Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livep...
[deliverable/linux.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49 {
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69 }
70
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92 }
93
94 /**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115 }
116
117 /**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139
140 /**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157
158 /**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180
181 /**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199 }
200
201 /**
202 * kernfs_name_hash
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 if (hash < 2)
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222 }
223
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
226 {
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
235 return strcmp(name, kn->name);
236 }
237
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
240 {
241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243
244 /**
245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
246 * @kn: kernfs_node of interest
247 *
248 * Link @kn into its sibling rbtree which starts from
249 * @kn->parent->dir.children.
250 *
251 * Locking:
252 * mutex_lock(kernfs_mutex)
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 struct rb_node **node = &kn->parent->dir.children.rb_node;
260 struct rb_node *parent = NULL;
261
262 while (*node) {
263 struct kernfs_node *pos;
264 int result;
265
266 pos = rb_to_kn(*node);
267 parent = *node;
268 result = kernfs_sd_compare(kn, pos);
269 if (result < 0)
270 node = &pos->rb.rb_left;
271 else if (result > 0)
272 node = &pos->rb.rb_right;
273 else
274 return -EEXIST;
275 }
276
277 /* add new node and rebalance the tree */
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
285 return 0;
286 }
287
288 /**
289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290 * @kn: kernfs_node of interest
291 *
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
295 *
296 * Locking:
297 * mutex_lock(kernfs_mutex)
298 */
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
304 if (kernfs_type(kn) == KERNFS_DIR)
305 kn->parent->dir.subdirs--;
306
307 rb_erase(&kn->rb, &kn->parent->dir.children);
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
310 }
311
312 /**
313 * kernfs_get_active - get an active reference to kernfs_node
314 * @kn: kernfs_node to get an active reference to
315 *
316 * Get an active reference of @kn. This function is noop if @kn
317 * is NULL.
318 *
319 * RETURNS:
320 * Pointer to @kn on success, NULL on failure.
321 */
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 if (unlikely(!kn))
325 return NULL;
326
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
329
330 if (kernfs_lockdep(kn))
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
333 }
334
335 /**
336 * kernfs_put_active - put an active reference to kernfs_node
337 * @kn: kernfs_node to put an active reference to
338 *
339 * Put an active reference to @kn. This function is noop if @kn
340 * is NULL.
341 */
342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 struct kernfs_root *root = kernfs_root(kn);
345 int v;
346
347 if (unlikely(!kn))
348 return;
349
350 if (kernfs_lockdep(kn))
351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 v = atomic_dec_return(&kn->active);
353 if (likely(v != KN_DEACTIVATED_BIAS))
354 return;
355
356 wake_up_all(&root->deactivate_waitq);
357 }
358
359 /**
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
362 *
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
366 */
367 static void kernfs_drain(struct kernfs_node *kn)
368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 struct kernfs_root *root = kernfs_root(kn);
371
372 lockdep_assert_held(&kernfs_mutex);
373 WARN_ON_ONCE(kernfs_active(kn));
374
375 mutex_unlock(&kernfs_mutex);
376
377 if (kernfs_lockdep(kn)) {
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
382
383 /* but everyone should wait for draining */
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386
387 if (kernfs_lockdep(kn)) {
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
391
392 kernfs_unmap_bin_file(kn);
393
394 mutex_lock(&kernfs_mutex);
395 }
396
397 /**
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
400 */
401 void kernfs_get(struct kernfs_node *kn)
402 {
403 if (kn) {
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
406 }
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409
410 /**
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
413 *
414 * Put a reference count of @kn and destroy it if it reached zero.
415 */
416 void kernfs_put(struct kernfs_node *kn)
417 {
418 struct kernfs_node *parent;
419 struct kernfs_root *root;
420
421 if (!kn || !atomic_dec_and_test(&kn->count))
422 return;
423 root = kernfs_root(kn);
424 repeat:
425 /*
426 * Moving/renaming is always done while holding reference.
427 * kn->parent won't change beneath us.
428 */
429 parent = kn->parent;
430
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434
435 if (kernfs_type(kn) == KERNFS_LINK)
436 kernfs_put(kn->symlink.target_kn);
437
438 kfree_const(kn->name);
439
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
445 }
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
448 kmem_cache_free(kernfs_node_cache, kn);
449
450 kn = parent;
451 if (kn) {
452 if (atomic_dec_and_test(&kn->count))
453 goto repeat;
454 } else {
455 /* just released the root kn, free @root too */
456 ida_destroy(&root->ino_ida);
457 kfree(root);
458 }
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 struct kernfs_node *kn;
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
469 /* Always perform fresh lookup for negatives */
470 if (d_really_is_negative(dentry))
471 goto out_bad_unlocked;
472
473 kn = dentry->d_fsdata;
474 mutex_lock(&kernfs_mutex);
475
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
478 goto out_bad;
479
480 /* The kernfs node has been moved? */
481 if (dentry->d_parent->d_fsdata != kn->parent)
482 goto out_bad;
483
484 /* The kernfs node has been renamed */
485 if (strcmp(dentry->d_name.name, kn->name) != 0)
486 goto out_bad;
487
488 /* The kernfs node has been moved to a different namespace */
489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 kernfs_info(dentry->d_sb)->ns != kn->ns)
491 goto out_bad;
492
493 mutex_unlock(&kernfs_mutex);
494 return 1;
495 out_bad:
496 mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 return 0;
499 }
500
501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 kernfs_put(dentry->d_fsdata);
504 }
505
506 const struct dentry_operations kernfs_dops = {
507 .d_revalidate = kernfs_dop_revalidate,
508 .d_release = kernfs_dop_release,
509 };
510
511 /**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 if (dentry->d_sb->s_op == &kernfs_sops)
525 return dentry->d_fsdata;
526 return NULL;
527 }
528
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
532 {
533 struct kernfs_node *kn;
534 int ret;
535
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
539
540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 if (!kn)
542 goto err_out1;
543
544 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
545 if (ret < 0)
546 goto err_out2;
547 kn->ino = ret;
548
549 atomic_set(&kn->count, 1);
550 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
551 RB_CLEAR_NODE(&kn->rb);
552
553 kn->name = name;
554 kn->mode = mode;
555 kn->flags = flags;
556
557 return kn;
558
559 err_out2:
560 kmem_cache_free(kernfs_node_cache, kn);
561 err_out1:
562 kfree_const(name);
563 return NULL;
564 }
565
566 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
567 const char *name, umode_t mode,
568 unsigned flags)
569 {
570 struct kernfs_node *kn;
571
572 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
573 if (kn) {
574 kernfs_get(parent);
575 kn->parent = parent;
576 }
577 return kn;
578 }
579
580 /**
581 * kernfs_add_one - add kernfs_node to parent without warning
582 * @kn: kernfs_node to be added
583 *
584 * The caller must already have initialized @kn->parent. This
585 * function increments nlink of the parent's inode if @kn is a
586 * directory and link into the children list of the parent.
587 *
588 * RETURNS:
589 * 0 on success, -EEXIST if entry with the given name already
590 * exists.
591 */
592 int kernfs_add_one(struct kernfs_node *kn)
593 {
594 struct kernfs_node *parent = kn->parent;
595 struct kernfs_iattrs *ps_iattr;
596 bool has_ns;
597 int ret;
598
599 mutex_lock(&kernfs_mutex);
600
601 ret = -EINVAL;
602 has_ns = kernfs_ns_enabled(parent);
603 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
604 has_ns ? "required" : "invalid", parent->name, kn->name))
605 goto out_unlock;
606
607 if (kernfs_type(parent) != KERNFS_DIR)
608 goto out_unlock;
609
610 ret = -ENOENT;
611 if (parent->flags & KERNFS_EMPTY_DIR)
612 goto out_unlock;
613
614 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
615 goto out_unlock;
616
617 kn->hash = kernfs_name_hash(kn->name, kn->ns);
618
619 ret = kernfs_link_sibling(kn);
620 if (ret)
621 goto out_unlock;
622
623 /* Update timestamps on the parent */
624 ps_iattr = parent->iattr;
625 if (ps_iattr) {
626 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
627 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
628 }
629
630 mutex_unlock(&kernfs_mutex);
631
632 /*
633 * Activate the new node unless CREATE_DEACTIVATED is requested.
634 * If not activated here, the kernfs user is responsible for
635 * activating the node with kernfs_activate(). A node which hasn't
636 * been activated is not visible to userland and its removal won't
637 * trigger deactivation.
638 */
639 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
640 kernfs_activate(kn);
641 return 0;
642
643 out_unlock:
644 mutex_unlock(&kernfs_mutex);
645 return ret;
646 }
647
648 /**
649 * kernfs_find_ns - find kernfs_node with the given name
650 * @parent: kernfs_node to search under
651 * @name: name to look for
652 * @ns: the namespace tag to use
653 *
654 * Look for kernfs_node with name @name under @parent. Returns pointer to
655 * the found kernfs_node on success, %NULL on failure.
656 */
657 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
658 const unsigned char *name,
659 const void *ns)
660 {
661 struct rb_node *node = parent->dir.children.rb_node;
662 bool has_ns = kernfs_ns_enabled(parent);
663 unsigned int hash;
664
665 lockdep_assert_held(&kernfs_mutex);
666
667 if (has_ns != (bool)ns) {
668 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
669 has_ns ? "required" : "invalid", parent->name, name);
670 return NULL;
671 }
672
673 hash = kernfs_name_hash(name, ns);
674 while (node) {
675 struct kernfs_node *kn;
676 int result;
677
678 kn = rb_to_kn(node);
679 result = kernfs_name_compare(hash, name, ns, kn);
680 if (result < 0)
681 node = node->rb_left;
682 else if (result > 0)
683 node = node->rb_right;
684 else
685 return kn;
686 }
687 return NULL;
688 }
689
690 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
691 const unsigned char *path,
692 const void *ns)
693 {
694 size_t len;
695 char *p, *name;
696
697 lockdep_assert_held(&kernfs_mutex);
698
699 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
700 spin_lock_irq(&kernfs_rename_lock);
701
702 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
703
704 if (len >= sizeof(kernfs_pr_cont_buf)) {
705 spin_unlock_irq(&kernfs_rename_lock);
706 return NULL;
707 }
708
709 p = kernfs_pr_cont_buf;
710
711 while ((name = strsep(&p, "/")) && parent) {
712 if (*name == '\0')
713 continue;
714 parent = kernfs_find_ns(parent, name, ns);
715 }
716
717 spin_unlock_irq(&kernfs_rename_lock);
718
719 return parent;
720 }
721
722 /**
723 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
724 * @parent: kernfs_node to search under
725 * @name: name to look for
726 * @ns: the namespace tag to use
727 *
728 * Look for kernfs_node with name @name under @parent and get a reference
729 * if found. This function may sleep and returns pointer to the found
730 * kernfs_node on success, %NULL on failure.
731 */
732 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
733 const char *name, const void *ns)
734 {
735 struct kernfs_node *kn;
736
737 mutex_lock(&kernfs_mutex);
738 kn = kernfs_find_ns(parent, name, ns);
739 kernfs_get(kn);
740 mutex_unlock(&kernfs_mutex);
741
742 return kn;
743 }
744 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
745
746 /**
747 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
748 * @parent: kernfs_node to search under
749 * @path: path to look for
750 * @ns: the namespace tag to use
751 *
752 * Look for kernfs_node with path @path under @parent and get a reference
753 * if found. This function may sleep and returns pointer to the found
754 * kernfs_node on success, %NULL on failure.
755 */
756 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
757 const char *path, const void *ns)
758 {
759 struct kernfs_node *kn;
760
761 mutex_lock(&kernfs_mutex);
762 kn = kernfs_walk_ns(parent, path, ns);
763 kernfs_get(kn);
764 mutex_unlock(&kernfs_mutex);
765
766 return kn;
767 }
768
769 /**
770 * kernfs_create_root - create a new kernfs hierarchy
771 * @scops: optional syscall operations for the hierarchy
772 * @flags: KERNFS_ROOT_* flags
773 * @priv: opaque data associated with the new directory
774 *
775 * Returns the root of the new hierarchy on success, ERR_PTR() value on
776 * failure.
777 */
778 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
779 unsigned int flags, void *priv)
780 {
781 struct kernfs_root *root;
782 struct kernfs_node *kn;
783
784 root = kzalloc(sizeof(*root), GFP_KERNEL);
785 if (!root)
786 return ERR_PTR(-ENOMEM);
787
788 ida_init(&root->ino_ida);
789 INIT_LIST_HEAD(&root->supers);
790
791 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
792 KERNFS_DIR);
793 if (!kn) {
794 ida_destroy(&root->ino_ida);
795 kfree(root);
796 return ERR_PTR(-ENOMEM);
797 }
798
799 kn->priv = priv;
800 kn->dir.root = root;
801
802 root->syscall_ops = scops;
803 root->flags = flags;
804 root->kn = kn;
805 init_waitqueue_head(&root->deactivate_waitq);
806
807 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
808 kernfs_activate(kn);
809
810 return root;
811 }
812
813 /**
814 * kernfs_destroy_root - destroy a kernfs hierarchy
815 * @root: root of the hierarchy to destroy
816 *
817 * Destroy the hierarchy anchored at @root by removing all existing
818 * directories and destroying @root.
819 */
820 void kernfs_destroy_root(struct kernfs_root *root)
821 {
822 kernfs_remove(root->kn); /* will also free @root */
823 }
824
825 /**
826 * kernfs_create_dir_ns - create a directory
827 * @parent: parent in which to create a new directory
828 * @name: name of the new directory
829 * @mode: mode of the new directory
830 * @priv: opaque data associated with the new directory
831 * @ns: optional namespace tag of the directory
832 *
833 * Returns the created node on success, ERR_PTR() value on failure.
834 */
835 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
836 const char *name, umode_t mode,
837 void *priv, const void *ns)
838 {
839 struct kernfs_node *kn;
840 int rc;
841
842 /* allocate */
843 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
844 if (!kn)
845 return ERR_PTR(-ENOMEM);
846
847 kn->dir.root = parent->dir.root;
848 kn->ns = ns;
849 kn->priv = priv;
850
851 /* link in */
852 rc = kernfs_add_one(kn);
853 if (!rc)
854 return kn;
855
856 kernfs_put(kn);
857 return ERR_PTR(rc);
858 }
859
860 /**
861 * kernfs_create_empty_dir - create an always empty directory
862 * @parent: parent in which to create a new directory
863 * @name: name of the new directory
864 *
865 * Returns the created node on success, ERR_PTR() value on failure.
866 */
867 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
868 const char *name)
869 {
870 struct kernfs_node *kn;
871 int rc;
872
873 /* allocate */
874 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
875 if (!kn)
876 return ERR_PTR(-ENOMEM);
877
878 kn->flags |= KERNFS_EMPTY_DIR;
879 kn->dir.root = parent->dir.root;
880 kn->ns = NULL;
881 kn->priv = NULL;
882
883 /* link in */
884 rc = kernfs_add_one(kn);
885 if (!rc)
886 return kn;
887
888 kernfs_put(kn);
889 return ERR_PTR(rc);
890 }
891
892 static struct dentry *kernfs_iop_lookup(struct inode *dir,
893 struct dentry *dentry,
894 unsigned int flags)
895 {
896 struct dentry *ret;
897 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
898 struct kernfs_node *kn;
899 struct inode *inode;
900 const void *ns = NULL;
901
902 mutex_lock(&kernfs_mutex);
903
904 if (kernfs_ns_enabled(parent))
905 ns = kernfs_info(dir->i_sb)->ns;
906
907 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
908
909 /* no such entry */
910 if (!kn || !kernfs_active(kn)) {
911 ret = NULL;
912 goto out_unlock;
913 }
914 kernfs_get(kn);
915 dentry->d_fsdata = kn;
916
917 /* attach dentry and inode */
918 inode = kernfs_get_inode(dir->i_sb, kn);
919 if (!inode) {
920 ret = ERR_PTR(-ENOMEM);
921 goto out_unlock;
922 }
923
924 /* instantiate and hash dentry */
925 ret = d_splice_alias(inode, dentry);
926 out_unlock:
927 mutex_unlock(&kernfs_mutex);
928 return ret;
929 }
930
931 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
932 umode_t mode)
933 {
934 struct kernfs_node *parent = dir->i_private;
935 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
936 int ret;
937
938 if (!scops || !scops->mkdir)
939 return -EPERM;
940
941 if (!kernfs_get_active(parent))
942 return -ENODEV;
943
944 ret = scops->mkdir(parent, dentry->d_name.name, mode);
945
946 kernfs_put_active(parent);
947 return ret;
948 }
949
950 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
951 {
952 struct kernfs_node *kn = dentry->d_fsdata;
953 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
954 int ret;
955
956 if (!scops || !scops->rmdir)
957 return -EPERM;
958
959 if (!kernfs_get_active(kn))
960 return -ENODEV;
961
962 ret = scops->rmdir(kn);
963
964 kernfs_put_active(kn);
965 return ret;
966 }
967
968 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
969 struct inode *new_dir, struct dentry *new_dentry)
970 {
971 struct kernfs_node *kn = old_dentry->d_fsdata;
972 struct kernfs_node *new_parent = new_dir->i_private;
973 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
974 int ret;
975
976 if (!scops || !scops->rename)
977 return -EPERM;
978
979 if (!kernfs_get_active(kn))
980 return -ENODEV;
981
982 if (!kernfs_get_active(new_parent)) {
983 kernfs_put_active(kn);
984 return -ENODEV;
985 }
986
987 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
988
989 kernfs_put_active(new_parent);
990 kernfs_put_active(kn);
991 return ret;
992 }
993
994 const struct inode_operations kernfs_dir_iops = {
995 .lookup = kernfs_iop_lookup,
996 .permission = kernfs_iop_permission,
997 .setattr = kernfs_iop_setattr,
998 .getattr = kernfs_iop_getattr,
999 .setxattr = kernfs_iop_setxattr,
1000 .removexattr = kernfs_iop_removexattr,
1001 .getxattr = kernfs_iop_getxattr,
1002 .listxattr = kernfs_iop_listxattr,
1003
1004 .mkdir = kernfs_iop_mkdir,
1005 .rmdir = kernfs_iop_rmdir,
1006 .rename = kernfs_iop_rename,
1007 };
1008
1009 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1010 {
1011 struct kernfs_node *last;
1012
1013 while (true) {
1014 struct rb_node *rbn;
1015
1016 last = pos;
1017
1018 if (kernfs_type(pos) != KERNFS_DIR)
1019 break;
1020
1021 rbn = rb_first(&pos->dir.children);
1022 if (!rbn)
1023 break;
1024
1025 pos = rb_to_kn(rbn);
1026 }
1027
1028 return last;
1029 }
1030
1031 /**
1032 * kernfs_next_descendant_post - find the next descendant for post-order walk
1033 * @pos: the current position (%NULL to initiate traversal)
1034 * @root: kernfs_node whose descendants to walk
1035 *
1036 * Find the next descendant to visit for post-order traversal of @root's
1037 * descendants. @root is included in the iteration and the last node to be
1038 * visited.
1039 */
1040 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1041 struct kernfs_node *root)
1042 {
1043 struct rb_node *rbn;
1044
1045 lockdep_assert_held(&kernfs_mutex);
1046
1047 /* if first iteration, visit leftmost descendant which may be root */
1048 if (!pos)
1049 return kernfs_leftmost_descendant(root);
1050
1051 /* if we visited @root, we're done */
1052 if (pos == root)
1053 return NULL;
1054
1055 /* if there's an unvisited sibling, visit its leftmost descendant */
1056 rbn = rb_next(&pos->rb);
1057 if (rbn)
1058 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1059
1060 /* no sibling left, visit parent */
1061 return pos->parent;
1062 }
1063
1064 /**
1065 * kernfs_activate - activate a node which started deactivated
1066 * @kn: kernfs_node whose subtree is to be activated
1067 *
1068 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1069 * needs to be explicitly activated. A node which hasn't been activated
1070 * isn't visible to userland and deactivation is skipped during its
1071 * removal. This is useful to construct atomic init sequences where
1072 * creation of multiple nodes should either succeed or fail atomically.
1073 *
1074 * The caller is responsible for ensuring that this function is not called
1075 * after kernfs_remove*() is invoked on @kn.
1076 */
1077 void kernfs_activate(struct kernfs_node *kn)
1078 {
1079 struct kernfs_node *pos;
1080
1081 mutex_lock(&kernfs_mutex);
1082
1083 pos = NULL;
1084 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1085 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1086 continue;
1087
1088 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1089 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1090
1091 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1092 pos->flags |= KERNFS_ACTIVATED;
1093 }
1094
1095 mutex_unlock(&kernfs_mutex);
1096 }
1097
1098 static void __kernfs_remove(struct kernfs_node *kn)
1099 {
1100 struct kernfs_node *pos;
1101
1102 lockdep_assert_held(&kernfs_mutex);
1103
1104 /*
1105 * Short-circuit if non-root @kn has already finished removal.
1106 * This is for kernfs_remove_self() which plays with active ref
1107 * after removal.
1108 */
1109 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1110 return;
1111
1112 pr_debug("kernfs %s: removing\n", kn->name);
1113
1114 /* prevent any new usage under @kn by deactivating all nodes */
1115 pos = NULL;
1116 while ((pos = kernfs_next_descendant_post(pos, kn)))
1117 if (kernfs_active(pos))
1118 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1119
1120 /* deactivate and unlink the subtree node-by-node */
1121 do {
1122 pos = kernfs_leftmost_descendant(kn);
1123
1124 /*
1125 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1126 * base ref could have been put by someone else by the time
1127 * the function returns. Make sure it doesn't go away
1128 * underneath us.
1129 */
1130 kernfs_get(pos);
1131
1132 /*
1133 * Drain iff @kn was activated. This avoids draining and
1134 * its lockdep annotations for nodes which have never been
1135 * activated and allows embedding kernfs_remove() in create
1136 * error paths without worrying about draining.
1137 */
1138 if (kn->flags & KERNFS_ACTIVATED)
1139 kernfs_drain(pos);
1140 else
1141 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1142
1143 /*
1144 * kernfs_unlink_sibling() succeeds once per node. Use it
1145 * to decide who's responsible for cleanups.
1146 */
1147 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1148 struct kernfs_iattrs *ps_iattr =
1149 pos->parent ? pos->parent->iattr : NULL;
1150
1151 /* update timestamps on the parent */
1152 if (ps_iattr) {
1153 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1154 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1155 }
1156
1157 kernfs_put(pos);
1158 }
1159
1160 kernfs_put(pos);
1161 } while (pos != kn);
1162 }
1163
1164 /**
1165 * kernfs_remove - remove a kernfs_node recursively
1166 * @kn: the kernfs_node to remove
1167 *
1168 * Remove @kn along with all its subdirectories and files.
1169 */
1170 void kernfs_remove(struct kernfs_node *kn)
1171 {
1172 mutex_lock(&kernfs_mutex);
1173 __kernfs_remove(kn);
1174 mutex_unlock(&kernfs_mutex);
1175 }
1176
1177 /**
1178 * kernfs_break_active_protection - break out of active protection
1179 * @kn: the self kernfs_node
1180 *
1181 * The caller must be running off of a kernfs operation which is invoked
1182 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1183 * this function must also be matched with an invocation of
1184 * kernfs_unbreak_active_protection().
1185 *
1186 * This function releases the active reference of @kn the caller is
1187 * holding. Once this function is called, @kn may be removed at any point
1188 * and the caller is solely responsible for ensuring that the objects it
1189 * dereferences are accessible.
1190 */
1191 void kernfs_break_active_protection(struct kernfs_node *kn)
1192 {
1193 /*
1194 * Take out ourself out of the active ref dependency chain. If
1195 * we're called without an active ref, lockdep will complain.
1196 */
1197 kernfs_put_active(kn);
1198 }
1199
1200 /**
1201 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1202 * @kn: the self kernfs_node
1203 *
1204 * If kernfs_break_active_protection() was called, this function must be
1205 * invoked before finishing the kernfs operation. Note that while this
1206 * function restores the active reference, it doesn't and can't actually
1207 * restore the active protection - @kn may already or be in the process of
1208 * being removed. Once kernfs_break_active_protection() is invoked, that
1209 * protection is irreversibly gone for the kernfs operation instance.
1210 *
1211 * While this function may be called at any point after
1212 * kernfs_break_active_protection() is invoked, its most useful location
1213 * would be right before the enclosing kernfs operation returns.
1214 */
1215 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1216 {
1217 /*
1218 * @kn->active could be in any state; however, the increment we do
1219 * here will be undone as soon as the enclosing kernfs operation
1220 * finishes and this temporary bump can't break anything. If @kn
1221 * is alive, nothing changes. If @kn is being deactivated, the
1222 * soon-to-follow put will either finish deactivation or restore
1223 * deactivated state. If @kn is already removed, the temporary
1224 * bump is guaranteed to be gone before @kn is released.
1225 */
1226 atomic_inc(&kn->active);
1227 if (kernfs_lockdep(kn))
1228 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1229 }
1230
1231 /**
1232 * kernfs_remove_self - remove a kernfs_node from its own method
1233 * @kn: the self kernfs_node to remove
1234 *
1235 * The caller must be running off of a kernfs operation which is invoked
1236 * with an active reference - e.g. one of kernfs_ops. This can be used to
1237 * implement a file operation which deletes itself.
1238 *
1239 * For example, the "delete" file for a sysfs device directory can be
1240 * implemented by invoking kernfs_remove_self() on the "delete" file
1241 * itself. This function breaks the circular dependency of trying to
1242 * deactivate self while holding an active ref itself. It isn't necessary
1243 * to modify the usual removal path to use kernfs_remove_self(). The
1244 * "delete" implementation can simply invoke kernfs_remove_self() on self
1245 * before proceeding with the usual removal path. kernfs will ignore later
1246 * kernfs_remove() on self.
1247 *
1248 * kernfs_remove_self() can be called multiple times concurrently on the
1249 * same kernfs_node. Only the first one actually performs removal and
1250 * returns %true. All others will wait until the kernfs operation which
1251 * won self-removal finishes and return %false. Note that the losers wait
1252 * for the completion of not only the winning kernfs_remove_self() but also
1253 * the whole kernfs_ops which won the arbitration. This can be used to
1254 * guarantee, for example, all concurrent writes to a "delete" file to
1255 * finish only after the whole operation is complete.
1256 */
1257 bool kernfs_remove_self(struct kernfs_node *kn)
1258 {
1259 bool ret;
1260
1261 mutex_lock(&kernfs_mutex);
1262 kernfs_break_active_protection(kn);
1263
1264 /*
1265 * SUICIDAL is used to arbitrate among competing invocations. Only
1266 * the first one will actually perform removal. When the removal
1267 * is complete, SUICIDED is set and the active ref is restored
1268 * while holding kernfs_mutex. The ones which lost arbitration
1269 * waits for SUICDED && drained which can happen only after the
1270 * enclosing kernfs operation which executed the winning instance
1271 * of kernfs_remove_self() finished.
1272 */
1273 if (!(kn->flags & KERNFS_SUICIDAL)) {
1274 kn->flags |= KERNFS_SUICIDAL;
1275 __kernfs_remove(kn);
1276 kn->flags |= KERNFS_SUICIDED;
1277 ret = true;
1278 } else {
1279 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1280 DEFINE_WAIT(wait);
1281
1282 while (true) {
1283 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1284
1285 if ((kn->flags & KERNFS_SUICIDED) &&
1286 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1287 break;
1288
1289 mutex_unlock(&kernfs_mutex);
1290 schedule();
1291 mutex_lock(&kernfs_mutex);
1292 }
1293 finish_wait(waitq, &wait);
1294 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1295 ret = false;
1296 }
1297
1298 /*
1299 * This must be done while holding kernfs_mutex; otherwise, waiting
1300 * for SUICIDED && deactivated could finish prematurely.
1301 */
1302 kernfs_unbreak_active_protection(kn);
1303
1304 mutex_unlock(&kernfs_mutex);
1305 return ret;
1306 }
1307
1308 /**
1309 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1310 * @parent: parent of the target
1311 * @name: name of the kernfs_node to remove
1312 * @ns: namespace tag of the kernfs_node to remove
1313 *
1314 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1315 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1316 */
1317 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1318 const void *ns)
1319 {
1320 struct kernfs_node *kn;
1321
1322 if (!parent) {
1323 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1324 name);
1325 return -ENOENT;
1326 }
1327
1328 mutex_lock(&kernfs_mutex);
1329
1330 kn = kernfs_find_ns(parent, name, ns);
1331 if (kn)
1332 __kernfs_remove(kn);
1333
1334 mutex_unlock(&kernfs_mutex);
1335
1336 if (kn)
1337 return 0;
1338 else
1339 return -ENOENT;
1340 }
1341
1342 /**
1343 * kernfs_rename_ns - move and rename a kernfs_node
1344 * @kn: target node
1345 * @new_parent: new parent to put @sd under
1346 * @new_name: new name
1347 * @new_ns: new namespace tag
1348 */
1349 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1350 const char *new_name, const void *new_ns)
1351 {
1352 struct kernfs_node *old_parent;
1353 const char *old_name = NULL;
1354 int error;
1355
1356 /* can't move or rename root */
1357 if (!kn->parent)
1358 return -EINVAL;
1359
1360 mutex_lock(&kernfs_mutex);
1361
1362 error = -ENOENT;
1363 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1364 (new_parent->flags & KERNFS_EMPTY_DIR))
1365 goto out;
1366
1367 error = 0;
1368 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1369 (strcmp(kn->name, new_name) == 0))
1370 goto out; /* nothing to rename */
1371
1372 error = -EEXIST;
1373 if (kernfs_find_ns(new_parent, new_name, new_ns))
1374 goto out;
1375
1376 /* rename kernfs_node */
1377 if (strcmp(kn->name, new_name) != 0) {
1378 error = -ENOMEM;
1379 new_name = kstrdup_const(new_name, GFP_KERNEL);
1380 if (!new_name)
1381 goto out;
1382 } else {
1383 new_name = NULL;
1384 }
1385
1386 /*
1387 * Move to the appropriate place in the appropriate directories rbtree.
1388 */
1389 kernfs_unlink_sibling(kn);
1390 kernfs_get(new_parent);
1391
1392 /* rename_lock protects ->parent and ->name accessors */
1393 spin_lock_irq(&kernfs_rename_lock);
1394
1395 old_parent = kn->parent;
1396 kn->parent = new_parent;
1397
1398 kn->ns = new_ns;
1399 if (new_name) {
1400 old_name = kn->name;
1401 kn->name = new_name;
1402 }
1403
1404 spin_unlock_irq(&kernfs_rename_lock);
1405
1406 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1407 kernfs_link_sibling(kn);
1408
1409 kernfs_put(old_parent);
1410 kfree_const(old_name);
1411
1412 error = 0;
1413 out:
1414 mutex_unlock(&kernfs_mutex);
1415 return error;
1416 }
1417
1418 /* Relationship between s_mode and the DT_xxx types */
1419 static inline unsigned char dt_type(struct kernfs_node *kn)
1420 {
1421 return (kn->mode >> 12) & 15;
1422 }
1423
1424 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1425 {
1426 kernfs_put(filp->private_data);
1427 return 0;
1428 }
1429
1430 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1431 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1432 {
1433 if (pos) {
1434 int valid = kernfs_active(pos) &&
1435 pos->parent == parent && hash == pos->hash;
1436 kernfs_put(pos);
1437 if (!valid)
1438 pos = NULL;
1439 }
1440 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1441 struct rb_node *node = parent->dir.children.rb_node;
1442 while (node) {
1443 pos = rb_to_kn(node);
1444
1445 if (hash < pos->hash)
1446 node = node->rb_left;
1447 else if (hash > pos->hash)
1448 node = node->rb_right;
1449 else
1450 break;
1451 }
1452 }
1453 /* Skip over entries which are dying/dead or in the wrong namespace */
1454 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1455 struct rb_node *node = rb_next(&pos->rb);
1456 if (!node)
1457 pos = NULL;
1458 else
1459 pos = rb_to_kn(node);
1460 }
1461 return pos;
1462 }
1463
1464 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1465 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1466 {
1467 pos = kernfs_dir_pos(ns, parent, ino, pos);
1468 if (pos) {
1469 do {
1470 struct rb_node *node = rb_next(&pos->rb);
1471 if (!node)
1472 pos = NULL;
1473 else
1474 pos = rb_to_kn(node);
1475 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1476 }
1477 return pos;
1478 }
1479
1480 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1481 {
1482 struct dentry *dentry = file->f_path.dentry;
1483 struct kernfs_node *parent = dentry->d_fsdata;
1484 struct kernfs_node *pos = file->private_data;
1485 const void *ns = NULL;
1486
1487 if (!dir_emit_dots(file, ctx))
1488 return 0;
1489 mutex_lock(&kernfs_mutex);
1490
1491 if (kernfs_ns_enabled(parent))
1492 ns = kernfs_info(dentry->d_sb)->ns;
1493
1494 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1495 pos;
1496 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1497 const char *name = pos->name;
1498 unsigned int type = dt_type(pos);
1499 int len = strlen(name);
1500 ino_t ino = pos->ino;
1501
1502 ctx->pos = pos->hash;
1503 file->private_data = pos;
1504 kernfs_get(pos);
1505
1506 mutex_unlock(&kernfs_mutex);
1507 if (!dir_emit(ctx, name, len, ino, type))
1508 return 0;
1509 mutex_lock(&kernfs_mutex);
1510 }
1511 mutex_unlock(&kernfs_mutex);
1512 file->private_data = NULL;
1513 ctx->pos = INT_MAX;
1514 return 0;
1515 }
1516
1517 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1518 int whence)
1519 {
1520 struct inode *inode = file_inode(file);
1521 loff_t ret;
1522
1523 inode_lock(inode);
1524 ret = generic_file_llseek(file, offset, whence);
1525 inode_unlock(inode);
1526
1527 return ret;
1528 }
1529
1530 const struct file_operations kernfs_dir_fops = {
1531 .read = generic_read_dir,
1532 .iterate = kernfs_fop_readdir,
1533 .release = kernfs_dir_fop_release,
1534 .llseek = kernfs_dir_fop_llseek,
1535 };
This page took 0.083932 seconds and 6 git commands to generate.