1662
1663 /* First try to exhaust all avenues to not sync */
1664 if (IS_NOCMTIME(inode))
1665 return 0;
1666
1667 now = current_fs_time(inode->i_sb);
1668 if (!timespec_equal(&inode->i_mtime, &now))
1669 sync_it = S_MTIME;
1670
1671 if (!timespec_equal(&inode->i_ctime, &now))
1672 sync_it |= S_CTIME;
1673
1674 if (IS_I_VERSION(inode))
1675 sync_it |= S_VERSION;
1676
1677 if (!sync_it)
1678 return 0;
1679
1680 /* Finally allowed to write? Takes lock. */
1681 if (__mnt_want_write_file(file))
1682 return 0;
1683
1684 ret = update_time(inode, &now, sync_it);
1685 __mnt_drop_write_file(file);
1686
1687 return ret;
1688 }
1689 EXPORT_SYMBOL(file_update_time);
1690
1691 int inode_needs_sync(struct inode *inode)
1692 {
1693 if (IS_SYNC(inode))
1694 return 1;
1695 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1696 return 1;
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(inode_needs_sync);
1700
1701 /*
1702 * If we try to find an inode in the inode hash while it is being
1703 * deleted, we have to wait until the filesystem completes its
1704 * deletion before reporting that it isn't found. This function waits
1705 * until the deletion _might_ have completed. Callers are responsible
1706 * to recheck inode state.
1707 *
1708 * It doesn't matter if I_NEW is not set initially, a call to
1709 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1710 * will DTRT.
1711 */
1712 static void __wait_on_freeing_inode(struct inode *inode)
1713 {
1714 wait_queue_head_t *wq;
1715 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1716 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1717 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1718 spin_unlock(&inode->i_lock);
1719 spin_unlock(&inode_hash_lock);
1720 schedule();
1721 finish_wait(wq, &wait.wait);
1722 spin_lock(&inode_hash_lock);
1723 }
1724
1725 static __initdata unsigned long ihash_entries;
1726 static int __init set_ihash_entries(char *str)
1727 {
1728 if (!str)
1729 return 0;
1730 ihash_entries = simple_strtoul(str, &str, 0);
1731 return 1;
1732 }
1733 __setup("ihash_entries=", set_ihash_entries);
1734
1735 /*
1736 * Initialize the waitqueues and inode hash table.
1737 */
1738 void __init inode_init_early(void)
1739 {
1740 unsigned int loop;
1741
1742 /* If hashes are distributed across NUMA nodes, defer
1743 * hash allocation until vmalloc space is available.
1744 */
1745 if (hashdist)
1746 return;
1747
1748 inode_hashtable =
1749 alloc_large_system_hash("Inode-cache",
1750 sizeof(struct hlist_head),
1751 ihash_entries,
1752 14,
1753 HASH_EARLY,
1754 &i_hash_shift,
1755 &i_hash_mask,
1756 0,
1757 0);
1758
1759 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1760 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1761 }
1762
1763 void __init inode_init(void)
1764 {
1765 unsigned int loop;
1766
1767 /* inode slab cache */
1768 inode_cachep = kmem_cache_create("inode_cache",
1769 sizeof(struct inode),
1770 0,
1771 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1772 SLAB_MEM_SPREAD),
1773 init_once);
1774
1775 /* Hash may have been set up in inode_init_early */
1776 if (!hashdist)
1777 return;
1778
1779 inode_hashtable =
1780 alloc_large_system_hash("Inode-cache",
1781 sizeof(struct hlist_head),
1782 ihash_entries,
1783 14,
1784 0,
1785 &i_hash_shift,
1786 &i_hash_mask,
1787 0,
1788 0);
1789
1790 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1791 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1792 }
1793
1794 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1795 {
1796 inode->i_mode = mode;
1797 if (S_ISCHR(mode)) {
1798 inode->i_fop = &def_chr_fops;
1799 inode->i_rdev = rdev;
1800 } else if (S_ISBLK(mode)) {
1801 inode->i_fop = &def_blk_fops;
1802 inode->i_rdev = rdev;
1803 } else if (S_ISFIFO(mode))
1804 inode->i_fop = &pipefifo_fops;
1805 else if (S_ISSOCK(mode))
1806 ; /* leave it no_open_fops */
1807 else
1808 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1809 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1810 inode->i_ino);
1811 }
1812 EXPORT_SYMBOL(init_special_inode);
1813
1814 /**
1815 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1816 * @inode: New inode
1817 * @dir: Directory inode
1818 * @mode: mode of the new inode
1819 */
1820 void inode_init_owner(struct inode *inode, const struct inode *dir,
1821 umode_t mode)
1822 {
1823 inode->i_uid = current_fsuid();
1824 if (dir && dir->i_mode & S_ISGID) {
1825 inode->i_gid = dir->i_gid;
1826 if (S_ISDIR(mode))
1827 mode |= S_ISGID;
1828 } else
1829 inode->i_gid = current_fsgid();
1830 inode->i_mode = mode;
1831 }
1832 EXPORT_SYMBOL(inode_init_owner);
1833
1834 /**
1835 * inode_owner_or_capable - check current task permissions to inode
1836 * @inode: inode being checked
1837 *
1838 * Return true if current either has CAP_FOWNER in a namespace with the
1839 * inode owner uid mapped, or owns the file.
1840 */
1841 bool inode_owner_or_capable(const struct inode *inode)
1842 {
1843 struct user_namespace *ns;
1844
1845 if (uid_eq(current_fsuid(), inode->i_uid))
1846 return true;
1847
1848 ns = current_user_ns();
1849 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1850 return true;
1851 return false;
1852 }
1853 EXPORT_SYMBOL(inode_owner_or_capable);
1854
1855 /*
1856 * Direct i/o helper functions
1857 */
1858 static void __inode_dio_wait(struct inode *inode)
1859 {
1860 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1862
1863 do {
1864 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865 if (atomic_read(&inode->i_dio_count))
1866 schedule();
1867 } while (atomic_read(&inode->i_dio_count));
1868 finish_wait(wq, &q.wait);
1869 }
1870
1871 /**
1872 * inode_dio_wait - wait for outstanding DIO requests to finish
1873 * @inode: inode to wait for
1874 *
1875 * Waits for all pending direct I/O requests to finish so that we can
1876 * proceed with a truncate or equivalent operation.
1877 *
1878 * Must be called under a lock that serializes taking new references
1879 * to i_dio_count, usually by inode->i_mutex.
1880 */
1881 void inode_dio_wait(struct inode *inode)
1882 {
1883 if (atomic_read(&inode->i_dio_count))
1884 __inode_dio_wait(inode);
1885 }
1886 EXPORT_SYMBOL(inode_dio_wait);
1887
1888 /*
1889 * inode_dio_done - signal finish of a direct I/O requests
1890 * @inode: inode the direct I/O happens on
1891 *
1892 * This is called once we've finished processing a direct I/O request,
1893 * and is used to wake up callers waiting for direct I/O to be quiesced.
1894 */
1895 void inode_dio_done(struct inode *inode)
1896 {
1897 if (atomic_dec_and_test(&inode->i_dio_count))
1898 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1899 }
1900 EXPORT_SYMBOL(inode_dio_done);
1901
1902 /*
1903 * inode_set_flags - atomically set some inode flags
1904 *
1905 * Note: the caller should be holding i_mutex, or else be sure that
1906 * they have exclusive access to the inode structure (i.e., while the
1907 * inode is being instantiated). The reason for the cmpxchg() loop
1908 * --- which wouldn't be necessary if all code paths which modify
1909 * i_flags actually followed this rule, is that there is at least one
1910 * code path which doesn't today --- for example,
1911 * __generic_file_aio_write() calls file_remove_suid() without holding
1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1913 *
1914 * In the long run, i_mutex is overkill, and we should probably look
1915 * at using the i_lock spinlock to protect i_flags, and then make sure
1916 * it is so documented in include/linux/fs.h and that all code follows
1917 * the locking convention!!
1918 */
1919 void inode_set_flags(struct inode *inode, unsigned int flags,
1920 unsigned int mask)
1921 {
1922 unsigned int old_flags, new_flags;
1923
1924 WARN_ON_ONCE(flags & ~mask);
1925 do {
1926 old_flags = ACCESS_ONCE(inode->i_flags);
1927 new_flags = (old_flags & ~mask) | flags;
1928 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1929 new_flags) != old_flags));
1930 }
1931 EXPORT_SYMBOL(inode_set_flags);
This page took 0.070996 seconds and 5 git commands to generate.