Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / jbd2 / revoke.c
1 /*
2 * linux/fs/jbd2/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
26 * gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
48 * bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits. As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear: no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 * buffer has not been revoked, and cancel_revoke
59 * need do nothing.
60 * RevokeValid set, Revoked set:
61 * buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table. Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd2.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #include <linux/log2.h>
95 #include <linux/hash.h>
96 #endif
97
98 static struct kmem_cache *jbd2_revoke_record_cache;
99 static struct kmem_cache *jbd2_revoke_table_cache;
100
101 /* Each revoke record represents one single revoked block. During
102 journal replay, this involves recording the transaction ID of the
103 last transaction to revoke this block. */
104
105 struct jbd2_revoke_record_s
106 {
107 struct list_head hash;
108 tid_t sequence; /* Used for recovery only */
109 unsigned long long blocknr;
110 };
111
112
113 /* The revoke table is just a simple hash table of revoke records. */
114 struct jbd2_revoke_table_s
115 {
116 /* It is conceivable that we might want a larger hash table
117 * for recovery. Must be a power of two. */
118 int hash_size;
119 int hash_shift;
120 struct list_head *hash_table;
121 };
122
123
124 #ifdef __KERNEL__
125 static void write_one_revoke_record(journal_t *, transaction_t *,
126 struct list_head *,
127 struct buffer_head **, int *,
128 struct jbd2_revoke_record_s *, int);
129 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130 #endif
131
132 /* Utility functions to maintain the revoke table */
133
134 static inline int hash(journal_t *journal, unsigned long long block)
135 {
136 return hash_64(block, journal->j_revoke->hash_shift);
137 }
138
139 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140 tid_t seq)
141 {
142 struct list_head *hash_list;
143 struct jbd2_revoke_record_s *record;
144
145 repeat:
146 record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
147 if (!record)
148 goto oom;
149
150 record->sequence = seq;
151 record->blocknr = blocknr;
152 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153 spin_lock(&journal->j_revoke_lock);
154 list_add(&record->hash, hash_list);
155 spin_unlock(&journal->j_revoke_lock);
156 return 0;
157
158 oom:
159 if (!journal_oom_retry)
160 return -ENOMEM;
161 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162 yield();
163 goto repeat;
164 }
165
166 /* Find a revoke record in the journal's hash table. */
167
168 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
169 unsigned long long blocknr)
170 {
171 struct list_head *hash_list;
172 struct jbd2_revoke_record_s *record;
173
174 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175
176 spin_lock(&journal->j_revoke_lock);
177 record = (struct jbd2_revoke_record_s *) hash_list->next;
178 while (&(record->hash) != hash_list) {
179 if (record->blocknr == blocknr) {
180 spin_unlock(&journal->j_revoke_lock);
181 return record;
182 }
183 record = (struct jbd2_revoke_record_s *) record->hash.next;
184 }
185 spin_unlock(&journal->j_revoke_lock);
186 return NULL;
187 }
188
189 void jbd2_journal_destroy_revoke_caches(void)
190 {
191 if (jbd2_revoke_record_cache) {
192 kmem_cache_destroy(jbd2_revoke_record_cache);
193 jbd2_revoke_record_cache = NULL;
194 }
195 if (jbd2_revoke_table_cache) {
196 kmem_cache_destroy(jbd2_revoke_table_cache);
197 jbd2_revoke_table_cache = NULL;
198 }
199 }
200
201 int __init jbd2_journal_init_revoke_caches(void)
202 {
203 J_ASSERT(!jbd2_revoke_record_cache);
204 J_ASSERT(!jbd2_revoke_table_cache);
205
206 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
207 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
208 if (!jbd2_revoke_record_cache)
209 goto record_cache_failure;
210
211 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
212 SLAB_TEMPORARY);
213 if (!jbd2_revoke_table_cache)
214 goto table_cache_failure;
215 return 0;
216 table_cache_failure:
217 jbd2_journal_destroy_revoke_caches();
218 record_cache_failure:
219 return -ENOMEM;
220 }
221
222 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
223 {
224 int shift = 0;
225 int tmp = hash_size;
226 struct jbd2_revoke_table_s *table;
227
228 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
229 if (!table)
230 goto out;
231
232 while((tmp >>= 1UL) != 0UL)
233 shift++;
234
235 table->hash_size = hash_size;
236 table->hash_shift = shift;
237 table->hash_table =
238 kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
239 if (!table->hash_table) {
240 kmem_cache_free(jbd2_revoke_table_cache, table);
241 table = NULL;
242 goto out;
243 }
244
245 for (tmp = 0; tmp < hash_size; tmp++)
246 INIT_LIST_HEAD(&table->hash_table[tmp]);
247
248 out:
249 return table;
250 }
251
252 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
253 {
254 int i;
255 struct list_head *hash_list;
256
257 for (i = 0; i < table->hash_size; i++) {
258 hash_list = &table->hash_table[i];
259 J_ASSERT(list_empty(hash_list));
260 }
261
262 kfree(table->hash_table);
263 kmem_cache_free(jbd2_revoke_table_cache, table);
264 }
265
266 /* Initialise the revoke table for a given journal to a given size. */
267 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
268 {
269 J_ASSERT(journal->j_revoke_table[0] == NULL);
270 J_ASSERT(is_power_of_2(hash_size));
271
272 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
273 if (!journal->j_revoke_table[0])
274 goto fail0;
275
276 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
277 if (!journal->j_revoke_table[1])
278 goto fail1;
279
280 journal->j_revoke = journal->j_revoke_table[1];
281
282 spin_lock_init(&journal->j_revoke_lock);
283
284 return 0;
285
286 fail1:
287 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
288 fail0:
289 return -ENOMEM;
290 }
291
292 /* Destroy a journal's revoke table. The table must already be empty! */
293 void jbd2_journal_destroy_revoke(journal_t *journal)
294 {
295 journal->j_revoke = NULL;
296 if (journal->j_revoke_table[0])
297 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
298 if (journal->j_revoke_table[1])
299 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
300 }
301
302
303 #ifdef __KERNEL__
304
305 /*
306 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
307 * prevents the block from being replayed during recovery if we take a
308 * crash after this current transaction commits. Any subsequent
309 * metadata writes of the buffer in this transaction cancel the
310 * revoke.
311 *
312 * Note that this call may block --- it is up to the caller to make
313 * sure that there are no further calls to journal_write_metadata
314 * before the revoke is complete. In ext3, this implies calling the
315 * revoke before clearing the block bitmap when we are deleting
316 * metadata.
317 *
318 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
319 * parameter, but does _not_ forget the buffer_head if the bh was only
320 * found implicitly.
321 *
322 * bh_in may not be a journalled buffer - it may have come off
323 * the hash tables without an attached journal_head.
324 *
325 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
326 * by one.
327 */
328
329 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
330 struct buffer_head *bh_in)
331 {
332 struct buffer_head *bh = NULL;
333 journal_t *journal;
334 struct block_device *bdev;
335 int err;
336
337 might_sleep();
338 if (bh_in)
339 BUFFER_TRACE(bh_in, "enter");
340
341 journal = handle->h_transaction->t_journal;
342 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
343 J_ASSERT (!"Cannot set revoke feature!");
344 return -EINVAL;
345 }
346
347 bdev = journal->j_fs_dev;
348 bh = bh_in;
349
350 if (!bh) {
351 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
352 if (bh)
353 BUFFER_TRACE(bh, "found on hash");
354 }
355 #ifdef JBD2_EXPENSIVE_CHECKING
356 else {
357 struct buffer_head *bh2;
358
359 /* If there is a different buffer_head lying around in
360 * memory anywhere... */
361 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
362 if (bh2) {
363 /* ... and it has RevokeValid status... */
364 if (bh2 != bh && buffer_revokevalid(bh2))
365 /* ...then it better be revoked too,
366 * since it's illegal to create a revoke
367 * record against a buffer_head which is
368 * not marked revoked --- that would
369 * risk missing a subsequent revoke
370 * cancel. */
371 J_ASSERT_BH(bh2, buffer_revoked(bh2));
372 put_bh(bh2);
373 }
374 }
375 #endif
376
377 /* We really ought not ever to revoke twice in a row without
378 first having the revoke cancelled: it's illegal to free a
379 block twice without allocating it in between! */
380 if (bh) {
381 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
382 "inconsistent data on disk")) {
383 if (!bh_in)
384 brelse(bh);
385 return -EIO;
386 }
387 set_buffer_revoked(bh);
388 set_buffer_revokevalid(bh);
389 if (bh_in) {
390 BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
391 jbd2_journal_forget(handle, bh_in);
392 } else {
393 BUFFER_TRACE(bh, "call brelse");
394 __brelse(bh);
395 }
396 }
397
398 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
399 err = insert_revoke_hash(journal, blocknr,
400 handle->h_transaction->t_tid);
401 BUFFER_TRACE(bh_in, "exit");
402 return err;
403 }
404
405 /*
406 * Cancel an outstanding revoke. For use only internally by the
407 * journaling code (called from jbd2_journal_get_write_access).
408 *
409 * We trust buffer_revoked() on the buffer if the buffer is already
410 * being journaled: if there is no revoke pending on the buffer, then we
411 * don't do anything here.
412 *
413 * This would break if it were possible for a buffer to be revoked and
414 * discarded, and then reallocated within the same transaction. In such
415 * a case we would have lost the revoked bit, but when we arrived here
416 * the second time we would still have a pending revoke to cancel. So,
417 * do not trust the Revoked bit on buffers unless RevokeValid is also
418 * set.
419 */
420 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
421 {
422 struct jbd2_revoke_record_s *record;
423 journal_t *journal = handle->h_transaction->t_journal;
424 int need_cancel;
425 int did_revoke = 0; /* akpm: debug */
426 struct buffer_head *bh = jh2bh(jh);
427
428 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
429
430 /* Is the existing Revoke bit valid? If so, we trust it, and
431 * only perform the full cancel if the revoke bit is set. If
432 * not, we can't trust the revoke bit, and we need to do the
433 * full search for a revoke record. */
434 if (test_set_buffer_revokevalid(bh)) {
435 need_cancel = test_clear_buffer_revoked(bh);
436 } else {
437 need_cancel = 1;
438 clear_buffer_revoked(bh);
439 }
440
441 if (need_cancel) {
442 record = find_revoke_record(journal, bh->b_blocknr);
443 if (record) {
444 jbd_debug(4, "cancelled existing revoke on "
445 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
446 spin_lock(&journal->j_revoke_lock);
447 list_del(&record->hash);
448 spin_unlock(&journal->j_revoke_lock);
449 kmem_cache_free(jbd2_revoke_record_cache, record);
450 did_revoke = 1;
451 }
452 }
453
454 #ifdef JBD2_EXPENSIVE_CHECKING
455 /* There better not be one left behind by now! */
456 record = find_revoke_record(journal, bh->b_blocknr);
457 J_ASSERT_JH(jh, record == NULL);
458 #endif
459
460 /* Finally, have we just cleared revoke on an unhashed
461 * buffer_head? If so, we'd better make sure we clear the
462 * revoked status on any hashed alias too, otherwise the revoke
463 * state machine will get very upset later on. */
464 if (need_cancel) {
465 struct buffer_head *bh2;
466 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
467 if (bh2) {
468 if (bh2 != bh)
469 clear_buffer_revoked(bh2);
470 __brelse(bh2);
471 }
472 }
473 return did_revoke;
474 }
475
476 /*
477 * journal_clear_revoked_flag clears revoked flag of buffers in
478 * revoke table to reflect there is no revoked buffers in the next
479 * transaction which is going to be started.
480 */
481 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
482 {
483 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
484 int i = 0;
485
486 for (i = 0; i < revoke->hash_size; i++) {
487 struct list_head *hash_list;
488 struct list_head *list_entry;
489 hash_list = &revoke->hash_table[i];
490
491 list_for_each(list_entry, hash_list) {
492 struct jbd2_revoke_record_s *record;
493 struct buffer_head *bh;
494 record = (struct jbd2_revoke_record_s *)list_entry;
495 bh = __find_get_block(journal->j_fs_dev,
496 record->blocknr,
497 journal->j_blocksize);
498 if (bh) {
499 clear_buffer_revoked(bh);
500 __brelse(bh);
501 }
502 }
503 }
504 }
505
506 /* journal_switch_revoke table select j_revoke for next transaction
507 * we do not want to suspend any processing until all revokes are
508 * written -bzzz
509 */
510 void jbd2_journal_switch_revoke_table(journal_t *journal)
511 {
512 int i;
513
514 if (journal->j_revoke == journal->j_revoke_table[0])
515 journal->j_revoke = journal->j_revoke_table[1];
516 else
517 journal->j_revoke = journal->j_revoke_table[0];
518
519 for (i = 0; i < journal->j_revoke->hash_size; i++)
520 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
521 }
522
523 /*
524 * Write revoke records to the journal for all entries in the current
525 * revoke hash, deleting the entries as we go.
526 */
527 void jbd2_journal_write_revoke_records(journal_t *journal,
528 transaction_t *transaction,
529 struct list_head *log_bufs,
530 int write_op)
531 {
532 struct buffer_head *descriptor;
533 struct jbd2_revoke_record_s *record;
534 struct jbd2_revoke_table_s *revoke;
535 struct list_head *hash_list;
536 int i, offset, count;
537
538 descriptor = NULL;
539 offset = 0;
540 count = 0;
541
542 /* select revoke table for committing transaction */
543 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
544 journal->j_revoke_table[1] : journal->j_revoke_table[0];
545
546 for (i = 0; i < revoke->hash_size; i++) {
547 hash_list = &revoke->hash_table[i];
548
549 while (!list_empty(hash_list)) {
550 record = (struct jbd2_revoke_record_s *)
551 hash_list->next;
552 write_one_revoke_record(journal, transaction, log_bufs,
553 &descriptor, &offset,
554 record, write_op);
555 count++;
556 list_del(&record->hash);
557 kmem_cache_free(jbd2_revoke_record_cache, record);
558 }
559 }
560 if (descriptor)
561 flush_descriptor(journal, descriptor, offset, write_op);
562 jbd_debug(1, "Wrote %d revoke records\n", count);
563 }
564
565 /*
566 * Write out one revoke record. We need to create a new descriptor
567 * block if the old one is full or if we have not already created one.
568 */
569
570 static void write_one_revoke_record(journal_t *journal,
571 transaction_t *transaction,
572 struct list_head *log_bufs,
573 struct buffer_head **descriptorp,
574 int *offsetp,
575 struct jbd2_revoke_record_s *record,
576 int write_op)
577 {
578 int csum_size = 0;
579 struct buffer_head *descriptor;
580 int offset;
581 journal_header_t *header;
582
583 /* If we are already aborting, this all becomes a noop. We
584 still need to go round the loop in
585 jbd2_journal_write_revoke_records in order to free all of the
586 revoke records: only the IO to the journal is omitted. */
587 if (is_journal_aborted(journal))
588 return;
589
590 descriptor = *descriptorp;
591 offset = *offsetp;
592
593 /* Do we need to leave space at the end for a checksum? */
594 if (jbd2_journal_has_csum_v2or3(journal))
595 csum_size = sizeof(struct jbd2_journal_revoke_tail);
596
597 /* Make sure we have a descriptor with space left for the record */
598 if (descriptor) {
599 if (offset >= journal->j_blocksize - csum_size) {
600 flush_descriptor(journal, descriptor, offset, write_op);
601 descriptor = NULL;
602 }
603 }
604
605 if (!descriptor) {
606 descriptor = jbd2_journal_get_descriptor_buffer(journal);
607 if (!descriptor)
608 return;
609 header = (journal_header_t *)descriptor->b_data;
610 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
611 header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
612 header->h_sequence = cpu_to_be32(transaction->t_tid);
613
614 /* Record it so that we can wait for IO completion later */
615 BUFFER_TRACE(descriptor, "file in log_bufs");
616 jbd2_file_log_bh(log_bufs, descriptor);
617
618 offset = sizeof(jbd2_journal_revoke_header_t);
619 *descriptorp = descriptor;
620 }
621
622 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
623 * ((__be64 *)(&descriptor->b_data[offset])) =
624 cpu_to_be64(record->blocknr);
625 offset += 8;
626
627 } else {
628 * ((__be32 *)(&descriptor->b_data[offset])) =
629 cpu_to_be32(record->blocknr);
630 offset += 4;
631 }
632
633 *offsetp = offset;
634 }
635
636 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
637 {
638 struct jbd2_journal_revoke_tail *tail;
639 __u32 csum;
640
641 if (!jbd2_journal_has_csum_v2or3(j))
642 return;
643
644 tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
645 sizeof(struct jbd2_journal_revoke_tail));
646 tail->r_checksum = 0;
647 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
648 tail->r_checksum = cpu_to_be32(csum);
649 }
650
651 /*
652 * Flush a revoke descriptor out to the journal. If we are aborting,
653 * this is a noop; otherwise we are generating a buffer which needs to
654 * be waited for during commit, so it has to go onto the appropriate
655 * journal buffer list.
656 */
657
658 static void flush_descriptor(journal_t *journal,
659 struct buffer_head *descriptor,
660 int offset, int write_op)
661 {
662 jbd2_journal_revoke_header_t *header;
663
664 if (is_journal_aborted(journal)) {
665 put_bh(descriptor);
666 return;
667 }
668
669 header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
670 header->r_count = cpu_to_be32(offset);
671 jbd2_revoke_csum_set(journal, descriptor);
672
673 set_buffer_jwrite(descriptor);
674 BUFFER_TRACE(descriptor, "write");
675 set_buffer_dirty(descriptor);
676 write_dirty_buffer(descriptor, write_op);
677 }
678 #endif
679
680 /*
681 * Revoke support for recovery.
682 *
683 * Recovery needs to be able to:
684 *
685 * record all revoke records, including the tid of the latest instance
686 * of each revoke in the journal
687 *
688 * check whether a given block in a given transaction should be replayed
689 * (ie. has not been revoked by a revoke record in that or a subsequent
690 * transaction)
691 *
692 * empty the revoke table after recovery.
693 */
694
695 /*
696 * First, setting revoke records. We create a new revoke record for
697 * every block ever revoked in the log as we scan it for recovery, and
698 * we update the existing records if we find multiple revokes for a
699 * single block.
700 */
701
702 int jbd2_journal_set_revoke(journal_t *journal,
703 unsigned long long blocknr,
704 tid_t sequence)
705 {
706 struct jbd2_revoke_record_s *record;
707
708 record = find_revoke_record(journal, blocknr);
709 if (record) {
710 /* If we have multiple occurrences, only record the
711 * latest sequence number in the hashed record */
712 if (tid_gt(sequence, record->sequence))
713 record->sequence = sequence;
714 return 0;
715 }
716 return insert_revoke_hash(journal, blocknr, sequence);
717 }
718
719 /*
720 * Test revoke records. For a given block referenced in the log, has
721 * that block been revoked? A revoke record with a given transaction
722 * sequence number revokes all blocks in that transaction and earlier
723 * ones, but later transactions still need replayed.
724 */
725
726 int jbd2_journal_test_revoke(journal_t *journal,
727 unsigned long long blocknr,
728 tid_t sequence)
729 {
730 struct jbd2_revoke_record_s *record;
731
732 record = find_revoke_record(journal, blocknr);
733 if (!record)
734 return 0;
735 if (tid_gt(sequence, record->sequence))
736 return 0;
737 return 1;
738 }
739
740 /*
741 * Finally, once recovery is over, we need to clear the revoke table so
742 * that it can be reused by the running filesystem.
743 */
744
745 void jbd2_journal_clear_revoke(journal_t *journal)
746 {
747 int i;
748 struct list_head *hash_list;
749 struct jbd2_revoke_record_s *record;
750 struct jbd2_revoke_table_s *revoke;
751
752 revoke = journal->j_revoke;
753
754 for (i = 0; i < revoke->hash_size; i++) {
755 hash_list = &revoke->hash_table[i];
756 while (!list_empty(hash_list)) {
757 record = (struct jbd2_revoke_record_s*) hash_list->next;
758 list_del(&record->hash);
759 kmem_cache_free(jbd2_revoke_record_cache, record);
760 }
761 }
762 }
This page took 0.048307 seconds and 6 git commands to generate.