Merge tag 'staging-4.1-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / fs / jbd2 / transaction.c
1 /*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
80 */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
87 transaction->t_start_time = ktime_get();
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
91 atomic_set(&transaction->t_updates, 0);
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
94 atomic_set(&transaction->t_handle_count, 0);
95 INIT_LIST_HEAD(&transaction->t_inode_list);
96 INIT_LIST_HEAD(&transaction->t_private_list);
97
98 /* Set up the commit timer for the new transaction. */
99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
106 transaction->t_requested = 0;
107
108 return transaction;
109 }
110
111 /*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119 /*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129 static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
131 {
132 #ifdef CONFIG_JBD2_DEBUG
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141 #endif
142 }
143
144 /*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149 static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151 {
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
162 schedule();
163 finish_wait(&journal->j_wait_transaction_locked, &wait);
164 }
165
166 static void sub_reserved_credits(journal_t *journal, int blocks)
167 {
168 atomic_sub(blocks, &journal->j_reserved_credits);
169 wake_up(&journal->j_wait_reserved);
170 }
171
172 /*
173 * Wait until we can add credits for handle to the running transaction. Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178 static int add_transaction_credits(journal_t *journal, int blocks,
179 int rsv_blocks)
180 {
181 transaction_t *t = journal->j_running_transaction;
182 int needed;
183 int total = blocks + rsv_blocks;
184
185 /*
186 * If the current transaction is locked down for commit, wait
187 * for the lock to be released.
188 */
189 if (t->t_state == T_LOCKED) {
190 wait_transaction_locked(journal);
191 return 1;
192 }
193
194 /*
195 * If there is not enough space left in the log to write all
196 * potential buffers requested by this operation, we need to
197 * stall pending a log checkpoint to free some more log space.
198 */
199 needed = atomic_add_return(total, &t->t_outstanding_credits);
200 if (needed > journal->j_max_transaction_buffers) {
201 /*
202 * If the current transaction is already too large,
203 * then start to commit it: we can then go back and
204 * attach this handle to a new transaction.
205 */
206 atomic_sub(total, &t->t_outstanding_credits);
207 wait_transaction_locked(journal);
208 return 1;
209 }
210
211 /*
212 * The commit code assumes that it can get enough log space
213 * without forcing a checkpoint. This is *critical* for
214 * correctness: a checkpoint of a buffer which is also
215 * associated with a committing transaction creates a deadlock,
216 * so commit simply cannot force through checkpoints.
217 *
218 * We must therefore ensure the necessary space in the journal
219 * *before* starting to dirty potentially checkpointed buffers
220 * in the new transaction.
221 */
222 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223 atomic_sub(total, &t->t_outstanding_credits);
224 read_unlock(&journal->j_state_lock);
225 write_lock(&journal->j_state_lock);
226 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227 __jbd2_log_wait_for_space(journal);
228 write_unlock(&journal->j_state_lock);
229 return 1;
230 }
231
232 /* No reservation? We are done... */
233 if (!rsv_blocks)
234 return 0;
235
236 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237 /* We allow at most half of a transaction to be reserved */
238 if (needed > journal->j_max_transaction_buffers / 2) {
239 sub_reserved_credits(journal, rsv_blocks);
240 atomic_sub(total, &t->t_outstanding_credits);
241 read_unlock(&journal->j_state_lock);
242 wait_event(journal->j_wait_reserved,
243 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244 <= journal->j_max_transaction_buffers / 2);
245 return 1;
246 }
247 return 0;
248 }
249
250 /*
251 * start_this_handle: Given a handle, deal with any locking or stalling
252 * needed to make sure that there is enough journal space for the handle
253 * to begin. Attach the handle to a transaction and set up the
254 * transaction's buffer credits.
255 */
256
257 static int start_this_handle(journal_t *journal, handle_t *handle,
258 gfp_t gfp_mask)
259 {
260 transaction_t *transaction, *new_transaction = NULL;
261 int blocks = handle->h_buffer_credits;
262 int rsv_blocks = 0;
263 unsigned long ts = jiffies;
264
265 /*
266 * 1/2 of transaction can be reserved so we can practically handle
267 * only 1/2 of maximum transaction size per operation
268 */
269 if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271 current->comm, blocks,
272 journal->j_max_transaction_buffers / 2);
273 return -ENOSPC;
274 }
275
276 if (handle->h_rsv_handle)
277 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279 alloc_transaction:
280 if (!journal->j_running_transaction) {
281 new_transaction = kmem_cache_zalloc(transaction_cache,
282 gfp_mask);
283 if (!new_transaction) {
284 /*
285 * If __GFP_FS is not present, then we may be
286 * being called from inside the fs writeback
287 * layer, so we MUST NOT fail. Since
288 * __GFP_NOFAIL is going away, we will arrange
289 * to retry the allocation ourselves.
290 */
291 if ((gfp_mask & __GFP_FS) == 0) {
292 congestion_wait(BLK_RW_ASYNC, HZ/50);
293 goto alloc_transaction;
294 }
295 return -ENOMEM;
296 }
297 }
298
299 jbd_debug(3, "New handle %p going live.\n", handle);
300
301 /*
302 * We need to hold j_state_lock until t_updates has been incremented,
303 * for proper journal barrier handling
304 */
305 repeat:
306 read_lock(&journal->j_state_lock);
307 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308 if (is_journal_aborted(journal) ||
309 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310 read_unlock(&journal->j_state_lock);
311 jbd2_journal_free_transaction(new_transaction);
312 return -EROFS;
313 }
314
315 /*
316 * Wait on the journal's transaction barrier if necessary. Specifically
317 * we allow reserved handles to proceed because otherwise commit could
318 * deadlock on page writeback not being able to complete.
319 */
320 if (!handle->h_reserved && journal->j_barrier_count) {
321 read_unlock(&journal->j_state_lock);
322 wait_event(journal->j_wait_transaction_locked,
323 journal->j_barrier_count == 0);
324 goto repeat;
325 }
326
327 if (!journal->j_running_transaction) {
328 read_unlock(&journal->j_state_lock);
329 if (!new_transaction)
330 goto alloc_transaction;
331 write_lock(&journal->j_state_lock);
332 if (!journal->j_running_transaction &&
333 (handle->h_reserved || !journal->j_barrier_count)) {
334 jbd2_get_transaction(journal, new_transaction);
335 new_transaction = NULL;
336 }
337 write_unlock(&journal->j_state_lock);
338 goto repeat;
339 }
340
341 transaction = journal->j_running_transaction;
342
343 if (!handle->h_reserved) {
344 /* We may have dropped j_state_lock - restart in that case */
345 if (add_transaction_credits(journal, blocks, rsv_blocks))
346 goto repeat;
347 } else {
348 /*
349 * We have handle reserved so we are allowed to join T_LOCKED
350 * transaction and we don't have to check for transaction size
351 * and journal space.
352 */
353 sub_reserved_credits(journal, blocks);
354 handle->h_reserved = 0;
355 }
356
357 /* OK, account for the buffers that this operation expects to
358 * use and add the handle to the running transaction.
359 */
360 update_t_max_wait(transaction, ts);
361 handle->h_transaction = transaction;
362 handle->h_requested_credits = blocks;
363 handle->h_start_jiffies = jiffies;
364 atomic_inc(&transaction->t_updates);
365 atomic_inc(&transaction->t_handle_count);
366 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367 handle, blocks,
368 atomic_read(&transaction->t_outstanding_credits),
369 jbd2_log_space_left(journal));
370 read_unlock(&journal->j_state_lock);
371 current->journal_info = handle;
372
373 lock_map_acquire(&handle->h_lockdep_map);
374 jbd2_journal_free_transaction(new_transaction);
375 return 0;
376 }
377
378 static struct lock_class_key jbd2_handle_key;
379
380 /* Allocate a new handle. This should probably be in a slab... */
381 static handle_t *new_handle(int nblocks)
382 {
383 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384 if (!handle)
385 return NULL;
386 handle->h_buffer_credits = nblocks;
387 handle->h_ref = 1;
388
389 lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390 &jbd2_handle_key, 0);
391
392 return handle;
393 }
394
395 /**
396 * handle_t *jbd2_journal_start() - Obtain a new handle.
397 * @journal: Journal to start transaction on.
398 * @nblocks: number of block buffer we might modify
399 *
400 * We make sure that the transaction can guarantee at least nblocks of
401 * modified buffers in the log. We block until the log can guarantee
402 * that much space. Additionally, if rsv_blocks > 0, we also create another
403 * handle with rsv_blocks reserved blocks in the journal. This handle is
404 * is stored in h_rsv_handle. It is not attached to any particular transaction
405 * and thus doesn't block transaction commit. If the caller uses this reserved
406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407 * on the parent handle will dispose the reserved one. Reserved handle has to
408 * be converted to a normal handle using jbd2_journal_start_reserved() before
409 * it can be used.
410 *
411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412 * on failure.
413 */
414 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415 gfp_t gfp_mask, unsigned int type,
416 unsigned int line_no)
417 {
418 handle_t *handle = journal_current_handle();
419 int err;
420
421 if (!journal)
422 return ERR_PTR(-EROFS);
423
424 if (handle) {
425 J_ASSERT(handle->h_transaction->t_journal == journal);
426 handle->h_ref++;
427 return handle;
428 }
429
430 handle = new_handle(nblocks);
431 if (!handle)
432 return ERR_PTR(-ENOMEM);
433 if (rsv_blocks) {
434 handle_t *rsv_handle;
435
436 rsv_handle = new_handle(rsv_blocks);
437 if (!rsv_handle) {
438 jbd2_free_handle(handle);
439 return ERR_PTR(-ENOMEM);
440 }
441 rsv_handle->h_reserved = 1;
442 rsv_handle->h_journal = journal;
443 handle->h_rsv_handle = rsv_handle;
444 }
445
446 err = start_this_handle(journal, handle, gfp_mask);
447 if (err < 0) {
448 if (handle->h_rsv_handle)
449 jbd2_free_handle(handle->h_rsv_handle);
450 jbd2_free_handle(handle);
451 return ERR_PTR(err);
452 }
453 handle->h_type = type;
454 handle->h_line_no = line_no;
455 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456 handle->h_transaction->t_tid, type,
457 line_no, nblocks);
458 return handle;
459 }
460 EXPORT_SYMBOL(jbd2__journal_start);
461
462
463 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464 {
465 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466 }
467 EXPORT_SYMBOL(jbd2_journal_start);
468
469 void jbd2_journal_free_reserved(handle_t *handle)
470 {
471 journal_t *journal = handle->h_journal;
472
473 WARN_ON(!handle->h_reserved);
474 sub_reserved_credits(journal, handle->h_buffer_credits);
475 jbd2_free_handle(handle);
476 }
477 EXPORT_SYMBOL(jbd2_journal_free_reserved);
478
479 /**
480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481 * @handle: handle to start
482 *
483 * Start handle that has been previously reserved with jbd2_journal_reserve().
484 * This attaches @handle to the running transaction (or creates one if there's
485 * not transaction running). Unlike jbd2_journal_start() this function cannot
486 * block on journal commit, checkpointing, or similar stuff. It can block on
487 * memory allocation or frozen journal though.
488 *
489 * Return 0 on success, non-zero on error - handle is freed in that case.
490 */
491 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492 unsigned int line_no)
493 {
494 journal_t *journal = handle->h_journal;
495 int ret = -EIO;
496
497 if (WARN_ON(!handle->h_reserved)) {
498 /* Someone passed in normal handle? Just stop it. */
499 jbd2_journal_stop(handle);
500 return ret;
501 }
502 /*
503 * Usefulness of mixing of reserved and unreserved handles is
504 * questionable. So far nobody seems to need it so just error out.
505 */
506 if (WARN_ON(current->journal_info)) {
507 jbd2_journal_free_reserved(handle);
508 return ret;
509 }
510
511 handle->h_journal = NULL;
512 /*
513 * GFP_NOFS is here because callers are likely from writeback or
514 * similarly constrained call sites
515 */
516 ret = start_this_handle(journal, handle, GFP_NOFS);
517 if (ret < 0) {
518 jbd2_journal_free_reserved(handle);
519 return ret;
520 }
521 handle->h_type = type;
522 handle->h_line_no = line_no;
523 return 0;
524 }
525 EXPORT_SYMBOL(jbd2_journal_start_reserved);
526
527 /**
528 * int jbd2_journal_extend() - extend buffer credits.
529 * @handle: handle to 'extend'
530 * @nblocks: nr blocks to try to extend by.
531 *
532 * Some transactions, such as large extends and truncates, can be done
533 * atomically all at once or in several stages. The operation requests
534 * a credit for a number of buffer modications in advance, but can
535 * extend its credit if it needs more.
536 *
537 * jbd2_journal_extend tries to give the running handle more buffer credits.
538 * It does not guarantee that allocation - this is a best-effort only.
539 * The calling process MUST be able to deal cleanly with a failure to
540 * extend here.
541 *
542 * Return 0 on success, non-zero on failure.
543 *
544 * return code < 0 implies an error
545 * return code > 0 implies normal transaction-full status.
546 */
547 int jbd2_journal_extend(handle_t *handle, int nblocks)
548 {
549 transaction_t *transaction = handle->h_transaction;
550 journal_t *journal;
551 int result;
552 int wanted;
553
554 if (is_handle_aborted(handle))
555 return -EROFS;
556 journal = transaction->t_journal;
557
558 result = 1;
559
560 read_lock(&journal->j_state_lock);
561
562 /* Don't extend a locked-down transaction! */
563 if (transaction->t_state != T_RUNNING) {
564 jbd_debug(3, "denied handle %p %d blocks: "
565 "transaction not running\n", handle, nblocks);
566 goto error_out;
567 }
568
569 spin_lock(&transaction->t_handle_lock);
570 wanted = atomic_add_return(nblocks,
571 &transaction->t_outstanding_credits);
572
573 if (wanted > journal->j_max_transaction_buffers) {
574 jbd_debug(3, "denied handle %p %d blocks: "
575 "transaction too large\n", handle, nblocks);
576 atomic_sub(nblocks, &transaction->t_outstanding_credits);
577 goto unlock;
578 }
579
580 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
581 jbd2_log_space_left(journal)) {
582 jbd_debug(3, "denied handle %p %d blocks: "
583 "insufficient log space\n", handle, nblocks);
584 atomic_sub(nblocks, &transaction->t_outstanding_credits);
585 goto unlock;
586 }
587
588 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
589 transaction->t_tid,
590 handle->h_type, handle->h_line_no,
591 handle->h_buffer_credits,
592 nblocks);
593
594 handle->h_buffer_credits += nblocks;
595 handle->h_requested_credits += nblocks;
596 result = 0;
597
598 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
599 unlock:
600 spin_unlock(&transaction->t_handle_lock);
601 error_out:
602 read_unlock(&journal->j_state_lock);
603 return result;
604 }
605
606
607 /**
608 * int jbd2_journal_restart() - restart a handle .
609 * @handle: handle to restart
610 * @nblocks: nr credits requested
611 *
612 * Restart a handle for a multi-transaction filesystem
613 * operation.
614 *
615 * If the jbd2_journal_extend() call above fails to grant new buffer credits
616 * to a running handle, a call to jbd2_journal_restart will commit the
617 * handle's transaction so far and reattach the handle to a new
618 * transaction capabable of guaranteeing the requested number of
619 * credits. We preserve reserved handle if there's any attached to the
620 * passed in handle.
621 */
622 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
623 {
624 transaction_t *transaction = handle->h_transaction;
625 journal_t *journal;
626 tid_t tid;
627 int need_to_start, ret;
628
629 /* If we've had an abort of any type, don't even think about
630 * actually doing the restart! */
631 if (is_handle_aborted(handle))
632 return 0;
633 journal = transaction->t_journal;
634
635 /*
636 * First unlink the handle from its current transaction, and start the
637 * commit on that.
638 */
639 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
640 J_ASSERT(journal_current_handle() == handle);
641
642 read_lock(&journal->j_state_lock);
643 spin_lock(&transaction->t_handle_lock);
644 atomic_sub(handle->h_buffer_credits,
645 &transaction->t_outstanding_credits);
646 if (handle->h_rsv_handle) {
647 sub_reserved_credits(journal,
648 handle->h_rsv_handle->h_buffer_credits);
649 }
650 if (atomic_dec_and_test(&transaction->t_updates))
651 wake_up(&journal->j_wait_updates);
652 tid = transaction->t_tid;
653 spin_unlock(&transaction->t_handle_lock);
654 handle->h_transaction = NULL;
655 current->journal_info = NULL;
656
657 jbd_debug(2, "restarting handle %p\n", handle);
658 need_to_start = !tid_geq(journal->j_commit_request, tid);
659 read_unlock(&journal->j_state_lock);
660 if (need_to_start)
661 jbd2_log_start_commit(journal, tid);
662
663 lock_map_release(&handle->h_lockdep_map);
664 handle->h_buffer_credits = nblocks;
665 ret = start_this_handle(journal, handle, gfp_mask);
666 return ret;
667 }
668 EXPORT_SYMBOL(jbd2__journal_restart);
669
670
671 int jbd2_journal_restart(handle_t *handle, int nblocks)
672 {
673 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
674 }
675 EXPORT_SYMBOL(jbd2_journal_restart);
676
677 /**
678 * void jbd2_journal_lock_updates () - establish a transaction barrier.
679 * @journal: Journal to establish a barrier on.
680 *
681 * This locks out any further updates from being started, and blocks
682 * until all existing updates have completed, returning only once the
683 * journal is in a quiescent state with no updates running.
684 *
685 * The journal lock should not be held on entry.
686 */
687 void jbd2_journal_lock_updates(journal_t *journal)
688 {
689 DEFINE_WAIT(wait);
690
691 write_lock(&journal->j_state_lock);
692 ++journal->j_barrier_count;
693
694 /* Wait until there are no reserved handles */
695 if (atomic_read(&journal->j_reserved_credits)) {
696 write_unlock(&journal->j_state_lock);
697 wait_event(journal->j_wait_reserved,
698 atomic_read(&journal->j_reserved_credits) == 0);
699 write_lock(&journal->j_state_lock);
700 }
701
702 /* Wait until there are no running updates */
703 while (1) {
704 transaction_t *transaction = journal->j_running_transaction;
705
706 if (!transaction)
707 break;
708
709 spin_lock(&transaction->t_handle_lock);
710 prepare_to_wait(&journal->j_wait_updates, &wait,
711 TASK_UNINTERRUPTIBLE);
712 if (!atomic_read(&transaction->t_updates)) {
713 spin_unlock(&transaction->t_handle_lock);
714 finish_wait(&journal->j_wait_updates, &wait);
715 break;
716 }
717 spin_unlock(&transaction->t_handle_lock);
718 write_unlock(&journal->j_state_lock);
719 schedule();
720 finish_wait(&journal->j_wait_updates, &wait);
721 write_lock(&journal->j_state_lock);
722 }
723 write_unlock(&journal->j_state_lock);
724
725 /*
726 * We have now established a barrier against other normal updates, but
727 * we also need to barrier against other jbd2_journal_lock_updates() calls
728 * to make sure that we serialise special journal-locked operations
729 * too.
730 */
731 mutex_lock(&journal->j_barrier);
732 }
733
734 /**
735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
736 * @journal: Journal to release the barrier on.
737 *
738 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
739 *
740 * Should be called without the journal lock held.
741 */
742 void jbd2_journal_unlock_updates (journal_t *journal)
743 {
744 J_ASSERT(journal->j_barrier_count != 0);
745
746 mutex_unlock(&journal->j_barrier);
747 write_lock(&journal->j_state_lock);
748 --journal->j_barrier_count;
749 write_unlock(&journal->j_state_lock);
750 wake_up(&journal->j_wait_transaction_locked);
751 }
752
753 static void warn_dirty_buffer(struct buffer_head *bh)
754 {
755 char b[BDEVNAME_SIZE];
756
757 printk(KERN_WARNING
758 "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
759 "There's a risk of filesystem corruption in case of system "
760 "crash.\n",
761 bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
762 }
763
764 /*
765 * If the buffer is already part of the current transaction, then there
766 * is nothing we need to do. If it is already part of a prior
767 * transaction which we are still committing to disk, then we need to
768 * make sure that we do not overwrite the old copy: we do copy-out to
769 * preserve the copy going to disk. We also account the buffer against
770 * the handle's metadata buffer credits (unless the buffer is already
771 * part of the transaction, that is).
772 *
773 */
774 static int
775 do_get_write_access(handle_t *handle, struct journal_head *jh,
776 int force_copy)
777 {
778 struct buffer_head *bh;
779 transaction_t *transaction = handle->h_transaction;
780 journal_t *journal;
781 int error;
782 char *frozen_buffer = NULL;
783 int need_copy = 0;
784 unsigned long start_lock, time_lock;
785
786 if (is_handle_aborted(handle))
787 return -EROFS;
788 journal = transaction->t_journal;
789
790 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
791
792 JBUFFER_TRACE(jh, "entry");
793 repeat:
794 bh = jh2bh(jh);
795
796 /* @@@ Need to check for errors here at some point. */
797
798 start_lock = jiffies;
799 lock_buffer(bh);
800 jbd_lock_bh_state(bh);
801
802 /* If it takes too long to lock the buffer, trace it */
803 time_lock = jbd2_time_diff(start_lock, jiffies);
804 if (time_lock > HZ/10)
805 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
806 jiffies_to_msecs(time_lock));
807
808 /* We now hold the buffer lock so it is safe to query the buffer
809 * state. Is the buffer dirty?
810 *
811 * If so, there are two possibilities. The buffer may be
812 * non-journaled, and undergoing a quite legitimate writeback.
813 * Otherwise, it is journaled, and we don't expect dirty buffers
814 * in that state (the buffers should be marked JBD_Dirty
815 * instead.) So either the IO is being done under our own
816 * control and this is a bug, or it's a third party IO such as
817 * dump(8) (which may leave the buffer scheduled for read ---
818 * ie. locked but not dirty) or tune2fs (which may actually have
819 * the buffer dirtied, ugh.) */
820
821 if (buffer_dirty(bh)) {
822 /*
823 * First question: is this buffer already part of the current
824 * transaction or the existing committing transaction?
825 */
826 if (jh->b_transaction) {
827 J_ASSERT_JH(jh,
828 jh->b_transaction == transaction ||
829 jh->b_transaction ==
830 journal->j_committing_transaction);
831 if (jh->b_next_transaction)
832 J_ASSERT_JH(jh, jh->b_next_transaction ==
833 transaction);
834 warn_dirty_buffer(bh);
835 }
836 /*
837 * In any case we need to clean the dirty flag and we must
838 * do it under the buffer lock to be sure we don't race
839 * with running write-out.
840 */
841 JBUFFER_TRACE(jh, "Journalling dirty buffer");
842 clear_buffer_dirty(bh);
843 set_buffer_jbddirty(bh);
844 }
845
846 unlock_buffer(bh);
847
848 error = -EROFS;
849 if (is_handle_aborted(handle)) {
850 jbd_unlock_bh_state(bh);
851 goto out;
852 }
853 error = 0;
854
855 /*
856 * The buffer is already part of this transaction if b_transaction or
857 * b_next_transaction points to it
858 */
859 if (jh->b_transaction == transaction ||
860 jh->b_next_transaction == transaction)
861 goto done;
862
863 /*
864 * this is the first time this transaction is touching this buffer,
865 * reset the modified flag
866 */
867 jh->b_modified = 0;
868
869 /*
870 * If there is already a copy-out version of this buffer, then we don't
871 * need to make another one
872 */
873 if (jh->b_frozen_data) {
874 JBUFFER_TRACE(jh, "has frozen data");
875 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
876 jh->b_next_transaction = transaction;
877 goto done;
878 }
879
880 /* Is there data here we need to preserve? */
881
882 if (jh->b_transaction && jh->b_transaction != transaction) {
883 JBUFFER_TRACE(jh, "owned by older transaction");
884 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885 J_ASSERT_JH(jh, jh->b_transaction ==
886 journal->j_committing_transaction);
887
888 /* There is one case we have to be very careful about.
889 * If the committing transaction is currently writing
890 * this buffer out to disk and has NOT made a copy-out,
891 * then we cannot modify the buffer contents at all
892 * right now. The essence of copy-out is that it is the
893 * extra copy, not the primary copy, which gets
894 * journaled. If the primary copy is already going to
895 * disk then we cannot do copy-out here. */
896
897 if (buffer_shadow(bh)) {
898 JBUFFER_TRACE(jh, "on shadow: sleep");
899 jbd_unlock_bh_state(bh);
900 wait_on_bit_io(&bh->b_state, BH_Shadow,
901 TASK_UNINTERRUPTIBLE);
902 goto repeat;
903 }
904
905 /*
906 * Only do the copy if the currently-owning transaction still
907 * needs it. If buffer isn't on BJ_Metadata list, the
908 * committing transaction is past that stage (here we use the
909 * fact that BH_Shadow is set under bh_state lock together with
910 * refiling to BJ_Shadow list and at this point we know the
911 * buffer doesn't have BH_Shadow set).
912 *
913 * Subtle point, though: if this is a get_undo_access,
914 * then we will be relying on the frozen_data to contain
915 * the new value of the committed_data record after the
916 * transaction, so we HAVE to force the frozen_data copy
917 * in that case.
918 */
919 if (jh->b_jlist == BJ_Metadata || force_copy) {
920 JBUFFER_TRACE(jh, "generate frozen data");
921 if (!frozen_buffer) {
922 JBUFFER_TRACE(jh, "allocate memory for buffer");
923 jbd_unlock_bh_state(bh);
924 frozen_buffer =
925 jbd2_alloc(jh2bh(jh)->b_size,
926 GFP_NOFS);
927 if (!frozen_buffer) {
928 printk(KERN_ERR
929 "%s: OOM for frozen_buffer\n",
930 __func__);
931 JBUFFER_TRACE(jh, "oom!");
932 error = -ENOMEM;
933 jbd_lock_bh_state(bh);
934 goto done;
935 }
936 goto repeat;
937 }
938 jh->b_frozen_data = frozen_buffer;
939 frozen_buffer = NULL;
940 need_copy = 1;
941 }
942 jh->b_next_transaction = transaction;
943 }
944
945
946 /*
947 * Finally, if the buffer is not journaled right now, we need to make
948 * sure it doesn't get written to disk before the caller actually
949 * commits the new data
950 */
951 if (!jh->b_transaction) {
952 JBUFFER_TRACE(jh, "no transaction");
953 J_ASSERT_JH(jh, !jh->b_next_transaction);
954 JBUFFER_TRACE(jh, "file as BJ_Reserved");
955 spin_lock(&journal->j_list_lock);
956 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
957 spin_unlock(&journal->j_list_lock);
958 }
959
960 done:
961 if (need_copy) {
962 struct page *page;
963 int offset;
964 char *source;
965
966 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
967 "Possible IO failure.\n");
968 page = jh2bh(jh)->b_page;
969 offset = offset_in_page(jh2bh(jh)->b_data);
970 source = kmap_atomic(page);
971 /* Fire data frozen trigger just before we copy the data */
972 jbd2_buffer_frozen_trigger(jh, source + offset,
973 jh->b_triggers);
974 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
975 kunmap_atomic(source);
976
977 /*
978 * Now that the frozen data is saved off, we need to store
979 * any matching triggers.
980 */
981 jh->b_frozen_triggers = jh->b_triggers;
982 }
983 jbd_unlock_bh_state(bh);
984
985 /*
986 * If we are about to journal a buffer, then any revoke pending on it is
987 * no longer valid
988 */
989 jbd2_journal_cancel_revoke(handle, jh);
990
991 out:
992 if (unlikely(frozen_buffer)) /* It's usually NULL */
993 jbd2_free(frozen_buffer, bh->b_size);
994
995 JBUFFER_TRACE(jh, "exit");
996 return error;
997 }
998
999 /**
1000 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1001 * @handle: transaction to add buffer modifications to
1002 * @bh: bh to be used for metadata writes
1003 *
1004 * Returns an error code or 0 on success.
1005 *
1006 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1007 * because we're write()ing a buffer which is also part of a shared mapping.
1008 */
1009
1010 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1011 {
1012 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1013 int rc;
1014
1015 /* We do not want to get caught playing with fields which the
1016 * log thread also manipulates. Make sure that the buffer
1017 * completes any outstanding IO before proceeding. */
1018 rc = do_get_write_access(handle, jh, 0);
1019 jbd2_journal_put_journal_head(jh);
1020 return rc;
1021 }
1022
1023
1024 /*
1025 * When the user wants to journal a newly created buffer_head
1026 * (ie. getblk() returned a new buffer and we are going to populate it
1027 * manually rather than reading off disk), then we need to keep the
1028 * buffer_head locked until it has been completely filled with new
1029 * data. In this case, we should be able to make the assertion that
1030 * the bh is not already part of an existing transaction.
1031 *
1032 * The buffer should already be locked by the caller by this point.
1033 * There is no lock ranking violation: it was a newly created,
1034 * unlocked buffer beforehand. */
1035
1036 /**
1037 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1038 * @handle: transaction to new buffer to
1039 * @bh: new buffer.
1040 *
1041 * Call this if you create a new bh.
1042 */
1043 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1044 {
1045 transaction_t *transaction = handle->h_transaction;
1046 journal_t *journal;
1047 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1048 int err;
1049
1050 jbd_debug(5, "journal_head %p\n", jh);
1051 err = -EROFS;
1052 if (is_handle_aborted(handle))
1053 goto out;
1054 journal = transaction->t_journal;
1055 err = 0;
1056
1057 JBUFFER_TRACE(jh, "entry");
1058 /*
1059 * The buffer may already belong to this transaction due to pre-zeroing
1060 * in the filesystem's new_block code. It may also be on the previous,
1061 * committing transaction's lists, but it HAS to be in Forget state in
1062 * that case: the transaction must have deleted the buffer for it to be
1063 * reused here.
1064 */
1065 jbd_lock_bh_state(bh);
1066 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1067 jh->b_transaction == NULL ||
1068 (jh->b_transaction == journal->j_committing_transaction &&
1069 jh->b_jlist == BJ_Forget)));
1070
1071 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1072 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1073
1074 if (jh->b_transaction == NULL) {
1075 /*
1076 * Previous jbd2_journal_forget() could have left the buffer
1077 * with jbddirty bit set because it was being committed. When
1078 * the commit finished, we've filed the buffer for
1079 * checkpointing and marked it dirty. Now we are reallocating
1080 * the buffer so the transaction freeing it must have
1081 * committed and so it's safe to clear the dirty bit.
1082 */
1083 clear_buffer_dirty(jh2bh(jh));
1084 /* first access by this transaction */
1085 jh->b_modified = 0;
1086
1087 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1088 spin_lock(&journal->j_list_lock);
1089 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1090 } else if (jh->b_transaction == journal->j_committing_transaction) {
1091 /* first access by this transaction */
1092 jh->b_modified = 0;
1093
1094 JBUFFER_TRACE(jh, "set next transaction");
1095 spin_lock(&journal->j_list_lock);
1096 jh->b_next_transaction = transaction;
1097 }
1098 spin_unlock(&journal->j_list_lock);
1099 jbd_unlock_bh_state(bh);
1100
1101 /*
1102 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1103 * blocks which contain freed but then revoked metadata. We need
1104 * to cancel the revoke in case we end up freeing it yet again
1105 * and the reallocating as data - this would cause a second revoke,
1106 * which hits an assertion error.
1107 */
1108 JBUFFER_TRACE(jh, "cancelling revoke");
1109 jbd2_journal_cancel_revoke(handle, jh);
1110 out:
1111 jbd2_journal_put_journal_head(jh);
1112 return err;
1113 }
1114
1115 /**
1116 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1117 * non-rewindable consequences
1118 * @handle: transaction
1119 * @bh: buffer to undo
1120 *
1121 * Sometimes there is a need to distinguish between metadata which has
1122 * been committed to disk and that which has not. The ext3fs code uses
1123 * this for freeing and allocating space, we have to make sure that we
1124 * do not reuse freed space until the deallocation has been committed,
1125 * since if we overwrote that space we would make the delete
1126 * un-rewindable in case of a crash.
1127 *
1128 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1129 * buffer for parts of non-rewindable operations such as delete
1130 * operations on the bitmaps. The journaling code must keep a copy of
1131 * the buffer's contents prior to the undo_access call until such time
1132 * as we know that the buffer has definitely been committed to disk.
1133 *
1134 * We never need to know which transaction the committed data is part
1135 * of, buffers touched here are guaranteed to be dirtied later and so
1136 * will be committed to a new transaction in due course, at which point
1137 * we can discard the old committed data pointer.
1138 *
1139 * Returns error number or 0 on success.
1140 */
1141 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1142 {
1143 int err;
1144 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1145 char *committed_data = NULL;
1146
1147 JBUFFER_TRACE(jh, "entry");
1148
1149 /*
1150 * Do this first --- it can drop the journal lock, so we want to
1151 * make sure that obtaining the committed_data is done
1152 * atomically wrt. completion of any outstanding commits.
1153 */
1154 err = do_get_write_access(handle, jh, 1);
1155 if (err)
1156 goto out;
1157
1158 repeat:
1159 if (!jh->b_committed_data) {
1160 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1161 if (!committed_data) {
1162 printk(KERN_ERR "%s: No memory for committed data\n",
1163 __func__);
1164 err = -ENOMEM;
1165 goto out;
1166 }
1167 }
1168
1169 jbd_lock_bh_state(bh);
1170 if (!jh->b_committed_data) {
1171 /* Copy out the current buffer contents into the
1172 * preserved, committed copy. */
1173 JBUFFER_TRACE(jh, "generate b_committed data");
1174 if (!committed_data) {
1175 jbd_unlock_bh_state(bh);
1176 goto repeat;
1177 }
1178
1179 jh->b_committed_data = committed_data;
1180 committed_data = NULL;
1181 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1182 }
1183 jbd_unlock_bh_state(bh);
1184 out:
1185 jbd2_journal_put_journal_head(jh);
1186 if (unlikely(committed_data))
1187 jbd2_free(committed_data, bh->b_size);
1188 return err;
1189 }
1190
1191 /**
1192 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1193 * @bh: buffer to trigger on
1194 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1195 *
1196 * Set any triggers on this journal_head. This is always safe, because
1197 * triggers for a committing buffer will be saved off, and triggers for
1198 * a running transaction will match the buffer in that transaction.
1199 *
1200 * Call with NULL to clear the triggers.
1201 */
1202 void jbd2_journal_set_triggers(struct buffer_head *bh,
1203 struct jbd2_buffer_trigger_type *type)
1204 {
1205 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1206
1207 if (WARN_ON(!jh))
1208 return;
1209 jh->b_triggers = type;
1210 jbd2_journal_put_journal_head(jh);
1211 }
1212
1213 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1214 struct jbd2_buffer_trigger_type *triggers)
1215 {
1216 struct buffer_head *bh = jh2bh(jh);
1217
1218 if (!triggers || !triggers->t_frozen)
1219 return;
1220
1221 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1222 }
1223
1224 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1225 struct jbd2_buffer_trigger_type *triggers)
1226 {
1227 if (!triggers || !triggers->t_abort)
1228 return;
1229
1230 triggers->t_abort(triggers, jh2bh(jh));
1231 }
1232
1233
1234
1235 /**
1236 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1237 * @handle: transaction to add buffer to.
1238 * @bh: buffer to mark
1239 *
1240 * mark dirty metadata which needs to be journaled as part of the current
1241 * transaction.
1242 *
1243 * The buffer must have previously had jbd2_journal_get_write_access()
1244 * called so that it has a valid journal_head attached to the buffer
1245 * head.
1246 *
1247 * The buffer is placed on the transaction's metadata list and is marked
1248 * as belonging to the transaction.
1249 *
1250 * Returns error number or 0 on success.
1251 *
1252 * Special care needs to be taken if the buffer already belongs to the
1253 * current committing transaction (in which case we should have frozen
1254 * data present for that commit). In that case, we don't relink the
1255 * buffer: that only gets done when the old transaction finally
1256 * completes its commit.
1257 */
1258 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1259 {
1260 transaction_t *transaction = handle->h_transaction;
1261 journal_t *journal;
1262 struct journal_head *jh;
1263 int ret = 0;
1264
1265 if (is_handle_aborted(handle))
1266 return -EROFS;
1267 journal = transaction->t_journal;
1268 jh = jbd2_journal_grab_journal_head(bh);
1269 if (!jh) {
1270 ret = -EUCLEAN;
1271 goto out;
1272 }
1273 jbd_debug(5, "journal_head %p\n", jh);
1274 JBUFFER_TRACE(jh, "entry");
1275
1276 jbd_lock_bh_state(bh);
1277
1278 if (jh->b_modified == 0) {
1279 /*
1280 * This buffer's got modified and becoming part
1281 * of the transaction. This needs to be done
1282 * once a transaction -bzzz
1283 */
1284 jh->b_modified = 1;
1285 if (handle->h_buffer_credits <= 0) {
1286 ret = -ENOSPC;
1287 goto out_unlock_bh;
1288 }
1289 handle->h_buffer_credits--;
1290 }
1291
1292 /*
1293 * fastpath, to avoid expensive locking. If this buffer is already
1294 * on the running transaction's metadata list there is nothing to do.
1295 * Nobody can take it off again because there is a handle open.
1296 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1297 * result in this test being false, so we go in and take the locks.
1298 */
1299 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1300 JBUFFER_TRACE(jh, "fastpath");
1301 if (unlikely(jh->b_transaction !=
1302 journal->j_running_transaction)) {
1303 printk(KERN_ERR "JBD2: %s: "
1304 "jh->b_transaction (%llu, %p, %u) != "
1305 "journal->j_running_transaction (%p, %u)\n",
1306 journal->j_devname,
1307 (unsigned long long) bh->b_blocknr,
1308 jh->b_transaction,
1309 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1310 journal->j_running_transaction,
1311 journal->j_running_transaction ?
1312 journal->j_running_transaction->t_tid : 0);
1313 ret = -EINVAL;
1314 }
1315 goto out_unlock_bh;
1316 }
1317
1318 set_buffer_jbddirty(bh);
1319
1320 /*
1321 * Metadata already on the current transaction list doesn't
1322 * need to be filed. Metadata on another transaction's list must
1323 * be committing, and will be refiled once the commit completes:
1324 * leave it alone for now.
1325 */
1326 if (jh->b_transaction != transaction) {
1327 JBUFFER_TRACE(jh, "already on other transaction");
1328 if (unlikely(((jh->b_transaction !=
1329 journal->j_committing_transaction)) ||
1330 (jh->b_next_transaction != transaction))) {
1331 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1332 "bad jh for block %llu: "
1333 "transaction (%p, %u), "
1334 "jh->b_transaction (%p, %u), "
1335 "jh->b_next_transaction (%p, %u), jlist %u\n",
1336 journal->j_devname,
1337 (unsigned long long) bh->b_blocknr,
1338 transaction, transaction->t_tid,
1339 jh->b_transaction,
1340 jh->b_transaction ?
1341 jh->b_transaction->t_tid : 0,
1342 jh->b_next_transaction,
1343 jh->b_next_transaction ?
1344 jh->b_next_transaction->t_tid : 0,
1345 jh->b_jlist);
1346 WARN_ON(1);
1347 ret = -EINVAL;
1348 }
1349 /* And this case is illegal: we can't reuse another
1350 * transaction's data buffer, ever. */
1351 goto out_unlock_bh;
1352 }
1353
1354 /* That test should have eliminated the following case: */
1355 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1356
1357 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1358 spin_lock(&journal->j_list_lock);
1359 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1360 spin_unlock(&journal->j_list_lock);
1361 out_unlock_bh:
1362 jbd_unlock_bh_state(bh);
1363 jbd2_journal_put_journal_head(jh);
1364 out:
1365 JBUFFER_TRACE(jh, "exit");
1366 return ret;
1367 }
1368
1369 /**
1370 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1371 * @handle: transaction handle
1372 * @bh: bh to 'forget'
1373 *
1374 * We can only do the bforget if there are no commits pending against the
1375 * buffer. If the buffer is dirty in the current running transaction we
1376 * can safely unlink it.
1377 *
1378 * bh may not be a journalled buffer at all - it may be a non-JBD
1379 * buffer which came off the hashtable. Check for this.
1380 *
1381 * Decrements bh->b_count by one.
1382 *
1383 * Allow this call even if the handle has aborted --- it may be part of
1384 * the caller's cleanup after an abort.
1385 */
1386 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1387 {
1388 transaction_t *transaction = handle->h_transaction;
1389 journal_t *journal;
1390 struct journal_head *jh;
1391 int drop_reserve = 0;
1392 int err = 0;
1393 int was_modified = 0;
1394
1395 if (is_handle_aborted(handle))
1396 return -EROFS;
1397 journal = transaction->t_journal;
1398
1399 BUFFER_TRACE(bh, "entry");
1400
1401 jbd_lock_bh_state(bh);
1402
1403 if (!buffer_jbd(bh))
1404 goto not_jbd;
1405 jh = bh2jh(bh);
1406
1407 /* Critical error: attempting to delete a bitmap buffer, maybe?
1408 * Don't do any jbd operations, and return an error. */
1409 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1410 "inconsistent data on disk")) {
1411 err = -EIO;
1412 goto not_jbd;
1413 }
1414
1415 /* keep track of whether or not this transaction modified us */
1416 was_modified = jh->b_modified;
1417
1418 /*
1419 * The buffer's going from the transaction, we must drop
1420 * all references -bzzz
1421 */
1422 jh->b_modified = 0;
1423
1424 if (jh->b_transaction == transaction) {
1425 J_ASSERT_JH(jh, !jh->b_frozen_data);
1426
1427 /* If we are forgetting a buffer which is already part
1428 * of this transaction, then we can just drop it from
1429 * the transaction immediately. */
1430 clear_buffer_dirty(bh);
1431 clear_buffer_jbddirty(bh);
1432
1433 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1434
1435 /*
1436 * we only want to drop a reference if this transaction
1437 * modified the buffer
1438 */
1439 if (was_modified)
1440 drop_reserve = 1;
1441
1442 /*
1443 * We are no longer going to journal this buffer.
1444 * However, the commit of this transaction is still
1445 * important to the buffer: the delete that we are now
1446 * processing might obsolete an old log entry, so by
1447 * committing, we can satisfy the buffer's checkpoint.
1448 *
1449 * So, if we have a checkpoint on the buffer, we should
1450 * now refile the buffer on our BJ_Forget list so that
1451 * we know to remove the checkpoint after we commit.
1452 */
1453
1454 spin_lock(&journal->j_list_lock);
1455 if (jh->b_cp_transaction) {
1456 __jbd2_journal_temp_unlink_buffer(jh);
1457 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1458 } else {
1459 __jbd2_journal_unfile_buffer(jh);
1460 if (!buffer_jbd(bh)) {
1461 spin_unlock(&journal->j_list_lock);
1462 jbd_unlock_bh_state(bh);
1463 __bforget(bh);
1464 goto drop;
1465 }
1466 }
1467 spin_unlock(&journal->j_list_lock);
1468 } else if (jh->b_transaction) {
1469 J_ASSERT_JH(jh, (jh->b_transaction ==
1470 journal->j_committing_transaction));
1471 /* However, if the buffer is still owned by a prior
1472 * (committing) transaction, we can't drop it yet... */
1473 JBUFFER_TRACE(jh, "belongs to older transaction");
1474 /* ... but we CAN drop it from the new transaction if we
1475 * have also modified it since the original commit. */
1476
1477 if (jh->b_next_transaction) {
1478 J_ASSERT(jh->b_next_transaction == transaction);
1479 spin_lock(&journal->j_list_lock);
1480 jh->b_next_transaction = NULL;
1481 spin_unlock(&journal->j_list_lock);
1482
1483 /*
1484 * only drop a reference if this transaction modified
1485 * the buffer
1486 */
1487 if (was_modified)
1488 drop_reserve = 1;
1489 }
1490 }
1491
1492 not_jbd:
1493 jbd_unlock_bh_state(bh);
1494 __brelse(bh);
1495 drop:
1496 if (drop_reserve) {
1497 /* no need to reserve log space for this block -bzzz */
1498 handle->h_buffer_credits++;
1499 }
1500 return err;
1501 }
1502
1503 /**
1504 * int jbd2_journal_stop() - complete a transaction
1505 * @handle: tranaction to complete.
1506 *
1507 * All done for a particular handle.
1508 *
1509 * There is not much action needed here. We just return any remaining
1510 * buffer credits to the transaction and remove the handle. The only
1511 * complication is that we need to start a commit operation if the
1512 * filesystem is marked for synchronous update.
1513 *
1514 * jbd2_journal_stop itself will not usually return an error, but it may
1515 * do so in unusual circumstances. In particular, expect it to
1516 * return -EIO if a jbd2_journal_abort has been executed since the
1517 * transaction began.
1518 */
1519 int jbd2_journal_stop(handle_t *handle)
1520 {
1521 transaction_t *transaction = handle->h_transaction;
1522 journal_t *journal;
1523 int err = 0, wait_for_commit = 0;
1524 tid_t tid;
1525 pid_t pid;
1526
1527 if (!transaction) {
1528 /*
1529 * Handle is already detached from the transaction so
1530 * there is nothing to do other than decrease a refcount,
1531 * or free the handle if refcount drops to zero
1532 */
1533 if (--handle->h_ref > 0) {
1534 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1535 handle->h_ref);
1536 return err;
1537 } else {
1538 if (handle->h_rsv_handle)
1539 jbd2_free_handle(handle->h_rsv_handle);
1540 goto free_and_exit;
1541 }
1542 }
1543 journal = transaction->t_journal;
1544
1545 J_ASSERT(journal_current_handle() == handle);
1546
1547 if (is_handle_aborted(handle))
1548 err = -EIO;
1549 else
1550 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1551
1552 if (--handle->h_ref > 0) {
1553 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1554 handle->h_ref);
1555 return err;
1556 }
1557
1558 jbd_debug(4, "Handle %p going down\n", handle);
1559 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1560 transaction->t_tid,
1561 handle->h_type, handle->h_line_no,
1562 jiffies - handle->h_start_jiffies,
1563 handle->h_sync, handle->h_requested_credits,
1564 (handle->h_requested_credits -
1565 handle->h_buffer_credits));
1566
1567 /*
1568 * Implement synchronous transaction batching. If the handle
1569 * was synchronous, don't force a commit immediately. Let's
1570 * yield and let another thread piggyback onto this
1571 * transaction. Keep doing that while new threads continue to
1572 * arrive. It doesn't cost much - we're about to run a commit
1573 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1574 * operations by 30x or more...
1575 *
1576 * We try and optimize the sleep time against what the
1577 * underlying disk can do, instead of having a static sleep
1578 * time. This is useful for the case where our storage is so
1579 * fast that it is more optimal to go ahead and force a flush
1580 * and wait for the transaction to be committed than it is to
1581 * wait for an arbitrary amount of time for new writers to
1582 * join the transaction. We achieve this by measuring how
1583 * long it takes to commit a transaction, and compare it with
1584 * how long this transaction has been running, and if run time
1585 * < commit time then we sleep for the delta and commit. This
1586 * greatly helps super fast disks that would see slowdowns as
1587 * more threads started doing fsyncs.
1588 *
1589 * But don't do this if this process was the most recent one
1590 * to perform a synchronous write. We do this to detect the
1591 * case where a single process is doing a stream of sync
1592 * writes. No point in waiting for joiners in that case.
1593 *
1594 * Setting max_batch_time to 0 disables this completely.
1595 */
1596 pid = current->pid;
1597 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1598 journal->j_max_batch_time) {
1599 u64 commit_time, trans_time;
1600
1601 journal->j_last_sync_writer = pid;
1602
1603 read_lock(&journal->j_state_lock);
1604 commit_time = journal->j_average_commit_time;
1605 read_unlock(&journal->j_state_lock);
1606
1607 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1608 transaction->t_start_time));
1609
1610 commit_time = max_t(u64, commit_time,
1611 1000*journal->j_min_batch_time);
1612 commit_time = min_t(u64, commit_time,
1613 1000*journal->j_max_batch_time);
1614
1615 if (trans_time < commit_time) {
1616 ktime_t expires = ktime_add_ns(ktime_get(),
1617 commit_time);
1618 set_current_state(TASK_UNINTERRUPTIBLE);
1619 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1620 }
1621 }
1622
1623 if (handle->h_sync)
1624 transaction->t_synchronous_commit = 1;
1625 current->journal_info = NULL;
1626 atomic_sub(handle->h_buffer_credits,
1627 &transaction->t_outstanding_credits);
1628
1629 /*
1630 * If the handle is marked SYNC, we need to set another commit
1631 * going! We also want to force a commit if the current
1632 * transaction is occupying too much of the log, or if the
1633 * transaction is too old now.
1634 */
1635 if (handle->h_sync ||
1636 (atomic_read(&transaction->t_outstanding_credits) >
1637 journal->j_max_transaction_buffers) ||
1638 time_after_eq(jiffies, transaction->t_expires)) {
1639 /* Do this even for aborted journals: an abort still
1640 * completes the commit thread, it just doesn't write
1641 * anything to disk. */
1642
1643 jbd_debug(2, "transaction too old, requesting commit for "
1644 "handle %p\n", handle);
1645 /* This is non-blocking */
1646 jbd2_log_start_commit(journal, transaction->t_tid);
1647
1648 /*
1649 * Special case: JBD2_SYNC synchronous updates require us
1650 * to wait for the commit to complete.
1651 */
1652 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1653 wait_for_commit = 1;
1654 }
1655
1656 /*
1657 * Once we drop t_updates, if it goes to zero the transaction
1658 * could start committing on us and eventually disappear. So
1659 * once we do this, we must not dereference transaction
1660 * pointer again.
1661 */
1662 tid = transaction->t_tid;
1663 if (atomic_dec_and_test(&transaction->t_updates)) {
1664 wake_up(&journal->j_wait_updates);
1665 if (journal->j_barrier_count)
1666 wake_up(&journal->j_wait_transaction_locked);
1667 }
1668
1669 if (wait_for_commit)
1670 err = jbd2_log_wait_commit(journal, tid);
1671
1672 lock_map_release(&handle->h_lockdep_map);
1673
1674 if (handle->h_rsv_handle)
1675 jbd2_journal_free_reserved(handle->h_rsv_handle);
1676 free_and_exit:
1677 jbd2_free_handle(handle);
1678 return err;
1679 }
1680
1681 /*
1682 *
1683 * List management code snippets: various functions for manipulating the
1684 * transaction buffer lists.
1685 *
1686 */
1687
1688 /*
1689 * Append a buffer to a transaction list, given the transaction's list head
1690 * pointer.
1691 *
1692 * j_list_lock is held.
1693 *
1694 * jbd_lock_bh_state(jh2bh(jh)) is held.
1695 */
1696
1697 static inline void
1698 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1699 {
1700 if (!*list) {
1701 jh->b_tnext = jh->b_tprev = jh;
1702 *list = jh;
1703 } else {
1704 /* Insert at the tail of the list to preserve order */
1705 struct journal_head *first = *list, *last = first->b_tprev;
1706 jh->b_tprev = last;
1707 jh->b_tnext = first;
1708 last->b_tnext = first->b_tprev = jh;
1709 }
1710 }
1711
1712 /*
1713 * Remove a buffer from a transaction list, given the transaction's list
1714 * head pointer.
1715 *
1716 * Called with j_list_lock held, and the journal may not be locked.
1717 *
1718 * jbd_lock_bh_state(jh2bh(jh)) is held.
1719 */
1720
1721 static inline void
1722 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1723 {
1724 if (*list == jh) {
1725 *list = jh->b_tnext;
1726 if (*list == jh)
1727 *list = NULL;
1728 }
1729 jh->b_tprev->b_tnext = jh->b_tnext;
1730 jh->b_tnext->b_tprev = jh->b_tprev;
1731 }
1732
1733 /*
1734 * Remove a buffer from the appropriate transaction list.
1735 *
1736 * Note that this function can *change* the value of
1737 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1738 * t_reserved_list. If the caller is holding onto a copy of one of these
1739 * pointers, it could go bad. Generally the caller needs to re-read the
1740 * pointer from the transaction_t.
1741 *
1742 * Called under j_list_lock.
1743 */
1744 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1745 {
1746 struct journal_head **list = NULL;
1747 transaction_t *transaction;
1748 struct buffer_head *bh = jh2bh(jh);
1749
1750 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1751 transaction = jh->b_transaction;
1752 if (transaction)
1753 assert_spin_locked(&transaction->t_journal->j_list_lock);
1754
1755 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1756 if (jh->b_jlist != BJ_None)
1757 J_ASSERT_JH(jh, transaction != NULL);
1758
1759 switch (jh->b_jlist) {
1760 case BJ_None:
1761 return;
1762 case BJ_Metadata:
1763 transaction->t_nr_buffers--;
1764 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1765 list = &transaction->t_buffers;
1766 break;
1767 case BJ_Forget:
1768 list = &transaction->t_forget;
1769 break;
1770 case BJ_Shadow:
1771 list = &transaction->t_shadow_list;
1772 break;
1773 case BJ_Reserved:
1774 list = &transaction->t_reserved_list;
1775 break;
1776 }
1777
1778 __blist_del_buffer(list, jh);
1779 jh->b_jlist = BJ_None;
1780 if (test_clear_buffer_jbddirty(bh))
1781 mark_buffer_dirty(bh); /* Expose it to the VM */
1782 }
1783
1784 /*
1785 * Remove buffer from all transactions.
1786 *
1787 * Called with bh_state lock and j_list_lock
1788 *
1789 * jh and bh may be already freed when this function returns.
1790 */
1791 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1792 {
1793 __jbd2_journal_temp_unlink_buffer(jh);
1794 jh->b_transaction = NULL;
1795 jbd2_journal_put_journal_head(jh);
1796 }
1797
1798 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1799 {
1800 struct buffer_head *bh = jh2bh(jh);
1801
1802 /* Get reference so that buffer cannot be freed before we unlock it */
1803 get_bh(bh);
1804 jbd_lock_bh_state(bh);
1805 spin_lock(&journal->j_list_lock);
1806 __jbd2_journal_unfile_buffer(jh);
1807 spin_unlock(&journal->j_list_lock);
1808 jbd_unlock_bh_state(bh);
1809 __brelse(bh);
1810 }
1811
1812 /*
1813 * Called from jbd2_journal_try_to_free_buffers().
1814 *
1815 * Called under jbd_lock_bh_state(bh)
1816 */
1817 static void
1818 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1819 {
1820 struct journal_head *jh;
1821
1822 jh = bh2jh(bh);
1823
1824 if (buffer_locked(bh) || buffer_dirty(bh))
1825 goto out;
1826
1827 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1828 goto out;
1829
1830 spin_lock(&journal->j_list_lock);
1831 if (jh->b_cp_transaction != NULL) {
1832 /* written-back checkpointed metadata buffer */
1833 JBUFFER_TRACE(jh, "remove from checkpoint list");
1834 __jbd2_journal_remove_checkpoint(jh);
1835 }
1836 spin_unlock(&journal->j_list_lock);
1837 out:
1838 return;
1839 }
1840
1841 /**
1842 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1843 * @journal: journal for operation
1844 * @page: to try and free
1845 * @gfp_mask: we use the mask to detect how hard should we try to release
1846 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1847 * release the buffers.
1848 *
1849 *
1850 * For all the buffers on this page,
1851 * if they are fully written out ordered data, move them onto BUF_CLEAN
1852 * so try_to_free_buffers() can reap them.
1853 *
1854 * This function returns non-zero if we wish try_to_free_buffers()
1855 * to be called. We do this if the page is releasable by try_to_free_buffers().
1856 * We also do it if the page has locked or dirty buffers and the caller wants
1857 * us to perform sync or async writeout.
1858 *
1859 * This complicates JBD locking somewhat. We aren't protected by the
1860 * BKL here. We wish to remove the buffer from its committing or
1861 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1862 *
1863 * This may *change* the value of transaction_t->t_datalist, so anyone
1864 * who looks at t_datalist needs to lock against this function.
1865 *
1866 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1867 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1868 * will come out of the lock with the buffer dirty, which makes it
1869 * ineligible for release here.
1870 *
1871 * Who else is affected by this? hmm... Really the only contender
1872 * is do_get_write_access() - it could be looking at the buffer while
1873 * journal_try_to_free_buffer() is changing its state. But that
1874 * cannot happen because we never reallocate freed data as metadata
1875 * while the data is part of a transaction. Yes?
1876 *
1877 * Return 0 on failure, 1 on success
1878 */
1879 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1880 struct page *page, gfp_t gfp_mask)
1881 {
1882 struct buffer_head *head;
1883 struct buffer_head *bh;
1884 int ret = 0;
1885
1886 J_ASSERT(PageLocked(page));
1887
1888 head = page_buffers(page);
1889 bh = head;
1890 do {
1891 struct journal_head *jh;
1892
1893 /*
1894 * We take our own ref against the journal_head here to avoid
1895 * having to add tons of locking around each instance of
1896 * jbd2_journal_put_journal_head().
1897 */
1898 jh = jbd2_journal_grab_journal_head(bh);
1899 if (!jh)
1900 continue;
1901
1902 jbd_lock_bh_state(bh);
1903 __journal_try_to_free_buffer(journal, bh);
1904 jbd2_journal_put_journal_head(jh);
1905 jbd_unlock_bh_state(bh);
1906 if (buffer_jbd(bh))
1907 goto busy;
1908 } while ((bh = bh->b_this_page) != head);
1909
1910 ret = try_to_free_buffers(page);
1911
1912 busy:
1913 return ret;
1914 }
1915
1916 /*
1917 * This buffer is no longer needed. If it is on an older transaction's
1918 * checkpoint list we need to record it on this transaction's forget list
1919 * to pin this buffer (and hence its checkpointing transaction) down until
1920 * this transaction commits. If the buffer isn't on a checkpoint list, we
1921 * release it.
1922 * Returns non-zero if JBD no longer has an interest in the buffer.
1923 *
1924 * Called under j_list_lock.
1925 *
1926 * Called under jbd_lock_bh_state(bh).
1927 */
1928 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1929 {
1930 int may_free = 1;
1931 struct buffer_head *bh = jh2bh(jh);
1932
1933 if (jh->b_cp_transaction) {
1934 JBUFFER_TRACE(jh, "on running+cp transaction");
1935 __jbd2_journal_temp_unlink_buffer(jh);
1936 /*
1937 * We don't want to write the buffer anymore, clear the
1938 * bit so that we don't confuse checks in
1939 * __journal_file_buffer
1940 */
1941 clear_buffer_dirty(bh);
1942 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1943 may_free = 0;
1944 } else {
1945 JBUFFER_TRACE(jh, "on running transaction");
1946 __jbd2_journal_unfile_buffer(jh);
1947 }
1948 return may_free;
1949 }
1950
1951 /*
1952 * jbd2_journal_invalidatepage
1953 *
1954 * This code is tricky. It has a number of cases to deal with.
1955 *
1956 * There are two invariants which this code relies on:
1957 *
1958 * i_size must be updated on disk before we start calling invalidatepage on the
1959 * data.
1960 *
1961 * This is done in ext3 by defining an ext3_setattr method which
1962 * updates i_size before truncate gets going. By maintaining this
1963 * invariant, we can be sure that it is safe to throw away any buffers
1964 * attached to the current transaction: once the transaction commits,
1965 * we know that the data will not be needed.
1966 *
1967 * Note however that we can *not* throw away data belonging to the
1968 * previous, committing transaction!
1969 *
1970 * Any disk blocks which *are* part of the previous, committing
1971 * transaction (and which therefore cannot be discarded immediately) are
1972 * not going to be reused in the new running transaction
1973 *
1974 * The bitmap committed_data images guarantee this: any block which is
1975 * allocated in one transaction and removed in the next will be marked
1976 * as in-use in the committed_data bitmap, so cannot be reused until
1977 * the next transaction to delete the block commits. This means that
1978 * leaving committing buffers dirty is quite safe: the disk blocks
1979 * cannot be reallocated to a different file and so buffer aliasing is
1980 * not possible.
1981 *
1982 *
1983 * The above applies mainly to ordered data mode. In writeback mode we
1984 * don't make guarantees about the order in which data hits disk --- in
1985 * particular we don't guarantee that new dirty data is flushed before
1986 * transaction commit --- so it is always safe just to discard data
1987 * immediately in that mode. --sct
1988 */
1989
1990 /*
1991 * The journal_unmap_buffer helper function returns zero if the buffer
1992 * concerned remains pinned as an anonymous buffer belonging to an older
1993 * transaction.
1994 *
1995 * We're outside-transaction here. Either or both of j_running_transaction
1996 * and j_committing_transaction may be NULL.
1997 */
1998 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1999 int partial_page)
2000 {
2001 transaction_t *transaction;
2002 struct journal_head *jh;
2003 int may_free = 1;
2004
2005 BUFFER_TRACE(bh, "entry");
2006
2007 /*
2008 * It is safe to proceed here without the j_list_lock because the
2009 * buffers cannot be stolen by try_to_free_buffers as long as we are
2010 * holding the page lock. --sct
2011 */
2012
2013 if (!buffer_jbd(bh))
2014 goto zap_buffer_unlocked;
2015
2016 /* OK, we have data buffer in journaled mode */
2017 write_lock(&journal->j_state_lock);
2018 jbd_lock_bh_state(bh);
2019 spin_lock(&journal->j_list_lock);
2020
2021 jh = jbd2_journal_grab_journal_head(bh);
2022 if (!jh)
2023 goto zap_buffer_no_jh;
2024
2025 /*
2026 * We cannot remove the buffer from checkpoint lists until the
2027 * transaction adding inode to orphan list (let's call it T)
2028 * is committed. Otherwise if the transaction changing the
2029 * buffer would be cleaned from the journal before T is
2030 * committed, a crash will cause that the correct contents of
2031 * the buffer will be lost. On the other hand we have to
2032 * clear the buffer dirty bit at latest at the moment when the
2033 * transaction marking the buffer as freed in the filesystem
2034 * structures is committed because from that moment on the
2035 * block can be reallocated and used by a different page.
2036 * Since the block hasn't been freed yet but the inode has
2037 * already been added to orphan list, it is safe for us to add
2038 * the buffer to BJ_Forget list of the newest transaction.
2039 *
2040 * Also we have to clear buffer_mapped flag of a truncated buffer
2041 * because the buffer_head may be attached to the page straddling
2042 * i_size (can happen only when blocksize < pagesize) and thus the
2043 * buffer_head can be reused when the file is extended again. So we end
2044 * up keeping around invalidated buffers attached to transactions'
2045 * BJ_Forget list just to stop checkpointing code from cleaning up
2046 * the transaction this buffer was modified in.
2047 */
2048 transaction = jh->b_transaction;
2049 if (transaction == NULL) {
2050 /* First case: not on any transaction. If it
2051 * has no checkpoint link, then we can zap it:
2052 * it's a writeback-mode buffer so we don't care
2053 * if it hits disk safely. */
2054 if (!jh->b_cp_transaction) {
2055 JBUFFER_TRACE(jh, "not on any transaction: zap");
2056 goto zap_buffer;
2057 }
2058
2059 if (!buffer_dirty(bh)) {
2060 /* bdflush has written it. We can drop it now */
2061 goto zap_buffer;
2062 }
2063
2064 /* OK, it must be in the journal but still not
2065 * written fully to disk: it's metadata or
2066 * journaled data... */
2067
2068 if (journal->j_running_transaction) {
2069 /* ... and once the current transaction has
2070 * committed, the buffer won't be needed any
2071 * longer. */
2072 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2073 may_free = __dispose_buffer(jh,
2074 journal->j_running_transaction);
2075 goto zap_buffer;
2076 } else {
2077 /* There is no currently-running transaction. So the
2078 * orphan record which we wrote for this file must have
2079 * passed into commit. We must attach this buffer to
2080 * the committing transaction, if it exists. */
2081 if (journal->j_committing_transaction) {
2082 JBUFFER_TRACE(jh, "give to committing trans");
2083 may_free = __dispose_buffer(jh,
2084 journal->j_committing_transaction);
2085 goto zap_buffer;
2086 } else {
2087 /* The orphan record's transaction has
2088 * committed. We can cleanse this buffer */
2089 clear_buffer_jbddirty(bh);
2090 goto zap_buffer;
2091 }
2092 }
2093 } else if (transaction == journal->j_committing_transaction) {
2094 JBUFFER_TRACE(jh, "on committing transaction");
2095 /*
2096 * The buffer is committing, we simply cannot touch
2097 * it. If the page is straddling i_size we have to wait
2098 * for commit and try again.
2099 */
2100 if (partial_page) {
2101 jbd2_journal_put_journal_head(jh);
2102 spin_unlock(&journal->j_list_lock);
2103 jbd_unlock_bh_state(bh);
2104 write_unlock(&journal->j_state_lock);
2105 return -EBUSY;
2106 }
2107 /*
2108 * OK, buffer won't be reachable after truncate. We just set
2109 * j_next_transaction to the running transaction (if there is
2110 * one) and mark buffer as freed so that commit code knows it
2111 * should clear dirty bits when it is done with the buffer.
2112 */
2113 set_buffer_freed(bh);
2114 if (journal->j_running_transaction && buffer_jbddirty(bh))
2115 jh->b_next_transaction = journal->j_running_transaction;
2116 jbd2_journal_put_journal_head(jh);
2117 spin_unlock(&journal->j_list_lock);
2118 jbd_unlock_bh_state(bh);
2119 write_unlock(&journal->j_state_lock);
2120 return 0;
2121 } else {
2122 /* Good, the buffer belongs to the running transaction.
2123 * We are writing our own transaction's data, not any
2124 * previous one's, so it is safe to throw it away
2125 * (remember that we expect the filesystem to have set
2126 * i_size already for this truncate so recovery will not
2127 * expose the disk blocks we are discarding here.) */
2128 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2129 JBUFFER_TRACE(jh, "on running transaction");
2130 may_free = __dispose_buffer(jh, transaction);
2131 }
2132
2133 zap_buffer:
2134 /*
2135 * This is tricky. Although the buffer is truncated, it may be reused
2136 * if blocksize < pagesize and it is attached to the page straddling
2137 * EOF. Since the buffer might have been added to BJ_Forget list of the
2138 * running transaction, journal_get_write_access() won't clear
2139 * b_modified and credit accounting gets confused. So clear b_modified
2140 * here.
2141 */
2142 jh->b_modified = 0;
2143 jbd2_journal_put_journal_head(jh);
2144 zap_buffer_no_jh:
2145 spin_unlock(&journal->j_list_lock);
2146 jbd_unlock_bh_state(bh);
2147 write_unlock(&journal->j_state_lock);
2148 zap_buffer_unlocked:
2149 clear_buffer_dirty(bh);
2150 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2151 clear_buffer_mapped(bh);
2152 clear_buffer_req(bh);
2153 clear_buffer_new(bh);
2154 clear_buffer_delay(bh);
2155 clear_buffer_unwritten(bh);
2156 bh->b_bdev = NULL;
2157 return may_free;
2158 }
2159
2160 /**
2161 * void jbd2_journal_invalidatepage()
2162 * @journal: journal to use for flush...
2163 * @page: page to flush
2164 * @offset: start of the range to invalidate
2165 * @length: length of the range to invalidate
2166 *
2167 * Reap page buffers containing data after in the specified range in page.
2168 * Can return -EBUSY if buffers are part of the committing transaction and
2169 * the page is straddling i_size. Caller then has to wait for current commit
2170 * and try again.
2171 */
2172 int jbd2_journal_invalidatepage(journal_t *journal,
2173 struct page *page,
2174 unsigned int offset,
2175 unsigned int length)
2176 {
2177 struct buffer_head *head, *bh, *next;
2178 unsigned int stop = offset + length;
2179 unsigned int curr_off = 0;
2180 int partial_page = (offset || length < PAGE_CACHE_SIZE);
2181 int may_free = 1;
2182 int ret = 0;
2183
2184 if (!PageLocked(page))
2185 BUG();
2186 if (!page_has_buffers(page))
2187 return 0;
2188
2189 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2190
2191 /* We will potentially be playing with lists other than just the
2192 * data lists (especially for journaled data mode), so be
2193 * cautious in our locking. */
2194
2195 head = bh = page_buffers(page);
2196 do {
2197 unsigned int next_off = curr_off + bh->b_size;
2198 next = bh->b_this_page;
2199
2200 if (next_off > stop)
2201 return 0;
2202
2203 if (offset <= curr_off) {
2204 /* This block is wholly outside the truncation point */
2205 lock_buffer(bh);
2206 ret = journal_unmap_buffer(journal, bh, partial_page);
2207 unlock_buffer(bh);
2208 if (ret < 0)
2209 return ret;
2210 may_free &= ret;
2211 }
2212 curr_off = next_off;
2213 bh = next;
2214
2215 } while (bh != head);
2216
2217 if (!partial_page) {
2218 if (may_free && try_to_free_buffers(page))
2219 J_ASSERT(!page_has_buffers(page));
2220 }
2221 return 0;
2222 }
2223
2224 /*
2225 * File a buffer on the given transaction list.
2226 */
2227 void __jbd2_journal_file_buffer(struct journal_head *jh,
2228 transaction_t *transaction, int jlist)
2229 {
2230 struct journal_head **list = NULL;
2231 int was_dirty = 0;
2232 struct buffer_head *bh = jh2bh(jh);
2233
2234 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2235 assert_spin_locked(&transaction->t_journal->j_list_lock);
2236
2237 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2238 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2239 jh->b_transaction == NULL);
2240
2241 if (jh->b_transaction && jh->b_jlist == jlist)
2242 return;
2243
2244 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2245 jlist == BJ_Shadow || jlist == BJ_Forget) {
2246 /*
2247 * For metadata buffers, we track dirty bit in buffer_jbddirty
2248 * instead of buffer_dirty. We should not see a dirty bit set
2249 * here because we clear it in do_get_write_access but e.g.
2250 * tune2fs can modify the sb and set the dirty bit at any time
2251 * so we try to gracefully handle that.
2252 */
2253 if (buffer_dirty(bh))
2254 warn_dirty_buffer(bh);
2255 if (test_clear_buffer_dirty(bh) ||
2256 test_clear_buffer_jbddirty(bh))
2257 was_dirty = 1;
2258 }
2259
2260 if (jh->b_transaction)
2261 __jbd2_journal_temp_unlink_buffer(jh);
2262 else
2263 jbd2_journal_grab_journal_head(bh);
2264 jh->b_transaction = transaction;
2265
2266 switch (jlist) {
2267 case BJ_None:
2268 J_ASSERT_JH(jh, !jh->b_committed_data);
2269 J_ASSERT_JH(jh, !jh->b_frozen_data);
2270 return;
2271 case BJ_Metadata:
2272 transaction->t_nr_buffers++;
2273 list = &transaction->t_buffers;
2274 break;
2275 case BJ_Forget:
2276 list = &transaction->t_forget;
2277 break;
2278 case BJ_Shadow:
2279 list = &transaction->t_shadow_list;
2280 break;
2281 case BJ_Reserved:
2282 list = &transaction->t_reserved_list;
2283 break;
2284 }
2285
2286 __blist_add_buffer(list, jh);
2287 jh->b_jlist = jlist;
2288
2289 if (was_dirty)
2290 set_buffer_jbddirty(bh);
2291 }
2292
2293 void jbd2_journal_file_buffer(struct journal_head *jh,
2294 transaction_t *transaction, int jlist)
2295 {
2296 jbd_lock_bh_state(jh2bh(jh));
2297 spin_lock(&transaction->t_journal->j_list_lock);
2298 __jbd2_journal_file_buffer(jh, transaction, jlist);
2299 spin_unlock(&transaction->t_journal->j_list_lock);
2300 jbd_unlock_bh_state(jh2bh(jh));
2301 }
2302
2303 /*
2304 * Remove a buffer from its current buffer list in preparation for
2305 * dropping it from its current transaction entirely. If the buffer has
2306 * already started to be used by a subsequent transaction, refile the
2307 * buffer on that transaction's metadata list.
2308 *
2309 * Called under j_list_lock
2310 * Called under jbd_lock_bh_state(jh2bh(jh))
2311 *
2312 * jh and bh may be already free when this function returns
2313 */
2314 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2315 {
2316 int was_dirty, jlist;
2317 struct buffer_head *bh = jh2bh(jh);
2318
2319 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2320 if (jh->b_transaction)
2321 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2322
2323 /* If the buffer is now unused, just drop it. */
2324 if (jh->b_next_transaction == NULL) {
2325 __jbd2_journal_unfile_buffer(jh);
2326 return;
2327 }
2328
2329 /*
2330 * It has been modified by a later transaction: add it to the new
2331 * transaction's metadata list.
2332 */
2333
2334 was_dirty = test_clear_buffer_jbddirty(bh);
2335 __jbd2_journal_temp_unlink_buffer(jh);
2336 /*
2337 * We set b_transaction here because b_next_transaction will inherit
2338 * our jh reference and thus __jbd2_journal_file_buffer() must not
2339 * take a new one.
2340 */
2341 jh->b_transaction = jh->b_next_transaction;
2342 jh->b_next_transaction = NULL;
2343 if (buffer_freed(bh))
2344 jlist = BJ_Forget;
2345 else if (jh->b_modified)
2346 jlist = BJ_Metadata;
2347 else
2348 jlist = BJ_Reserved;
2349 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2350 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2351
2352 if (was_dirty)
2353 set_buffer_jbddirty(bh);
2354 }
2355
2356 /*
2357 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2358 * bh reference so that we can safely unlock bh.
2359 *
2360 * The jh and bh may be freed by this call.
2361 */
2362 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2363 {
2364 struct buffer_head *bh = jh2bh(jh);
2365
2366 /* Get reference so that buffer cannot be freed before we unlock it */
2367 get_bh(bh);
2368 jbd_lock_bh_state(bh);
2369 spin_lock(&journal->j_list_lock);
2370 __jbd2_journal_refile_buffer(jh);
2371 jbd_unlock_bh_state(bh);
2372 spin_unlock(&journal->j_list_lock);
2373 __brelse(bh);
2374 }
2375
2376 /*
2377 * File inode in the inode list of the handle's transaction
2378 */
2379 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2380 {
2381 transaction_t *transaction = handle->h_transaction;
2382 journal_t *journal;
2383
2384 if (is_handle_aborted(handle))
2385 return -EROFS;
2386 journal = transaction->t_journal;
2387
2388 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2389 transaction->t_tid);
2390
2391 /*
2392 * First check whether inode isn't already on the transaction's
2393 * lists without taking the lock. Note that this check is safe
2394 * without the lock as we cannot race with somebody removing inode
2395 * from the transaction. The reason is that we remove inode from the
2396 * transaction only in journal_release_jbd_inode() and when we commit
2397 * the transaction. We are guarded from the first case by holding
2398 * a reference to the inode. We are safe against the second case
2399 * because if jinode->i_transaction == transaction, commit code
2400 * cannot touch the transaction because we hold reference to it,
2401 * and if jinode->i_next_transaction == transaction, commit code
2402 * will only file the inode where we want it.
2403 */
2404 if (jinode->i_transaction == transaction ||
2405 jinode->i_next_transaction == transaction)
2406 return 0;
2407
2408 spin_lock(&journal->j_list_lock);
2409
2410 if (jinode->i_transaction == transaction ||
2411 jinode->i_next_transaction == transaction)
2412 goto done;
2413
2414 /*
2415 * We only ever set this variable to 1 so the test is safe. Since
2416 * t_need_data_flush is likely to be set, we do the test to save some
2417 * cacheline bouncing
2418 */
2419 if (!transaction->t_need_data_flush)
2420 transaction->t_need_data_flush = 1;
2421 /* On some different transaction's list - should be
2422 * the committing one */
2423 if (jinode->i_transaction) {
2424 J_ASSERT(jinode->i_next_transaction == NULL);
2425 J_ASSERT(jinode->i_transaction ==
2426 journal->j_committing_transaction);
2427 jinode->i_next_transaction = transaction;
2428 goto done;
2429 }
2430 /* Not on any transaction list... */
2431 J_ASSERT(!jinode->i_next_transaction);
2432 jinode->i_transaction = transaction;
2433 list_add(&jinode->i_list, &transaction->t_inode_list);
2434 done:
2435 spin_unlock(&journal->j_list_lock);
2436
2437 return 0;
2438 }
2439
2440 /*
2441 * File truncate and transaction commit interact with each other in a
2442 * non-trivial way. If a transaction writing data block A is
2443 * committing, we cannot discard the data by truncate until we have
2444 * written them. Otherwise if we crashed after the transaction with
2445 * write has committed but before the transaction with truncate has
2446 * committed, we could see stale data in block A. This function is a
2447 * helper to solve this problem. It starts writeout of the truncated
2448 * part in case it is in the committing transaction.
2449 *
2450 * Filesystem code must call this function when inode is journaled in
2451 * ordered mode before truncation happens and after the inode has been
2452 * placed on orphan list with the new inode size. The second condition
2453 * avoids the race that someone writes new data and we start
2454 * committing the transaction after this function has been called but
2455 * before a transaction for truncate is started (and furthermore it
2456 * allows us to optimize the case where the addition to orphan list
2457 * happens in the same transaction as write --- we don't have to write
2458 * any data in such case).
2459 */
2460 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2461 struct jbd2_inode *jinode,
2462 loff_t new_size)
2463 {
2464 transaction_t *inode_trans, *commit_trans;
2465 int ret = 0;
2466
2467 /* This is a quick check to avoid locking if not necessary */
2468 if (!jinode->i_transaction)
2469 goto out;
2470 /* Locks are here just to force reading of recent values, it is
2471 * enough that the transaction was not committing before we started
2472 * a transaction adding the inode to orphan list */
2473 read_lock(&journal->j_state_lock);
2474 commit_trans = journal->j_committing_transaction;
2475 read_unlock(&journal->j_state_lock);
2476 spin_lock(&journal->j_list_lock);
2477 inode_trans = jinode->i_transaction;
2478 spin_unlock(&journal->j_list_lock);
2479 if (inode_trans == commit_trans) {
2480 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2481 new_size, LLONG_MAX);
2482 if (ret)
2483 jbd2_journal_abort(journal, ret);
2484 }
2485 out:
2486 return ret;
2487 }
This page took 0.241552 seconds and 5 git commands to generate.