Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh...
[deliverable/linux.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
30 #include "internal.h"
31
32 /*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode->i_sb->s_inode_lru_lock protects:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode_sb_list_lock
49 * inode->i_lock
50 * inode->i_sb->s_inode_lru_lock
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode_sb_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 static struct hlist_head *inode_hashtable __read_mostly;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
69
70 /*
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
73 */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77
78 /*
79 * Statistics gathering..
80 */
81 struct inodes_stat_t inodes_stat;
82
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85
86 static struct kmem_cache *inode_cachep __read_mostly;
87
88 static int get_nr_inodes(void)
89 {
90 int i;
91 int sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_inodes, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 static inline int get_nr_inodes_unused(void)
98 {
99 int i;
100 int sum = 0;
101 for_each_possible_cpu(i)
102 sum += per_cpu(nr_unused, i);
103 return sum < 0 ? 0 : sum;
104 }
105
106 int get_nr_dirty_inodes(void)
107 {
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty > 0 ? nr_dirty : 0;
111 }
112
113 /*
114 * Handle nr_inode sysctl
115 */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 inodes_stat.nr_inodes = get_nr_inodes();
121 inodes_stat.nr_unused = get_nr_inodes_unused();
122 return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125
126 /**
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
130 *
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
133 */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 static const struct inode_operations empty_iops;
137 static const struct file_operations empty_fops;
138 struct address_space *const mapping = &inode->i_data;
139
140 inode->i_sb = sb;
141 inode->i_blkbits = sb->s_blocksize_bits;
142 inode->i_flags = 0;
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &empty_fops;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 inode->i_uid = 0;
149 inode->i_gid = 0;
150 atomic_set(&inode->i_writecount, 0);
151 inode->i_size = 0;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 #ifdef CONFIG_QUOTA
156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
157 #endif
158 inode->i_pipe = NULL;
159 inode->i_bdev = NULL;
160 inode->i_cdev = NULL;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 if (security_inode_alloc(inode))
165 goto out;
166 spin_lock_init(&inode->i_lock);
167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168
169 mutex_init(&inode->i_mutex);
170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171
172 atomic_set(&inode->i_dio_count, 0);
173
174 mapping->a_ops = &empty_aops;
175 mapping->host = inode;
176 mapping->flags = 0;
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->assoc_mapping = NULL;
179 mapping->backing_dev_info = &default_backing_dev_info;
180 mapping->writeback_index = 0;
181
182 /*
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
185 * backing_dev_info.
186 */
187 if (sb->s_bdev) {
188 struct backing_dev_info *bdi;
189
190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 mapping->backing_dev_info = bdi;
192 }
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 out:
208 return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 struct inode *inode;
215
216 if (sb->s_op->alloc_inode)
217 inode = sb->s_op->alloc_inode(sb);
218 else
219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220
221 if (!inode)
222 return NULL;
223
224 if (unlikely(inode_init_always(sb, inode))) {
225 if (inode->i_sb->s_op->destroy_inode)
226 inode->i_sb->s_op->destroy_inode(inode);
227 else
228 kmem_cache_free(inode_cachep, inode);
229 return NULL;
230 }
231
232 return inode;
233 }
234
235 void free_inode_nonrcu(struct inode *inode)
236 {
237 kmem_cache_free(inode_cachep, inode);
238 }
239 EXPORT_SYMBOL(free_inode_nonrcu);
240
241 void __destroy_inode(struct inode *inode)
242 {
243 BUG_ON(inode_has_buffers(inode));
244 security_inode_free(inode);
245 fsnotify_inode_delete(inode);
246 if (!inode->i_nlink) {
247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
248 atomic_long_dec(&inode->i_sb->s_remove_count);
249 }
250
251 #ifdef CONFIG_FS_POSIX_ACL
252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
253 posix_acl_release(inode->i_acl);
254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
255 posix_acl_release(inode->i_default_acl);
256 #endif
257 this_cpu_dec(nr_inodes);
258 }
259 EXPORT_SYMBOL(__destroy_inode);
260
261 static void i_callback(struct rcu_head *head)
262 {
263 struct inode *inode = container_of(head, struct inode, i_rcu);
264 kmem_cache_free(inode_cachep, inode);
265 }
266
267 static void destroy_inode(struct inode *inode)
268 {
269 BUG_ON(!list_empty(&inode->i_lru));
270 __destroy_inode(inode);
271 if (inode->i_sb->s_op->destroy_inode)
272 inode->i_sb->s_op->destroy_inode(inode);
273 else
274 call_rcu(&inode->i_rcu, i_callback);
275 }
276
277 /**
278 * drop_nlink - directly drop an inode's link count
279 * @inode: inode
280 *
281 * This is a low-level filesystem helper to replace any
282 * direct filesystem manipulation of i_nlink. In cases
283 * where we are attempting to track writes to the
284 * filesystem, a decrement to zero means an imminent
285 * write when the file is truncated and actually unlinked
286 * on the filesystem.
287 */
288 void drop_nlink(struct inode *inode)
289 {
290 WARN_ON(inode->i_nlink == 0);
291 inode->__i_nlink--;
292 if (!inode->i_nlink)
293 atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 EXPORT_SYMBOL(drop_nlink);
296
297 /**
298 * clear_nlink - directly zero an inode's link count
299 * @inode: inode
300 *
301 * This is a low-level filesystem helper to replace any
302 * direct filesystem manipulation of i_nlink. See
303 * drop_nlink() for why we care about i_nlink hitting zero.
304 */
305 void clear_nlink(struct inode *inode)
306 {
307 if (inode->i_nlink) {
308 inode->__i_nlink = 0;
309 atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 }
312 EXPORT_SYMBOL(clear_nlink);
313
314 /**
315 * set_nlink - directly set an inode's link count
316 * @inode: inode
317 * @nlink: new nlink (should be non-zero)
318 *
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink.
321 */
322 void set_nlink(struct inode *inode, unsigned int nlink)
323 {
324 if (!nlink) {
325 printk_ratelimited(KERN_INFO
326 "set_nlink() clearing i_nlink on %s inode %li\n",
327 inode->i_sb->s_type->name, inode->i_ino);
328 clear_nlink(inode);
329 } else {
330 /* Yes, some filesystems do change nlink from zero to one */
331 if (inode->i_nlink == 0)
332 atomic_long_dec(&inode->i_sb->s_remove_count);
333
334 inode->__i_nlink = nlink;
335 }
336 }
337 EXPORT_SYMBOL(set_nlink);
338
339 /**
340 * inc_nlink - directly increment an inode's link count
341 * @inode: inode
342 *
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink. Currently,
345 * it is only here for parity with dec_nlink().
346 */
347 void inc_nlink(struct inode *inode)
348 {
349 if (WARN_ON(inode->i_nlink == 0))
350 atomic_long_dec(&inode->i_sb->s_remove_count);
351
352 inode->__i_nlink++;
353 }
354 EXPORT_SYMBOL(inc_nlink);
355
356 void address_space_init_once(struct address_space *mapping)
357 {
358 memset(mapping, 0, sizeof(*mapping));
359 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
360 spin_lock_init(&mapping->tree_lock);
361 mutex_init(&mapping->i_mmap_mutex);
362 INIT_LIST_HEAD(&mapping->private_list);
363 spin_lock_init(&mapping->private_lock);
364 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
365 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
366 }
367 EXPORT_SYMBOL(address_space_init_once);
368
369 /*
370 * These are initializations that only need to be done
371 * once, because the fields are idempotent across use
372 * of the inode, so let the slab aware of that.
373 */
374 void inode_init_once(struct inode *inode)
375 {
376 memset(inode, 0, sizeof(*inode));
377 INIT_HLIST_NODE(&inode->i_hash);
378 INIT_LIST_HEAD(&inode->i_devices);
379 INIT_LIST_HEAD(&inode->i_wb_list);
380 INIT_LIST_HEAD(&inode->i_lru);
381 address_space_init_once(&inode->i_data);
382 i_size_ordered_init(inode);
383 #ifdef CONFIG_FSNOTIFY
384 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
385 #endif
386 }
387 EXPORT_SYMBOL(inode_init_once);
388
389 static void init_once(void *foo)
390 {
391 struct inode *inode = (struct inode *) foo;
392
393 inode_init_once(inode);
394 }
395
396 /*
397 * inode->i_lock must be held
398 */
399 void __iget(struct inode *inode)
400 {
401 atomic_inc(&inode->i_count);
402 }
403
404 /*
405 * get additional reference to inode; caller must already hold one.
406 */
407 void ihold(struct inode *inode)
408 {
409 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
410 }
411 EXPORT_SYMBOL(ihold);
412
413 static void inode_lru_list_add(struct inode *inode)
414 {
415 spin_lock(&inode->i_sb->s_inode_lru_lock);
416 if (list_empty(&inode->i_lru)) {
417 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
418 inode->i_sb->s_nr_inodes_unused++;
419 this_cpu_inc(nr_unused);
420 }
421 spin_unlock(&inode->i_sb->s_inode_lru_lock);
422 }
423
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 spin_lock(&inode->i_sb->s_inode_lru_lock);
427 if (!list_empty(&inode->i_lru)) {
428 list_del_init(&inode->i_lru);
429 inode->i_sb->s_nr_inodes_unused--;
430 this_cpu_dec(nr_unused);
431 }
432 spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434
435 /**
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
438 */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
453 }
454 }
455
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 unsigned long tmp;
459
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
464 }
465
466 /**
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
471 *
472 * Add an inode to the inode hash for this superblock.
473 */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485
486 /**
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
489 *
490 * Remove an inode from the superblock.
491 */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501
502 void end_writeback(struct inode *inode)
503 {
504 might_sleep();
505 /*
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
509 */
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 spin_unlock_irq(&inode->i_data.tree_lock);
513 BUG_ON(!list_empty(&inode->i_data.private_list));
514 BUG_ON(!(inode->i_state & I_FREEING));
515 BUG_ON(inode->i_state & I_CLEAR);
516 inode_sync_wait(inode);
517 /* don't need i_lock here, no concurrent mods to i_state */
518 inode->i_state = I_FREEING | I_CLEAR;
519 }
520 EXPORT_SYMBOL(end_writeback);
521
522 /*
523 * Free the inode passed in, removing it from the lists it is still connected
524 * to. We remove any pages still attached to the inode and wait for any IO that
525 * is still in progress before finally destroying the inode.
526 *
527 * An inode must already be marked I_FREEING so that we avoid the inode being
528 * moved back onto lists if we race with other code that manipulates the lists
529 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 *
531 * An inode must already be removed from the LRU list before being evicted from
532 * the cache. This should occur atomically with setting the I_FREEING state
533 * flag, so no inodes here should ever be on the LRU when being evicted.
534 */
535 static void evict(struct inode *inode)
536 {
537 const struct super_operations *op = inode->i_sb->s_op;
538
539 BUG_ON(!(inode->i_state & I_FREEING));
540 BUG_ON(!list_empty(&inode->i_lru));
541
542 if (!list_empty(&inode->i_wb_list))
543 inode_wb_list_del(inode);
544
545 inode_sb_list_del(inode);
546
547 if (op->evict_inode) {
548 op->evict_inode(inode);
549 } else {
550 if (inode->i_data.nrpages)
551 truncate_inode_pages(&inode->i_data, 0);
552 end_writeback(inode);
553 }
554 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 bd_forget(inode);
556 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 cd_forget(inode);
558
559 remove_inode_hash(inode);
560
561 spin_lock(&inode->i_lock);
562 wake_up_bit(&inode->i_state, __I_NEW);
563 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 spin_unlock(&inode->i_lock);
565
566 destroy_inode(inode);
567 }
568
569 /*
570 * dispose_list - dispose of the contents of a local list
571 * @head: the head of the list to free
572 *
573 * Dispose-list gets a local list with local inodes in it, so it doesn't
574 * need to worry about list corruption and SMP locks.
575 */
576 static void dispose_list(struct list_head *head)
577 {
578 while (!list_empty(head)) {
579 struct inode *inode;
580
581 inode = list_first_entry(head, struct inode, i_lru);
582 list_del_init(&inode->i_lru);
583
584 evict(inode);
585 }
586 }
587
588 /**
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
591 *
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
596 */
597 void evict_inodes(struct super_block *sb)
598 {
599 struct inode *inode, *next;
600 LIST_HEAD(dispose);
601
602 spin_lock(&inode_sb_list_lock);
603 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
604 if (atomic_read(&inode->i_count))
605 continue;
606
607 spin_lock(&inode->i_lock);
608 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
609 spin_unlock(&inode->i_lock);
610 continue;
611 }
612
613 inode->i_state |= I_FREEING;
614 inode_lru_list_del(inode);
615 spin_unlock(&inode->i_lock);
616 list_add(&inode->i_lru, &dispose);
617 }
618 spin_unlock(&inode_sb_list_lock);
619
620 dispose_list(&dispose);
621 }
622
623 /**
624 * invalidate_inodes - attempt to free all inodes on a superblock
625 * @sb: superblock to operate on
626 * @kill_dirty: flag to guide handling of dirty inodes
627 *
628 * Attempts to free all inodes for a given superblock. If there were any
629 * busy inodes return a non-zero value, else zero.
630 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
631 * them as busy.
632 */
633 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
634 {
635 int busy = 0;
636 struct inode *inode, *next;
637 LIST_HEAD(dispose);
638
639 spin_lock(&inode_sb_list_lock);
640 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
641 spin_lock(&inode->i_lock);
642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 spin_unlock(&inode->i_lock);
644 continue;
645 }
646 if (inode->i_state & I_DIRTY && !kill_dirty) {
647 spin_unlock(&inode->i_lock);
648 busy = 1;
649 continue;
650 }
651 if (atomic_read(&inode->i_count)) {
652 spin_unlock(&inode->i_lock);
653 busy = 1;
654 continue;
655 }
656
657 inode->i_state |= I_FREEING;
658 inode_lru_list_del(inode);
659 spin_unlock(&inode->i_lock);
660 list_add(&inode->i_lru, &dispose);
661 }
662 spin_unlock(&inode_sb_list_lock);
663
664 dispose_list(&dispose);
665
666 return busy;
667 }
668
669 static int can_unuse(struct inode *inode)
670 {
671 if (inode->i_state & ~I_REFERENCED)
672 return 0;
673 if (inode_has_buffers(inode))
674 return 0;
675 if (atomic_read(&inode->i_count))
676 return 0;
677 if (inode->i_data.nrpages)
678 return 0;
679 return 1;
680 }
681
682 /*
683 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
684 * This is called from the superblock shrinker function with a number of inodes
685 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
686 * then are freed outside inode_lock by dispose_list().
687 *
688 * Any inodes which are pinned purely because of attached pagecache have their
689 * pagecache removed. If the inode has metadata buffers attached to
690 * mapping->private_list then try to remove them.
691 *
692 * If the inode has the I_REFERENCED flag set, then it means that it has been
693 * used recently - the flag is set in iput_final(). When we encounter such an
694 * inode, clear the flag and move it to the back of the LRU so it gets another
695 * pass through the LRU before it gets reclaimed. This is necessary because of
696 * the fact we are doing lazy LRU updates to minimise lock contention so the
697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698 * with this flag set because they are the inodes that are out of order.
699 */
700 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
701 {
702 LIST_HEAD(freeable);
703 int nr_scanned;
704 unsigned long reap = 0;
705
706 spin_lock(&sb->s_inode_lru_lock);
707 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
708 struct inode *inode;
709
710 if (list_empty(&sb->s_inode_lru))
711 break;
712
713 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
714
715 /*
716 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
717 * so use a trylock. If we fail to get the lock, just move the
718 * inode to the back of the list so we don't spin on it.
719 */
720 if (!spin_trylock(&inode->i_lock)) {
721 list_move_tail(&inode->i_lru, &sb->s_inode_lru);
722 continue;
723 }
724
725 /*
726 * Referenced or dirty inodes are still in use. Give them
727 * another pass through the LRU as we canot reclaim them now.
728 */
729 if (atomic_read(&inode->i_count) ||
730 (inode->i_state & ~I_REFERENCED)) {
731 list_del_init(&inode->i_lru);
732 spin_unlock(&inode->i_lock);
733 sb->s_nr_inodes_unused--;
734 this_cpu_dec(nr_unused);
735 continue;
736 }
737
738 /* recently referenced inodes get one more pass */
739 if (inode->i_state & I_REFERENCED) {
740 inode->i_state &= ~I_REFERENCED;
741 list_move(&inode->i_lru, &sb->s_inode_lru);
742 spin_unlock(&inode->i_lock);
743 continue;
744 }
745 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
746 __iget(inode);
747 spin_unlock(&inode->i_lock);
748 spin_unlock(&sb->s_inode_lru_lock);
749 if (remove_inode_buffers(inode))
750 reap += invalidate_mapping_pages(&inode->i_data,
751 0, -1);
752 iput(inode);
753 spin_lock(&sb->s_inode_lru_lock);
754
755 if (inode != list_entry(sb->s_inode_lru.next,
756 struct inode, i_lru))
757 continue; /* wrong inode or list_empty */
758 /* avoid lock inversions with trylock */
759 if (!spin_trylock(&inode->i_lock))
760 continue;
761 if (!can_unuse(inode)) {
762 spin_unlock(&inode->i_lock);
763 continue;
764 }
765 }
766 WARN_ON(inode->i_state & I_NEW);
767 inode->i_state |= I_FREEING;
768 spin_unlock(&inode->i_lock);
769
770 list_move(&inode->i_lru, &freeable);
771 sb->s_nr_inodes_unused--;
772 this_cpu_dec(nr_unused);
773 }
774 if (current_is_kswapd())
775 __count_vm_events(KSWAPD_INODESTEAL, reap);
776 else
777 __count_vm_events(PGINODESTEAL, reap);
778 spin_unlock(&sb->s_inode_lru_lock);
779
780 dispose_list(&freeable);
781 }
782
783 static void __wait_on_freeing_inode(struct inode *inode);
784 /*
785 * Called with the inode lock held.
786 */
787 static struct inode *find_inode(struct super_block *sb,
788 struct hlist_head *head,
789 int (*test)(struct inode *, void *),
790 void *data)
791 {
792 struct hlist_node *node;
793 struct inode *inode = NULL;
794
795 repeat:
796 hlist_for_each_entry(inode, node, head, i_hash) {
797 spin_lock(&inode->i_lock);
798 if (inode->i_sb != sb) {
799 spin_unlock(&inode->i_lock);
800 continue;
801 }
802 if (!test(inode, data)) {
803 spin_unlock(&inode->i_lock);
804 continue;
805 }
806 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
807 __wait_on_freeing_inode(inode);
808 goto repeat;
809 }
810 __iget(inode);
811 spin_unlock(&inode->i_lock);
812 return inode;
813 }
814 return NULL;
815 }
816
817 /*
818 * find_inode_fast is the fast path version of find_inode, see the comment at
819 * iget_locked for details.
820 */
821 static struct inode *find_inode_fast(struct super_block *sb,
822 struct hlist_head *head, unsigned long ino)
823 {
824 struct hlist_node *node;
825 struct inode *inode = NULL;
826
827 repeat:
828 hlist_for_each_entry(inode, node, head, i_hash) {
829 spin_lock(&inode->i_lock);
830 if (inode->i_ino != ino) {
831 spin_unlock(&inode->i_lock);
832 continue;
833 }
834 if (inode->i_sb != sb) {
835 spin_unlock(&inode->i_lock);
836 continue;
837 }
838 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
839 __wait_on_freeing_inode(inode);
840 goto repeat;
841 }
842 __iget(inode);
843 spin_unlock(&inode->i_lock);
844 return inode;
845 }
846 return NULL;
847 }
848
849 /*
850 * Each cpu owns a range of LAST_INO_BATCH numbers.
851 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
852 * to renew the exhausted range.
853 *
854 * This does not significantly increase overflow rate because every CPU can
855 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
856 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
857 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
858 * overflow rate by 2x, which does not seem too significant.
859 *
860 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
861 * error if st_ino won't fit in target struct field. Use 32bit counter
862 * here to attempt to avoid that.
863 */
864 #define LAST_INO_BATCH 1024
865 static DEFINE_PER_CPU(unsigned int, last_ino);
866
867 unsigned int get_next_ino(void)
868 {
869 unsigned int *p = &get_cpu_var(last_ino);
870 unsigned int res = *p;
871
872 #ifdef CONFIG_SMP
873 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
874 static atomic_t shared_last_ino;
875 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
876
877 res = next - LAST_INO_BATCH;
878 }
879 #endif
880
881 *p = ++res;
882 put_cpu_var(last_ino);
883 return res;
884 }
885 EXPORT_SYMBOL(get_next_ino);
886
887 /**
888 * new_inode_pseudo - obtain an inode
889 * @sb: superblock
890 *
891 * Allocates a new inode for given superblock.
892 * Inode wont be chained in superblock s_inodes list
893 * This means :
894 * - fs can't be unmount
895 * - quotas, fsnotify, writeback can't work
896 */
897 struct inode *new_inode_pseudo(struct super_block *sb)
898 {
899 struct inode *inode = alloc_inode(sb);
900
901 if (inode) {
902 spin_lock(&inode->i_lock);
903 inode->i_state = 0;
904 spin_unlock(&inode->i_lock);
905 INIT_LIST_HEAD(&inode->i_sb_list);
906 }
907 return inode;
908 }
909
910 /**
911 * new_inode - obtain an inode
912 * @sb: superblock
913 *
914 * Allocates a new inode for given superblock. The default gfp_mask
915 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
916 * If HIGHMEM pages are unsuitable or it is known that pages allocated
917 * for the page cache are not reclaimable or migratable,
918 * mapping_set_gfp_mask() must be called with suitable flags on the
919 * newly created inode's mapping
920 *
921 */
922 struct inode *new_inode(struct super_block *sb)
923 {
924 struct inode *inode;
925
926 spin_lock_prefetch(&inode_sb_list_lock);
927
928 inode = new_inode_pseudo(sb);
929 if (inode)
930 inode_sb_list_add(inode);
931 return inode;
932 }
933 EXPORT_SYMBOL(new_inode);
934
935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
936 void lockdep_annotate_inode_mutex_key(struct inode *inode)
937 {
938 if (S_ISDIR(inode->i_mode)) {
939 struct file_system_type *type = inode->i_sb->s_type;
940
941 /* Set new key only if filesystem hasn't already changed it */
942 if (!lockdep_match_class(&inode->i_mutex,
943 &type->i_mutex_key)) {
944 /*
945 * ensure nobody is actually holding i_mutex
946 */
947 mutex_destroy(&inode->i_mutex);
948 mutex_init(&inode->i_mutex);
949 lockdep_set_class(&inode->i_mutex,
950 &type->i_mutex_dir_key);
951 }
952 }
953 }
954 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
955 #endif
956
957 /**
958 * unlock_new_inode - clear the I_NEW state and wake up any waiters
959 * @inode: new inode to unlock
960 *
961 * Called when the inode is fully initialised to clear the new state of the
962 * inode and wake up anyone waiting for the inode to finish initialisation.
963 */
964 void unlock_new_inode(struct inode *inode)
965 {
966 lockdep_annotate_inode_mutex_key(inode);
967 spin_lock(&inode->i_lock);
968 WARN_ON(!(inode->i_state & I_NEW));
969 inode->i_state &= ~I_NEW;
970 wake_up_bit(&inode->i_state, __I_NEW);
971 spin_unlock(&inode->i_lock);
972 }
973 EXPORT_SYMBOL(unlock_new_inode);
974
975 /**
976 * iget5_locked - obtain an inode from a mounted file system
977 * @sb: super block of file system
978 * @hashval: hash value (usually inode number) to get
979 * @test: callback used for comparisons between inodes
980 * @set: callback used to initialize a new struct inode
981 * @data: opaque data pointer to pass to @test and @set
982 *
983 * Search for the inode specified by @hashval and @data in the inode cache,
984 * and if present it is return it with an increased reference count. This is
985 * a generalized version of iget_locked() for file systems where the inode
986 * number is not sufficient for unique identification of an inode.
987 *
988 * If the inode is not in cache, allocate a new inode and return it locked,
989 * hashed, and with the I_NEW flag set. The file system gets to fill it in
990 * before unlocking it via unlock_new_inode().
991 *
992 * Note both @test and @set are called with the inode_hash_lock held, so can't
993 * sleep.
994 */
995 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
996 int (*test)(struct inode *, void *),
997 int (*set)(struct inode *, void *), void *data)
998 {
999 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1000 struct inode *inode;
1001
1002 spin_lock(&inode_hash_lock);
1003 inode = find_inode(sb, head, test, data);
1004 spin_unlock(&inode_hash_lock);
1005
1006 if (inode) {
1007 wait_on_inode(inode);
1008 return inode;
1009 }
1010
1011 inode = alloc_inode(sb);
1012 if (inode) {
1013 struct inode *old;
1014
1015 spin_lock(&inode_hash_lock);
1016 /* We released the lock, so.. */
1017 old = find_inode(sb, head, test, data);
1018 if (!old) {
1019 if (set(inode, data))
1020 goto set_failed;
1021
1022 spin_lock(&inode->i_lock);
1023 inode->i_state = I_NEW;
1024 hlist_add_head(&inode->i_hash, head);
1025 spin_unlock(&inode->i_lock);
1026 inode_sb_list_add(inode);
1027 spin_unlock(&inode_hash_lock);
1028
1029 /* Return the locked inode with I_NEW set, the
1030 * caller is responsible for filling in the contents
1031 */
1032 return inode;
1033 }
1034
1035 /*
1036 * Uhhuh, somebody else created the same inode under
1037 * us. Use the old inode instead of the one we just
1038 * allocated.
1039 */
1040 spin_unlock(&inode_hash_lock);
1041 destroy_inode(inode);
1042 inode = old;
1043 wait_on_inode(inode);
1044 }
1045 return inode;
1046
1047 set_failed:
1048 spin_unlock(&inode_hash_lock);
1049 destroy_inode(inode);
1050 return NULL;
1051 }
1052 EXPORT_SYMBOL(iget5_locked);
1053
1054 /**
1055 * iget_locked - obtain an inode from a mounted file system
1056 * @sb: super block of file system
1057 * @ino: inode number to get
1058 *
1059 * Search for the inode specified by @ino in the inode cache and if present
1060 * return it with an increased reference count. This is for file systems
1061 * where the inode number is sufficient for unique identification of an inode.
1062 *
1063 * If the inode is not in cache, allocate a new inode and return it locked,
1064 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1065 * before unlocking it via unlock_new_inode().
1066 */
1067 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1068 {
1069 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1070 struct inode *inode;
1071
1072 spin_lock(&inode_hash_lock);
1073 inode = find_inode_fast(sb, head, ino);
1074 spin_unlock(&inode_hash_lock);
1075 if (inode) {
1076 wait_on_inode(inode);
1077 return inode;
1078 }
1079
1080 inode = alloc_inode(sb);
1081 if (inode) {
1082 struct inode *old;
1083
1084 spin_lock(&inode_hash_lock);
1085 /* We released the lock, so.. */
1086 old = find_inode_fast(sb, head, ino);
1087 if (!old) {
1088 inode->i_ino = ino;
1089 spin_lock(&inode->i_lock);
1090 inode->i_state = I_NEW;
1091 hlist_add_head(&inode->i_hash, head);
1092 spin_unlock(&inode->i_lock);
1093 inode_sb_list_add(inode);
1094 spin_unlock(&inode_hash_lock);
1095
1096 /* Return the locked inode with I_NEW set, the
1097 * caller is responsible for filling in the contents
1098 */
1099 return inode;
1100 }
1101
1102 /*
1103 * Uhhuh, somebody else created the same inode under
1104 * us. Use the old inode instead of the one we just
1105 * allocated.
1106 */
1107 spin_unlock(&inode_hash_lock);
1108 destroy_inode(inode);
1109 inode = old;
1110 wait_on_inode(inode);
1111 }
1112 return inode;
1113 }
1114 EXPORT_SYMBOL(iget_locked);
1115
1116 /*
1117 * search the inode cache for a matching inode number.
1118 * If we find one, then the inode number we are trying to
1119 * allocate is not unique and so we should not use it.
1120 *
1121 * Returns 1 if the inode number is unique, 0 if it is not.
1122 */
1123 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1124 {
1125 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1126 struct hlist_node *node;
1127 struct inode *inode;
1128
1129 spin_lock(&inode_hash_lock);
1130 hlist_for_each_entry(inode, node, b, i_hash) {
1131 if (inode->i_ino == ino && inode->i_sb == sb) {
1132 spin_unlock(&inode_hash_lock);
1133 return 0;
1134 }
1135 }
1136 spin_unlock(&inode_hash_lock);
1137
1138 return 1;
1139 }
1140
1141 /**
1142 * iunique - get a unique inode number
1143 * @sb: superblock
1144 * @max_reserved: highest reserved inode number
1145 *
1146 * Obtain an inode number that is unique on the system for a given
1147 * superblock. This is used by file systems that have no natural
1148 * permanent inode numbering system. An inode number is returned that
1149 * is higher than the reserved limit but unique.
1150 *
1151 * BUGS:
1152 * With a large number of inodes live on the file system this function
1153 * currently becomes quite slow.
1154 */
1155 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1156 {
1157 /*
1158 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1159 * error if st_ino won't fit in target struct field. Use 32bit counter
1160 * here to attempt to avoid that.
1161 */
1162 static DEFINE_SPINLOCK(iunique_lock);
1163 static unsigned int counter;
1164 ino_t res;
1165
1166 spin_lock(&iunique_lock);
1167 do {
1168 if (counter <= max_reserved)
1169 counter = max_reserved + 1;
1170 res = counter++;
1171 } while (!test_inode_iunique(sb, res));
1172 spin_unlock(&iunique_lock);
1173
1174 return res;
1175 }
1176 EXPORT_SYMBOL(iunique);
1177
1178 struct inode *igrab(struct inode *inode)
1179 {
1180 spin_lock(&inode->i_lock);
1181 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1182 __iget(inode);
1183 spin_unlock(&inode->i_lock);
1184 } else {
1185 spin_unlock(&inode->i_lock);
1186 /*
1187 * Handle the case where s_op->clear_inode is not been
1188 * called yet, and somebody is calling igrab
1189 * while the inode is getting freed.
1190 */
1191 inode = NULL;
1192 }
1193 return inode;
1194 }
1195 EXPORT_SYMBOL(igrab);
1196
1197 /**
1198 * ilookup5_nowait - search for an inode in the inode cache
1199 * @sb: super block of file system to search
1200 * @hashval: hash value (usually inode number) to search for
1201 * @test: callback used for comparisons between inodes
1202 * @data: opaque data pointer to pass to @test
1203 *
1204 * Search for the inode specified by @hashval and @data in the inode cache.
1205 * If the inode is in the cache, the inode is returned with an incremented
1206 * reference count.
1207 *
1208 * Note: I_NEW is not waited upon so you have to be very careful what you do
1209 * with the returned inode. You probably should be using ilookup5() instead.
1210 *
1211 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1212 */
1213 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1214 int (*test)(struct inode *, void *), void *data)
1215 {
1216 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1217 struct inode *inode;
1218
1219 spin_lock(&inode_hash_lock);
1220 inode = find_inode(sb, head, test, data);
1221 spin_unlock(&inode_hash_lock);
1222
1223 return inode;
1224 }
1225 EXPORT_SYMBOL(ilookup5_nowait);
1226
1227 /**
1228 * ilookup5 - search for an inode in the inode cache
1229 * @sb: super block of file system to search
1230 * @hashval: hash value (usually inode number) to search for
1231 * @test: callback used for comparisons between inodes
1232 * @data: opaque data pointer to pass to @test
1233 *
1234 * Search for the inode specified by @hashval and @data in the inode cache,
1235 * and if the inode is in the cache, return the inode with an incremented
1236 * reference count. Waits on I_NEW before returning the inode.
1237 * returned with an incremented reference count.
1238 *
1239 * This is a generalized version of ilookup() for file systems where the
1240 * inode number is not sufficient for unique identification of an inode.
1241 *
1242 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1243 */
1244 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1245 int (*test)(struct inode *, void *), void *data)
1246 {
1247 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1248
1249 if (inode)
1250 wait_on_inode(inode);
1251 return inode;
1252 }
1253 EXPORT_SYMBOL(ilookup5);
1254
1255 /**
1256 * ilookup - search for an inode in the inode cache
1257 * @sb: super block of file system to search
1258 * @ino: inode number to search for
1259 *
1260 * Search for the inode @ino in the inode cache, and if the inode is in the
1261 * cache, the inode is returned with an incremented reference count.
1262 */
1263 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1264 {
1265 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1266 struct inode *inode;
1267
1268 spin_lock(&inode_hash_lock);
1269 inode = find_inode_fast(sb, head, ino);
1270 spin_unlock(&inode_hash_lock);
1271
1272 if (inode)
1273 wait_on_inode(inode);
1274 return inode;
1275 }
1276 EXPORT_SYMBOL(ilookup);
1277
1278 int insert_inode_locked(struct inode *inode)
1279 {
1280 struct super_block *sb = inode->i_sb;
1281 ino_t ino = inode->i_ino;
1282 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1283
1284 while (1) {
1285 struct hlist_node *node;
1286 struct inode *old = NULL;
1287 spin_lock(&inode_hash_lock);
1288 hlist_for_each_entry(old, node, head, i_hash) {
1289 if (old->i_ino != ino)
1290 continue;
1291 if (old->i_sb != sb)
1292 continue;
1293 spin_lock(&old->i_lock);
1294 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1295 spin_unlock(&old->i_lock);
1296 continue;
1297 }
1298 break;
1299 }
1300 if (likely(!node)) {
1301 spin_lock(&inode->i_lock);
1302 inode->i_state |= I_NEW;
1303 hlist_add_head(&inode->i_hash, head);
1304 spin_unlock(&inode->i_lock);
1305 spin_unlock(&inode_hash_lock);
1306 return 0;
1307 }
1308 __iget(old);
1309 spin_unlock(&old->i_lock);
1310 spin_unlock(&inode_hash_lock);
1311 wait_on_inode(old);
1312 if (unlikely(!inode_unhashed(old))) {
1313 iput(old);
1314 return -EBUSY;
1315 }
1316 iput(old);
1317 }
1318 }
1319 EXPORT_SYMBOL(insert_inode_locked);
1320
1321 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1322 int (*test)(struct inode *, void *), void *data)
1323 {
1324 struct super_block *sb = inode->i_sb;
1325 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1326
1327 while (1) {
1328 struct hlist_node *node;
1329 struct inode *old = NULL;
1330
1331 spin_lock(&inode_hash_lock);
1332 hlist_for_each_entry(old, node, head, i_hash) {
1333 if (old->i_sb != sb)
1334 continue;
1335 if (!test(old, data))
1336 continue;
1337 spin_lock(&old->i_lock);
1338 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1339 spin_unlock(&old->i_lock);
1340 continue;
1341 }
1342 break;
1343 }
1344 if (likely(!node)) {
1345 spin_lock(&inode->i_lock);
1346 inode->i_state |= I_NEW;
1347 hlist_add_head(&inode->i_hash, head);
1348 spin_unlock(&inode->i_lock);
1349 spin_unlock(&inode_hash_lock);
1350 return 0;
1351 }
1352 __iget(old);
1353 spin_unlock(&old->i_lock);
1354 spin_unlock(&inode_hash_lock);
1355 wait_on_inode(old);
1356 if (unlikely(!inode_unhashed(old))) {
1357 iput(old);
1358 return -EBUSY;
1359 }
1360 iput(old);
1361 }
1362 }
1363 EXPORT_SYMBOL(insert_inode_locked4);
1364
1365
1366 int generic_delete_inode(struct inode *inode)
1367 {
1368 return 1;
1369 }
1370 EXPORT_SYMBOL(generic_delete_inode);
1371
1372 /*
1373 * Normal UNIX filesystem behaviour: delete the
1374 * inode when the usage count drops to zero, and
1375 * i_nlink is zero.
1376 */
1377 int generic_drop_inode(struct inode *inode)
1378 {
1379 return !inode->i_nlink || inode_unhashed(inode);
1380 }
1381 EXPORT_SYMBOL_GPL(generic_drop_inode);
1382
1383 /*
1384 * Called when we're dropping the last reference
1385 * to an inode.
1386 *
1387 * Call the FS "drop_inode()" function, defaulting to
1388 * the legacy UNIX filesystem behaviour. If it tells
1389 * us to evict inode, do so. Otherwise, retain inode
1390 * in cache if fs is alive, sync and evict if fs is
1391 * shutting down.
1392 */
1393 static void iput_final(struct inode *inode)
1394 {
1395 struct super_block *sb = inode->i_sb;
1396 const struct super_operations *op = inode->i_sb->s_op;
1397 int drop;
1398
1399 WARN_ON(inode->i_state & I_NEW);
1400
1401 if (op->drop_inode)
1402 drop = op->drop_inode(inode);
1403 else
1404 drop = generic_drop_inode(inode);
1405
1406 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1407 inode->i_state |= I_REFERENCED;
1408 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1409 inode_lru_list_add(inode);
1410 spin_unlock(&inode->i_lock);
1411 return;
1412 }
1413
1414 if (!drop) {
1415 inode->i_state |= I_WILL_FREE;
1416 spin_unlock(&inode->i_lock);
1417 write_inode_now(inode, 1);
1418 spin_lock(&inode->i_lock);
1419 WARN_ON(inode->i_state & I_NEW);
1420 inode->i_state &= ~I_WILL_FREE;
1421 }
1422
1423 inode->i_state |= I_FREEING;
1424 if (!list_empty(&inode->i_lru))
1425 inode_lru_list_del(inode);
1426 spin_unlock(&inode->i_lock);
1427
1428 evict(inode);
1429 }
1430
1431 /**
1432 * iput - put an inode
1433 * @inode: inode to put
1434 *
1435 * Puts an inode, dropping its usage count. If the inode use count hits
1436 * zero, the inode is then freed and may also be destroyed.
1437 *
1438 * Consequently, iput() can sleep.
1439 */
1440 void iput(struct inode *inode)
1441 {
1442 if (inode) {
1443 BUG_ON(inode->i_state & I_CLEAR);
1444
1445 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1446 iput_final(inode);
1447 }
1448 }
1449 EXPORT_SYMBOL(iput);
1450
1451 /**
1452 * bmap - find a block number in a file
1453 * @inode: inode of file
1454 * @block: block to find
1455 *
1456 * Returns the block number on the device holding the inode that
1457 * is the disk block number for the block of the file requested.
1458 * That is, asked for block 4 of inode 1 the function will return the
1459 * disk block relative to the disk start that holds that block of the
1460 * file.
1461 */
1462 sector_t bmap(struct inode *inode, sector_t block)
1463 {
1464 sector_t res = 0;
1465 if (inode->i_mapping->a_ops->bmap)
1466 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1467 return res;
1468 }
1469 EXPORT_SYMBOL(bmap);
1470
1471 /*
1472 * With relative atime, only update atime if the previous atime is
1473 * earlier than either the ctime or mtime or if at least a day has
1474 * passed since the last atime update.
1475 */
1476 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1477 struct timespec now)
1478 {
1479
1480 if (!(mnt->mnt_flags & MNT_RELATIME))
1481 return 1;
1482 /*
1483 * Is mtime younger than atime? If yes, update atime:
1484 */
1485 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1486 return 1;
1487 /*
1488 * Is ctime younger than atime? If yes, update atime:
1489 */
1490 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1491 return 1;
1492
1493 /*
1494 * Is the previous atime value older than a day? If yes,
1495 * update atime:
1496 */
1497 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1498 return 1;
1499 /*
1500 * Good, we can skip the atime update:
1501 */
1502 return 0;
1503 }
1504
1505 /**
1506 * touch_atime - update the access time
1507 * @mnt: mount the inode is accessed on
1508 * @dentry: dentry accessed
1509 *
1510 * Update the accessed time on an inode and mark it for writeback.
1511 * This function automatically handles read only file systems and media,
1512 * as well as the "noatime" flag and inode specific "noatime" markers.
1513 */
1514 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1515 {
1516 struct inode *inode = dentry->d_inode;
1517 struct timespec now;
1518
1519 if (inode->i_flags & S_NOATIME)
1520 return;
1521 if (IS_NOATIME(inode))
1522 return;
1523 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1524 return;
1525
1526 if (mnt->mnt_flags & MNT_NOATIME)
1527 return;
1528 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1529 return;
1530
1531 now = current_fs_time(inode->i_sb);
1532
1533 if (!relatime_need_update(mnt, inode, now))
1534 return;
1535
1536 if (timespec_equal(&inode->i_atime, &now))
1537 return;
1538
1539 if (mnt_want_write(mnt))
1540 return;
1541
1542 inode->i_atime = now;
1543 mark_inode_dirty_sync(inode);
1544 mnt_drop_write(mnt);
1545 }
1546 EXPORT_SYMBOL(touch_atime);
1547
1548 /**
1549 * file_update_time - update mtime and ctime time
1550 * @file: file accessed
1551 *
1552 * Update the mtime and ctime members of an inode and mark the inode
1553 * for writeback. Note that this function is meant exclusively for
1554 * usage in the file write path of filesystems, and filesystems may
1555 * choose to explicitly ignore update via this function with the
1556 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1557 * timestamps are handled by the server.
1558 */
1559
1560 void file_update_time(struct file *file)
1561 {
1562 struct inode *inode = file->f_path.dentry->d_inode;
1563 struct timespec now;
1564 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1565
1566 /* First try to exhaust all avenues to not sync */
1567 if (IS_NOCMTIME(inode))
1568 return;
1569
1570 now = current_fs_time(inode->i_sb);
1571 if (!timespec_equal(&inode->i_mtime, &now))
1572 sync_it = S_MTIME;
1573
1574 if (!timespec_equal(&inode->i_ctime, &now))
1575 sync_it |= S_CTIME;
1576
1577 if (IS_I_VERSION(inode))
1578 sync_it |= S_VERSION;
1579
1580 if (!sync_it)
1581 return;
1582
1583 /* Finally allowed to write? Takes lock. */
1584 if (mnt_want_write_file(file))
1585 return;
1586
1587 /* Only change inode inside the lock region */
1588 if (sync_it & S_VERSION)
1589 inode_inc_iversion(inode);
1590 if (sync_it & S_CTIME)
1591 inode->i_ctime = now;
1592 if (sync_it & S_MTIME)
1593 inode->i_mtime = now;
1594 mark_inode_dirty_sync(inode);
1595 mnt_drop_write_file(file);
1596 }
1597 EXPORT_SYMBOL(file_update_time);
1598
1599 int inode_needs_sync(struct inode *inode)
1600 {
1601 if (IS_SYNC(inode))
1602 return 1;
1603 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1604 return 1;
1605 return 0;
1606 }
1607 EXPORT_SYMBOL(inode_needs_sync);
1608
1609 int inode_wait(void *word)
1610 {
1611 schedule();
1612 return 0;
1613 }
1614 EXPORT_SYMBOL(inode_wait);
1615
1616 /*
1617 * If we try to find an inode in the inode hash while it is being
1618 * deleted, we have to wait until the filesystem completes its
1619 * deletion before reporting that it isn't found. This function waits
1620 * until the deletion _might_ have completed. Callers are responsible
1621 * to recheck inode state.
1622 *
1623 * It doesn't matter if I_NEW is not set initially, a call to
1624 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1625 * will DTRT.
1626 */
1627 static void __wait_on_freeing_inode(struct inode *inode)
1628 {
1629 wait_queue_head_t *wq;
1630 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1631 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1632 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1633 spin_unlock(&inode->i_lock);
1634 spin_unlock(&inode_hash_lock);
1635 schedule();
1636 finish_wait(wq, &wait.wait);
1637 spin_lock(&inode_hash_lock);
1638 }
1639
1640 static __initdata unsigned long ihash_entries;
1641 static int __init set_ihash_entries(char *str)
1642 {
1643 if (!str)
1644 return 0;
1645 ihash_entries = simple_strtoul(str, &str, 0);
1646 return 1;
1647 }
1648 __setup("ihash_entries=", set_ihash_entries);
1649
1650 /*
1651 * Initialize the waitqueues and inode hash table.
1652 */
1653 void __init inode_init_early(void)
1654 {
1655 int loop;
1656
1657 /* If hashes are distributed across NUMA nodes, defer
1658 * hash allocation until vmalloc space is available.
1659 */
1660 if (hashdist)
1661 return;
1662
1663 inode_hashtable =
1664 alloc_large_system_hash("Inode-cache",
1665 sizeof(struct hlist_head),
1666 ihash_entries,
1667 14,
1668 HASH_EARLY,
1669 &i_hash_shift,
1670 &i_hash_mask,
1671 0);
1672
1673 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1674 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1675 }
1676
1677 void __init inode_init(void)
1678 {
1679 int loop;
1680
1681 /* inode slab cache */
1682 inode_cachep = kmem_cache_create("inode_cache",
1683 sizeof(struct inode),
1684 0,
1685 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1686 SLAB_MEM_SPREAD),
1687 init_once);
1688
1689 /* Hash may have been set up in inode_init_early */
1690 if (!hashdist)
1691 return;
1692
1693 inode_hashtable =
1694 alloc_large_system_hash("Inode-cache",
1695 sizeof(struct hlist_head),
1696 ihash_entries,
1697 14,
1698 0,
1699 &i_hash_shift,
1700 &i_hash_mask,
1701 0);
1702
1703 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1704 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1705 }
1706
1707 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1708 {
1709 inode->i_mode = mode;
1710 if (S_ISCHR(mode)) {
1711 inode->i_fop = &def_chr_fops;
1712 inode->i_rdev = rdev;
1713 } else if (S_ISBLK(mode)) {
1714 inode->i_fop = &def_blk_fops;
1715 inode->i_rdev = rdev;
1716 } else if (S_ISFIFO(mode))
1717 inode->i_fop = &def_fifo_fops;
1718 else if (S_ISSOCK(mode))
1719 inode->i_fop = &bad_sock_fops;
1720 else
1721 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1722 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1723 inode->i_ino);
1724 }
1725 EXPORT_SYMBOL(init_special_inode);
1726
1727 /**
1728 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1729 * @inode: New inode
1730 * @dir: Directory inode
1731 * @mode: mode of the new inode
1732 */
1733 void inode_init_owner(struct inode *inode, const struct inode *dir,
1734 umode_t mode)
1735 {
1736 inode->i_uid = current_fsuid();
1737 if (dir && dir->i_mode & S_ISGID) {
1738 inode->i_gid = dir->i_gid;
1739 if (S_ISDIR(mode))
1740 mode |= S_ISGID;
1741 } else
1742 inode->i_gid = current_fsgid();
1743 inode->i_mode = mode;
1744 }
1745 EXPORT_SYMBOL(inode_init_owner);
1746
1747 /**
1748 * inode_owner_or_capable - check current task permissions to inode
1749 * @inode: inode being checked
1750 *
1751 * Return true if current either has CAP_FOWNER to the inode, or
1752 * owns the file.
1753 */
1754 bool inode_owner_or_capable(const struct inode *inode)
1755 {
1756 struct user_namespace *ns = inode_userns(inode);
1757
1758 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1759 return true;
1760 if (ns_capable(ns, CAP_FOWNER))
1761 return true;
1762 return false;
1763 }
1764 EXPORT_SYMBOL(inode_owner_or_capable);
This page took 0.076411 seconds and 6 git commands to generate.