Merge tag 'firewire-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / fs / jbd / revoke.c
1 /*
2 * linux/fs/jbd/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
26 * gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
48 * bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
59 * need do nothing.
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96
97 static struct kmem_cache *revoke_record_cache;
98 static struct kmem_cache *revoke_table_cache;
99
100 /* Each revoke record represents one single revoked block. During
101 journal replay, this involves recording the transaction ID of the
102 last transaction to revoke this block. */
103
104 struct jbd_revoke_record_s
105 {
106 struct list_head hash;
107 tid_t sequence; /* Used for recovery only */
108 unsigned int blocknr;
109 };
110
111
112 /* The revoke table is just a simple hash table of revoke records. */
113 struct jbd_revoke_table_s
114 {
115 /* It is conceivable that we might want a larger hash table
116 * for recovery. Must be a power of two. */
117 int hash_size;
118 int hash_shift;
119 struct list_head *hash_table;
120 };
121
122
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125 struct journal_head **, int *,
126 struct jbd_revoke_record_s *, int);
127 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128 #endif
129
130 /* Utility functions to maintain the revoke table */
131
132 /* Borrowed from buffer.c: this is a tried and tested block hash function */
133 static inline int hash(journal_t *journal, unsigned int block)
134 {
135 struct jbd_revoke_table_s *table = journal->j_revoke;
136 int hash_shift = table->hash_shift;
137
138 return ((block << (hash_shift - 6)) ^
139 (block >> 13) ^
140 (block << (hash_shift - 12))) & (table->hash_size - 1);
141 }
142
143 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
144 tid_t seq)
145 {
146 struct list_head *hash_list;
147 struct jbd_revoke_record_s *record;
148
149 repeat:
150 record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
151 if (!record)
152 goto oom;
153
154 record->sequence = seq;
155 record->blocknr = blocknr;
156 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
157 spin_lock(&journal->j_revoke_lock);
158 list_add(&record->hash, hash_list);
159 spin_unlock(&journal->j_revoke_lock);
160 return 0;
161
162 oom:
163 if (!journal_oom_retry)
164 return -ENOMEM;
165 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
166 yield();
167 goto repeat;
168 }
169
170 /* Find a revoke record in the journal's hash table. */
171
172 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
173 unsigned int blocknr)
174 {
175 struct list_head *hash_list;
176 struct jbd_revoke_record_s *record;
177
178 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
179
180 spin_lock(&journal->j_revoke_lock);
181 record = (struct jbd_revoke_record_s *) hash_list->next;
182 while (&(record->hash) != hash_list) {
183 if (record->blocknr == blocknr) {
184 spin_unlock(&journal->j_revoke_lock);
185 return record;
186 }
187 record = (struct jbd_revoke_record_s *) record->hash.next;
188 }
189 spin_unlock(&journal->j_revoke_lock);
190 return NULL;
191 }
192
193 void journal_destroy_revoke_caches(void)
194 {
195 if (revoke_record_cache) {
196 kmem_cache_destroy(revoke_record_cache);
197 revoke_record_cache = NULL;
198 }
199 if (revoke_table_cache) {
200 kmem_cache_destroy(revoke_table_cache);
201 revoke_table_cache = NULL;
202 }
203 }
204
205 int __init journal_init_revoke_caches(void)
206 {
207 J_ASSERT(!revoke_record_cache);
208 J_ASSERT(!revoke_table_cache);
209
210 revoke_record_cache = kmem_cache_create("revoke_record",
211 sizeof(struct jbd_revoke_record_s),
212 0,
213 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
214 NULL);
215 if (!revoke_record_cache)
216 goto record_cache_failure;
217
218 revoke_table_cache = kmem_cache_create("revoke_table",
219 sizeof(struct jbd_revoke_table_s),
220 0, SLAB_TEMPORARY, NULL);
221 if (!revoke_table_cache)
222 goto table_cache_failure;
223
224 return 0;
225
226 table_cache_failure:
227 journal_destroy_revoke_caches();
228 record_cache_failure:
229 return -ENOMEM;
230 }
231
232 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
233 {
234 int i;
235 struct jbd_revoke_table_s *table;
236
237 table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
238 if (!table)
239 goto out;
240
241 table->hash_size = hash_size;
242 table->hash_shift = ilog2(hash_size);
243 table->hash_table =
244 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
245 if (!table->hash_table) {
246 kmem_cache_free(revoke_table_cache, table);
247 table = NULL;
248 goto out;
249 }
250
251 for (i = 0; i < hash_size; i++)
252 INIT_LIST_HEAD(&table->hash_table[i]);
253
254 out:
255 return table;
256 }
257
258 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
259 {
260 int i;
261 struct list_head *hash_list;
262
263 for (i = 0; i < table->hash_size; i++) {
264 hash_list = &table->hash_table[i];
265 J_ASSERT(list_empty(hash_list));
266 }
267
268 kfree(table->hash_table);
269 kmem_cache_free(revoke_table_cache, table);
270 }
271
272 /* Initialise the revoke table for a given journal to a given size. */
273 int journal_init_revoke(journal_t *journal, int hash_size)
274 {
275 J_ASSERT(journal->j_revoke_table[0] == NULL);
276 J_ASSERT(is_power_of_2(hash_size));
277
278 journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
279 if (!journal->j_revoke_table[0])
280 goto fail0;
281
282 journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
283 if (!journal->j_revoke_table[1])
284 goto fail1;
285
286 journal->j_revoke = journal->j_revoke_table[1];
287
288 spin_lock_init(&journal->j_revoke_lock);
289
290 return 0;
291
292 fail1:
293 journal_destroy_revoke_table(journal->j_revoke_table[0]);
294 fail0:
295 return -ENOMEM;
296 }
297
298 /* Destroy a journal's revoke table. The table must already be empty! */
299 void journal_destroy_revoke(journal_t *journal)
300 {
301 journal->j_revoke = NULL;
302 if (journal->j_revoke_table[0])
303 journal_destroy_revoke_table(journal->j_revoke_table[0]);
304 if (journal->j_revoke_table[1])
305 journal_destroy_revoke_table(journal->j_revoke_table[1]);
306 }
307
308
309 #ifdef __KERNEL__
310
311 /*
312 * journal_revoke: revoke a given buffer_head from the journal. This
313 * prevents the block from being replayed during recovery if we take a
314 * crash after this current transaction commits. Any subsequent
315 * metadata writes of the buffer in this transaction cancel the
316 * revoke.
317 *
318 * Note that this call may block --- it is up to the caller to make
319 * sure that there are no further calls to journal_write_metadata
320 * before the revoke is complete. In ext3, this implies calling the
321 * revoke before clearing the block bitmap when we are deleting
322 * metadata.
323 *
324 * Revoke performs a journal_forget on any buffer_head passed in as a
325 * parameter, but does _not_ forget the buffer_head if the bh was only
326 * found implicitly.
327 *
328 * bh_in may not be a journalled buffer - it may have come off
329 * the hash tables without an attached journal_head.
330 *
331 * If bh_in is non-zero, journal_revoke() will decrement its b_count
332 * by one.
333 */
334
335 int journal_revoke(handle_t *handle, unsigned int blocknr,
336 struct buffer_head *bh_in)
337 {
338 struct buffer_head *bh = NULL;
339 journal_t *journal;
340 struct block_device *bdev;
341 int err;
342
343 might_sleep();
344 if (bh_in)
345 BUFFER_TRACE(bh_in, "enter");
346
347 journal = handle->h_transaction->t_journal;
348 if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
349 J_ASSERT (!"Cannot set revoke feature!");
350 return -EINVAL;
351 }
352
353 bdev = journal->j_fs_dev;
354 bh = bh_in;
355
356 if (!bh) {
357 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
358 if (bh)
359 BUFFER_TRACE(bh, "found on hash");
360 }
361 #ifdef JBD_EXPENSIVE_CHECKING
362 else {
363 struct buffer_head *bh2;
364
365 /* If there is a different buffer_head lying around in
366 * memory anywhere... */
367 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
368 if (bh2) {
369 /* ... and it has RevokeValid status... */
370 if (bh2 != bh && buffer_revokevalid(bh2))
371 /* ...then it better be revoked too,
372 * since it's illegal to create a revoke
373 * record against a buffer_head which is
374 * not marked revoked --- that would
375 * risk missing a subsequent revoke
376 * cancel. */
377 J_ASSERT_BH(bh2, buffer_revoked(bh2));
378 put_bh(bh2);
379 }
380 }
381 #endif
382
383 /* We really ought not ever to revoke twice in a row without
384 first having the revoke cancelled: it's illegal to free a
385 block twice without allocating it in between! */
386 if (bh) {
387 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
388 "inconsistent data on disk")) {
389 if (!bh_in)
390 brelse(bh);
391 return -EIO;
392 }
393 set_buffer_revoked(bh);
394 set_buffer_revokevalid(bh);
395 if (bh_in) {
396 BUFFER_TRACE(bh_in, "call journal_forget");
397 journal_forget(handle, bh_in);
398 } else {
399 BUFFER_TRACE(bh, "call brelse");
400 __brelse(bh);
401 }
402 }
403
404 jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
405 err = insert_revoke_hash(journal, blocknr,
406 handle->h_transaction->t_tid);
407 BUFFER_TRACE(bh_in, "exit");
408 return err;
409 }
410
411 /*
412 * Cancel an outstanding revoke. For use only internally by the
413 * journaling code (called from journal_get_write_access).
414 *
415 * We trust buffer_revoked() on the buffer if the buffer is already
416 * being journaled: if there is no revoke pending on the buffer, then we
417 * don't do anything here.
418 *
419 * This would break if it were possible for a buffer to be revoked and
420 * discarded, and then reallocated within the same transaction. In such
421 * a case we would have lost the revoked bit, but when we arrived here
422 * the second time we would still have a pending revoke to cancel. So,
423 * do not trust the Revoked bit on buffers unless RevokeValid is also
424 * set.
425 */
426 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
427 {
428 struct jbd_revoke_record_s *record;
429 journal_t *journal = handle->h_transaction->t_journal;
430 int need_cancel;
431 int did_revoke = 0; /* akpm: debug */
432 struct buffer_head *bh = jh2bh(jh);
433
434 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
435
436 /* Is the existing Revoke bit valid? If so, we trust it, and
437 * only perform the full cancel if the revoke bit is set. If
438 * not, we can't trust the revoke bit, and we need to do the
439 * full search for a revoke record. */
440 if (test_set_buffer_revokevalid(bh)) {
441 need_cancel = test_clear_buffer_revoked(bh);
442 } else {
443 need_cancel = 1;
444 clear_buffer_revoked(bh);
445 }
446
447 if (need_cancel) {
448 record = find_revoke_record(journal, bh->b_blocknr);
449 if (record) {
450 jbd_debug(4, "cancelled existing revoke on "
451 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
452 spin_lock(&journal->j_revoke_lock);
453 list_del(&record->hash);
454 spin_unlock(&journal->j_revoke_lock);
455 kmem_cache_free(revoke_record_cache, record);
456 did_revoke = 1;
457 }
458 }
459
460 #ifdef JBD_EXPENSIVE_CHECKING
461 /* There better not be one left behind by now! */
462 record = find_revoke_record(journal, bh->b_blocknr);
463 J_ASSERT_JH(jh, record == NULL);
464 #endif
465
466 /* Finally, have we just cleared revoke on an unhashed
467 * buffer_head? If so, we'd better make sure we clear the
468 * revoked status on any hashed alias too, otherwise the revoke
469 * state machine will get very upset later on. */
470 if (need_cancel) {
471 struct buffer_head *bh2;
472 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
473 if (bh2) {
474 if (bh2 != bh)
475 clear_buffer_revoked(bh2);
476 __brelse(bh2);
477 }
478 }
479 return did_revoke;
480 }
481
482 /*
483 * journal_clear_revoked_flags clears revoked flag of buffers in
484 * revoke table to reflect there is no revoked buffer in the next
485 * transaction which is going to be started.
486 */
487 void journal_clear_buffer_revoked_flags(journal_t *journal)
488 {
489 struct jbd_revoke_table_s *revoke = journal->j_revoke;
490 int i = 0;
491
492 for (i = 0; i < revoke->hash_size; i++) {
493 struct list_head *hash_list;
494 struct list_head *list_entry;
495 hash_list = &revoke->hash_table[i];
496
497 list_for_each(list_entry, hash_list) {
498 struct jbd_revoke_record_s *record;
499 struct buffer_head *bh;
500 record = (struct jbd_revoke_record_s *)list_entry;
501 bh = __find_get_block(journal->j_fs_dev,
502 record->blocknr,
503 journal->j_blocksize);
504 if (bh) {
505 clear_buffer_revoked(bh);
506 __brelse(bh);
507 }
508 }
509 }
510 }
511
512 /* journal_switch_revoke table select j_revoke for next transaction
513 * we do not want to suspend any processing until all revokes are
514 * written -bzzz
515 */
516 void journal_switch_revoke_table(journal_t *journal)
517 {
518 int i;
519
520 if (journal->j_revoke == journal->j_revoke_table[0])
521 journal->j_revoke = journal->j_revoke_table[1];
522 else
523 journal->j_revoke = journal->j_revoke_table[0];
524
525 for (i = 0; i < journal->j_revoke->hash_size; i++)
526 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
527 }
528
529 /*
530 * Write revoke records to the journal for all entries in the current
531 * revoke hash, deleting the entries as we go.
532 */
533 void journal_write_revoke_records(journal_t *journal,
534 transaction_t *transaction, int write_op)
535 {
536 struct journal_head *descriptor;
537 struct jbd_revoke_record_s *record;
538 struct jbd_revoke_table_s *revoke;
539 struct list_head *hash_list;
540 int i, offset, count;
541
542 descriptor = NULL;
543 offset = 0;
544 count = 0;
545
546 /* select revoke table for committing transaction */
547 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
548 journal->j_revoke_table[1] : journal->j_revoke_table[0];
549
550 for (i = 0; i < revoke->hash_size; i++) {
551 hash_list = &revoke->hash_table[i];
552
553 while (!list_empty(hash_list)) {
554 record = (struct jbd_revoke_record_s *)
555 hash_list->next;
556 write_one_revoke_record(journal, transaction,
557 &descriptor, &offset,
558 record, write_op);
559 count++;
560 list_del(&record->hash);
561 kmem_cache_free(revoke_record_cache, record);
562 }
563 }
564 if (descriptor)
565 flush_descriptor(journal, descriptor, offset, write_op);
566 jbd_debug(1, "Wrote %d revoke records\n", count);
567 }
568
569 /*
570 * Write out one revoke record. We need to create a new descriptor
571 * block if the old one is full or if we have not already created one.
572 */
573
574 static void write_one_revoke_record(journal_t *journal,
575 transaction_t *transaction,
576 struct journal_head **descriptorp,
577 int *offsetp,
578 struct jbd_revoke_record_s *record,
579 int write_op)
580 {
581 struct journal_head *descriptor;
582 int offset;
583 journal_header_t *header;
584
585 /* If we are already aborting, this all becomes a noop. We
586 still need to go round the loop in
587 journal_write_revoke_records in order to free all of the
588 revoke records: only the IO to the journal is omitted. */
589 if (is_journal_aborted(journal))
590 return;
591
592 descriptor = *descriptorp;
593 offset = *offsetp;
594
595 /* Make sure we have a descriptor with space left for the record */
596 if (descriptor) {
597 if (offset == journal->j_blocksize) {
598 flush_descriptor(journal, descriptor, offset, write_op);
599 descriptor = NULL;
600 }
601 }
602
603 if (!descriptor) {
604 descriptor = journal_get_descriptor_buffer(journal);
605 if (!descriptor)
606 return;
607 header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
608 header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
609 header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
610 header->h_sequence = cpu_to_be32(transaction->t_tid);
611
612 /* Record it so that we can wait for IO completion later */
613 JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
614 journal_file_buffer(descriptor, transaction, BJ_LogCtl);
615
616 offset = sizeof(journal_revoke_header_t);
617 *descriptorp = descriptor;
618 }
619
620 * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
621 cpu_to_be32(record->blocknr);
622 offset += 4;
623 *offsetp = offset;
624 }
625
626 /*
627 * Flush a revoke descriptor out to the journal. If we are aborting,
628 * this is a noop; otherwise we are generating a buffer which needs to
629 * be waited for during commit, so it has to go onto the appropriate
630 * journal buffer list.
631 */
632
633 static void flush_descriptor(journal_t *journal,
634 struct journal_head *descriptor,
635 int offset, int write_op)
636 {
637 journal_revoke_header_t *header;
638 struct buffer_head *bh = jh2bh(descriptor);
639
640 if (is_journal_aborted(journal)) {
641 put_bh(bh);
642 return;
643 }
644
645 header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
646 header->r_count = cpu_to_be32(offset);
647 set_buffer_jwrite(bh);
648 BUFFER_TRACE(bh, "write");
649 set_buffer_dirty(bh);
650 write_dirty_buffer(bh, write_op);
651 }
652 #endif
653
654 /*
655 * Revoke support for recovery.
656 *
657 * Recovery needs to be able to:
658 *
659 * record all revoke records, including the tid of the latest instance
660 * of each revoke in the journal
661 *
662 * check whether a given block in a given transaction should be replayed
663 * (ie. has not been revoked by a revoke record in that or a subsequent
664 * transaction)
665 *
666 * empty the revoke table after recovery.
667 */
668
669 /*
670 * First, setting revoke records. We create a new revoke record for
671 * every block ever revoked in the log as we scan it for recovery, and
672 * we update the existing records if we find multiple revokes for a
673 * single block.
674 */
675
676 int journal_set_revoke(journal_t *journal,
677 unsigned int blocknr,
678 tid_t sequence)
679 {
680 struct jbd_revoke_record_s *record;
681
682 record = find_revoke_record(journal, blocknr);
683 if (record) {
684 /* If we have multiple occurrences, only record the
685 * latest sequence number in the hashed record */
686 if (tid_gt(sequence, record->sequence))
687 record->sequence = sequence;
688 return 0;
689 }
690 return insert_revoke_hash(journal, blocknr, sequence);
691 }
692
693 /*
694 * Test revoke records. For a given block referenced in the log, has
695 * that block been revoked? A revoke record with a given transaction
696 * sequence number revokes all blocks in that transaction and earlier
697 * ones, but later transactions still need replayed.
698 */
699
700 int journal_test_revoke(journal_t *journal,
701 unsigned int blocknr,
702 tid_t sequence)
703 {
704 struct jbd_revoke_record_s *record;
705
706 record = find_revoke_record(journal, blocknr);
707 if (!record)
708 return 0;
709 if (tid_gt(sequence, record->sequence))
710 return 0;
711 return 1;
712 }
713
714 /*
715 * Finally, once recovery is over, we need to clear the revoke table so
716 * that it can be reused by the running filesystem.
717 */
718
719 void journal_clear_revoke(journal_t *journal)
720 {
721 int i;
722 struct list_head *hash_list;
723 struct jbd_revoke_record_s *record;
724 struct jbd_revoke_table_s *revoke;
725
726 revoke = journal->j_revoke;
727
728 for (i = 0; i < revoke->hash_size; i++) {
729 hash_list = &revoke->hash_table[i];
730 while (!list_empty(hash_list)) {
731 record = (struct jbd_revoke_record_s*) hash_list->next;
732 list_del(&record->hash);
733 kmem_cache_free(revoke_record_cache, record);
734 }
735 }
736 }
This page took 0.045379 seconds and 6 git commands to generate.