Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/prefetch.h>
28 #include <linux/ima.h>
29 #include <linux/cred.h>
30 #include "internal.h"
31
32 /*
33 * inode locking rules.
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode_lru_lock protects:
38 * inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * inode_wb_list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode_sb_list_lock
49 * inode->i_lock
50 * inode_lru_lock
51 *
52 * inode_wb_list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode_sb_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 /*
64 * This is needed for the following functions:
65 * - inode_has_buffers
66 * - invalidate_bdev
67 *
68 * FIXME: remove all knowledge of the buffer layer from this file
69 */
70 #include <linux/buffer_head.h>
71
72 /*
73 * New inode.c implementation.
74 *
75 * This implementation has the basic premise of trying
76 * to be extremely low-overhead and SMP-safe, yet be
77 * simple enough to be "obviously correct".
78 *
79 * Famous last words.
80 */
81
82 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
83
84 /* #define INODE_PARANOIA 1 */
85 /* #define INODE_DEBUG 1 */
86
87 /*
88 * Inode lookup is no longer as critical as it used to be:
89 * most of the lookups are going to be through the dcache.
90 */
91 #define I_HASHBITS i_hash_shift
92 #define I_HASHMASK i_hash_mask
93
94 static unsigned int i_hash_mask __read_mostly;
95 static unsigned int i_hash_shift __read_mostly;
96 static struct hlist_head *inode_hashtable __read_mostly;
97 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
98
99 /*
100 * Each inode can be on two separate lists. One is
101 * the hash list of the inode, used for lookups. The
102 * other linked list is the "type" list:
103 * "in_use" - valid inode, i_count > 0, i_nlink > 0
104 * "dirty" - as "in_use" but also dirty
105 * "unused" - valid inode, i_count = 0
106 *
107 * A "dirty" list is maintained for each super block,
108 * allowing for low-overhead inode sync() operations.
109 */
110
111 static LIST_HEAD(inode_lru);
112 static DEFINE_SPINLOCK(inode_lru_lock);
113
114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
115 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
116
117 /*
118 * iprune_sem provides exclusion between the icache shrinking and the
119 * umount path.
120 *
121 * We don't actually need it to protect anything in the umount path,
122 * but only need to cycle through it to make sure any inode that
123 * prune_icache took off the LRU list has been fully torn down by the
124 * time we are past evict_inodes.
125 */
126 static DECLARE_RWSEM(iprune_sem);
127
128 /*
129 * Empty aops. Can be used for the cases where the user does not
130 * define any of the address_space operations.
131 */
132 const struct address_space_operations empty_aops = {
133 };
134 EXPORT_SYMBOL(empty_aops);
135
136 /*
137 * Statistics gathering..
138 */
139 struct inodes_stat_t inodes_stat;
140
141 static DEFINE_PER_CPU(unsigned int, nr_inodes);
142
143 static struct kmem_cache *inode_cachep __read_mostly;
144
145 static int get_nr_inodes(void)
146 {
147 int i;
148 int sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_inodes, i);
151 return sum < 0 ? 0 : sum;
152 }
153
154 static inline int get_nr_inodes_unused(void)
155 {
156 return inodes_stat.nr_unused;
157 }
158
159 int get_nr_dirty_inodes(void)
160 {
161 /* not actually dirty inodes, but a wild approximation */
162 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
163 return nr_dirty > 0 ? nr_dirty : 0;
164 }
165
166 /*
167 * Handle nr_inode sysctl
168 */
169 #ifdef CONFIG_SYSCTL
170 int proc_nr_inodes(ctl_table *table, int write,
171 void __user *buffer, size_t *lenp, loff_t *ppos)
172 {
173 inodes_stat.nr_inodes = get_nr_inodes();
174 return proc_dointvec(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /**
179 * inode_init_always - perform inode structure intialisation
180 * @sb: superblock inode belongs to
181 * @inode: inode to initialise
182 *
183 * These are initializations that need to be done on every inode
184 * allocation as the fields are not initialised by slab allocation.
185 */
186 int inode_init_always(struct super_block *sb, struct inode *inode)
187 {
188 static const struct inode_operations empty_iops;
189 static const struct file_operations empty_fops;
190 struct address_space *const mapping = &inode->i_data;
191
192 inode->i_sb = sb;
193 inode->i_blkbits = sb->s_blocksize_bits;
194 inode->i_flags = 0;
195 atomic_set(&inode->i_count, 1);
196 inode->i_op = &empty_iops;
197 inode->i_fop = &empty_fops;
198 inode->i_nlink = 1;
199 inode->i_uid = 0;
200 inode->i_gid = 0;
201 atomic_set(&inode->i_writecount, 0);
202 inode->i_size = 0;
203 inode->i_blocks = 0;
204 inode->i_bytes = 0;
205 inode->i_generation = 0;
206 #ifdef CONFIG_QUOTA
207 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
208 #endif
209 inode->i_pipe = NULL;
210 inode->i_bdev = NULL;
211 inode->i_cdev = NULL;
212 inode->i_rdev = 0;
213 inode->dirtied_when = 0;
214
215 if (security_inode_alloc(inode))
216 goto out;
217 spin_lock_init(&inode->i_lock);
218 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
219
220 mutex_init(&inode->i_mutex);
221 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
222
223 init_rwsem(&inode->i_alloc_sem);
224 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
225
226 mapping->a_ops = &empty_aops;
227 mapping->host = inode;
228 mapping->flags = 0;
229 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
230 mapping->assoc_mapping = NULL;
231 mapping->backing_dev_info = &default_backing_dev_info;
232 mapping->writeback_index = 0;
233
234 /*
235 * If the block_device provides a backing_dev_info for client
236 * inodes then use that. Otherwise the inode share the bdev's
237 * backing_dev_info.
238 */
239 if (sb->s_bdev) {
240 struct backing_dev_info *bdi;
241
242 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
243 mapping->backing_dev_info = bdi;
244 }
245 inode->i_private = NULL;
246 inode->i_mapping = mapping;
247 #ifdef CONFIG_FS_POSIX_ACL
248 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
249 #endif
250
251 #ifdef CONFIG_FSNOTIFY
252 inode->i_fsnotify_mask = 0;
253 #endif
254
255 this_cpu_inc(nr_inodes);
256
257 return 0;
258 out:
259 return -ENOMEM;
260 }
261 EXPORT_SYMBOL(inode_init_always);
262
263 static struct inode *alloc_inode(struct super_block *sb)
264 {
265 struct inode *inode;
266
267 if (sb->s_op->alloc_inode)
268 inode = sb->s_op->alloc_inode(sb);
269 else
270 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
271
272 if (!inode)
273 return NULL;
274
275 if (unlikely(inode_init_always(sb, inode))) {
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
279 kmem_cache_free(inode_cachep, inode);
280 return NULL;
281 }
282
283 return inode;
284 }
285
286 void free_inode_nonrcu(struct inode *inode)
287 {
288 kmem_cache_free(inode_cachep, inode);
289 }
290 EXPORT_SYMBOL(free_inode_nonrcu);
291
292 void __destroy_inode(struct inode *inode)
293 {
294 BUG_ON(inode_has_buffers(inode));
295 security_inode_free(inode);
296 fsnotify_inode_delete(inode);
297 #ifdef CONFIG_FS_POSIX_ACL
298 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
299 posix_acl_release(inode->i_acl);
300 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
301 posix_acl_release(inode->i_default_acl);
302 #endif
303 this_cpu_dec(nr_inodes);
304 }
305 EXPORT_SYMBOL(__destroy_inode);
306
307 static void i_callback(struct rcu_head *head)
308 {
309 struct inode *inode = container_of(head, struct inode, i_rcu);
310 INIT_LIST_HEAD(&inode->i_dentry);
311 kmem_cache_free(inode_cachep, inode);
312 }
313
314 static void destroy_inode(struct inode *inode)
315 {
316 BUG_ON(!list_empty(&inode->i_lru));
317 __destroy_inode(inode);
318 if (inode->i_sb->s_op->destroy_inode)
319 inode->i_sb->s_op->destroy_inode(inode);
320 else
321 call_rcu(&inode->i_rcu, i_callback);
322 }
323
324 void address_space_init_once(struct address_space *mapping)
325 {
326 memset(mapping, 0, sizeof(*mapping));
327 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
328 spin_lock_init(&mapping->tree_lock);
329 mutex_init(&mapping->i_mmap_mutex);
330 INIT_LIST_HEAD(&mapping->private_list);
331 spin_lock_init(&mapping->private_lock);
332 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
333 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
334 }
335 EXPORT_SYMBOL(address_space_init_once);
336
337 /*
338 * These are initializations that only need to be done
339 * once, because the fields are idempotent across use
340 * of the inode, so let the slab aware of that.
341 */
342 void inode_init_once(struct inode *inode)
343 {
344 memset(inode, 0, sizeof(*inode));
345 INIT_HLIST_NODE(&inode->i_hash);
346 INIT_LIST_HEAD(&inode->i_dentry);
347 INIT_LIST_HEAD(&inode->i_devices);
348 INIT_LIST_HEAD(&inode->i_wb_list);
349 INIT_LIST_HEAD(&inode->i_lru);
350 address_space_init_once(&inode->i_data);
351 i_size_ordered_init(inode);
352 #ifdef CONFIG_FSNOTIFY
353 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
354 #endif
355 }
356 EXPORT_SYMBOL(inode_init_once);
357
358 static void init_once(void *foo)
359 {
360 struct inode *inode = (struct inode *) foo;
361
362 inode_init_once(inode);
363 }
364
365 /*
366 * inode->i_lock must be held
367 */
368 void __iget(struct inode *inode)
369 {
370 atomic_inc(&inode->i_count);
371 }
372
373 /*
374 * get additional reference to inode; caller must already hold one.
375 */
376 void ihold(struct inode *inode)
377 {
378 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
379 }
380 EXPORT_SYMBOL(ihold);
381
382 static void inode_lru_list_add(struct inode *inode)
383 {
384 spin_lock(&inode_lru_lock);
385 if (list_empty(&inode->i_lru)) {
386 list_add(&inode->i_lru, &inode_lru);
387 inodes_stat.nr_unused++;
388 }
389 spin_unlock(&inode_lru_lock);
390 }
391
392 static void inode_lru_list_del(struct inode *inode)
393 {
394 spin_lock(&inode_lru_lock);
395 if (!list_empty(&inode->i_lru)) {
396 list_del_init(&inode->i_lru);
397 inodes_stat.nr_unused--;
398 }
399 spin_unlock(&inode_lru_lock);
400 }
401
402 /**
403 * inode_sb_list_add - add inode to the superblock list of inodes
404 * @inode: inode to add
405 */
406 void inode_sb_list_add(struct inode *inode)
407 {
408 spin_lock(&inode_sb_list_lock);
409 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
410 spin_unlock(&inode_sb_list_lock);
411 }
412 EXPORT_SYMBOL_GPL(inode_sb_list_add);
413
414 static inline void inode_sb_list_del(struct inode *inode)
415 {
416 spin_lock(&inode_sb_list_lock);
417 list_del_init(&inode->i_sb_list);
418 spin_unlock(&inode_sb_list_lock);
419 }
420
421 static unsigned long hash(struct super_block *sb, unsigned long hashval)
422 {
423 unsigned long tmp;
424
425 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
426 L1_CACHE_BYTES;
427 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
428 return tmp & I_HASHMASK;
429 }
430
431 /**
432 * __insert_inode_hash - hash an inode
433 * @inode: unhashed inode
434 * @hashval: unsigned long value used to locate this object in the
435 * inode_hashtable.
436 *
437 * Add an inode to the inode hash for this superblock.
438 */
439 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
440 {
441 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
442
443 spin_lock(&inode_hash_lock);
444 spin_lock(&inode->i_lock);
445 hlist_add_head(&inode->i_hash, b);
446 spin_unlock(&inode->i_lock);
447 spin_unlock(&inode_hash_lock);
448 }
449 EXPORT_SYMBOL(__insert_inode_hash);
450
451 /**
452 * remove_inode_hash - remove an inode from the hash
453 * @inode: inode to unhash
454 *
455 * Remove an inode from the superblock.
456 */
457 void remove_inode_hash(struct inode *inode)
458 {
459 spin_lock(&inode_hash_lock);
460 spin_lock(&inode->i_lock);
461 hlist_del_init(&inode->i_hash);
462 spin_unlock(&inode->i_lock);
463 spin_unlock(&inode_hash_lock);
464 }
465 EXPORT_SYMBOL(remove_inode_hash);
466
467 void end_writeback(struct inode *inode)
468 {
469 might_sleep();
470 BUG_ON(inode->i_data.nrpages);
471 BUG_ON(!list_empty(&inode->i_data.private_list));
472 BUG_ON(!(inode->i_state & I_FREEING));
473 BUG_ON(inode->i_state & I_CLEAR);
474 inode_sync_wait(inode);
475 /* don't need i_lock here, no concurrent mods to i_state */
476 inode->i_state = I_FREEING | I_CLEAR;
477 }
478 EXPORT_SYMBOL(end_writeback);
479
480 /*
481 * Free the inode passed in, removing it from the lists it is still connected
482 * to. We remove any pages still attached to the inode and wait for any IO that
483 * is still in progress before finally destroying the inode.
484 *
485 * An inode must already be marked I_FREEING so that we avoid the inode being
486 * moved back onto lists if we race with other code that manipulates the lists
487 * (e.g. writeback_single_inode). The caller is responsible for setting this.
488 *
489 * An inode must already be removed from the LRU list before being evicted from
490 * the cache. This should occur atomically with setting the I_FREEING state
491 * flag, so no inodes here should ever be on the LRU when being evicted.
492 */
493 static void evict(struct inode *inode)
494 {
495 const struct super_operations *op = inode->i_sb->s_op;
496
497 BUG_ON(!(inode->i_state & I_FREEING));
498 BUG_ON(!list_empty(&inode->i_lru));
499
500 inode_wb_list_del(inode);
501 inode_sb_list_del(inode);
502
503 if (op->evict_inode) {
504 op->evict_inode(inode);
505 } else {
506 if (inode->i_data.nrpages)
507 truncate_inode_pages(&inode->i_data, 0);
508 end_writeback(inode);
509 }
510 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
511 bd_forget(inode);
512 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
513 cd_forget(inode);
514
515 remove_inode_hash(inode);
516
517 spin_lock(&inode->i_lock);
518 wake_up_bit(&inode->i_state, __I_NEW);
519 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
520 spin_unlock(&inode->i_lock);
521
522 destroy_inode(inode);
523 }
524
525 /*
526 * dispose_list - dispose of the contents of a local list
527 * @head: the head of the list to free
528 *
529 * Dispose-list gets a local list with local inodes in it, so it doesn't
530 * need to worry about list corruption and SMP locks.
531 */
532 static void dispose_list(struct list_head *head)
533 {
534 while (!list_empty(head)) {
535 struct inode *inode;
536
537 inode = list_first_entry(head, struct inode, i_lru);
538 list_del_init(&inode->i_lru);
539
540 evict(inode);
541 }
542 }
543
544 /**
545 * evict_inodes - evict all evictable inodes for a superblock
546 * @sb: superblock to operate on
547 *
548 * Make sure that no inodes with zero refcount are retained. This is
549 * called by superblock shutdown after having MS_ACTIVE flag removed,
550 * so any inode reaching zero refcount during or after that call will
551 * be immediately evicted.
552 */
553 void evict_inodes(struct super_block *sb)
554 {
555 struct inode *inode, *next;
556 LIST_HEAD(dispose);
557
558 spin_lock(&inode_sb_list_lock);
559 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
560 if (atomic_read(&inode->i_count))
561 continue;
562
563 spin_lock(&inode->i_lock);
564 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
565 spin_unlock(&inode->i_lock);
566 continue;
567 }
568
569 inode->i_state |= I_FREEING;
570 inode_lru_list_del(inode);
571 spin_unlock(&inode->i_lock);
572 list_add(&inode->i_lru, &dispose);
573 }
574 spin_unlock(&inode_sb_list_lock);
575
576 dispose_list(&dispose);
577
578 /*
579 * Cycle through iprune_sem to make sure any inode that prune_icache
580 * moved off the list before we took the lock has been fully torn
581 * down.
582 */
583 down_write(&iprune_sem);
584 up_write(&iprune_sem);
585 }
586
587 /**
588 * invalidate_inodes - attempt to free all inodes on a superblock
589 * @sb: superblock to operate on
590 * @kill_dirty: flag to guide handling of dirty inodes
591 *
592 * Attempts to free all inodes for a given superblock. If there were any
593 * busy inodes return a non-zero value, else zero.
594 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
595 * them as busy.
596 */
597 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
598 {
599 int busy = 0;
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
602
603 spin_lock(&inode_sb_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 spin_lock(&inode->i_lock);
606 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
607 spin_unlock(&inode->i_lock);
608 continue;
609 }
610 if (inode->i_state & I_DIRTY && !kill_dirty) {
611 spin_unlock(&inode->i_lock);
612 busy = 1;
613 continue;
614 }
615 if (atomic_read(&inode->i_count)) {
616 spin_unlock(&inode->i_lock);
617 busy = 1;
618 continue;
619 }
620
621 inode->i_state |= I_FREEING;
622 inode_lru_list_del(inode);
623 spin_unlock(&inode->i_lock);
624 list_add(&inode->i_lru, &dispose);
625 }
626 spin_unlock(&inode_sb_list_lock);
627
628 dispose_list(&dispose);
629
630 return busy;
631 }
632
633 static int can_unuse(struct inode *inode)
634 {
635 if (inode->i_state & ~I_REFERENCED)
636 return 0;
637 if (inode_has_buffers(inode))
638 return 0;
639 if (atomic_read(&inode->i_count))
640 return 0;
641 if (inode->i_data.nrpages)
642 return 0;
643 return 1;
644 }
645
646 /*
647 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
648 * temporary list and then are freed outside inode_lru_lock by dispose_list().
649 *
650 * Any inodes which are pinned purely because of attached pagecache have their
651 * pagecache removed. If the inode has metadata buffers attached to
652 * mapping->private_list then try to remove them.
653 *
654 * If the inode has the I_REFERENCED flag set, then it means that it has been
655 * used recently - the flag is set in iput_final(). When we encounter such an
656 * inode, clear the flag and move it to the back of the LRU so it gets another
657 * pass through the LRU before it gets reclaimed. This is necessary because of
658 * the fact we are doing lazy LRU updates to minimise lock contention so the
659 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
660 * with this flag set because they are the inodes that are out of order.
661 */
662 static void prune_icache(int nr_to_scan)
663 {
664 LIST_HEAD(freeable);
665 int nr_scanned;
666 unsigned long reap = 0;
667
668 down_read(&iprune_sem);
669 spin_lock(&inode_lru_lock);
670 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
671 struct inode *inode;
672
673 if (list_empty(&inode_lru))
674 break;
675
676 inode = list_entry(inode_lru.prev, struct inode, i_lru);
677
678 /*
679 * we are inverting the inode_lru_lock/inode->i_lock here,
680 * so use a trylock. If we fail to get the lock, just move the
681 * inode to the back of the list so we don't spin on it.
682 */
683 if (!spin_trylock(&inode->i_lock)) {
684 list_move(&inode->i_lru, &inode_lru);
685 continue;
686 }
687
688 /*
689 * Referenced or dirty inodes are still in use. Give them
690 * another pass through the LRU as we canot reclaim them now.
691 */
692 if (atomic_read(&inode->i_count) ||
693 (inode->i_state & ~I_REFERENCED)) {
694 list_del_init(&inode->i_lru);
695 spin_unlock(&inode->i_lock);
696 inodes_stat.nr_unused--;
697 continue;
698 }
699
700 /* recently referenced inodes get one more pass */
701 if (inode->i_state & I_REFERENCED) {
702 inode->i_state &= ~I_REFERENCED;
703 list_move(&inode->i_lru, &inode_lru);
704 spin_unlock(&inode->i_lock);
705 continue;
706 }
707 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
708 __iget(inode);
709 spin_unlock(&inode->i_lock);
710 spin_unlock(&inode_lru_lock);
711 if (remove_inode_buffers(inode))
712 reap += invalidate_mapping_pages(&inode->i_data,
713 0, -1);
714 iput(inode);
715 spin_lock(&inode_lru_lock);
716
717 if (inode != list_entry(inode_lru.next,
718 struct inode, i_lru))
719 continue; /* wrong inode or list_empty */
720 /* avoid lock inversions with trylock */
721 if (!spin_trylock(&inode->i_lock))
722 continue;
723 if (!can_unuse(inode)) {
724 spin_unlock(&inode->i_lock);
725 continue;
726 }
727 }
728 WARN_ON(inode->i_state & I_NEW);
729 inode->i_state |= I_FREEING;
730 spin_unlock(&inode->i_lock);
731
732 list_move(&inode->i_lru, &freeable);
733 inodes_stat.nr_unused--;
734 }
735 if (current_is_kswapd())
736 __count_vm_events(KSWAPD_INODESTEAL, reap);
737 else
738 __count_vm_events(PGINODESTEAL, reap);
739 spin_unlock(&inode_lru_lock);
740
741 dispose_list(&freeable);
742 up_read(&iprune_sem);
743 }
744
745 /*
746 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
747 * "unused" means that no dentries are referring to the inodes: the files are
748 * not open and the dcache references to those inodes have already been
749 * reclaimed.
750 *
751 * This function is passed the number of inodes to scan, and it returns the
752 * total number of remaining possibly-reclaimable inodes.
753 */
754 static int shrink_icache_memory(struct shrinker *shrink,
755 struct shrink_control *sc)
756 {
757 int nr = sc->nr_to_scan;
758 gfp_t gfp_mask = sc->gfp_mask;
759
760 if (nr) {
761 /*
762 * Nasty deadlock avoidance. We may hold various FS locks,
763 * and we don't want to recurse into the FS that called us
764 * in clear_inode() and friends..
765 */
766 if (!(gfp_mask & __GFP_FS))
767 return -1;
768 prune_icache(nr);
769 }
770 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
771 }
772
773 static struct shrinker icache_shrinker = {
774 .shrink = shrink_icache_memory,
775 .seeks = DEFAULT_SEEKS,
776 };
777
778 static void __wait_on_freeing_inode(struct inode *inode);
779 /*
780 * Called with the inode lock held.
781 */
782 static struct inode *find_inode(struct super_block *sb,
783 struct hlist_head *head,
784 int (*test)(struct inode *, void *),
785 void *data)
786 {
787 struct hlist_node *node;
788 struct inode *inode = NULL;
789
790 repeat:
791 hlist_for_each_entry(inode, node, head, i_hash) {
792 spin_lock(&inode->i_lock);
793 if (inode->i_sb != sb) {
794 spin_unlock(&inode->i_lock);
795 continue;
796 }
797 if (!test(inode, data)) {
798 spin_unlock(&inode->i_lock);
799 continue;
800 }
801 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 __wait_on_freeing_inode(inode);
803 goto repeat;
804 }
805 __iget(inode);
806 spin_unlock(&inode->i_lock);
807 return inode;
808 }
809 return NULL;
810 }
811
812 /*
813 * find_inode_fast is the fast path version of find_inode, see the comment at
814 * iget_locked for details.
815 */
816 static struct inode *find_inode_fast(struct super_block *sb,
817 struct hlist_head *head, unsigned long ino)
818 {
819 struct hlist_node *node;
820 struct inode *inode = NULL;
821
822 repeat:
823 hlist_for_each_entry(inode, node, head, i_hash) {
824 spin_lock(&inode->i_lock);
825 if (inode->i_ino != ino) {
826 spin_unlock(&inode->i_lock);
827 continue;
828 }
829 if (inode->i_sb != sb) {
830 spin_unlock(&inode->i_lock);
831 continue;
832 }
833 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
834 __wait_on_freeing_inode(inode);
835 goto repeat;
836 }
837 __iget(inode);
838 spin_unlock(&inode->i_lock);
839 return inode;
840 }
841 return NULL;
842 }
843
844 /*
845 * Each cpu owns a range of LAST_INO_BATCH numbers.
846 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
847 * to renew the exhausted range.
848 *
849 * This does not significantly increase overflow rate because every CPU can
850 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
851 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
852 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
853 * overflow rate by 2x, which does not seem too significant.
854 *
855 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
856 * error if st_ino won't fit in target struct field. Use 32bit counter
857 * here to attempt to avoid that.
858 */
859 #define LAST_INO_BATCH 1024
860 static DEFINE_PER_CPU(unsigned int, last_ino);
861
862 unsigned int get_next_ino(void)
863 {
864 unsigned int *p = &get_cpu_var(last_ino);
865 unsigned int res = *p;
866
867 #ifdef CONFIG_SMP
868 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
869 static atomic_t shared_last_ino;
870 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
871
872 res = next - LAST_INO_BATCH;
873 }
874 #endif
875
876 *p = ++res;
877 put_cpu_var(last_ino);
878 return res;
879 }
880 EXPORT_SYMBOL(get_next_ino);
881
882 /**
883 * new_inode - obtain an inode
884 * @sb: superblock
885 *
886 * Allocates a new inode for given superblock. The default gfp_mask
887 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
888 * If HIGHMEM pages are unsuitable or it is known that pages allocated
889 * for the page cache are not reclaimable or migratable,
890 * mapping_set_gfp_mask() must be called with suitable flags on the
891 * newly created inode's mapping
892 *
893 */
894 struct inode *new_inode(struct super_block *sb)
895 {
896 struct inode *inode;
897
898 spin_lock_prefetch(&inode_sb_list_lock);
899
900 inode = alloc_inode(sb);
901 if (inode) {
902 spin_lock(&inode->i_lock);
903 inode->i_state = 0;
904 spin_unlock(&inode->i_lock);
905 inode_sb_list_add(inode);
906 }
907 return inode;
908 }
909 EXPORT_SYMBOL(new_inode);
910
911 /**
912 * unlock_new_inode - clear the I_NEW state and wake up any waiters
913 * @inode: new inode to unlock
914 *
915 * Called when the inode is fully initialised to clear the new state of the
916 * inode and wake up anyone waiting for the inode to finish initialisation.
917 */
918 void unlock_new_inode(struct inode *inode)
919 {
920 #ifdef CONFIG_DEBUG_LOCK_ALLOC
921 if (S_ISDIR(inode->i_mode)) {
922 struct file_system_type *type = inode->i_sb->s_type;
923
924 /* Set new key only if filesystem hasn't already changed it */
925 if (!lockdep_match_class(&inode->i_mutex,
926 &type->i_mutex_key)) {
927 /*
928 * ensure nobody is actually holding i_mutex
929 */
930 mutex_destroy(&inode->i_mutex);
931 mutex_init(&inode->i_mutex);
932 lockdep_set_class(&inode->i_mutex,
933 &type->i_mutex_dir_key);
934 }
935 }
936 #endif
937 spin_lock(&inode->i_lock);
938 WARN_ON(!(inode->i_state & I_NEW));
939 inode->i_state &= ~I_NEW;
940 wake_up_bit(&inode->i_state, __I_NEW);
941 spin_unlock(&inode->i_lock);
942 }
943 EXPORT_SYMBOL(unlock_new_inode);
944
945 /**
946 * iget5_locked - obtain an inode from a mounted file system
947 * @sb: super block of file system
948 * @hashval: hash value (usually inode number) to get
949 * @test: callback used for comparisons between inodes
950 * @set: callback used to initialize a new struct inode
951 * @data: opaque data pointer to pass to @test and @set
952 *
953 * Search for the inode specified by @hashval and @data in the inode cache,
954 * and if present it is return it with an increased reference count. This is
955 * a generalized version of iget_locked() for file systems where the inode
956 * number is not sufficient for unique identification of an inode.
957 *
958 * If the inode is not in cache, allocate a new inode and return it locked,
959 * hashed, and with the I_NEW flag set. The file system gets to fill it in
960 * before unlocking it via unlock_new_inode().
961 *
962 * Note both @test and @set are called with the inode_hash_lock held, so can't
963 * sleep.
964 */
965 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
966 int (*test)(struct inode *, void *),
967 int (*set)(struct inode *, void *), void *data)
968 {
969 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
970 struct inode *inode;
971
972 spin_lock(&inode_hash_lock);
973 inode = find_inode(sb, head, test, data);
974 spin_unlock(&inode_hash_lock);
975
976 if (inode) {
977 wait_on_inode(inode);
978 return inode;
979 }
980
981 inode = alloc_inode(sb);
982 if (inode) {
983 struct inode *old;
984
985 spin_lock(&inode_hash_lock);
986 /* We released the lock, so.. */
987 old = find_inode(sb, head, test, data);
988 if (!old) {
989 if (set(inode, data))
990 goto set_failed;
991
992 spin_lock(&inode->i_lock);
993 inode->i_state = I_NEW;
994 hlist_add_head(&inode->i_hash, head);
995 spin_unlock(&inode->i_lock);
996 inode_sb_list_add(inode);
997 spin_unlock(&inode_hash_lock);
998
999 /* Return the locked inode with I_NEW set, the
1000 * caller is responsible for filling in the contents
1001 */
1002 return inode;
1003 }
1004
1005 /*
1006 * Uhhuh, somebody else created the same inode under
1007 * us. Use the old inode instead of the one we just
1008 * allocated.
1009 */
1010 spin_unlock(&inode_hash_lock);
1011 destroy_inode(inode);
1012 inode = old;
1013 wait_on_inode(inode);
1014 }
1015 return inode;
1016
1017 set_failed:
1018 spin_unlock(&inode_hash_lock);
1019 destroy_inode(inode);
1020 return NULL;
1021 }
1022 EXPORT_SYMBOL(iget5_locked);
1023
1024 /**
1025 * iget_locked - obtain an inode from a mounted file system
1026 * @sb: super block of file system
1027 * @ino: inode number to get
1028 *
1029 * Search for the inode specified by @ino in the inode cache and if present
1030 * return it with an increased reference count. This is for file systems
1031 * where the inode number is sufficient for unique identification of an inode.
1032 *
1033 * If the inode is not in cache, allocate a new inode and return it locked,
1034 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1035 * before unlocking it via unlock_new_inode().
1036 */
1037 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1038 {
1039 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1040 struct inode *inode;
1041
1042 spin_lock(&inode_hash_lock);
1043 inode = find_inode_fast(sb, head, ino);
1044 spin_unlock(&inode_hash_lock);
1045 if (inode) {
1046 wait_on_inode(inode);
1047 return inode;
1048 }
1049
1050 inode = alloc_inode(sb);
1051 if (inode) {
1052 struct inode *old;
1053
1054 spin_lock(&inode_hash_lock);
1055 /* We released the lock, so.. */
1056 old = find_inode_fast(sb, head, ino);
1057 if (!old) {
1058 inode->i_ino = ino;
1059 spin_lock(&inode->i_lock);
1060 inode->i_state = I_NEW;
1061 hlist_add_head(&inode->i_hash, head);
1062 spin_unlock(&inode->i_lock);
1063 inode_sb_list_add(inode);
1064 spin_unlock(&inode_hash_lock);
1065
1066 /* Return the locked inode with I_NEW set, the
1067 * caller is responsible for filling in the contents
1068 */
1069 return inode;
1070 }
1071
1072 /*
1073 * Uhhuh, somebody else created the same inode under
1074 * us. Use the old inode instead of the one we just
1075 * allocated.
1076 */
1077 spin_unlock(&inode_hash_lock);
1078 destroy_inode(inode);
1079 inode = old;
1080 wait_on_inode(inode);
1081 }
1082 return inode;
1083 }
1084 EXPORT_SYMBOL(iget_locked);
1085
1086 /*
1087 * search the inode cache for a matching inode number.
1088 * If we find one, then the inode number we are trying to
1089 * allocate is not unique and so we should not use it.
1090 *
1091 * Returns 1 if the inode number is unique, 0 if it is not.
1092 */
1093 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1094 {
1095 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1096 struct hlist_node *node;
1097 struct inode *inode;
1098
1099 spin_lock(&inode_hash_lock);
1100 hlist_for_each_entry(inode, node, b, i_hash) {
1101 if (inode->i_ino == ino && inode->i_sb == sb) {
1102 spin_unlock(&inode_hash_lock);
1103 return 0;
1104 }
1105 }
1106 spin_unlock(&inode_hash_lock);
1107
1108 return 1;
1109 }
1110
1111 /**
1112 * iunique - get a unique inode number
1113 * @sb: superblock
1114 * @max_reserved: highest reserved inode number
1115 *
1116 * Obtain an inode number that is unique on the system for a given
1117 * superblock. This is used by file systems that have no natural
1118 * permanent inode numbering system. An inode number is returned that
1119 * is higher than the reserved limit but unique.
1120 *
1121 * BUGS:
1122 * With a large number of inodes live on the file system this function
1123 * currently becomes quite slow.
1124 */
1125 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1126 {
1127 /*
1128 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1129 * error if st_ino won't fit in target struct field. Use 32bit counter
1130 * here to attempt to avoid that.
1131 */
1132 static DEFINE_SPINLOCK(iunique_lock);
1133 static unsigned int counter;
1134 ino_t res;
1135
1136 spin_lock(&iunique_lock);
1137 do {
1138 if (counter <= max_reserved)
1139 counter = max_reserved + 1;
1140 res = counter++;
1141 } while (!test_inode_iunique(sb, res));
1142 spin_unlock(&iunique_lock);
1143
1144 return res;
1145 }
1146 EXPORT_SYMBOL(iunique);
1147
1148 struct inode *igrab(struct inode *inode)
1149 {
1150 spin_lock(&inode->i_lock);
1151 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1152 __iget(inode);
1153 spin_unlock(&inode->i_lock);
1154 } else {
1155 spin_unlock(&inode->i_lock);
1156 /*
1157 * Handle the case where s_op->clear_inode is not been
1158 * called yet, and somebody is calling igrab
1159 * while the inode is getting freed.
1160 */
1161 inode = NULL;
1162 }
1163 return inode;
1164 }
1165 EXPORT_SYMBOL(igrab);
1166
1167 /**
1168 * ilookup5_nowait - search for an inode in the inode cache
1169 * @sb: super block of file system to search
1170 * @hashval: hash value (usually inode number) to search for
1171 * @test: callback used for comparisons between inodes
1172 * @data: opaque data pointer to pass to @test
1173 *
1174 * Search for the inode specified by @hashval and @data in the inode cache.
1175 * If the inode is in the cache, the inode is returned with an incremented
1176 * reference count.
1177 *
1178 * Note: I_NEW is not waited upon so you have to be very careful what you do
1179 * with the returned inode. You probably should be using ilookup5() instead.
1180 *
1181 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1182 */
1183 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1184 int (*test)(struct inode *, void *), void *data)
1185 {
1186 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1187 struct inode *inode;
1188
1189 spin_lock(&inode_hash_lock);
1190 inode = find_inode(sb, head, test, data);
1191 spin_unlock(&inode_hash_lock);
1192
1193 return inode;
1194 }
1195 EXPORT_SYMBOL(ilookup5_nowait);
1196
1197 /**
1198 * ilookup5 - search for an inode in the inode cache
1199 * @sb: super block of file system to search
1200 * @hashval: hash value (usually inode number) to search for
1201 * @test: callback used for comparisons between inodes
1202 * @data: opaque data pointer to pass to @test
1203 *
1204 * Search for the inode specified by @hashval and @data in the inode cache,
1205 * and if the inode is in the cache, return the inode with an incremented
1206 * reference count. Waits on I_NEW before returning the inode.
1207 * returned with an incremented reference count.
1208 *
1209 * This is a generalized version of ilookup() for file systems where the
1210 * inode number is not sufficient for unique identification of an inode.
1211 *
1212 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1213 */
1214 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1215 int (*test)(struct inode *, void *), void *data)
1216 {
1217 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1218
1219 if (inode)
1220 wait_on_inode(inode);
1221 return inode;
1222 }
1223 EXPORT_SYMBOL(ilookup5);
1224
1225 /**
1226 * ilookup - search for an inode in the inode cache
1227 * @sb: super block of file system to search
1228 * @ino: inode number to search for
1229 *
1230 * Search for the inode @ino in the inode cache, and if the inode is in the
1231 * cache, the inode is returned with an incremented reference count.
1232 */
1233 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1234 {
1235 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1236 struct inode *inode;
1237
1238 spin_lock(&inode_hash_lock);
1239 inode = find_inode_fast(sb, head, ino);
1240 spin_unlock(&inode_hash_lock);
1241
1242 if (inode)
1243 wait_on_inode(inode);
1244 return inode;
1245 }
1246 EXPORT_SYMBOL(ilookup);
1247
1248 int insert_inode_locked(struct inode *inode)
1249 {
1250 struct super_block *sb = inode->i_sb;
1251 ino_t ino = inode->i_ino;
1252 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1253
1254 while (1) {
1255 struct hlist_node *node;
1256 struct inode *old = NULL;
1257 spin_lock(&inode_hash_lock);
1258 hlist_for_each_entry(old, node, head, i_hash) {
1259 if (old->i_ino != ino)
1260 continue;
1261 if (old->i_sb != sb)
1262 continue;
1263 spin_lock(&old->i_lock);
1264 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1265 spin_unlock(&old->i_lock);
1266 continue;
1267 }
1268 break;
1269 }
1270 if (likely(!node)) {
1271 spin_lock(&inode->i_lock);
1272 inode->i_state |= I_NEW;
1273 hlist_add_head(&inode->i_hash, head);
1274 spin_unlock(&inode->i_lock);
1275 spin_unlock(&inode_hash_lock);
1276 return 0;
1277 }
1278 __iget(old);
1279 spin_unlock(&old->i_lock);
1280 spin_unlock(&inode_hash_lock);
1281 wait_on_inode(old);
1282 if (unlikely(!inode_unhashed(old))) {
1283 iput(old);
1284 return -EBUSY;
1285 }
1286 iput(old);
1287 }
1288 }
1289 EXPORT_SYMBOL(insert_inode_locked);
1290
1291 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1292 int (*test)(struct inode *, void *), void *data)
1293 {
1294 struct super_block *sb = inode->i_sb;
1295 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1296
1297 while (1) {
1298 struct hlist_node *node;
1299 struct inode *old = NULL;
1300
1301 spin_lock(&inode_hash_lock);
1302 hlist_for_each_entry(old, node, head, i_hash) {
1303 if (old->i_sb != sb)
1304 continue;
1305 if (!test(old, data))
1306 continue;
1307 spin_lock(&old->i_lock);
1308 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1309 spin_unlock(&old->i_lock);
1310 continue;
1311 }
1312 break;
1313 }
1314 if (likely(!node)) {
1315 spin_lock(&inode->i_lock);
1316 inode->i_state |= I_NEW;
1317 hlist_add_head(&inode->i_hash, head);
1318 spin_unlock(&inode->i_lock);
1319 spin_unlock(&inode_hash_lock);
1320 return 0;
1321 }
1322 __iget(old);
1323 spin_unlock(&old->i_lock);
1324 spin_unlock(&inode_hash_lock);
1325 wait_on_inode(old);
1326 if (unlikely(!inode_unhashed(old))) {
1327 iput(old);
1328 return -EBUSY;
1329 }
1330 iput(old);
1331 }
1332 }
1333 EXPORT_SYMBOL(insert_inode_locked4);
1334
1335
1336 int generic_delete_inode(struct inode *inode)
1337 {
1338 return 1;
1339 }
1340 EXPORT_SYMBOL(generic_delete_inode);
1341
1342 /*
1343 * Normal UNIX filesystem behaviour: delete the
1344 * inode when the usage count drops to zero, and
1345 * i_nlink is zero.
1346 */
1347 int generic_drop_inode(struct inode *inode)
1348 {
1349 return !inode->i_nlink || inode_unhashed(inode);
1350 }
1351 EXPORT_SYMBOL_GPL(generic_drop_inode);
1352
1353 /*
1354 * Called when we're dropping the last reference
1355 * to an inode.
1356 *
1357 * Call the FS "drop_inode()" function, defaulting to
1358 * the legacy UNIX filesystem behaviour. If it tells
1359 * us to evict inode, do so. Otherwise, retain inode
1360 * in cache if fs is alive, sync and evict if fs is
1361 * shutting down.
1362 */
1363 static void iput_final(struct inode *inode)
1364 {
1365 struct super_block *sb = inode->i_sb;
1366 const struct super_operations *op = inode->i_sb->s_op;
1367 int drop;
1368
1369 WARN_ON(inode->i_state & I_NEW);
1370
1371 if (op && op->drop_inode)
1372 drop = op->drop_inode(inode);
1373 else
1374 drop = generic_drop_inode(inode);
1375
1376 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1377 inode->i_state |= I_REFERENCED;
1378 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1379 inode_lru_list_add(inode);
1380 spin_unlock(&inode->i_lock);
1381 return;
1382 }
1383
1384 if (!drop) {
1385 inode->i_state |= I_WILL_FREE;
1386 spin_unlock(&inode->i_lock);
1387 write_inode_now(inode, 1);
1388 spin_lock(&inode->i_lock);
1389 WARN_ON(inode->i_state & I_NEW);
1390 inode->i_state &= ~I_WILL_FREE;
1391 }
1392
1393 inode->i_state |= I_FREEING;
1394 inode_lru_list_del(inode);
1395 spin_unlock(&inode->i_lock);
1396
1397 evict(inode);
1398 }
1399
1400 /**
1401 * iput - put an inode
1402 * @inode: inode to put
1403 *
1404 * Puts an inode, dropping its usage count. If the inode use count hits
1405 * zero, the inode is then freed and may also be destroyed.
1406 *
1407 * Consequently, iput() can sleep.
1408 */
1409 void iput(struct inode *inode)
1410 {
1411 if (inode) {
1412 BUG_ON(inode->i_state & I_CLEAR);
1413
1414 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1415 iput_final(inode);
1416 }
1417 }
1418 EXPORT_SYMBOL(iput);
1419
1420 /**
1421 * bmap - find a block number in a file
1422 * @inode: inode of file
1423 * @block: block to find
1424 *
1425 * Returns the block number on the device holding the inode that
1426 * is the disk block number for the block of the file requested.
1427 * That is, asked for block 4 of inode 1 the function will return the
1428 * disk block relative to the disk start that holds that block of the
1429 * file.
1430 */
1431 sector_t bmap(struct inode *inode, sector_t block)
1432 {
1433 sector_t res = 0;
1434 if (inode->i_mapping->a_ops->bmap)
1435 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1436 return res;
1437 }
1438 EXPORT_SYMBOL(bmap);
1439
1440 /*
1441 * With relative atime, only update atime if the previous atime is
1442 * earlier than either the ctime or mtime or if at least a day has
1443 * passed since the last atime update.
1444 */
1445 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1446 struct timespec now)
1447 {
1448
1449 if (!(mnt->mnt_flags & MNT_RELATIME))
1450 return 1;
1451 /*
1452 * Is mtime younger than atime? If yes, update atime:
1453 */
1454 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1455 return 1;
1456 /*
1457 * Is ctime younger than atime? If yes, update atime:
1458 */
1459 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1460 return 1;
1461
1462 /*
1463 * Is the previous atime value older than a day? If yes,
1464 * update atime:
1465 */
1466 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1467 return 1;
1468 /*
1469 * Good, we can skip the atime update:
1470 */
1471 return 0;
1472 }
1473
1474 /**
1475 * touch_atime - update the access time
1476 * @mnt: mount the inode is accessed on
1477 * @dentry: dentry accessed
1478 *
1479 * Update the accessed time on an inode and mark it for writeback.
1480 * This function automatically handles read only file systems and media,
1481 * as well as the "noatime" flag and inode specific "noatime" markers.
1482 */
1483 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1484 {
1485 struct inode *inode = dentry->d_inode;
1486 struct timespec now;
1487
1488 if (inode->i_flags & S_NOATIME)
1489 return;
1490 if (IS_NOATIME(inode))
1491 return;
1492 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1493 return;
1494
1495 if (mnt->mnt_flags & MNT_NOATIME)
1496 return;
1497 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1498 return;
1499
1500 now = current_fs_time(inode->i_sb);
1501
1502 if (!relatime_need_update(mnt, inode, now))
1503 return;
1504
1505 if (timespec_equal(&inode->i_atime, &now))
1506 return;
1507
1508 if (mnt_want_write(mnt))
1509 return;
1510
1511 inode->i_atime = now;
1512 mark_inode_dirty_sync(inode);
1513 mnt_drop_write(mnt);
1514 }
1515 EXPORT_SYMBOL(touch_atime);
1516
1517 /**
1518 * file_update_time - update mtime and ctime time
1519 * @file: file accessed
1520 *
1521 * Update the mtime and ctime members of an inode and mark the inode
1522 * for writeback. Note that this function is meant exclusively for
1523 * usage in the file write path of filesystems, and filesystems may
1524 * choose to explicitly ignore update via this function with the
1525 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1526 * timestamps are handled by the server.
1527 */
1528
1529 void file_update_time(struct file *file)
1530 {
1531 struct inode *inode = file->f_path.dentry->d_inode;
1532 struct timespec now;
1533 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1534
1535 /* First try to exhaust all avenues to not sync */
1536 if (IS_NOCMTIME(inode))
1537 return;
1538
1539 now = current_fs_time(inode->i_sb);
1540 if (!timespec_equal(&inode->i_mtime, &now))
1541 sync_it = S_MTIME;
1542
1543 if (!timespec_equal(&inode->i_ctime, &now))
1544 sync_it |= S_CTIME;
1545
1546 if (IS_I_VERSION(inode))
1547 sync_it |= S_VERSION;
1548
1549 if (!sync_it)
1550 return;
1551
1552 /* Finally allowed to write? Takes lock. */
1553 if (mnt_want_write_file(file))
1554 return;
1555
1556 /* Only change inode inside the lock region */
1557 if (sync_it & S_VERSION)
1558 inode_inc_iversion(inode);
1559 if (sync_it & S_CTIME)
1560 inode->i_ctime = now;
1561 if (sync_it & S_MTIME)
1562 inode->i_mtime = now;
1563 mark_inode_dirty_sync(inode);
1564 mnt_drop_write(file->f_path.mnt);
1565 }
1566 EXPORT_SYMBOL(file_update_time);
1567
1568 int inode_needs_sync(struct inode *inode)
1569 {
1570 if (IS_SYNC(inode))
1571 return 1;
1572 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1573 return 1;
1574 return 0;
1575 }
1576 EXPORT_SYMBOL(inode_needs_sync);
1577
1578 int inode_wait(void *word)
1579 {
1580 schedule();
1581 return 0;
1582 }
1583 EXPORT_SYMBOL(inode_wait);
1584
1585 /*
1586 * If we try to find an inode in the inode hash while it is being
1587 * deleted, we have to wait until the filesystem completes its
1588 * deletion before reporting that it isn't found. This function waits
1589 * until the deletion _might_ have completed. Callers are responsible
1590 * to recheck inode state.
1591 *
1592 * It doesn't matter if I_NEW is not set initially, a call to
1593 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1594 * will DTRT.
1595 */
1596 static void __wait_on_freeing_inode(struct inode *inode)
1597 {
1598 wait_queue_head_t *wq;
1599 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1600 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1601 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1602 spin_unlock(&inode->i_lock);
1603 spin_unlock(&inode_hash_lock);
1604 schedule();
1605 finish_wait(wq, &wait.wait);
1606 spin_lock(&inode_hash_lock);
1607 }
1608
1609 static __initdata unsigned long ihash_entries;
1610 static int __init set_ihash_entries(char *str)
1611 {
1612 if (!str)
1613 return 0;
1614 ihash_entries = simple_strtoul(str, &str, 0);
1615 return 1;
1616 }
1617 __setup("ihash_entries=", set_ihash_entries);
1618
1619 /*
1620 * Initialize the waitqueues and inode hash table.
1621 */
1622 void __init inode_init_early(void)
1623 {
1624 int loop;
1625
1626 /* If hashes are distributed across NUMA nodes, defer
1627 * hash allocation until vmalloc space is available.
1628 */
1629 if (hashdist)
1630 return;
1631
1632 inode_hashtable =
1633 alloc_large_system_hash("Inode-cache",
1634 sizeof(struct hlist_head),
1635 ihash_entries,
1636 14,
1637 HASH_EARLY,
1638 &i_hash_shift,
1639 &i_hash_mask,
1640 0);
1641
1642 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1643 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1644 }
1645
1646 void __init inode_init(void)
1647 {
1648 int loop;
1649
1650 /* inode slab cache */
1651 inode_cachep = kmem_cache_create("inode_cache",
1652 sizeof(struct inode),
1653 0,
1654 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1655 SLAB_MEM_SPREAD),
1656 init_once);
1657 register_shrinker(&icache_shrinker);
1658
1659 /* Hash may have been set up in inode_init_early */
1660 if (!hashdist)
1661 return;
1662
1663 inode_hashtable =
1664 alloc_large_system_hash("Inode-cache",
1665 sizeof(struct hlist_head),
1666 ihash_entries,
1667 14,
1668 0,
1669 &i_hash_shift,
1670 &i_hash_mask,
1671 0);
1672
1673 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1674 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1675 }
1676
1677 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1678 {
1679 inode->i_mode = mode;
1680 if (S_ISCHR(mode)) {
1681 inode->i_fop = &def_chr_fops;
1682 inode->i_rdev = rdev;
1683 } else if (S_ISBLK(mode)) {
1684 inode->i_fop = &def_blk_fops;
1685 inode->i_rdev = rdev;
1686 } else if (S_ISFIFO(mode))
1687 inode->i_fop = &def_fifo_fops;
1688 else if (S_ISSOCK(mode))
1689 inode->i_fop = &bad_sock_fops;
1690 else
1691 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1692 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1693 inode->i_ino);
1694 }
1695 EXPORT_SYMBOL(init_special_inode);
1696
1697 /**
1698 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1699 * @inode: New inode
1700 * @dir: Directory inode
1701 * @mode: mode of the new inode
1702 */
1703 void inode_init_owner(struct inode *inode, const struct inode *dir,
1704 mode_t mode)
1705 {
1706 inode->i_uid = current_fsuid();
1707 if (dir && dir->i_mode & S_ISGID) {
1708 inode->i_gid = dir->i_gid;
1709 if (S_ISDIR(mode))
1710 mode |= S_ISGID;
1711 } else
1712 inode->i_gid = current_fsgid();
1713 inode->i_mode = mode;
1714 }
1715 EXPORT_SYMBOL(inode_init_owner);
1716
1717 /**
1718 * inode_owner_or_capable - check current task permissions to inode
1719 * @inode: inode being checked
1720 *
1721 * Return true if current either has CAP_FOWNER to the inode, or
1722 * owns the file.
1723 */
1724 bool inode_owner_or_capable(const struct inode *inode)
1725 {
1726 struct user_namespace *ns = inode_userns(inode);
1727
1728 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1729 return true;
1730 if (ns_capable(ns, CAP_FOWNER))
1731 return true;
1732 return false;
1733 }
1734 EXPORT_SYMBOL(inode_owner_or_capable);
This page took 0.063256 seconds and 6 git commands to generate.