Merge remote-tracking branches 'asoc/fix/atmel', 'asoc/fix/compress', 'asoc/fix/da721...
[deliverable/linux.git] / fs / jbd2 / journal.c
1 /*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 unsigned int line, const char *fmt, ...)
110 {
111 struct va_format vaf;
112 va_list args;
113
114 if (level > jbd2_journal_enable_debug)
115 return;
116 va_start(args, fmt);
117 vaf.fmt = fmt;
118 vaf.va = &args;
119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 if (!jbd2_journal_has_csum_v2or3_feature(j))
129 return 1;
130
131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 __u32 csum;
137 __be32 old_csum;
138
139 old_csum = sb->s_checksum;
140 sb->s_checksum = 0;
141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 sb->s_checksum = old_csum;
143
144 return cpu_to_be32(csum);
145 }
146
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 if (!jbd2_journal_has_csum_v2or3(j))
150 return 1;
151
152 return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 if (!jbd2_journal_has_csum_v2or3(j))
158 return;
159
160 sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162
163 /*
164 * Helper function used to manage commit timeouts
165 */
166
167 static void commit_timeout(unsigned long __data)
168 {
169 struct task_struct * p = (struct task_struct *) __data;
170
171 wake_up_process(p);
172 }
173
174 /*
175 * kjournald2: The main thread function used to manage a logging device
176 * journal.
177 *
178 * This kernel thread is responsible for two things:
179 *
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
183 *
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
188 */
189
190 static int kjournald2(void *arg)
191 {
192 journal_t *journal = arg;
193 transaction_t *transaction;
194
195 /*
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
198 */
199 setup_timer(&journal->j_commit_timer, commit_timeout,
200 (unsigned long)current);
201
202 set_freezable();
203
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
207
208 /*
209 * And now, wait forever for commit wakeup events.
210 */
211 write_lock(&journal->j_state_lock);
212
213 loop:
214 if (journal->j_flags & JBD2_UNMOUNT)
215 goto end_loop;
216
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal->j_commit_sequence, journal->j_commit_request);
219
220 if (journal->j_commit_sequence != journal->j_commit_request) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal->j_state_lock);
223 del_timer_sync(&journal->j_commit_timer);
224 jbd2_journal_commit_transaction(journal);
225 write_lock(&journal->j_state_lock);
226 goto loop;
227 }
228
229 wake_up(&journal->j_wait_done_commit);
230 if (freezing(current)) {
231 /*
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
235 */
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal->j_state_lock);
238 try_to_freeze();
239 write_lock(&journal->j_state_lock);
240 } else {
241 /*
242 * We assume on resume that commits are already there,
243 * so we don't sleep
244 */
245 DEFINE_WAIT(wait);
246 int should_sleep = 1;
247
248 prepare_to_wait(&journal->j_wait_commit, &wait,
249 TASK_INTERRUPTIBLE);
250 if (journal->j_commit_sequence != journal->j_commit_request)
251 should_sleep = 0;
252 transaction = journal->j_running_transaction;
253 if (transaction && time_after_eq(jiffies,
254 transaction->t_expires))
255 should_sleep = 0;
256 if (journal->j_flags & JBD2_UNMOUNT)
257 should_sleep = 0;
258 if (should_sleep) {
259 write_unlock(&journal->j_state_lock);
260 schedule();
261 write_lock(&journal->j_state_lock);
262 }
263 finish_wait(&journal->j_wait_commit, &wait);
264 }
265
266 jbd_debug(1, "kjournald2 wakes\n");
267
268 /*
269 * Were we woken up by a commit wakeup event?
270 */
271 transaction = journal->j_running_transaction;
272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 journal->j_commit_request = transaction->t_tid;
274 jbd_debug(1, "woke because of timeout\n");
275 }
276 goto loop;
277
278 end_loop:
279 write_unlock(&journal->j_state_lock);
280 del_timer_sync(&journal->j_commit_timer);
281 journal->j_task = NULL;
282 wake_up(&journal->j_wait_done_commit);
283 jbd_debug(1, "Journal thread exiting.\n");
284 return 0;
285 }
286
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 struct task_struct *t;
290
291 t = kthread_run(kjournald2, journal, "jbd2/%s",
292 journal->j_devname);
293 if (IS_ERR(t))
294 return PTR_ERR(t);
295
296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 return 0;
298 }
299
300 static void journal_kill_thread(journal_t *journal)
301 {
302 write_lock(&journal->j_state_lock);
303 journal->j_flags |= JBD2_UNMOUNT;
304
305 while (journal->j_task) {
306 write_unlock(&journal->j_state_lock);
307 wake_up(&journal->j_wait_commit);
308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 write_lock(&journal->j_state_lock);
310 }
311 write_unlock(&journal->j_state_lock);
312 }
313
314 /*
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 *
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
320 *
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
329 * during recovery.
330 *
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
336 *
337 * The function returns a pointer to the buffer_head to be used for IO.
338 *
339 *
340 * Return value:
341 * <0: Error
342 * >=0: Finished OK
343 *
344 * On success:
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347 */
348
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 struct journal_head *jh_in,
351 struct buffer_head **bh_out,
352 sector_t blocknr)
353 {
354 int need_copy_out = 0;
355 int done_copy_out = 0;
356 int do_escape = 0;
357 char *mapped_data;
358 struct buffer_head *new_bh;
359 struct page *new_page;
360 unsigned int new_offset;
361 struct buffer_head *bh_in = jh2bh(jh_in);
362 journal_t *journal = transaction->t_journal;
363
364 /*
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
367 * to do any IO.
368 *
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
372 */
373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374
375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh->b_count, 1);
379
380 jbd_lock_bh_state(bh_in);
381 repeat:
382 /*
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
385 */
386 if (jh_in->b_frozen_data) {
387 done_copy_out = 1;
388 new_page = virt_to_page(jh_in->b_frozen_data);
389 new_offset = offset_in_page(jh_in->b_frozen_data);
390 } else {
391 new_page = jh2bh(jh_in)->b_page;
392 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 }
394
395 mapped_data = kmap_atomic(new_page);
396 /*
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
401 */
402 if (!done_copy_out)
403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 jh_in->b_triggers);
405
406 /*
407 * Check for escaping
408 */
409 if (*((__be32 *)(mapped_data + new_offset)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 need_copy_out = 1;
412 do_escape = 1;
413 }
414 kunmap_atomic(mapped_data);
415
416 /*
417 * Do we need to do a data copy?
418 */
419 if (need_copy_out && !done_copy_out) {
420 char *tmp;
421
422 jbd_unlock_bh_state(bh_in);
423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 if (!tmp) {
425 brelse(new_bh);
426 return -ENOMEM;
427 }
428 jbd_lock_bh_state(bh_in);
429 if (jh_in->b_frozen_data) {
430 jbd2_free(tmp, bh_in->b_size);
431 goto repeat;
432 }
433
434 jh_in->b_frozen_data = tmp;
435 mapped_data = kmap_atomic(new_page);
436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 kunmap_atomic(mapped_data);
438
439 new_page = virt_to_page(tmp);
440 new_offset = offset_in_page(tmp);
441 done_copy_out = 1;
442
443 /*
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
447 */
448 jh_in->b_frozen_triggers = jh_in->b_triggers;
449 }
450
451 /*
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
454 */
455 if (do_escape) {
456 mapped_data = kmap_atomic(new_page);
457 *((unsigned int *)(mapped_data + new_offset)) = 0;
458 kunmap_atomic(mapped_data);
459 }
460
461 set_bh_page(new_bh, new_page, new_offset);
462 new_bh->b_size = bh_in->b_size;
463 new_bh->b_bdev = journal->j_dev;
464 new_bh->b_blocknr = blocknr;
465 new_bh->b_private = bh_in;
466 set_buffer_mapped(new_bh);
467 set_buffer_dirty(new_bh);
468
469 *bh_out = new_bh;
470
471 /*
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
475 */
476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 spin_lock(&journal->j_list_lock);
478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 spin_unlock(&journal->j_list_lock);
480 set_buffer_shadow(bh_in);
481 jbd_unlock_bh_state(bh_in);
482
483 return do_escape | (done_copy_out << 1);
484 }
485
486 /*
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
489 */
490
491 /*
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
494 */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 /* Return if the txn has already requested to be committed */
498 if (journal->j_commit_request == target)
499 return 0;
500
501 /*
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
505 */
506 if (journal->j_running_transaction &&
507 journal->j_running_transaction->t_tid == target) {
508 /*
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
511 */
512
513 journal->j_commit_request = target;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal->j_commit_request,
516 journal->j_commit_sequence);
517 journal->j_running_transaction->t_requested = jiffies;
518 wake_up(&journal->j_wait_commit);
519 return 1;
520 } else if (!tid_geq(journal->j_commit_request, target))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal->j_commit_request,
526 journal->j_commit_sequence,
527 target, journal->j_running_transaction ?
528 journal->j_running_transaction->t_tid : 0);
529 return 0;
530 }
531
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 int ret;
535
536 write_lock(&journal->j_state_lock);
537 ret = __jbd2_log_start_commit(journal, tid);
538 write_unlock(&journal->j_state_lock);
539 return ret;
540 }
541
542 /*
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
548 */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 transaction_t *transaction = NULL;
552 tid_t tid;
553 int need_to_start = 0, ret = 0;
554
555 read_lock(&journal->j_state_lock);
556 if (journal->j_running_transaction && !current->journal_info) {
557 transaction = journal->j_running_transaction;
558 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 need_to_start = 1;
560 } else if (journal->j_committing_transaction)
561 transaction = journal->j_committing_transaction;
562
563 if (!transaction) {
564 /* Nothing to commit */
565 read_unlock(&journal->j_state_lock);
566 return 0;
567 }
568 tid = transaction->t_tid;
569 read_unlock(&journal->j_state_lock);
570 if (need_to_start)
571 jbd2_log_start_commit(journal, tid);
572 ret = jbd2_log_wait_commit(journal, tid);
573 if (!ret)
574 ret = 1;
575
576 return ret;
577 }
578
579 /**
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
583 *
584 * @journal: journal to force
585 * Returns true if progress was made.
586 */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 int ret;
590
591 ret = __jbd2_journal_force_commit(journal);
592 return ret > 0;
593 }
594
595 /**
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
598 *
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
601 */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 int ret;
605
606 J_ASSERT(!current->journal_info);
607 ret = __jbd2_journal_force_commit(journal);
608 if (ret > 0)
609 ret = 0;
610 return ret;
611 }
612
613 /*
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
617 */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 int ret = 0;
621
622 write_lock(&journal->j_state_lock);
623 if (journal->j_running_transaction) {
624 tid_t tid = journal->j_running_transaction->t_tid;
625
626 __jbd2_log_start_commit(journal, tid);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
629 if (ptid)
630 *ptid = tid;
631 ret = 1;
632 } else if (journal->j_committing_transaction) {
633 /*
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
636 */
637 if (ptid)
638 *ptid = journal->j_committing_transaction->t_tid;
639 ret = 1;
640 }
641 write_unlock(&journal->j_state_lock);
642 return ret;
643 }
644
645 /*
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
650 */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 int ret = 0;
654 transaction_t *commit_trans;
655
656 if (!(journal->j_flags & JBD2_BARRIER))
657 return 0;
658 read_lock(&journal->j_state_lock);
659 /* Transaction already committed? */
660 if (tid_geq(journal->j_commit_sequence, tid))
661 goto out;
662 commit_trans = journal->j_committing_transaction;
663 if (!commit_trans || commit_trans->t_tid != tid) {
664 ret = 1;
665 goto out;
666 }
667 /*
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
670 */
671 if (journal->j_fs_dev != journal->j_dev) {
672 if (!commit_trans->t_need_data_flush ||
673 commit_trans->t_state >= T_COMMIT_DFLUSH)
674 goto out;
675 } else {
676 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 goto out;
678 }
679 ret = 1;
680 out:
681 read_unlock(&journal->j_state_lock);
682 return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685
686 /*
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
689 */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 int err = 0;
693
694 jbd2_might_wait_for_commit(journal);
695 read_lock(&journal->j_state_lock);
696 #ifdef CONFIG_JBD2_DEBUG
697 if (!tid_geq(journal->j_commit_request, tid)) {
698 printk(KERN_ERR
699 "%s: error: j_commit_request=%d, tid=%d\n",
700 __func__, journal->j_commit_request, tid);
701 }
702 #endif
703 while (tid_gt(tid, journal->j_commit_sequence)) {
704 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
705 tid, journal->j_commit_sequence);
706 read_unlock(&journal->j_state_lock);
707 wake_up(&journal->j_wait_commit);
708 wait_event(journal->j_wait_done_commit,
709 !tid_gt(tid, journal->j_commit_sequence));
710 read_lock(&journal->j_state_lock);
711 }
712 read_unlock(&journal->j_state_lock);
713
714 if (unlikely(is_journal_aborted(journal)))
715 err = -EIO;
716 return err;
717 }
718
719 /*
720 * When this function returns the transaction corresponding to tid
721 * will be completed. If the transaction has currently running, start
722 * committing that transaction before waiting for it to complete. If
723 * the transaction id is stale, it is by definition already completed,
724 * so just return SUCCESS.
725 */
726 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
727 {
728 int need_to_wait = 1;
729
730 read_lock(&journal->j_state_lock);
731 if (journal->j_running_transaction &&
732 journal->j_running_transaction->t_tid == tid) {
733 if (journal->j_commit_request != tid) {
734 /* transaction not yet started, so request it */
735 read_unlock(&journal->j_state_lock);
736 jbd2_log_start_commit(journal, tid);
737 goto wait_commit;
738 }
739 } else if (!(journal->j_committing_transaction &&
740 journal->j_committing_transaction->t_tid == tid))
741 need_to_wait = 0;
742 read_unlock(&journal->j_state_lock);
743 if (!need_to_wait)
744 return 0;
745 wait_commit:
746 return jbd2_log_wait_commit(journal, tid);
747 }
748 EXPORT_SYMBOL(jbd2_complete_transaction);
749
750 /*
751 * Log buffer allocation routines:
752 */
753
754 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
755 {
756 unsigned long blocknr;
757
758 write_lock(&journal->j_state_lock);
759 J_ASSERT(journal->j_free > 1);
760
761 blocknr = journal->j_head;
762 journal->j_head++;
763 journal->j_free--;
764 if (journal->j_head == journal->j_last)
765 journal->j_head = journal->j_first;
766 write_unlock(&journal->j_state_lock);
767 return jbd2_journal_bmap(journal, blocknr, retp);
768 }
769
770 /*
771 * Conversion of logical to physical block numbers for the journal
772 *
773 * On external journals the journal blocks are identity-mapped, so
774 * this is a no-op. If needed, we can use j_blk_offset - everything is
775 * ready.
776 */
777 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
778 unsigned long long *retp)
779 {
780 int err = 0;
781 unsigned long long ret;
782
783 if (journal->j_inode) {
784 ret = bmap(journal->j_inode, blocknr);
785 if (ret)
786 *retp = ret;
787 else {
788 printk(KERN_ALERT "%s: journal block not found "
789 "at offset %lu on %s\n",
790 __func__, blocknr, journal->j_devname);
791 err = -EIO;
792 __journal_abort_soft(journal, err);
793 }
794 } else {
795 *retp = blocknr; /* +journal->j_blk_offset */
796 }
797 return err;
798 }
799
800 /*
801 * We play buffer_head aliasing tricks to write data/metadata blocks to
802 * the journal without copying their contents, but for journal
803 * descriptor blocks we do need to generate bona fide buffers.
804 *
805 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
806 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
807 * But we don't bother doing that, so there will be coherency problems with
808 * mmaps of blockdevs which hold live JBD-controlled filesystems.
809 */
810 struct buffer_head *
811 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
812 {
813 journal_t *journal = transaction->t_journal;
814 struct buffer_head *bh;
815 unsigned long long blocknr;
816 journal_header_t *header;
817 int err;
818
819 err = jbd2_journal_next_log_block(journal, &blocknr);
820
821 if (err)
822 return NULL;
823
824 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
825 if (!bh)
826 return NULL;
827 lock_buffer(bh);
828 memset(bh->b_data, 0, journal->j_blocksize);
829 header = (journal_header_t *)bh->b_data;
830 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
831 header->h_blocktype = cpu_to_be32(type);
832 header->h_sequence = cpu_to_be32(transaction->t_tid);
833 set_buffer_uptodate(bh);
834 unlock_buffer(bh);
835 BUFFER_TRACE(bh, "return this buffer");
836 return bh;
837 }
838
839 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
840 {
841 struct jbd2_journal_block_tail *tail;
842 __u32 csum;
843
844 if (!jbd2_journal_has_csum_v2or3(j))
845 return;
846
847 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
848 sizeof(struct jbd2_journal_block_tail));
849 tail->t_checksum = 0;
850 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
851 tail->t_checksum = cpu_to_be32(csum);
852 }
853
854 /*
855 * Return tid of the oldest transaction in the journal and block in the journal
856 * where the transaction starts.
857 *
858 * If the journal is now empty, return which will be the next transaction ID
859 * we will write and where will that transaction start.
860 *
861 * The return value is 0 if journal tail cannot be pushed any further, 1 if
862 * it can.
863 */
864 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
865 unsigned long *block)
866 {
867 transaction_t *transaction;
868 int ret;
869
870 read_lock(&journal->j_state_lock);
871 spin_lock(&journal->j_list_lock);
872 transaction = journal->j_checkpoint_transactions;
873 if (transaction) {
874 *tid = transaction->t_tid;
875 *block = transaction->t_log_start;
876 } else if ((transaction = journal->j_committing_transaction) != NULL) {
877 *tid = transaction->t_tid;
878 *block = transaction->t_log_start;
879 } else if ((transaction = journal->j_running_transaction) != NULL) {
880 *tid = transaction->t_tid;
881 *block = journal->j_head;
882 } else {
883 *tid = journal->j_transaction_sequence;
884 *block = journal->j_head;
885 }
886 ret = tid_gt(*tid, journal->j_tail_sequence);
887 spin_unlock(&journal->j_list_lock);
888 read_unlock(&journal->j_state_lock);
889
890 return ret;
891 }
892
893 /*
894 * Update information in journal structure and in on disk journal superblock
895 * about log tail. This function does not check whether information passed in
896 * really pushes log tail further. It's responsibility of the caller to make
897 * sure provided log tail information is valid (e.g. by holding
898 * j_checkpoint_mutex all the time between computing log tail and calling this
899 * function as is the case with jbd2_cleanup_journal_tail()).
900 *
901 * Requires j_checkpoint_mutex
902 */
903 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
904 {
905 unsigned long freed;
906 int ret;
907
908 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
909
910 /*
911 * We cannot afford for write to remain in drive's caches since as
912 * soon as we update j_tail, next transaction can start reusing journal
913 * space and if we lose sb update during power failure we'd replay
914 * old transaction with possibly newly overwritten data.
915 */
916 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
917 if (ret)
918 goto out;
919
920 write_lock(&journal->j_state_lock);
921 freed = block - journal->j_tail;
922 if (block < journal->j_tail)
923 freed += journal->j_last - journal->j_first;
924
925 trace_jbd2_update_log_tail(journal, tid, block, freed);
926 jbd_debug(1,
927 "Cleaning journal tail from %d to %d (offset %lu), "
928 "freeing %lu\n",
929 journal->j_tail_sequence, tid, block, freed);
930
931 journal->j_free += freed;
932 journal->j_tail_sequence = tid;
933 journal->j_tail = block;
934 write_unlock(&journal->j_state_lock);
935
936 out:
937 return ret;
938 }
939
940 /*
941 * This is a variaon of __jbd2_update_log_tail which checks for validity of
942 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
943 * with other threads updating log tail.
944 */
945 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
946 {
947 mutex_lock(&journal->j_checkpoint_mutex);
948 if (tid_gt(tid, journal->j_tail_sequence))
949 __jbd2_update_log_tail(journal, tid, block);
950 mutex_unlock(&journal->j_checkpoint_mutex);
951 }
952
953 struct jbd2_stats_proc_session {
954 journal_t *journal;
955 struct transaction_stats_s *stats;
956 int start;
957 int max;
958 };
959
960 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
961 {
962 return *pos ? NULL : SEQ_START_TOKEN;
963 }
964
965 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
966 {
967 return NULL;
968 }
969
970 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
971 {
972 struct jbd2_stats_proc_session *s = seq->private;
973
974 if (v != SEQ_START_TOKEN)
975 return 0;
976 seq_printf(seq, "%lu transactions (%lu requested), "
977 "each up to %u blocks\n",
978 s->stats->ts_tid, s->stats->ts_requested,
979 s->journal->j_max_transaction_buffers);
980 if (s->stats->ts_tid == 0)
981 return 0;
982 seq_printf(seq, "average: \n %ums waiting for transaction\n",
983 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
984 seq_printf(seq, " %ums request delay\n",
985 (s->stats->ts_requested == 0) ? 0 :
986 jiffies_to_msecs(s->stats->run.rs_request_delay /
987 s->stats->ts_requested));
988 seq_printf(seq, " %ums running transaction\n",
989 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
990 seq_printf(seq, " %ums transaction was being locked\n",
991 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
992 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
993 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
994 seq_printf(seq, " %ums logging transaction\n",
995 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
996 seq_printf(seq, " %lluus average transaction commit time\n",
997 div_u64(s->journal->j_average_commit_time, 1000));
998 seq_printf(seq, " %lu handles per transaction\n",
999 s->stats->run.rs_handle_count / s->stats->ts_tid);
1000 seq_printf(seq, " %lu blocks per transaction\n",
1001 s->stats->run.rs_blocks / s->stats->ts_tid);
1002 seq_printf(seq, " %lu logged blocks per transaction\n",
1003 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1004 return 0;
1005 }
1006
1007 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1008 {
1009 }
1010
1011 static const struct seq_operations jbd2_seq_info_ops = {
1012 .start = jbd2_seq_info_start,
1013 .next = jbd2_seq_info_next,
1014 .stop = jbd2_seq_info_stop,
1015 .show = jbd2_seq_info_show,
1016 };
1017
1018 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1019 {
1020 journal_t *journal = PDE_DATA(inode);
1021 struct jbd2_stats_proc_session *s;
1022 int rc, size;
1023
1024 s = kmalloc(sizeof(*s), GFP_KERNEL);
1025 if (s == NULL)
1026 return -ENOMEM;
1027 size = sizeof(struct transaction_stats_s);
1028 s->stats = kmalloc(size, GFP_KERNEL);
1029 if (s->stats == NULL) {
1030 kfree(s);
1031 return -ENOMEM;
1032 }
1033 spin_lock(&journal->j_history_lock);
1034 memcpy(s->stats, &journal->j_stats, size);
1035 s->journal = journal;
1036 spin_unlock(&journal->j_history_lock);
1037
1038 rc = seq_open(file, &jbd2_seq_info_ops);
1039 if (rc == 0) {
1040 struct seq_file *m = file->private_data;
1041 m->private = s;
1042 } else {
1043 kfree(s->stats);
1044 kfree(s);
1045 }
1046 return rc;
1047
1048 }
1049
1050 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1051 {
1052 struct seq_file *seq = file->private_data;
1053 struct jbd2_stats_proc_session *s = seq->private;
1054 kfree(s->stats);
1055 kfree(s);
1056 return seq_release(inode, file);
1057 }
1058
1059 static const struct file_operations jbd2_seq_info_fops = {
1060 .owner = THIS_MODULE,
1061 .open = jbd2_seq_info_open,
1062 .read = seq_read,
1063 .llseek = seq_lseek,
1064 .release = jbd2_seq_info_release,
1065 };
1066
1067 static struct proc_dir_entry *proc_jbd2_stats;
1068
1069 static void jbd2_stats_proc_init(journal_t *journal)
1070 {
1071 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1072 if (journal->j_proc_entry) {
1073 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1074 &jbd2_seq_info_fops, journal);
1075 }
1076 }
1077
1078 static void jbd2_stats_proc_exit(journal_t *journal)
1079 {
1080 remove_proc_entry("info", journal->j_proc_entry);
1081 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1082 }
1083
1084 /*
1085 * Management for journal control blocks: functions to create and
1086 * destroy journal_t structures, and to initialise and read existing
1087 * journal blocks from disk. */
1088
1089 /* First: create and setup a journal_t object in memory. We initialise
1090 * very few fields yet: that has to wait until we have created the
1091 * journal structures from from scratch, or loaded them from disk. */
1092
1093 static journal_t * journal_init_common (void)
1094 {
1095 static struct lock_class_key jbd2_trans_commit_key;
1096 journal_t *journal;
1097 int err;
1098
1099 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1100 if (!journal)
1101 return NULL;
1102
1103 init_waitqueue_head(&journal->j_wait_transaction_locked);
1104 init_waitqueue_head(&journal->j_wait_done_commit);
1105 init_waitqueue_head(&journal->j_wait_commit);
1106 init_waitqueue_head(&journal->j_wait_updates);
1107 init_waitqueue_head(&journal->j_wait_reserved);
1108 mutex_init(&journal->j_barrier);
1109 mutex_init(&journal->j_checkpoint_mutex);
1110 spin_lock_init(&journal->j_revoke_lock);
1111 spin_lock_init(&journal->j_list_lock);
1112 rwlock_init(&journal->j_state_lock);
1113
1114 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1115 journal->j_min_batch_time = 0;
1116 journal->j_max_batch_time = 15000; /* 15ms */
1117 atomic_set(&journal->j_reserved_credits, 0);
1118
1119 /* The journal is marked for error until we succeed with recovery! */
1120 journal->j_flags = JBD2_ABORT;
1121
1122 /* Set up a default-sized revoke table for the new mount. */
1123 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1124 if (err) {
1125 kfree(journal);
1126 return NULL;
1127 }
1128
1129 spin_lock_init(&journal->j_history_lock);
1130
1131 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1132 &jbd2_trans_commit_key, 0);
1133
1134 return journal;
1135 }
1136
1137 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1138 *
1139 * Create a journal structure assigned some fixed set of disk blocks to
1140 * the journal. We don't actually touch those disk blocks yet, but we
1141 * need to set up all of the mapping information to tell the journaling
1142 * system where the journal blocks are.
1143 *
1144 */
1145
1146 /**
1147 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1148 * @bdev: Block device on which to create the journal
1149 * @fs_dev: Device which hold journalled filesystem for this journal.
1150 * @start: Block nr Start of journal.
1151 * @len: Length of the journal in blocks.
1152 * @blocksize: blocksize of journalling device
1153 *
1154 * Returns: a newly created journal_t *
1155 *
1156 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1157 * range of blocks on an arbitrary block device.
1158 *
1159 */
1160 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1161 struct block_device *fs_dev,
1162 unsigned long long start, int len, int blocksize)
1163 {
1164 journal_t *journal = journal_init_common();
1165 struct buffer_head *bh;
1166 int n;
1167
1168 if (!journal)
1169 return NULL;
1170
1171 /* journal descriptor can store up to n blocks -bzzz */
1172 journal->j_blocksize = blocksize;
1173 journal->j_dev = bdev;
1174 journal->j_fs_dev = fs_dev;
1175 journal->j_blk_offset = start;
1176 journal->j_maxlen = len;
1177 bdevname(journal->j_dev, journal->j_devname);
1178 strreplace(journal->j_devname, '/', '!');
1179 jbd2_stats_proc_init(journal);
1180 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1181 journal->j_wbufsize = n;
1182 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1183 if (!journal->j_wbuf) {
1184 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1185 __func__);
1186 goto out_err;
1187 }
1188
1189 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1190 if (!bh) {
1191 printk(KERN_ERR
1192 "%s: Cannot get buffer for journal superblock\n",
1193 __func__);
1194 goto out_err;
1195 }
1196 journal->j_sb_buffer = bh;
1197 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1198
1199 return journal;
1200 out_err:
1201 kfree(journal->j_wbuf);
1202 jbd2_stats_proc_exit(journal);
1203 kfree(journal);
1204 return NULL;
1205 }
1206
1207 /**
1208 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1209 * @inode: An inode to create the journal in
1210 *
1211 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1212 * the journal. The inode must exist already, must support bmap() and
1213 * must have all data blocks preallocated.
1214 */
1215 journal_t * jbd2_journal_init_inode (struct inode *inode)
1216 {
1217 struct buffer_head *bh;
1218 journal_t *journal = journal_init_common();
1219 char *p;
1220 int err;
1221 int n;
1222 unsigned long long blocknr;
1223
1224 if (!journal)
1225 return NULL;
1226
1227 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1228 journal->j_inode = inode;
1229 bdevname(journal->j_dev, journal->j_devname);
1230 p = strreplace(journal->j_devname, '/', '!');
1231 sprintf(p, "-%lu", journal->j_inode->i_ino);
1232 jbd_debug(1,
1233 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1234 journal, inode->i_sb->s_id, inode->i_ino,
1235 (long long) inode->i_size,
1236 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1237
1238 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1239 journal->j_blocksize = inode->i_sb->s_blocksize;
1240 jbd2_stats_proc_init(journal);
1241
1242 /* journal descriptor can store up to n blocks -bzzz */
1243 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1244 journal->j_wbufsize = n;
1245 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1246 if (!journal->j_wbuf) {
1247 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1248 __func__);
1249 goto out_err;
1250 }
1251
1252 err = jbd2_journal_bmap(journal, 0, &blocknr);
1253 /* If that failed, give up */
1254 if (err) {
1255 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1256 __func__);
1257 goto out_err;
1258 }
1259
1260 bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1261 if (!bh) {
1262 printk(KERN_ERR
1263 "%s: Cannot get buffer for journal superblock\n",
1264 __func__);
1265 goto out_err;
1266 }
1267 journal->j_sb_buffer = bh;
1268 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1269
1270 return journal;
1271 out_err:
1272 kfree(journal->j_wbuf);
1273 jbd2_stats_proc_exit(journal);
1274 kfree(journal);
1275 return NULL;
1276 }
1277
1278 /*
1279 * If the journal init or create aborts, we need to mark the journal
1280 * superblock as being NULL to prevent the journal destroy from writing
1281 * back a bogus superblock.
1282 */
1283 static void journal_fail_superblock (journal_t *journal)
1284 {
1285 struct buffer_head *bh = journal->j_sb_buffer;
1286 brelse(bh);
1287 journal->j_sb_buffer = NULL;
1288 }
1289
1290 /*
1291 * Given a journal_t structure, initialise the various fields for
1292 * startup of a new journaling session. We use this both when creating
1293 * a journal, and after recovering an old journal to reset it for
1294 * subsequent use.
1295 */
1296
1297 static int journal_reset(journal_t *journal)
1298 {
1299 journal_superblock_t *sb = journal->j_superblock;
1300 unsigned long long first, last;
1301
1302 first = be32_to_cpu(sb->s_first);
1303 last = be32_to_cpu(sb->s_maxlen);
1304 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1305 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1306 first, last);
1307 journal_fail_superblock(journal);
1308 return -EINVAL;
1309 }
1310
1311 journal->j_first = first;
1312 journal->j_last = last;
1313
1314 journal->j_head = first;
1315 journal->j_tail = first;
1316 journal->j_free = last - first;
1317
1318 journal->j_tail_sequence = journal->j_transaction_sequence;
1319 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1320 journal->j_commit_request = journal->j_commit_sequence;
1321
1322 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1323
1324 /*
1325 * As a special case, if the on-disk copy is already marked as needing
1326 * no recovery (s_start == 0), then we can safely defer the superblock
1327 * update until the next commit by setting JBD2_FLUSHED. This avoids
1328 * attempting a write to a potential-readonly device.
1329 */
1330 if (sb->s_start == 0) {
1331 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1332 "(start %ld, seq %d, errno %d)\n",
1333 journal->j_tail, journal->j_tail_sequence,
1334 journal->j_errno);
1335 journal->j_flags |= JBD2_FLUSHED;
1336 } else {
1337 /* Lock here to make assertions happy... */
1338 mutex_lock(&journal->j_checkpoint_mutex);
1339 /*
1340 * Update log tail information. We use WRITE_FUA since new
1341 * transaction will start reusing journal space and so we
1342 * must make sure information about current log tail is on
1343 * disk before that.
1344 */
1345 jbd2_journal_update_sb_log_tail(journal,
1346 journal->j_tail_sequence,
1347 journal->j_tail,
1348 WRITE_FUA);
1349 mutex_unlock(&journal->j_checkpoint_mutex);
1350 }
1351 return jbd2_journal_start_thread(journal);
1352 }
1353
1354 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1355 {
1356 struct buffer_head *bh = journal->j_sb_buffer;
1357 journal_superblock_t *sb = journal->j_superblock;
1358 int ret;
1359
1360 trace_jbd2_write_superblock(journal, write_flags);
1361 if (!(journal->j_flags & JBD2_BARRIER))
1362 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1363 lock_buffer(bh);
1364 if (buffer_write_io_error(bh)) {
1365 /*
1366 * Oh, dear. A previous attempt to write the journal
1367 * superblock failed. This could happen because the
1368 * USB device was yanked out. Or it could happen to
1369 * be a transient write error and maybe the block will
1370 * be remapped. Nothing we can do but to retry the
1371 * write and hope for the best.
1372 */
1373 printk(KERN_ERR "JBD2: previous I/O error detected "
1374 "for journal superblock update for %s.\n",
1375 journal->j_devname);
1376 clear_buffer_write_io_error(bh);
1377 set_buffer_uptodate(bh);
1378 }
1379 jbd2_superblock_csum_set(journal, sb);
1380 get_bh(bh);
1381 bh->b_end_io = end_buffer_write_sync;
1382 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1383 wait_on_buffer(bh);
1384 if (buffer_write_io_error(bh)) {
1385 clear_buffer_write_io_error(bh);
1386 set_buffer_uptodate(bh);
1387 ret = -EIO;
1388 }
1389 if (ret) {
1390 printk(KERN_ERR "JBD2: Error %d detected when updating "
1391 "journal superblock for %s.\n", ret,
1392 journal->j_devname);
1393 jbd2_journal_abort(journal, ret);
1394 }
1395
1396 return ret;
1397 }
1398
1399 /**
1400 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1401 * @journal: The journal to update.
1402 * @tail_tid: TID of the new transaction at the tail of the log
1403 * @tail_block: The first block of the transaction at the tail of the log
1404 * @write_op: With which operation should we write the journal sb
1405 *
1406 * Update a journal's superblock information about log tail and write it to
1407 * disk, waiting for the IO to complete.
1408 */
1409 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1410 unsigned long tail_block, int write_op)
1411 {
1412 journal_superblock_t *sb = journal->j_superblock;
1413 int ret;
1414
1415 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417 tail_block, tail_tid);
1418
1419 sb->s_sequence = cpu_to_be32(tail_tid);
1420 sb->s_start = cpu_to_be32(tail_block);
1421
1422 ret = jbd2_write_superblock(journal, write_op);
1423 if (ret)
1424 goto out;
1425
1426 /* Log is no longer empty */
1427 write_lock(&journal->j_state_lock);
1428 WARN_ON(!sb->s_sequence);
1429 journal->j_flags &= ~JBD2_FLUSHED;
1430 write_unlock(&journal->j_state_lock);
1431
1432 out:
1433 return ret;
1434 }
1435
1436 /**
1437 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1438 * @journal: The journal to update.
1439 * @write_op: With which operation should we write the journal sb
1440 *
1441 * Update a journal's dynamic superblock fields to show that journal is empty.
1442 * Write updated superblock to disk waiting for IO to complete.
1443 */
1444 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 {
1446 journal_superblock_t *sb = journal->j_superblock;
1447
1448 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1449 read_lock(&journal->j_state_lock);
1450 /* Is it already empty? */
1451 if (sb->s_start == 0) {
1452 read_unlock(&journal->j_state_lock);
1453 return;
1454 }
1455 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1456 journal->j_tail_sequence);
1457
1458 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1459 sb->s_start = cpu_to_be32(0);
1460 read_unlock(&journal->j_state_lock);
1461
1462 jbd2_write_superblock(journal, write_op);
1463
1464 /* Log is no longer empty */
1465 write_lock(&journal->j_state_lock);
1466 journal->j_flags |= JBD2_FLUSHED;
1467 write_unlock(&journal->j_state_lock);
1468 }
1469
1470
1471 /**
1472 * jbd2_journal_update_sb_errno() - Update error in the journal.
1473 * @journal: The journal to update.
1474 *
1475 * Update a journal's errno. Write updated superblock to disk waiting for IO
1476 * to complete.
1477 */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480 journal_superblock_t *sb = journal->j_superblock;
1481
1482 read_lock(&journal->j_state_lock);
1483 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1484 journal->j_errno);
1485 sb->s_errno = cpu_to_be32(journal->j_errno);
1486 read_unlock(&journal->j_state_lock);
1487
1488 jbd2_write_superblock(journal, WRITE_FUA);
1489 }
1490 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1491
1492 /*
1493 * Read the superblock for a given journal, performing initial
1494 * validation of the format.
1495 */
1496 static int journal_get_superblock(journal_t *journal)
1497 {
1498 struct buffer_head *bh;
1499 journal_superblock_t *sb;
1500 int err = -EIO;
1501
1502 bh = journal->j_sb_buffer;
1503
1504 J_ASSERT(bh != NULL);
1505 if (!buffer_uptodate(bh)) {
1506 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1507 wait_on_buffer(bh);
1508 if (!buffer_uptodate(bh)) {
1509 printk(KERN_ERR
1510 "JBD2: IO error reading journal superblock\n");
1511 goto out;
1512 }
1513 }
1514
1515 if (buffer_verified(bh))
1516 return 0;
1517
1518 sb = journal->j_superblock;
1519
1520 err = -EINVAL;
1521
1522 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1523 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1524 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1525 goto out;
1526 }
1527
1528 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1529 case JBD2_SUPERBLOCK_V1:
1530 journal->j_format_version = 1;
1531 break;
1532 case JBD2_SUPERBLOCK_V2:
1533 journal->j_format_version = 2;
1534 break;
1535 default:
1536 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1537 goto out;
1538 }
1539
1540 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1541 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1542 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1543 printk(KERN_WARNING "JBD2: journal file too short\n");
1544 goto out;
1545 }
1546
1547 if (be32_to_cpu(sb->s_first) == 0 ||
1548 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1549 printk(KERN_WARNING
1550 "JBD2: Invalid start block of journal: %u\n",
1551 be32_to_cpu(sb->s_first));
1552 goto out;
1553 }
1554
1555 if (jbd2_has_feature_csum2(journal) &&
1556 jbd2_has_feature_csum3(journal)) {
1557 /* Can't have checksum v2 and v3 at the same time! */
1558 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1559 "at the same time!\n");
1560 goto out;
1561 }
1562
1563 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1564 jbd2_has_feature_checksum(journal)) {
1565 /* Can't have checksum v1 and v2 on at the same time! */
1566 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1567 "at the same time!\n");
1568 goto out;
1569 }
1570
1571 if (!jbd2_verify_csum_type(journal, sb)) {
1572 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1573 goto out;
1574 }
1575
1576 /* Load the checksum driver */
1577 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1578 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1579 if (IS_ERR(journal->j_chksum_driver)) {
1580 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1581 err = PTR_ERR(journal->j_chksum_driver);
1582 journal->j_chksum_driver = NULL;
1583 goto out;
1584 }
1585 }
1586
1587 /* Check superblock checksum */
1588 if (!jbd2_superblock_csum_verify(journal, sb)) {
1589 printk(KERN_ERR "JBD2: journal checksum error\n");
1590 err = -EFSBADCRC;
1591 goto out;
1592 }
1593
1594 /* Precompute checksum seed for all metadata */
1595 if (jbd2_journal_has_csum_v2or3(journal))
1596 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1597 sizeof(sb->s_uuid));
1598
1599 set_buffer_verified(bh);
1600
1601 return 0;
1602
1603 out:
1604 journal_fail_superblock(journal);
1605 return err;
1606 }
1607
1608 /*
1609 * Load the on-disk journal superblock and read the key fields into the
1610 * journal_t.
1611 */
1612
1613 static int load_superblock(journal_t *journal)
1614 {
1615 int err;
1616 journal_superblock_t *sb;
1617
1618 err = journal_get_superblock(journal);
1619 if (err)
1620 return err;
1621
1622 sb = journal->j_superblock;
1623
1624 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1625 journal->j_tail = be32_to_cpu(sb->s_start);
1626 journal->j_first = be32_to_cpu(sb->s_first);
1627 journal->j_last = be32_to_cpu(sb->s_maxlen);
1628 journal->j_errno = be32_to_cpu(sb->s_errno);
1629
1630 return 0;
1631 }
1632
1633
1634 /**
1635 * int jbd2_journal_load() - Read journal from disk.
1636 * @journal: Journal to act on.
1637 *
1638 * Given a journal_t structure which tells us which disk blocks contain
1639 * a journal, read the journal from disk to initialise the in-memory
1640 * structures.
1641 */
1642 int jbd2_journal_load(journal_t *journal)
1643 {
1644 int err;
1645 journal_superblock_t *sb;
1646
1647 err = load_superblock(journal);
1648 if (err)
1649 return err;
1650
1651 sb = journal->j_superblock;
1652 /* If this is a V2 superblock, then we have to check the
1653 * features flags on it. */
1654
1655 if (journal->j_format_version >= 2) {
1656 if ((sb->s_feature_ro_compat &
1657 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1658 (sb->s_feature_incompat &
1659 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1660 printk(KERN_WARNING
1661 "JBD2: Unrecognised features on journal\n");
1662 return -EINVAL;
1663 }
1664 }
1665
1666 /*
1667 * Create a slab for this blocksize
1668 */
1669 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1670 if (err)
1671 return err;
1672
1673 /* Let the recovery code check whether it needs to recover any
1674 * data from the journal. */
1675 if (jbd2_journal_recover(journal))
1676 goto recovery_error;
1677
1678 if (journal->j_failed_commit) {
1679 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1680 "is corrupt.\n", journal->j_failed_commit,
1681 journal->j_devname);
1682 return -EFSCORRUPTED;
1683 }
1684
1685 /* OK, we've finished with the dynamic journal bits:
1686 * reinitialise the dynamic contents of the superblock in memory
1687 * and reset them on disk. */
1688 if (journal_reset(journal))
1689 goto recovery_error;
1690
1691 journal->j_flags &= ~JBD2_ABORT;
1692 journal->j_flags |= JBD2_LOADED;
1693 return 0;
1694
1695 recovery_error:
1696 printk(KERN_WARNING "JBD2: recovery failed\n");
1697 return -EIO;
1698 }
1699
1700 /**
1701 * void jbd2_journal_destroy() - Release a journal_t structure.
1702 * @journal: Journal to act on.
1703 *
1704 * Release a journal_t structure once it is no longer in use by the
1705 * journaled object.
1706 * Return <0 if we couldn't clean up the journal.
1707 */
1708 int jbd2_journal_destroy(journal_t *journal)
1709 {
1710 int err = 0;
1711
1712 /* Wait for the commit thread to wake up and die. */
1713 journal_kill_thread(journal);
1714
1715 /* Force a final log commit */
1716 if (journal->j_running_transaction)
1717 jbd2_journal_commit_transaction(journal);
1718
1719 /* Force any old transactions to disk */
1720
1721 /* Totally anal locking here... */
1722 spin_lock(&journal->j_list_lock);
1723 while (journal->j_checkpoint_transactions != NULL) {
1724 spin_unlock(&journal->j_list_lock);
1725 mutex_lock(&journal->j_checkpoint_mutex);
1726 err = jbd2_log_do_checkpoint(journal);
1727 mutex_unlock(&journal->j_checkpoint_mutex);
1728 /*
1729 * If checkpointing failed, just free the buffers to avoid
1730 * looping forever
1731 */
1732 if (err) {
1733 jbd2_journal_destroy_checkpoint(journal);
1734 spin_lock(&journal->j_list_lock);
1735 break;
1736 }
1737 spin_lock(&journal->j_list_lock);
1738 }
1739
1740 J_ASSERT(journal->j_running_transaction == NULL);
1741 J_ASSERT(journal->j_committing_transaction == NULL);
1742 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1743 spin_unlock(&journal->j_list_lock);
1744
1745 if (journal->j_sb_buffer) {
1746 if (!is_journal_aborted(journal)) {
1747 mutex_lock(&journal->j_checkpoint_mutex);
1748
1749 write_lock(&journal->j_state_lock);
1750 journal->j_tail_sequence =
1751 ++journal->j_transaction_sequence;
1752 write_unlock(&journal->j_state_lock);
1753
1754 jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1755 mutex_unlock(&journal->j_checkpoint_mutex);
1756 } else
1757 err = -EIO;
1758 brelse(journal->j_sb_buffer);
1759 }
1760
1761 if (journal->j_proc_entry)
1762 jbd2_stats_proc_exit(journal);
1763 iput(journal->j_inode);
1764 if (journal->j_revoke)
1765 jbd2_journal_destroy_revoke(journal);
1766 if (journal->j_chksum_driver)
1767 crypto_free_shash(journal->j_chksum_driver);
1768 kfree(journal->j_wbuf);
1769 kfree(journal);
1770
1771 return err;
1772 }
1773
1774
1775 /**
1776 *int jbd2_journal_check_used_features () - Check if features specified are used.
1777 * @journal: Journal to check.
1778 * @compat: bitmask of compatible features
1779 * @ro: bitmask of features that force read-only mount
1780 * @incompat: bitmask of incompatible features
1781 *
1782 * Check whether the journal uses all of a given set of
1783 * features. Return true (non-zero) if it does.
1784 **/
1785
1786 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1787 unsigned long ro, unsigned long incompat)
1788 {
1789 journal_superblock_t *sb;
1790
1791 if (!compat && !ro && !incompat)
1792 return 1;
1793 /* Load journal superblock if it is not loaded yet. */
1794 if (journal->j_format_version == 0 &&
1795 journal_get_superblock(journal) != 0)
1796 return 0;
1797 if (journal->j_format_version == 1)
1798 return 0;
1799
1800 sb = journal->j_superblock;
1801
1802 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1803 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1804 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1805 return 1;
1806
1807 return 0;
1808 }
1809
1810 /**
1811 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1812 * @journal: Journal to check.
1813 * @compat: bitmask of compatible features
1814 * @ro: bitmask of features that force read-only mount
1815 * @incompat: bitmask of incompatible features
1816 *
1817 * Check whether the journaling code supports the use of
1818 * all of a given set of features on this journal. Return true
1819 * (non-zero) if it can. */
1820
1821 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1822 unsigned long ro, unsigned long incompat)
1823 {
1824 if (!compat && !ro && !incompat)
1825 return 1;
1826
1827 /* We can support any known requested features iff the
1828 * superblock is in version 2. Otherwise we fail to support any
1829 * extended sb features. */
1830
1831 if (journal->j_format_version != 2)
1832 return 0;
1833
1834 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1835 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1836 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1837 return 1;
1838
1839 return 0;
1840 }
1841
1842 /**
1843 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1844 * @journal: Journal to act on.
1845 * @compat: bitmask of compatible features
1846 * @ro: bitmask of features that force read-only mount
1847 * @incompat: bitmask of incompatible features
1848 *
1849 * Mark a given journal feature as present on the
1850 * superblock. Returns true if the requested features could be set.
1851 *
1852 */
1853
1854 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1855 unsigned long ro, unsigned long incompat)
1856 {
1857 #define INCOMPAT_FEATURE_ON(f) \
1858 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1859 #define COMPAT_FEATURE_ON(f) \
1860 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1861 journal_superblock_t *sb;
1862
1863 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1864 return 1;
1865
1866 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1867 return 0;
1868
1869 /* If enabling v2 checksums, turn on v3 instead */
1870 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1871 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1872 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1873 }
1874
1875 /* Asking for checksumming v3 and v1? Only give them v3. */
1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1877 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1878 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1879
1880 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1881 compat, ro, incompat);
1882
1883 sb = journal->j_superblock;
1884
1885 /* If enabling v3 checksums, update superblock */
1886 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1887 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1888 sb->s_feature_compat &=
1889 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1890
1891 /* Load the checksum driver */
1892 if (journal->j_chksum_driver == NULL) {
1893 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1894 0, 0);
1895 if (IS_ERR(journal->j_chksum_driver)) {
1896 printk(KERN_ERR "JBD2: Cannot load crc32c "
1897 "driver.\n");
1898 journal->j_chksum_driver = NULL;
1899 return 0;
1900 }
1901
1902 /* Precompute checksum seed for all metadata */
1903 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1904 sb->s_uuid,
1905 sizeof(sb->s_uuid));
1906 }
1907 }
1908
1909 /* If enabling v1 checksums, downgrade superblock */
1910 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1911 sb->s_feature_incompat &=
1912 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1913 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1914
1915 sb->s_feature_compat |= cpu_to_be32(compat);
1916 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1917 sb->s_feature_incompat |= cpu_to_be32(incompat);
1918
1919 return 1;
1920 #undef COMPAT_FEATURE_ON
1921 #undef INCOMPAT_FEATURE_ON
1922 }
1923
1924 /*
1925 * jbd2_journal_clear_features () - Clear a given journal feature in the
1926 * superblock
1927 * @journal: Journal to act on.
1928 * @compat: bitmask of compatible features
1929 * @ro: bitmask of features that force read-only mount
1930 * @incompat: bitmask of incompatible features
1931 *
1932 * Clear a given journal feature as present on the
1933 * superblock.
1934 */
1935 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1936 unsigned long ro, unsigned long incompat)
1937 {
1938 journal_superblock_t *sb;
1939
1940 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1941 compat, ro, incompat);
1942
1943 sb = journal->j_superblock;
1944
1945 sb->s_feature_compat &= ~cpu_to_be32(compat);
1946 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1947 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1948 }
1949 EXPORT_SYMBOL(jbd2_journal_clear_features);
1950
1951 /**
1952 * int jbd2_journal_flush () - Flush journal
1953 * @journal: Journal to act on.
1954 *
1955 * Flush all data for a given journal to disk and empty the journal.
1956 * Filesystems can use this when remounting readonly to ensure that
1957 * recovery does not need to happen on remount.
1958 */
1959
1960 int jbd2_journal_flush(journal_t *journal)
1961 {
1962 int err = 0;
1963 transaction_t *transaction = NULL;
1964
1965 write_lock(&journal->j_state_lock);
1966
1967 /* Force everything buffered to the log... */
1968 if (journal->j_running_transaction) {
1969 transaction = journal->j_running_transaction;
1970 __jbd2_log_start_commit(journal, transaction->t_tid);
1971 } else if (journal->j_committing_transaction)
1972 transaction = journal->j_committing_transaction;
1973
1974 /* Wait for the log commit to complete... */
1975 if (transaction) {
1976 tid_t tid = transaction->t_tid;
1977
1978 write_unlock(&journal->j_state_lock);
1979 jbd2_log_wait_commit(journal, tid);
1980 } else {
1981 write_unlock(&journal->j_state_lock);
1982 }
1983
1984 /* ...and flush everything in the log out to disk. */
1985 spin_lock(&journal->j_list_lock);
1986 while (!err && journal->j_checkpoint_transactions != NULL) {
1987 spin_unlock(&journal->j_list_lock);
1988 mutex_lock(&journal->j_checkpoint_mutex);
1989 err = jbd2_log_do_checkpoint(journal);
1990 mutex_unlock(&journal->j_checkpoint_mutex);
1991 spin_lock(&journal->j_list_lock);
1992 }
1993 spin_unlock(&journal->j_list_lock);
1994
1995 if (is_journal_aborted(journal))
1996 return -EIO;
1997
1998 mutex_lock(&journal->j_checkpoint_mutex);
1999 if (!err) {
2000 err = jbd2_cleanup_journal_tail(journal);
2001 if (err < 0) {
2002 mutex_unlock(&journal->j_checkpoint_mutex);
2003 goto out;
2004 }
2005 err = 0;
2006 }
2007
2008 /* Finally, mark the journal as really needing no recovery.
2009 * This sets s_start==0 in the underlying superblock, which is
2010 * the magic code for a fully-recovered superblock. Any future
2011 * commits of data to the journal will restore the current
2012 * s_start value. */
2013 jbd2_mark_journal_empty(journal, WRITE_FUA);
2014 mutex_unlock(&journal->j_checkpoint_mutex);
2015 write_lock(&journal->j_state_lock);
2016 J_ASSERT(!journal->j_running_transaction);
2017 J_ASSERT(!journal->j_committing_transaction);
2018 J_ASSERT(!journal->j_checkpoint_transactions);
2019 J_ASSERT(journal->j_head == journal->j_tail);
2020 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2021 write_unlock(&journal->j_state_lock);
2022 out:
2023 return err;
2024 }
2025
2026 /**
2027 * int jbd2_journal_wipe() - Wipe journal contents
2028 * @journal: Journal to act on.
2029 * @write: flag (see below)
2030 *
2031 * Wipe out all of the contents of a journal, safely. This will produce
2032 * a warning if the journal contains any valid recovery information.
2033 * Must be called between journal_init_*() and jbd2_journal_load().
2034 *
2035 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2036 * we merely suppress recovery.
2037 */
2038
2039 int jbd2_journal_wipe(journal_t *journal, int write)
2040 {
2041 int err = 0;
2042
2043 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2044
2045 err = load_superblock(journal);
2046 if (err)
2047 return err;
2048
2049 if (!journal->j_tail)
2050 goto no_recovery;
2051
2052 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2053 write ? "Clearing" : "Ignoring");
2054
2055 err = jbd2_journal_skip_recovery(journal);
2056 if (write) {
2057 /* Lock to make assertions happy... */
2058 mutex_lock(&journal->j_checkpoint_mutex);
2059 jbd2_mark_journal_empty(journal, WRITE_FUA);
2060 mutex_unlock(&journal->j_checkpoint_mutex);
2061 }
2062
2063 no_recovery:
2064 return err;
2065 }
2066
2067 /*
2068 * Journal abort has very specific semantics, which we describe
2069 * for journal abort.
2070 *
2071 * Two internal functions, which provide abort to the jbd layer
2072 * itself are here.
2073 */
2074
2075 /*
2076 * Quick version for internal journal use (doesn't lock the journal).
2077 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2078 * and don't attempt to make any other journal updates.
2079 */
2080 void __jbd2_journal_abort_hard(journal_t *journal)
2081 {
2082 transaction_t *transaction;
2083
2084 if (journal->j_flags & JBD2_ABORT)
2085 return;
2086
2087 printk(KERN_ERR "Aborting journal on device %s.\n",
2088 journal->j_devname);
2089
2090 write_lock(&journal->j_state_lock);
2091 journal->j_flags |= JBD2_ABORT;
2092 transaction = journal->j_running_transaction;
2093 if (transaction)
2094 __jbd2_log_start_commit(journal, transaction->t_tid);
2095 write_unlock(&journal->j_state_lock);
2096 }
2097
2098 /* Soft abort: record the abort error status in the journal superblock,
2099 * but don't do any other IO. */
2100 static void __journal_abort_soft (journal_t *journal, int errno)
2101 {
2102 if (journal->j_flags & JBD2_ABORT)
2103 return;
2104
2105 if (!journal->j_errno)
2106 journal->j_errno = errno;
2107
2108 __jbd2_journal_abort_hard(journal);
2109
2110 if (errno) {
2111 jbd2_journal_update_sb_errno(journal);
2112 write_lock(&journal->j_state_lock);
2113 journal->j_flags |= JBD2_REC_ERR;
2114 write_unlock(&journal->j_state_lock);
2115 }
2116 }
2117
2118 /**
2119 * void jbd2_journal_abort () - Shutdown the journal immediately.
2120 * @journal: the journal to shutdown.
2121 * @errno: an error number to record in the journal indicating
2122 * the reason for the shutdown.
2123 *
2124 * Perform a complete, immediate shutdown of the ENTIRE
2125 * journal (not of a single transaction). This operation cannot be
2126 * undone without closing and reopening the journal.
2127 *
2128 * The jbd2_journal_abort function is intended to support higher level error
2129 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2130 * mode.
2131 *
2132 * Journal abort has very specific semantics. Any existing dirty,
2133 * unjournaled buffers in the main filesystem will still be written to
2134 * disk by bdflush, but the journaling mechanism will be suspended
2135 * immediately and no further transaction commits will be honoured.
2136 *
2137 * Any dirty, journaled buffers will be written back to disk without
2138 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2139 * filesystem, but we _do_ attempt to leave as much data as possible
2140 * behind for fsck to use for cleanup.
2141 *
2142 * Any attempt to get a new transaction handle on a journal which is in
2143 * ABORT state will just result in an -EROFS error return. A
2144 * jbd2_journal_stop on an existing handle will return -EIO if we have
2145 * entered abort state during the update.
2146 *
2147 * Recursive transactions are not disturbed by journal abort until the
2148 * final jbd2_journal_stop, which will receive the -EIO error.
2149 *
2150 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2151 * which will be recorded (if possible) in the journal superblock. This
2152 * allows a client to record failure conditions in the middle of a
2153 * transaction without having to complete the transaction to record the
2154 * failure to disk. ext3_error, for example, now uses this
2155 * functionality.
2156 *
2157 * Errors which originate from within the journaling layer will NOT
2158 * supply an errno; a null errno implies that absolutely no further
2159 * writes are done to the journal (unless there are any already in
2160 * progress).
2161 *
2162 */
2163
2164 void jbd2_journal_abort(journal_t *journal, int errno)
2165 {
2166 __journal_abort_soft(journal, errno);
2167 }
2168
2169 /**
2170 * int jbd2_journal_errno () - returns the journal's error state.
2171 * @journal: journal to examine.
2172 *
2173 * This is the errno number set with jbd2_journal_abort(), the last
2174 * time the journal was mounted - if the journal was stopped
2175 * without calling abort this will be 0.
2176 *
2177 * If the journal has been aborted on this mount time -EROFS will
2178 * be returned.
2179 */
2180 int jbd2_journal_errno(journal_t *journal)
2181 {
2182 int err;
2183
2184 read_lock(&journal->j_state_lock);
2185 if (journal->j_flags & JBD2_ABORT)
2186 err = -EROFS;
2187 else
2188 err = journal->j_errno;
2189 read_unlock(&journal->j_state_lock);
2190 return err;
2191 }
2192
2193 /**
2194 * int jbd2_journal_clear_err () - clears the journal's error state
2195 * @journal: journal to act on.
2196 *
2197 * An error must be cleared or acked to take a FS out of readonly
2198 * mode.
2199 */
2200 int jbd2_journal_clear_err(journal_t *journal)
2201 {
2202 int err = 0;
2203
2204 write_lock(&journal->j_state_lock);
2205 if (journal->j_flags & JBD2_ABORT)
2206 err = -EROFS;
2207 else
2208 journal->j_errno = 0;
2209 write_unlock(&journal->j_state_lock);
2210 return err;
2211 }
2212
2213 /**
2214 * void jbd2_journal_ack_err() - Ack journal err.
2215 * @journal: journal to act on.
2216 *
2217 * An error must be cleared or acked to take a FS out of readonly
2218 * mode.
2219 */
2220 void jbd2_journal_ack_err(journal_t *journal)
2221 {
2222 write_lock(&journal->j_state_lock);
2223 if (journal->j_errno)
2224 journal->j_flags |= JBD2_ACK_ERR;
2225 write_unlock(&journal->j_state_lock);
2226 }
2227
2228 int jbd2_journal_blocks_per_page(struct inode *inode)
2229 {
2230 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2231 }
2232
2233 /*
2234 * helper functions to deal with 32 or 64bit block numbers.
2235 */
2236 size_t journal_tag_bytes(journal_t *journal)
2237 {
2238 size_t sz;
2239
2240 if (jbd2_has_feature_csum3(journal))
2241 return sizeof(journal_block_tag3_t);
2242
2243 sz = sizeof(journal_block_tag_t);
2244
2245 if (jbd2_has_feature_csum2(journal))
2246 sz += sizeof(__u16);
2247
2248 if (jbd2_has_feature_64bit(journal))
2249 return sz;
2250 else
2251 return sz - sizeof(__u32);
2252 }
2253
2254 /*
2255 * JBD memory management
2256 *
2257 * These functions are used to allocate block-sized chunks of memory
2258 * used for making copies of buffer_head data. Very often it will be
2259 * page-sized chunks of data, but sometimes it will be in
2260 * sub-page-size chunks. (For example, 16k pages on Power systems
2261 * with a 4k block file system.) For blocks smaller than a page, we
2262 * use a SLAB allocator. There are slab caches for each block size,
2263 * which are allocated at mount time, if necessary, and we only free
2264 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2265 * this reason we don't need to a mutex to protect access to
2266 * jbd2_slab[] allocating or releasing memory; only in
2267 * jbd2_journal_create_slab().
2268 */
2269 #define JBD2_MAX_SLABS 8
2270 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2271
2272 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2273 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2274 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2275 };
2276
2277
2278 static void jbd2_journal_destroy_slabs(void)
2279 {
2280 int i;
2281
2282 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2283 if (jbd2_slab[i])
2284 kmem_cache_destroy(jbd2_slab[i]);
2285 jbd2_slab[i] = NULL;
2286 }
2287 }
2288
2289 static int jbd2_journal_create_slab(size_t size)
2290 {
2291 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2292 int i = order_base_2(size) - 10;
2293 size_t slab_size;
2294
2295 if (size == PAGE_SIZE)
2296 return 0;
2297
2298 if (i >= JBD2_MAX_SLABS)
2299 return -EINVAL;
2300
2301 if (unlikely(i < 0))
2302 i = 0;
2303 mutex_lock(&jbd2_slab_create_mutex);
2304 if (jbd2_slab[i]) {
2305 mutex_unlock(&jbd2_slab_create_mutex);
2306 return 0; /* Already created */
2307 }
2308
2309 slab_size = 1 << (i+10);
2310 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2311 slab_size, 0, NULL);
2312 mutex_unlock(&jbd2_slab_create_mutex);
2313 if (!jbd2_slab[i]) {
2314 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2315 return -ENOMEM;
2316 }
2317 return 0;
2318 }
2319
2320 static struct kmem_cache *get_slab(size_t size)
2321 {
2322 int i = order_base_2(size) - 10;
2323
2324 BUG_ON(i >= JBD2_MAX_SLABS);
2325 if (unlikely(i < 0))
2326 i = 0;
2327 BUG_ON(jbd2_slab[i] == NULL);
2328 return jbd2_slab[i];
2329 }
2330
2331 void *jbd2_alloc(size_t size, gfp_t flags)
2332 {
2333 void *ptr;
2334
2335 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2336
2337 if (size < PAGE_SIZE)
2338 ptr = kmem_cache_alloc(get_slab(size), flags);
2339 else
2340 ptr = (void *)__get_free_pages(flags, get_order(size));
2341
2342 /* Check alignment; SLUB has gotten this wrong in the past,
2343 * and this can lead to user data corruption! */
2344 BUG_ON(((unsigned long) ptr) & (size-1));
2345
2346 return ptr;
2347 }
2348
2349 void jbd2_free(void *ptr, size_t size)
2350 {
2351 if (size < PAGE_SIZE)
2352 kmem_cache_free(get_slab(size), ptr);
2353 else
2354 free_pages((unsigned long)ptr, get_order(size));
2355 };
2356
2357 /*
2358 * Journal_head storage management
2359 */
2360 static struct kmem_cache *jbd2_journal_head_cache;
2361 #ifdef CONFIG_JBD2_DEBUG
2362 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2363 #endif
2364
2365 static int jbd2_journal_init_journal_head_cache(void)
2366 {
2367 int retval;
2368
2369 J_ASSERT(jbd2_journal_head_cache == NULL);
2370 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2371 sizeof(struct journal_head),
2372 0, /* offset */
2373 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2374 NULL); /* ctor */
2375 retval = 0;
2376 if (!jbd2_journal_head_cache) {
2377 retval = -ENOMEM;
2378 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2379 }
2380 return retval;
2381 }
2382
2383 static void jbd2_journal_destroy_journal_head_cache(void)
2384 {
2385 if (jbd2_journal_head_cache) {
2386 kmem_cache_destroy(jbd2_journal_head_cache);
2387 jbd2_journal_head_cache = NULL;
2388 }
2389 }
2390
2391 /*
2392 * journal_head splicing and dicing
2393 */
2394 static struct journal_head *journal_alloc_journal_head(void)
2395 {
2396 struct journal_head *ret;
2397
2398 #ifdef CONFIG_JBD2_DEBUG
2399 atomic_inc(&nr_journal_heads);
2400 #endif
2401 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2402 if (!ret) {
2403 jbd_debug(1, "out of memory for journal_head\n");
2404 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2405 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2406 GFP_NOFS | __GFP_NOFAIL);
2407 }
2408 return ret;
2409 }
2410
2411 static void journal_free_journal_head(struct journal_head *jh)
2412 {
2413 #ifdef CONFIG_JBD2_DEBUG
2414 atomic_dec(&nr_journal_heads);
2415 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2416 #endif
2417 kmem_cache_free(jbd2_journal_head_cache, jh);
2418 }
2419
2420 /*
2421 * A journal_head is attached to a buffer_head whenever JBD has an
2422 * interest in the buffer.
2423 *
2424 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2425 * is set. This bit is tested in core kernel code where we need to take
2426 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2427 * there.
2428 *
2429 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2430 *
2431 * When a buffer has its BH_JBD bit set it is immune from being released by
2432 * core kernel code, mainly via ->b_count.
2433 *
2434 * A journal_head is detached from its buffer_head when the journal_head's
2435 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2436 * transaction (b_cp_transaction) hold their references to b_jcount.
2437 *
2438 * Various places in the kernel want to attach a journal_head to a buffer_head
2439 * _before_ attaching the journal_head to a transaction. To protect the
2440 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2441 * journal_head's b_jcount refcount by one. The caller must call
2442 * jbd2_journal_put_journal_head() to undo this.
2443 *
2444 * So the typical usage would be:
2445 *
2446 * (Attach a journal_head if needed. Increments b_jcount)
2447 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2448 * ...
2449 * (Get another reference for transaction)
2450 * jbd2_journal_grab_journal_head(bh);
2451 * jh->b_transaction = xxx;
2452 * (Put original reference)
2453 * jbd2_journal_put_journal_head(jh);
2454 */
2455
2456 /*
2457 * Give a buffer_head a journal_head.
2458 *
2459 * May sleep.
2460 */
2461 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2462 {
2463 struct journal_head *jh;
2464 struct journal_head *new_jh = NULL;
2465
2466 repeat:
2467 if (!buffer_jbd(bh))
2468 new_jh = journal_alloc_journal_head();
2469
2470 jbd_lock_bh_journal_head(bh);
2471 if (buffer_jbd(bh)) {
2472 jh = bh2jh(bh);
2473 } else {
2474 J_ASSERT_BH(bh,
2475 (atomic_read(&bh->b_count) > 0) ||
2476 (bh->b_page && bh->b_page->mapping));
2477
2478 if (!new_jh) {
2479 jbd_unlock_bh_journal_head(bh);
2480 goto repeat;
2481 }
2482
2483 jh = new_jh;
2484 new_jh = NULL; /* We consumed it */
2485 set_buffer_jbd(bh);
2486 bh->b_private = jh;
2487 jh->b_bh = bh;
2488 get_bh(bh);
2489 BUFFER_TRACE(bh, "added journal_head");
2490 }
2491 jh->b_jcount++;
2492 jbd_unlock_bh_journal_head(bh);
2493 if (new_jh)
2494 journal_free_journal_head(new_jh);
2495 return bh->b_private;
2496 }
2497
2498 /*
2499 * Grab a ref against this buffer_head's journal_head. If it ended up not
2500 * having a journal_head, return NULL
2501 */
2502 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2503 {
2504 struct journal_head *jh = NULL;
2505
2506 jbd_lock_bh_journal_head(bh);
2507 if (buffer_jbd(bh)) {
2508 jh = bh2jh(bh);
2509 jh->b_jcount++;
2510 }
2511 jbd_unlock_bh_journal_head(bh);
2512 return jh;
2513 }
2514
2515 static void __journal_remove_journal_head(struct buffer_head *bh)
2516 {
2517 struct journal_head *jh = bh2jh(bh);
2518
2519 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2520 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2521 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2522 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2523 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2524 J_ASSERT_BH(bh, buffer_jbd(bh));
2525 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2526 BUFFER_TRACE(bh, "remove journal_head");
2527 if (jh->b_frozen_data) {
2528 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2529 jbd2_free(jh->b_frozen_data, bh->b_size);
2530 }
2531 if (jh->b_committed_data) {
2532 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2533 jbd2_free(jh->b_committed_data, bh->b_size);
2534 }
2535 bh->b_private = NULL;
2536 jh->b_bh = NULL; /* debug, really */
2537 clear_buffer_jbd(bh);
2538 journal_free_journal_head(jh);
2539 }
2540
2541 /*
2542 * Drop a reference on the passed journal_head. If it fell to zero then
2543 * release the journal_head from the buffer_head.
2544 */
2545 void jbd2_journal_put_journal_head(struct journal_head *jh)
2546 {
2547 struct buffer_head *bh = jh2bh(jh);
2548
2549 jbd_lock_bh_journal_head(bh);
2550 J_ASSERT_JH(jh, jh->b_jcount > 0);
2551 --jh->b_jcount;
2552 if (!jh->b_jcount) {
2553 __journal_remove_journal_head(bh);
2554 jbd_unlock_bh_journal_head(bh);
2555 __brelse(bh);
2556 } else
2557 jbd_unlock_bh_journal_head(bh);
2558 }
2559
2560 /*
2561 * Initialize jbd inode head
2562 */
2563 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2564 {
2565 jinode->i_transaction = NULL;
2566 jinode->i_next_transaction = NULL;
2567 jinode->i_vfs_inode = inode;
2568 jinode->i_flags = 0;
2569 INIT_LIST_HEAD(&jinode->i_list);
2570 }
2571
2572 /*
2573 * Function to be called before we start removing inode from memory (i.e.,
2574 * clear_inode() is a fine place to be called from). It removes inode from
2575 * transaction's lists.
2576 */
2577 void jbd2_journal_release_jbd_inode(journal_t *journal,
2578 struct jbd2_inode *jinode)
2579 {
2580 if (!journal)
2581 return;
2582 restart:
2583 spin_lock(&journal->j_list_lock);
2584 /* Is commit writing out inode - we have to wait */
2585 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2586 wait_queue_head_t *wq;
2587 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2588 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2589 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2590 spin_unlock(&journal->j_list_lock);
2591 schedule();
2592 finish_wait(wq, &wait.wait);
2593 goto restart;
2594 }
2595
2596 if (jinode->i_transaction) {
2597 list_del(&jinode->i_list);
2598 jinode->i_transaction = NULL;
2599 }
2600 spin_unlock(&journal->j_list_lock);
2601 }
2602
2603
2604 #ifdef CONFIG_PROC_FS
2605
2606 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2607
2608 static void __init jbd2_create_jbd_stats_proc_entry(void)
2609 {
2610 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2611 }
2612
2613 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2614 {
2615 if (proc_jbd2_stats)
2616 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2617 }
2618
2619 #else
2620
2621 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2622 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2623
2624 #endif
2625
2626 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2627
2628 static int __init jbd2_journal_init_handle_cache(void)
2629 {
2630 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2631 if (jbd2_handle_cache == NULL) {
2632 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2633 return -ENOMEM;
2634 }
2635 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2636 if (jbd2_inode_cache == NULL) {
2637 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2638 kmem_cache_destroy(jbd2_handle_cache);
2639 return -ENOMEM;
2640 }
2641 return 0;
2642 }
2643
2644 static void jbd2_journal_destroy_handle_cache(void)
2645 {
2646 if (jbd2_handle_cache)
2647 kmem_cache_destroy(jbd2_handle_cache);
2648 if (jbd2_inode_cache)
2649 kmem_cache_destroy(jbd2_inode_cache);
2650
2651 }
2652
2653 /*
2654 * Module startup and shutdown
2655 */
2656
2657 static int __init journal_init_caches(void)
2658 {
2659 int ret;
2660
2661 ret = jbd2_journal_init_revoke_caches();
2662 if (ret == 0)
2663 ret = jbd2_journal_init_journal_head_cache();
2664 if (ret == 0)
2665 ret = jbd2_journal_init_handle_cache();
2666 if (ret == 0)
2667 ret = jbd2_journal_init_transaction_cache();
2668 return ret;
2669 }
2670
2671 static void jbd2_journal_destroy_caches(void)
2672 {
2673 jbd2_journal_destroy_revoke_caches();
2674 jbd2_journal_destroy_journal_head_cache();
2675 jbd2_journal_destroy_handle_cache();
2676 jbd2_journal_destroy_transaction_cache();
2677 jbd2_journal_destroy_slabs();
2678 }
2679
2680 static int __init journal_init(void)
2681 {
2682 int ret;
2683
2684 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2685
2686 ret = journal_init_caches();
2687 if (ret == 0) {
2688 jbd2_create_jbd_stats_proc_entry();
2689 } else {
2690 jbd2_journal_destroy_caches();
2691 }
2692 return ret;
2693 }
2694
2695 static void __exit journal_exit(void)
2696 {
2697 #ifdef CONFIG_JBD2_DEBUG
2698 int n = atomic_read(&nr_journal_heads);
2699 if (n)
2700 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2701 #endif
2702 jbd2_remove_jbd_stats_proc_entry();
2703 jbd2_journal_destroy_caches();
2704 }
2705
2706 MODULE_LICENSE("GPL");
2707 module_init(journal_init);
2708 module_exit(journal_exit);
2709
This page took 0.400924 seconds and 5 git commands to generate.