Merge 4.2-rc1 into MTD -next
[deliverable/linux.git] / fs / jbd / revoke.c
1 /*
2 * linux/fs/jbd/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
26 * gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
48 * bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
59 * need do nothing.
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 #include <linux/hash.h>
97
98 static struct kmem_cache *revoke_record_cache;
99 static struct kmem_cache *revoke_table_cache;
100
101 /* Each revoke record represents one single revoked block. During
102 journal replay, this involves recording the transaction ID of the
103 last transaction to revoke this block. */
104
105 struct jbd_revoke_record_s
106 {
107 struct list_head hash;
108 tid_t sequence; /* Used for recovery only */
109 unsigned int blocknr;
110 };
111
112
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd_revoke_table_s
115 {
116 /* It is conceivable that we might want a larger hash table
117 * for recovery. Must be a power of two. */
118 int hash_size;
119 int hash_shift;
120 struct list_head *hash_table;
121 };
122
123
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 struct journal_head **, int *,
127 struct jbd_revoke_record_s *, int);
128 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
129 #endif
130
131 /* Utility functions to maintain the revoke table */
132
133 static inline int hash(journal_t *journal, unsigned int block)
134 {
135 struct jbd_revoke_table_s *table = journal->j_revoke;
136
137 return hash_32(block, table->hash_shift);
138 }
139
140 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
141 tid_t seq)
142 {
143 struct list_head *hash_list;
144 struct jbd_revoke_record_s *record;
145
146 repeat:
147 record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
148 if (!record)
149 goto oom;
150
151 record->sequence = seq;
152 record->blocknr = blocknr;
153 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
154 spin_lock(&journal->j_revoke_lock);
155 list_add(&record->hash, hash_list);
156 spin_unlock(&journal->j_revoke_lock);
157 return 0;
158
159 oom:
160 if (!journal_oom_retry)
161 return -ENOMEM;
162 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
163 yield();
164 goto repeat;
165 }
166
167 /* Find a revoke record in the journal's hash table. */
168
169 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
170 unsigned int blocknr)
171 {
172 struct list_head *hash_list;
173 struct jbd_revoke_record_s *record;
174
175 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
176
177 spin_lock(&journal->j_revoke_lock);
178 record = (struct jbd_revoke_record_s *) hash_list->next;
179 while (&(record->hash) != hash_list) {
180 if (record->blocknr == blocknr) {
181 spin_unlock(&journal->j_revoke_lock);
182 return record;
183 }
184 record = (struct jbd_revoke_record_s *) record->hash.next;
185 }
186 spin_unlock(&journal->j_revoke_lock);
187 return NULL;
188 }
189
190 void journal_destroy_revoke_caches(void)
191 {
192 if (revoke_record_cache) {
193 kmem_cache_destroy(revoke_record_cache);
194 revoke_record_cache = NULL;
195 }
196 if (revoke_table_cache) {
197 kmem_cache_destroy(revoke_table_cache);
198 revoke_table_cache = NULL;
199 }
200 }
201
202 int __init journal_init_revoke_caches(void)
203 {
204 J_ASSERT(!revoke_record_cache);
205 J_ASSERT(!revoke_table_cache);
206
207 revoke_record_cache = kmem_cache_create("revoke_record",
208 sizeof(struct jbd_revoke_record_s),
209 0,
210 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
211 NULL);
212 if (!revoke_record_cache)
213 goto record_cache_failure;
214
215 revoke_table_cache = kmem_cache_create("revoke_table",
216 sizeof(struct jbd_revoke_table_s),
217 0, SLAB_TEMPORARY, NULL);
218 if (!revoke_table_cache)
219 goto table_cache_failure;
220
221 return 0;
222
223 table_cache_failure:
224 journal_destroy_revoke_caches();
225 record_cache_failure:
226 return -ENOMEM;
227 }
228
229 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
230 {
231 int i;
232 struct jbd_revoke_table_s *table;
233
234 table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
235 if (!table)
236 goto out;
237
238 table->hash_size = hash_size;
239 table->hash_shift = ilog2(hash_size);
240 table->hash_table =
241 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
242 if (!table->hash_table) {
243 kmem_cache_free(revoke_table_cache, table);
244 table = NULL;
245 goto out;
246 }
247
248 for (i = 0; i < hash_size; i++)
249 INIT_LIST_HEAD(&table->hash_table[i]);
250
251 out:
252 return table;
253 }
254
255 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
256 {
257 int i;
258 struct list_head *hash_list;
259
260 for (i = 0; i < table->hash_size; i++) {
261 hash_list = &table->hash_table[i];
262 J_ASSERT(list_empty(hash_list));
263 }
264
265 kfree(table->hash_table);
266 kmem_cache_free(revoke_table_cache, table);
267 }
268
269 /* Initialise the revoke table for a given journal to a given size. */
270 int journal_init_revoke(journal_t *journal, int hash_size)
271 {
272 J_ASSERT(journal->j_revoke_table[0] == NULL);
273 J_ASSERT(is_power_of_2(hash_size));
274
275 journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
276 if (!journal->j_revoke_table[0])
277 goto fail0;
278
279 journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
280 if (!journal->j_revoke_table[1])
281 goto fail1;
282
283 journal->j_revoke = journal->j_revoke_table[1];
284
285 spin_lock_init(&journal->j_revoke_lock);
286
287 return 0;
288
289 fail1:
290 journal_destroy_revoke_table(journal->j_revoke_table[0]);
291 fail0:
292 return -ENOMEM;
293 }
294
295 /* Destroy a journal's revoke table. The table must already be empty! */
296 void journal_destroy_revoke(journal_t *journal)
297 {
298 journal->j_revoke = NULL;
299 if (journal->j_revoke_table[0])
300 journal_destroy_revoke_table(journal->j_revoke_table[0]);
301 if (journal->j_revoke_table[1])
302 journal_destroy_revoke_table(journal->j_revoke_table[1]);
303 }
304
305
306 #ifdef __KERNEL__
307
308 /*
309 * journal_revoke: revoke a given buffer_head from the journal. This
310 * prevents the block from being replayed during recovery if we take a
311 * crash after this current transaction commits. Any subsequent
312 * metadata writes of the buffer in this transaction cancel the
313 * revoke.
314 *
315 * Note that this call may block --- it is up to the caller to make
316 * sure that there are no further calls to journal_write_metadata
317 * before the revoke is complete. In ext3, this implies calling the
318 * revoke before clearing the block bitmap when we are deleting
319 * metadata.
320 *
321 * Revoke performs a journal_forget on any buffer_head passed in as a
322 * parameter, but does _not_ forget the buffer_head if the bh was only
323 * found implicitly.
324 *
325 * bh_in may not be a journalled buffer - it may have come off
326 * the hash tables without an attached journal_head.
327 *
328 * If bh_in is non-zero, journal_revoke() will decrement its b_count
329 * by one.
330 */
331
332 int journal_revoke(handle_t *handle, unsigned int blocknr,
333 struct buffer_head *bh_in)
334 {
335 struct buffer_head *bh = NULL;
336 journal_t *journal;
337 struct block_device *bdev;
338 int err;
339
340 might_sleep();
341 if (bh_in)
342 BUFFER_TRACE(bh_in, "enter");
343
344 journal = handle->h_transaction->t_journal;
345 if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
346 J_ASSERT (!"Cannot set revoke feature!");
347 return -EINVAL;
348 }
349
350 bdev = journal->j_fs_dev;
351 bh = bh_in;
352
353 if (!bh) {
354 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
355 if (bh)
356 BUFFER_TRACE(bh, "found on hash");
357 }
358 #ifdef JBD_EXPENSIVE_CHECKING
359 else {
360 struct buffer_head *bh2;
361
362 /* If there is a different buffer_head lying around in
363 * memory anywhere... */
364 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
365 if (bh2) {
366 /* ... and it has RevokeValid status... */
367 if (bh2 != bh && buffer_revokevalid(bh2))
368 /* ...then it better be revoked too,
369 * since it's illegal to create a revoke
370 * record against a buffer_head which is
371 * not marked revoked --- that would
372 * risk missing a subsequent revoke
373 * cancel. */
374 J_ASSERT_BH(bh2, buffer_revoked(bh2));
375 put_bh(bh2);
376 }
377 }
378 #endif
379
380 /* We really ought not ever to revoke twice in a row without
381 first having the revoke cancelled: it's illegal to free a
382 block twice without allocating it in between! */
383 if (bh) {
384 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
385 "inconsistent data on disk")) {
386 if (!bh_in)
387 brelse(bh);
388 return -EIO;
389 }
390 set_buffer_revoked(bh);
391 set_buffer_revokevalid(bh);
392 if (bh_in) {
393 BUFFER_TRACE(bh_in, "call journal_forget");
394 journal_forget(handle, bh_in);
395 } else {
396 BUFFER_TRACE(bh, "call brelse");
397 __brelse(bh);
398 }
399 }
400
401 jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
402 err = insert_revoke_hash(journal, blocknr,
403 handle->h_transaction->t_tid);
404 BUFFER_TRACE(bh_in, "exit");
405 return err;
406 }
407
408 /*
409 * Cancel an outstanding revoke. For use only internally by the
410 * journaling code (called from journal_get_write_access).
411 *
412 * We trust buffer_revoked() on the buffer if the buffer is already
413 * being journaled: if there is no revoke pending on the buffer, then we
414 * don't do anything here.
415 *
416 * This would break if it were possible for a buffer to be revoked and
417 * discarded, and then reallocated within the same transaction. In such
418 * a case we would have lost the revoked bit, but when we arrived here
419 * the second time we would still have a pending revoke to cancel. So,
420 * do not trust the Revoked bit on buffers unless RevokeValid is also
421 * set.
422 */
423 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
424 {
425 struct jbd_revoke_record_s *record;
426 journal_t *journal = handle->h_transaction->t_journal;
427 int need_cancel;
428 int did_revoke = 0; /* akpm: debug */
429 struct buffer_head *bh = jh2bh(jh);
430
431 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
432
433 /* Is the existing Revoke bit valid? If so, we trust it, and
434 * only perform the full cancel if the revoke bit is set. If
435 * not, we can't trust the revoke bit, and we need to do the
436 * full search for a revoke record. */
437 if (test_set_buffer_revokevalid(bh)) {
438 need_cancel = test_clear_buffer_revoked(bh);
439 } else {
440 need_cancel = 1;
441 clear_buffer_revoked(bh);
442 }
443
444 if (need_cancel) {
445 record = find_revoke_record(journal, bh->b_blocknr);
446 if (record) {
447 jbd_debug(4, "cancelled existing revoke on "
448 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
449 spin_lock(&journal->j_revoke_lock);
450 list_del(&record->hash);
451 spin_unlock(&journal->j_revoke_lock);
452 kmem_cache_free(revoke_record_cache, record);
453 did_revoke = 1;
454 }
455 }
456
457 #ifdef JBD_EXPENSIVE_CHECKING
458 /* There better not be one left behind by now! */
459 record = find_revoke_record(journal, bh->b_blocknr);
460 J_ASSERT_JH(jh, record == NULL);
461 #endif
462
463 /* Finally, have we just cleared revoke on an unhashed
464 * buffer_head? If so, we'd better make sure we clear the
465 * revoked status on any hashed alias too, otherwise the revoke
466 * state machine will get very upset later on. */
467 if (need_cancel) {
468 struct buffer_head *bh2;
469 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
470 if (bh2) {
471 if (bh2 != bh)
472 clear_buffer_revoked(bh2);
473 __brelse(bh2);
474 }
475 }
476 return did_revoke;
477 }
478
479 /*
480 * journal_clear_revoked_flags clears revoked flag of buffers in
481 * revoke table to reflect there is no revoked buffer in the next
482 * transaction which is going to be started.
483 */
484 void journal_clear_buffer_revoked_flags(journal_t *journal)
485 {
486 struct jbd_revoke_table_s *revoke = journal->j_revoke;
487 int i = 0;
488
489 for (i = 0; i < revoke->hash_size; i++) {
490 struct list_head *hash_list;
491 struct list_head *list_entry;
492 hash_list = &revoke->hash_table[i];
493
494 list_for_each(list_entry, hash_list) {
495 struct jbd_revoke_record_s *record;
496 struct buffer_head *bh;
497 record = (struct jbd_revoke_record_s *)list_entry;
498 bh = __find_get_block(journal->j_fs_dev,
499 record->blocknr,
500 journal->j_blocksize);
501 if (bh) {
502 clear_buffer_revoked(bh);
503 __brelse(bh);
504 }
505 }
506 }
507 }
508
509 /* journal_switch_revoke table select j_revoke for next transaction
510 * we do not want to suspend any processing until all revokes are
511 * written -bzzz
512 */
513 void journal_switch_revoke_table(journal_t *journal)
514 {
515 int i;
516
517 if (journal->j_revoke == journal->j_revoke_table[0])
518 journal->j_revoke = journal->j_revoke_table[1];
519 else
520 journal->j_revoke = journal->j_revoke_table[0];
521
522 for (i = 0; i < journal->j_revoke->hash_size; i++)
523 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
524 }
525
526 /*
527 * Write revoke records to the journal for all entries in the current
528 * revoke hash, deleting the entries as we go.
529 */
530 void journal_write_revoke_records(journal_t *journal,
531 transaction_t *transaction, int write_op)
532 {
533 struct journal_head *descriptor;
534 struct jbd_revoke_record_s *record;
535 struct jbd_revoke_table_s *revoke;
536 struct list_head *hash_list;
537 int i, offset, count;
538
539 descriptor = NULL;
540 offset = 0;
541 count = 0;
542
543 /* select revoke table for committing transaction */
544 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
545 journal->j_revoke_table[1] : journal->j_revoke_table[0];
546
547 for (i = 0; i < revoke->hash_size; i++) {
548 hash_list = &revoke->hash_table[i];
549
550 while (!list_empty(hash_list)) {
551 record = (struct jbd_revoke_record_s *)
552 hash_list->next;
553 write_one_revoke_record(journal, transaction,
554 &descriptor, &offset,
555 record, write_op);
556 count++;
557 list_del(&record->hash);
558 kmem_cache_free(revoke_record_cache, record);
559 }
560 }
561 if (descriptor)
562 flush_descriptor(journal, descriptor, offset, write_op);
563 jbd_debug(1, "Wrote %d revoke records\n", count);
564 }
565
566 /*
567 * Write out one revoke record. We need to create a new descriptor
568 * block if the old one is full or if we have not already created one.
569 */
570
571 static void write_one_revoke_record(journal_t *journal,
572 transaction_t *transaction,
573 struct journal_head **descriptorp,
574 int *offsetp,
575 struct jbd_revoke_record_s *record,
576 int write_op)
577 {
578 struct journal_head *descriptor;
579 int offset;
580 journal_header_t *header;
581
582 /* If we are already aborting, this all becomes a noop. We
583 still need to go round the loop in
584 journal_write_revoke_records in order to free all of the
585 revoke records: only the IO to the journal is omitted. */
586 if (is_journal_aborted(journal))
587 return;
588
589 descriptor = *descriptorp;
590 offset = *offsetp;
591
592 /* Make sure we have a descriptor with space left for the record */
593 if (descriptor) {
594 if (offset == journal->j_blocksize) {
595 flush_descriptor(journal, descriptor, offset, write_op);
596 descriptor = NULL;
597 }
598 }
599
600 if (!descriptor) {
601 descriptor = journal_get_descriptor_buffer(journal);
602 if (!descriptor)
603 return;
604 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
605 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
606 header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
607 header->h_sequence = cpu_to_be32(transaction->t_tid);
608
609 /* Record it so that we can wait for IO completion later */
610 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
611 journal_file_buffer(descriptor, transaction, BJ_LogCtl);
612
613 offset = sizeof(journal_revoke_header_t);
614 *descriptorp = descriptor;
615 }
616
617 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
618 cpu_to_be32(record->blocknr);
619 offset += 4;
620 *offsetp = offset;
621 }
622
623 /*
624 * Flush a revoke descriptor out to the journal. If we are aborting,
625 * this is a noop; otherwise we are generating a buffer which needs to
626 * be waited for during commit, so it has to go onto the appropriate
627 * journal buffer list.
628 */
629
630 static void flush_descriptor(journal_t *journal,
631 struct journal_head *descriptor,
632 int offset, int write_op)
633 {
634 journal_revoke_header_t *header;
635 struct buffer_head *bh = jh2bh(descriptor);
636
637 if (is_journal_aborted(journal)) {
638 put_bh(bh);
639 return;
640 }
641
642 header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
643 header->r_count = cpu_to_be32(offset);
644 set_buffer_jwrite(bh);
645 BUFFER_TRACE(bh, "write");
646 set_buffer_dirty(bh);
647 write_dirty_buffer(bh, write_op);
648 }
649 #endif
650
651 /*
652 * Revoke support for recovery.
653 *
654 * Recovery needs to be able to:
655 *
656 * record all revoke records, including the tid of the latest instance
657 * of each revoke in the journal
658 *
659 * check whether a given block in a given transaction should be replayed
660 * (ie. has not been revoked by a revoke record in that or a subsequent
661 * transaction)
662 *
663 * empty the revoke table after recovery.
664 */
665
666 /*
667 * First, setting revoke records. We create a new revoke record for
668 * every block ever revoked in the log as we scan it for recovery, and
669 * we update the existing records if we find multiple revokes for a
670 * single block.
671 */
672
673 int journal_set_revoke(journal_t *journal,
674 unsigned int blocknr,
675 tid_t sequence)
676 {
677 struct jbd_revoke_record_s *record;
678
679 record = find_revoke_record(journal, blocknr);
680 if (record) {
681 /* If we have multiple occurrences, only record the
682 * latest sequence number in the hashed record */
683 if (tid_gt(sequence, record->sequence))
684 record->sequence = sequence;
685 return 0;
686 }
687 return insert_revoke_hash(journal, blocknr, sequence);
688 }
689
690 /*
691 * Test revoke records. For a given block referenced in the log, has
692 * that block been revoked? A revoke record with a given transaction
693 * sequence number revokes all blocks in that transaction and earlier
694 * ones, but later transactions still need replayed.
695 */
696
697 int journal_test_revoke(journal_t *journal,
698 unsigned int blocknr,
699 tid_t sequence)
700 {
701 struct jbd_revoke_record_s *record;
702
703 record = find_revoke_record(journal, blocknr);
704 if (!record)
705 return 0;
706 if (tid_gt(sequence, record->sequence))
707 return 0;
708 return 1;
709 }
710
711 /*
712 * Finally, once recovery is over, we need to clear the revoke table so
713 * that it can be reused by the running filesystem.
714 */
715
716 void journal_clear_revoke(journal_t *journal)
717 {
718 int i;
719 struct list_head *hash_list;
720 struct jbd_revoke_record_s *record;
721 struct jbd_revoke_table_s *revoke;
722
723 revoke = journal->j_revoke;
724
725 for (i = 0; i < revoke->hash_size; i++) {
726 hash_list = &revoke->hash_table[i];
727 while (!list_empty(hash_list)) {
728 record = (struct jbd_revoke_record_s*) hash_list->next;
729 list_del(&record->hash);
730 kmem_cache_free(revoke_record_cache, record);
731 }
732 }
733 }
This page took 0.045577 seconds and 5 git commands to generate.