Merge branch 'chandan/prep-subpage-blocksize' into for-chris-4.6
[deliverable/linux.git] / fs / kernfs / dir.c
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18
19 #include "kernfs-internal.h"
20
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31 }
32
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
40 }
41
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49 {
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69 }
70
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92 }
93
94 /**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
100 size_t kernfs_path_len(struct kernfs_node *kn)
101 {
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115 }
116
117 /**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129 {
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137 }
138 EXPORT_SYMBOL_GPL(kernfs_path);
139
140 /**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
147 {
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157
158 /**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
165 {
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 }
180
181 /**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189 {
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199 }
200
201 /**
202 * kernfs_name_hash
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
209 {
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 if (hash < 2)
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222 }
223
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
226 {
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
235 return strcmp(name, kn->name);
236 }
237
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
240 {
241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
242 }
243
244 /**
245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
246 * @kn: kernfs_node of interest
247 *
248 * Link @kn into its sibling rbtree which starts from
249 * @kn->parent->dir.children.
250 *
251 * Locking:
252 * mutex_lock(kernfs_mutex)
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
257 static int kernfs_link_sibling(struct kernfs_node *kn)
258 {
259 struct rb_node **node = &kn->parent->dir.children.rb_node;
260 struct rb_node *parent = NULL;
261
262 while (*node) {
263 struct kernfs_node *pos;
264 int result;
265
266 pos = rb_to_kn(*node);
267 parent = *node;
268 result = kernfs_sd_compare(kn, pos);
269 if (result < 0)
270 node = &pos->rb.rb_left;
271 else if (result > 0)
272 node = &pos->rb.rb_right;
273 else
274 return -EEXIST;
275 }
276
277 /* add new node and rebalance the tree */
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
285 return 0;
286 }
287
288 /**
289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290 * @kn: kernfs_node of interest
291 *
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
295 *
296 * Locking:
297 * mutex_lock(kernfs_mutex)
298 */
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
300 {
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
304 if (kernfs_type(kn) == KERNFS_DIR)
305 kn->parent->dir.subdirs--;
306
307 rb_erase(&kn->rb, &kn->parent->dir.children);
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
310 }
311
312 /**
313 * kernfs_get_active - get an active reference to kernfs_node
314 * @kn: kernfs_node to get an active reference to
315 *
316 * Get an active reference of @kn. This function is noop if @kn
317 * is NULL.
318 *
319 * RETURNS:
320 * Pointer to @kn on success, NULL on failure.
321 */
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
323 {
324 if (unlikely(!kn))
325 return NULL;
326
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
329
330 if (kernfs_lockdep(kn))
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
333 }
334
335 /**
336 * kernfs_put_active - put an active reference to kernfs_node
337 * @kn: kernfs_node to put an active reference to
338 *
339 * Put an active reference to @kn. This function is noop if @kn
340 * is NULL.
341 */
342 void kernfs_put_active(struct kernfs_node *kn)
343 {
344 struct kernfs_root *root = kernfs_root(kn);
345 int v;
346
347 if (unlikely(!kn))
348 return;
349
350 if (kernfs_lockdep(kn))
351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 v = atomic_dec_return(&kn->active);
353 if (likely(v != KN_DEACTIVATED_BIAS))
354 return;
355
356 wake_up_all(&root->deactivate_waitq);
357 }
358
359 /**
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
362 *
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
366 */
367 static void kernfs_drain(struct kernfs_node *kn)
368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
369 {
370 struct kernfs_root *root = kernfs_root(kn);
371
372 lockdep_assert_held(&kernfs_mutex);
373 WARN_ON_ONCE(kernfs_active(kn));
374
375 mutex_unlock(&kernfs_mutex);
376
377 if (kernfs_lockdep(kn)) {
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
382
383 /* but everyone should wait for draining */
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
386
387 if (kernfs_lockdep(kn)) {
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
391
392 kernfs_unmap_bin_file(kn);
393
394 mutex_lock(&kernfs_mutex);
395 }
396
397 /**
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
400 */
401 void kernfs_get(struct kernfs_node *kn)
402 {
403 if (kn) {
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
406 }
407 }
408 EXPORT_SYMBOL_GPL(kernfs_get);
409
410 /**
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
413 *
414 * Put a reference count of @kn and destroy it if it reached zero.
415 */
416 void kernfs_put(struct kernfs_node *kn)
417 {
418 struct kernfs_node *parent;
419 struct kernfs_root *root;
420
421 if (!kn || !atomic_dec_and_test(&kn->count))
422 return;
423 root = kernfs_root(kn);
424 repeat:
425 /*
426 * Moving/renaming is always done while holding reference.
427 * kn->parent won't change beneath us.
428 */
429 parent = kn->parent;
430
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
434
435 if (kernfs_type(kn) == KERNFS_LINK)
436 kernfs_put(kn->symlink.target_kn);
437
438 kfree_const(kn->name);
439
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
445 }
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
448 kmem_cache_free(kernfs_node_cache, kn);
449
450 kn = parent;
451 if (kn) {
452 if (atomic_dec_and_test(&kn->count))
453 goto repeat;
454 } else {
455 /* just released the root kn, free @root too */
456 ida_destroy(&root->ino_ida);
457 kfree(root);
458 }
459 }
460 EXPORT_SYMBOL_GPL(kernfs_put);
461
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
463 {
464 struct kernfs_node *kn;
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
469 /* Always perform fresh lookup for negatives */
470 if (d_really_is_negative(dentry))
471 goto out_bad_unlocked;
472
473 kn = dentry->d_fsdata;
474 mutex_lock(&kernfs_mutex);
475
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
478 goto out_bad;
479
480 /* The kernfs node has been moved? */
481 if (dentry->d_parent->d_fsdata != kn->parent)
482 goto out_bad;
483
484 /* The kernfs node has been renamed */
485 if (strcmp(dentry->d_name.name, kn->name) != 0)
486 goto out_bad;
487
488 /* The kernfs node has been moved to a different namespace */
489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 kernfs_info(dentry->d_sb)->ns != kn->ns)
491 goto out_bad;
492
493 mutex_unlock(&kernfs_mutex);
494 return 1;
495 out_bad:
496 mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 return 0;
499 }
500
501 static void kernfs_dop_release(struct dentry *dentry)
502 {
503 kernfs_put(dentry->d_fsdata);
504 }
505
506 const struct dentry_operations kernfs_dops = {
507 .d_revalidate = kernfs_dop_revalidate,
508 .d_release = kernfs_dop_release,
509 };
510
511 /**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523 {
524 if (dentry->d_sb->s_op == &kernfs_sops)
525 return dentry->d_fsdata;
526 return NULL;
527 }
528
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
532 {
533 struct kernfs_node *kn;
534 int ret;
535
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
539
540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 if (!kn)
542 goto err_out1;
543
544 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
545 if (ret < 0)
546 goto err_out2;
547 kn->ino = ret;
548
549 atomic_set(&kn->count, 1);
550 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
551 RB_CLEAR_NODE(&kn->rb);
552
553 kn->name = name;
554 kn->mode = mode;
555 kn->flags = flags;
556
557 return kn;
558
559 err_out2:
560 kmem_cache_free(kernfs_node_cache, kn);
561 err_out1:
562 kfree_const(name);
563 return NULL;
564 }
565
566 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
567 const char *name, umode_t mode,
568 unsigned flags)
569 {
570 struct kernfs_node *kn;
571
572 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
573 if (kn) {
574 kernfs_get(parent);
575 kn->parent = parent;
576 }
577 return kn;
578 }
579
580 /**
581 * kernfs_add_one - add kernfs_node to parent without warning
582 * @kn: kernfs_node to be added
583 *
584 * The caller must already have initialized @kn->parent. This
585 * function increments nlink of the parent's inode if @kn is a
586 * directory and link into the children list of the parent.
587 *
588 * RETURNS:
589 * 0 on success, -EEXIST if entry with the given name already
590 * exists.
591 */
592 int kernfs_add_one(struct kernfs_node *kn)
593 {
594 struct kernfs_node *parent = kn->parent;
595 struct kernfs_iattrs *ps_iattr;
596 bool has_ns;
597 int ret;
598
599 mutex_lock(&kernfs_mutex);
600
601 ret = -EINVAL;
602 has_ns = kernfs_ns_enabled(parent);
603 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
604 has_ns ? "required" : "invalid", parent->name, kn->name))
605 goto out_unlock;
606
607 if (kernfs_type(parent) != KERNFS_DIR)
608 goto out_unlock;
609
610 ret = -ENOENT;
611 if (parent->flags & KERNFS_EMPTY_DIR)
612 goto out_unlock;
613
614 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
615 goto out_unlock;
616
617 kn->hash = kernfs_name_hash(kn->name, kn->ns);
618
619 ret = kernfs_link_sibling(kn);
620 if (ret)
621 goto out_unlock;
622
623 /* Update timestamps on the parent */
624 ps_iattr = parent->iattr;
625 if (ps_iattr) {
626 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
627 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
628 }
629
630 mutex_unlock(&kernfs_mutex);
631
632 /*
633 * Activate the new node unless CREATE_DEACTIVATED is requested.
634 * If not activated here, the kernfs user is responsible for
635 * activating the node with kernfs_activate(). A node which hasn't
636 * been activated is not visible to userland and its removal won't
637 * trigger deactivation.
638 */
639 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
640 kernfs_activate(kn);
641 return 0;
642
643 out_unlock:
644 mutex_unlock(&kernfs_mutex);
645 return ret;
646 }
647
648 /**
649 * kernfs_find_ns - find kernfs_node with the given name
650 * @parent: kernfs_node to search under
651 * @name: name to look for
652 * @ns: the namespace tag to use
653 *
654 * Look for kernfs_node with name @name under @parent. Returns pointer to
655 * the found kernfs_node on success, %NULL on failure.
656 */
657 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
658 const unsigned char *name,
659 const void *ns)
660 {
661 struct rb_node *node = parent->dir.children.rb_node;
662 bool has_ns = kernfs_ns_enabled(parent);
663 unsigned int hash;
664
665 lockdep_assert_held(&kernfs_mutex);
666
667 if (has_ns != (bool)ns) {
668 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
669 has_ns ? "required" : "invalid", parent->name, name);
670 return NULL;
671 }
672
673 hash = kernfs_name_hash(name, ns);
674 while (node) {
675 struct kernfs_node *kn;
676 int result;
677
678 kn = rb_to_kn(node);
679 result = kernfs_name_compare(hash, name, ns, kn);
680 if (result < 0)
681 node = node->rb_left;
682 else if (result > 0)
683 node = node->rb_right;
684 else
685 return kn;
686 }
687 return NULL;
688 }
689
690 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
691 const unsigned char *path,
692 const void *ns)
693 {
694 static char path_buf[PATH_MAX]; /* protected by kernfs_mutex */
695 size_t len = strlcpy(path_buf, path, PATH_MAX);
696 char *p = path_buf;
697 char *name;
698
699 lockdep_assert_held(&kernfs_mutex);
700
701 if (len >= PATH_MAX)
702 return NULL;
703
704 while ((name = strsep(&p, "/")) && parent) {
705 if (*name == '\0')
706 continue;
707 parent = kernfs_find_ns(parent, name, ns);
708 }
709
710 return parent;
711 }
712
713 /**
714 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
715 * @parent: kernfs_node to search under
716 * @name: name to look for
717 * @ns: the namespace tag to use
718 *
719 * Look for kernfs_node with name @name under @parent and get a reference
720 * if found. This function may sleep and returns pointer to the found
721 * kernfs_node on success, %NULL on failure.
722 */
723 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
724 const char *name, const void *ns)
725 {
726 struct kernfs_node *kn;
727
728 mutex_lock(&kernfs_mutex);
729 kn = kernfs_find_ns(parent, name, ns);
730 kernfs_get(kn);
731 mutex_unlock(&kernfs_mutex);
732
733 return kn;
734 }
735 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
736
737 /**
738 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
739 * @parent: kernfs_node to search under
740 * @path: path to look for
741 * @ns: the namespace tag to use
742 *
743 * Look for kernfs_node with path @path under @parent and get a reference
744 * if found. This function may sleep and returns pointer to the found
745 * kernfs_node on success, %NULL on failure.
746 */
747 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
748 const char *path, const void *ns)
749 {
750 struct kernfs_node *kn;
751
752 mutex_lock(&kernfs_mutex);
753 kn = kernfs_walk_ns(parent, path, ns);
754 kernfs_get(kn);
755 mutex_unlock(&kernfs_mutex);
756
757 return kn;
758 }
759
760 /**
761 * kernfs_create_root - create a new kernfs hierarchy
762 * @scops: optional syscall operations for the hierarchy
763 * @flags: KERNFS_ROOT_* flags
764 * @priv: opaque data associated with the new directory
765 *
766 * Returns the root of the new hierarchy on success, ERR_PTR() value on
767 * failure.
768 */
769 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
770 unsigned int flags, void *priv)
771 {
772 struct kernfs_root *root;
773 struct kernfs_node *kn;
774
775 root = kzalloc(sizeof(*root), GFP_KERNEL);
776 if (!root)
777 return ERR_PTR(-ENOMEM);
778
779 ida_init(&root->ino_ida);
780 INIT_LIST_HEAD(&root->supers);
781
782 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
783 KERNFS_DIR);
784 if (!kn) {
785 ida_destroy(&root->ino_ida);
786 kfree(root);
787 return ERR_PTR(-ENOMEM);
788 }
789
790 kn->priv = priv;
791 kn->dir.root = root;
792
793 root->syscall_ops = scops;
794 root->flags = flags;
795 root->kn = kn;
796 init_waitqueue_head(&root->deactivate_waitq);
797
798 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
799 kernfs_activate(kn);
800
801 return root;
802 }
803
804 /**
805 * kernfs_destroy_root - destroy a kernfs hierarchy
806 * @root: root of the hierarchy to destroy
807 *
808 * Destroy the hierarchy anchored at @root by removing all existing
809 * directories and destroying @root.
810 */
811 void kernfs_destroy_root(struct kernfs_root *root)
812 {
813 kernfs_remove(root->kn); /* will also free @root */
814 }
815
816 /**
817 * kernfs_create_dir_ns - create a directory
818 * @parent: parent in which to create a new directory
819 * @name: name of the new directory
820 * @mode: mode of the new directory
821 * @priv: opaque data associated with the new directory
822 * @ns: optional namespace tag of the directory
823 *
824 * Returns the created node on success, ERR_PTR() value on failure.
825 */
826 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
827 const char *name, umode_t mode,
828 void *priv, const void *ns)
829 {
830 struct kernfs_node *kn;
831 int rc;
832
833 /* allocate */
834 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
835 if (!kn)
836 return ERR_PTR(-ENOMEM);
837
838 kn->dir.root = parent->dir.root;
839 kn->ns = ns;
840 kn->priv = priv;
841
842 /* link in */
843 rc = kernfs_add_one(kn);
844 if (!rc)
845 return kn;
846
847 kernfs_put(kn);
848 return ERR_PTR(rc);
849 }
850
851 /**
852 * kernfs_create_empty_dir - create an always empty directory
853 * @parent: parent in which to create a new directory
854 * @name: name of the new directory
855 *
856 * Returns the created node on success, ERR_PTR() value on failure.
857 */
858 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
859 const char *name)
860 {
861 struct kernfs_node *kn;
862 int rc;
863
864 /* allocate */
865 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
866 if (!kn)
867 return ERR_PTR(-ENOMEM);
868
869 kn->flags |= KERNFS_EMPTY_DIR;
870 kn->dir.root = parent->dir.root;
871 kn->ns = NULL;
872 kn->priv = NULL;
873
874 /* link in */
875 rc = kernfs_add_one(kn);
876 if (!rc)
877 return kn;
878
879 kernfs_put(kn);
880 return ERR_PTR(rc);
881 }
882
883 static struct dentry *kernfs_iop_lookup(struct inode *dir,
884 struct dentry *dentry,
885 unsigned int flags)
886 {
887 struct dentry *ret;
888 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
889 struct kernfs_node *kn;
890 struct inode *inode;
891 const void *ns = NULL;
892
893 mutex_lock(&kernfs_mutex);
894
895 if (kernfs_ns_enabled(parent))
896 ns = kernfs_info(dir->i_sb)->ns;
897
898 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
899
900 /* no such entry */
901 if (!kn || !kernfs_active(kn)) {
902 ret = NULL;
903 goto out_unlock;
904 }
905 kernfs_get(kn);
906 dentry->d_fsdata = kn;
907
908 /* attach dentry and inode */
909 inode = kernfs_get_inode(dir->i_sb, kn);
910 if (!inode) {
911 ret = ERR_PTR(-ENOMEM);
912 goto out_unlock;
913 }
914
915 /* instantiate and hash dentry */
916 ret = d_splice_alias(inode, dentry);
917 out_unlock:
918 mutex_unlock(&kernfs_mutex);
919 return ret;
920 }
921
922 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
923 umode_t mode)
924 {
925 struct kernfs_node *parent = dir->i_private;
926 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
927 int ret;
928
929 if (!scops || !scops->mkdir)
930 return -EPERM;
931
932 if (!kernfs_get_active(parent))
933 return -ENODEV;
934
935 ret = scops->mkdir(parent, dentry->d_name.name, mode);
936
937 kernfs_put_active(parent);
938 return ret;
939 }
940
941 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
942 {
943 struct kernfs_node *kn = dentry->d_fsdata;
944 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
945 int ret;
946
947 if (!scops || !scops->rmdir)
948 return -EPERM;
949
950 if (!kernfs_get_active(kn))
951 return -ENODEV;
952
953 ret = scops->rmdir(kn);
954
955 kernfs_put_active(kn);
956 return ret;
957 }
958
959 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
960 struct inode *new_dir, struct dentry *new_dentry)
961 {
962 struct kernfs_node *kn = old_dentry->d_fsdata;
963 struct kernfs_node *new_parent = new_dir->i_private;
964 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
965 int ret;
966
967 if (!scops || !scops->rename)
968 return -EPERM;
969
970 if (!kernfs_get_active(kn))
971 return -ENODEV;
972
973 if (!kernfs_get_active(new_parent)) {
974 kernfs_put_active(kn);
975 return -ENODEV;
976 }
977
978 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
979
980 kernfs_put_active(new_parent);
981 kernfs_put_active(kn);
982 return ret;
983 }
984
985 const struct inode_operations kernfs_dir_iops = {
986 .lookup = kernfs_iop_lookup,
987 .permission = kernfs_iop_permission,
988 .setattr = kernfs_iop_setattr,
989 .getattr = kernfs_iop_getattr,
990 .setxattr = kernfs_iop_setxattr,
991 .removexattr = kernfs_iop_removexattr,
992 .getxattr = kernfs_iop_getxattr,
993 .listxattr = kernfs_iop_listxattr,
994
995 .mkdir = kernfs_iop_mkdir,
996 .rmdir = kernfs_iop_rmdir,
997 .rename = kernfs_iop_rename,
998 };
999
1000 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1001 {
1002 struct kernfs_node *last;
1003
1004 while (true) {
1005 struct rb_node *rbn;
1006
1007 last = pos;
1008
1009 if (kernfs_type(pos) != KERNFS_DIR)
1010 break;
1011
1012 rbn = rb_first(&pos->dir.children);
1013 if (!rbn)
1014 break;
1015
1016 pos = rb_to_kn(rbn);
1017 }
1018
1019 return last;
1020 }
1021
1022 /**
1023 * kernfs_next_descendant_post - find the next descendant for post-order walk
1024 * @pos: the current position (%NULL to initiate traversal)
1025 * @root: kernfs_node whose descendants to walk
1026 *
1027 * Find the next descendant to visit for post-order traversal of @root's
1028 * descendants. @root is included in the iteration and the last node to be
1029 * visited.
1030 */
1031 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1032 struct kernfs_node *root)
1033 {
1034 struct rb_node *rbn;
1035
1036 lockdep_assert_held(&kernfs_mutex);
1037
1038 /* if first iteration, visit leftmost descendant which may be root */
1039 if (!pos)
1040 return kernfs_leftmost_descendant(root);
1041
1042 /* if we visited @root, we're done */
1043 if (pos == root)
1044 return NULL;
1045
1046 /* if there's an unvisited sibling, visit its leftmost descendant */
1047 rbn = rb_next(&pos->rb);
1048 if (rbn)
1049 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1050
1051 /* no sibling left, visit parent */
1052 return pos->parent;
1053 }
1054
1055 /**
1056 * kernfs_activate - activate a node which started deactivated
1057 * @kn: kernfs_node whose subtree is to be activated
1058 *
1059 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1060 * needs to be explicitly activated. A node which hasn't been activated
1061 * isn't visible to userland and deactivation is skipped during its
1062 * removal. This is useful to construct atomic init sequences where
1063 * creation of multiple nodes should either succeed or fail atomically.
1064 *
1065 * The caller is responsible for ensuring that this function is not called
1066 * after kernfs_remove*() is invoked on @kn.
1067 */
1068 void kernfs_activate(struct kernfs_node *kn)
1069 {
1070 struct kernfs_node *pos;
1071
1072 mutex_lock(&kernfs_mutex);
1073
1074 pos = NULL;
1075 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1076 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1077 continue;
1078
1079 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1080 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1081
1082 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1083 pos->flags |= KERNFS_ACTIVATED;
1084 }
1085
1086 mutex_unlock(&kernfs_mutex);
1087 }
1088
1089 static void __kernfs_remove(struct kernfs_node *kn)
1090 {
1091 struct kernfs_node *pos;
1092
1093 lockdep_assert_held(&kernfs_mutex);
1094
1095 /*
1096 * Short-circuit if non-root @kn has already finished removal.
1097 * This is for kernfs_remove_self() which plays with active ref
1098 * after removal.
1099 */
1100 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1101 return;
1102
1103 pr_debug("kernfs %s: removing\n", kn->name);
1104
1105 /* prevent any new usage under @kn by deactivating all nodes */
1106 pos = NULL;
1107 while ((pos = kernfs_next_descendant_post(pos, kn)))
1108 if (kernfs_active(pos))
1109 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1110
1111 /* deactivate and unlink the subtree node-by-node */
1112 do {
1113 pos = kernfs_leftmost_descendant(kn);
1114
1115 /*
1116 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1117 * base ref could have been put by someone else by the time
1118 * the function returns. Make sure it doesn't go away
1119 * underneath us.
1120 */
1121 kernfs_get(pos);
1122
1123 /*
1124 * Drain iff @kn was activated. This avoids draining and
1125 * its lockdep annotations for nodes which have never been
1126 * activated and allows embedding kernfs_remove() in create
1127 * error paths without worrying about draining.
1128 */
1129 if (kn->flags & KERNFS_ACTIVATED)
1130 kernfs_drain(pos);
1131 else
1132 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1133
1134 /*
1135 * kernfs_unlink_sibling() succeeds once per node. Use it
1136 * to decide who's responsible for cleanups.
1137 */
1138 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1139 struct kernfs_iattrs *ps_iattr =
1140 pos->parent ? pos->parent->iattr : NULL;
1141
1142 /* update timestamps on the parent */
1143 if (ps_iattr) {
1144 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1145 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1146 }
1147
1148 kernfs_put(pos);
1149 }
1150
1151 kernfs_put(pos);
1152 } while (pos != kn);
1153 }
1154
1155 /**
1156 * kernfs_remove - remove a kernfs_node recursively
1157 * @kn: the kernfs_node to remove
1158 *
1159 * Remove @kn along with all its subdirectories and files.
1160 */
1161 void kernfs_remove(struct kernfs_node *kn)
1162 {
1163 mutex_lock(&kernfs_mutex);
1164 __kernfs_remove(kn);
1165 mutex_unlock(&kernfs_mutex);
1166 }
1167
1168 /**
1169 * kernfs_break_active_protection - break out of active protection
1170 * @kn: the self kernfs_node
1171 *
1172 * The caller must be running off of a kernfs operation which is invoked
1173 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1174 * this function must also be matched with an invocation of
1175 * kernfs_unbreak_active_protection().
1176 *
1177 * This function releases the active reference of @kn the caller is
1178 * holding. Once this function is called, @kn may be removed at any point
1179 * and the caller is solely responsible for ensuring that the objects it
1180 * dereferences are accessible.
1181 */
1182 void kernfs_break_active_protection(struct kernfs_node *kn)
1183 {
1184 /*
1185 * Take out ourself out of the active ref dependency chain. If
1186 * we're called without an active ref, lockdep will complain.
1187 */
1188 kernfs_put_active(kn);
1189 }
1190
1191 /**
1192 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1193 * @kn: the self kernfs_node
1194 *
1195 * If kernfs_break_active_protection() was called, this function must be
1196 * invoked before finishing the kernfs operation. Note that while this
1197 * function restores the active reference, it doesn't and can't actually
1198 * restore the active protection - @kn may already or be in the process of
1199 * being removed. Once kernfs_break_active_protection() is invoked, that
1200 * protection is irreversibly gone for the kernfs operation instance.
1201 *
1202 * While this function may be called at any point after
1203 * kernfs_break_active_protection() is invoked, its most useful location
1204 * would be right before the enclosing kernfs operation returns.
1205 */
1206 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1207 {
1208 /*
1209 * @kn->active could be in any state; however, the increment we do
1210 * here will be undone as soon as the enclosing kernfs operation
1211 * finishes and this temporary bump can't break anything. If @kn
1212 * is alive, nothing changes. If @kn is being deactivated, the
1213 * soon-to-follow put will either finish deactivation or restore
1214 * deactivated state. If @kn is already removed, the temporary
1215 * bump is guaranteed to be gone before @kn is released.
1216 */
1217 atomic_inc(&kn->active);
1218 if (kernfs_lockdep(kn))
1219 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1220 }
1221
1222 /**
1223 * kernfs_remove_self - remove a kernfs_node from its own method
1224 * @kn: the self kernfs_node to remove
1225 *
1226 * The caller must be running off of a kernfs operation which is invoked
1227 * with an active reference - e.g. one of kernfs_ops. This can be used to
1228 * implement a file operation which deletes itself.
1229 *
1230 * For example, the "delete" file for a sysfs device directory can be
1231 * implemented by invoking kernfs_remove_self() on the "delete" file
1232 * itself. This function breaks the circular dependency of trying to
1233 * deactivate self while holding an active ref itself. It isn't necessary
1234 * to modify the usual removal path to use kernfs_remove_self(). The
1235 * "delete" implementation can simply invoke kernfs_remove_self() on self
1236 * before proceeding with the usual removal path. kernfs will ignore later
1237 * kernfs_remove() on self.
1238 *
1239 * kernfs_remove_self() can be called multiple times concurrently on the
1240 * same kernfs_node. Only the first one actually performs removal and
1241 * returns %true. All others will wait until the kernfs operation which
1242 * won self-removal finishes and return %false. Note that the losers wait
1243 * for the completion of not only the winning kernfs_remove_self() but also
1244 * the whole kernfs_ops which won the arbitration. This can be used to
1245 * guarantee, for example, all concurrent writes to a "delete" file to
1246 * finish only after the whole operation is complete.
1247 */
1248 bool kernfs_remove_self(struct kernfs_node *kn)
1249 {
1250 bool ret;
1251
1252 mutex_lock(&kernfs_mutex);
1253 kernfs_break_active_protection(kn);
1254
1255 /*
1256 * SUICIDAL is used to arbitrate among competing invocations. Only
1257 * the first one will actually perform removal. When the removal
1258 * is complete, SUICIDED is set and the active ref is restored
1259 * while holding kernfs_mutex. The ones which lost arbitration
1260 * waits for SUICDED && drained which can happen only after the
1261 * enclosing kernfs operation which executed the winning instance
1262 * of kernfs_remove_self() finished.
1263 */
1264 if (!(kn->flags & KERNFS_SUICIDAL)) {
1265 kn->flags |= KERNFS_SUICIDAL;
1266 __kernfs_remove(kn);
1267 kn->flags |= KERNFS_SUICIDED;
1268 ret = true;
1269 } else {
1270 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1271 DEFINE_WAIT(wait);
1272
1273 while (true) {
1274 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1275
1276 if ((kn->flags & KERNFS_SUICIDED) &&
1277 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1278 break;
1279
1280 mutex_unlock(&kernfs_mutex);
1281 schedule();
1282 mutex_lock(&kernfs_mutex);
1283 }
1284 finish_wait(waitq, &wait);
1285 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1286 ret = false;
1287 }
1288
1289 /*
1290 * This must be done while holding kernfs_mutex; otherwise, waiting
1291 * for SUICIDED && deactivated could finish prematurely.
1292 */
1293 kernfs_unbreak_active_protection(kn);
1294
1295 mutex_unlock(&kernfs_mutex);
1296 return ret;
1297 }
1298
1299 /**
1300 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1301 * @parent: parent of the target
1302 * @name: name of the kernfs_node to remove
1303 * @ns: namespace tag of the kernfs_node to remove
1304 *
1305 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1306 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1307 */
1308 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1309 const void *ns)
1310 {
1311 struct kernfs_node *kn;
1312
1313 if (!parent) {
1314 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1315 name);
1316 return -ENOENT;
1317 }
1318
1319 mutex_lock(&kernfs_mutex);
1320
1321 kn = kernfs_find_ns(parent, name, ns);
1322 if (kn)
1323 __kernfs_remove(kn);
1324
1325 mutex_unlock(&kernfs_mutex);
1326
1327 if (kn)
1328 return 0;
1329 else
1330 return -ENOENT;
1331 }
1332
1333 /**
1334 * kernfs_rename_ns - move and rename a kernfs_node
1335 * @kn: target node
1336 * @new_parent: new parent to put @sd under
1337 * @new_name: new name
1338 * @new_ns: new namespace tag
1339 */
1340 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1341 const char *new_name, const void *new_ns)
1342 {
1343 struct kernfs_node *old_parent;
1344 const char *old_name = NULL;
1345 int error;
1346
1347 /* can't move or rename root */
1348 if (!kn->parent)
1349 return -EINVAL;
1350
1351 mutex_lock(&kernfs_mutex);
1352
1353 error = -ENOENT;
1354 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1355 (new_parent->flags & KERNFS_EMPTY_DIR))
1356 goto out;
1357
1358 error = 0;
1359 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1360 (strcmp(kn->name, new_name) == 0))
1361 goto out; /* nothing to rename */
1362
1363 error = -EEXIST;
1364 if (kernfs_find_ns(new_parent, new_name, new_ns))
1365 goto out;
1366
1367 /* rename kernfs_node */
1368 if (strcmp(kn->name, new_name) != 0) {
1369 error = -ENOMEM;
1370 new_name = kstrdup_const(new_name, GFP_KERNEL);
1371 if (!new_name)
1372 goto out;
1373 } else {
1374 new_name = NULL;
1375 }
1376
1377 /*
1378 * Move to the appropriate place in the appropriate directories rbtree.
1379 */
1380 kernfs_unlink_sibling(kn);
1381 kernfs_get(new_parent);
1382
1383 /* rename_lock protects ->parent and ->name accessors */
1384 spin_lock_irq(&kernfs_rename_lock);
1385
1386 old_parent = kn->parent;
1387 kn->parent = new_parent;
1388
1389 kn->ns = new_ns;
1390 if (new_name) {
1391 old_name = kn->name;
1392 kn->name = new_name;
1393 }
1394
1395 spin_unlock_irq(&kernfs_rename_lock);
1396
1397 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1398 kernfs_link_sibling(kn);
1399
1400 kernfs_put(old_parent);
1401 kfree_const(old_name);
1402
1403 error = 0;
1404 out:
1405 mutex_unlock(&kernfs_mutex);
1406 return error;
1407 }
1408
1409 /* Relationship between s_mode and the DT_xxx types */
1410 static inline unsigned char dt_type(struct kernfs_node *kn)
1411 {
1412 return (kn->mode >> 12) & 15;
1413 }
1414
1415 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1416 {
1417 kernfs_put(filp->private_data);
1418 return 0;
1419 }
1420
1421 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1422 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1423 {
1424 if (pos) {
1425 int valid = kernfs_active(pos) &&
1426 pos->parent == parent && hash == pos->hash;
1427 kernfs_put(pos);
1428 if (!valid)
1429 pos = NULL;
1430 }
1431 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1432 struct rb_node *node = parent->dir.children.rb_node;
1433 while (node) {
1434 pos = rb_to_kn(node);
1435
1436 if (hash < pos->hash)
1437 node = node->rb_left;
1438 else if (hash > pos->hash)
1439 node = node->rb_right;
1440 else
1441 break;
1442 }
1443 }
1444 /* Skip over entries which are dying/dead or in the wrong namespace */
1445 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1446 struct rb_node *node = rb_next(&pos->rb);
1447 if (!node)
1448 pos = NULL;
1449 else
1450 pos = rb_to_kn(node);
1451 }
1452 return pos;
1453 }
1454
1455 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1456 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1457 {
1458 pos = kernfs_dir_pos(ns, parent, ino, pos);
1459 if (pos) {
1460 do {
1461 struct rb_node *node = rb_next(&pos->rb);
1462 if (!node)
1463 pos = NULL;
1464 else
1465 pos = rb_to_kn(node);
1466 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1467 }
1468 return pos;
1469 }
1470
1471 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1472 {
1473 struct dentry *dentry = file->f_path.dentry;
1474 struct kernfs_node *parent = dentry->d_fsdata;
1475 struct kernfs_node *pos = file->private_data;
1476 const void *ns = NULL;
1477
1478 if (!dir_emit_dots(file, ctx))
1479 return 0;
1480 mutex_lock(&kernfs_mutex);
1481
1482 if (kernfs_ns_enabled(parent))
1483 ns = kernfs_info(dentry->d_sb)->ns;
1484
1485 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1486 pos;
1487 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1488 const char *name = pos->name;
1489 unsigned int type = dt_type(pos);
1490 int len = strlen(name);
1491 ino_t ino = pos->ino;
1492
1493 ctx->pos = pos->hash;
1494 file->private_data = pos;
1495 kernfs_get(pos);
1496
1497 mutex_unlock(&kernfs_mutex);
1498 if (!dir_emit(ctx, name, len, ino, type))
1499 return 0;
1500 mutex_lock(&kernfs_mutex);
1501 }
1502 mutex_unlock(&kernfs_mutex);
1503 file->private_data = NULL;
1504 ctx->pos = INT_MAX;
1505 return 0;
1506 }
1507
1508 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1509 int whence)
1510 {
1511 struct inode *inode = file_inode(file);
1512 loff_t ret;
1513
1514 inode_lock(inode);
1515 ret = generic_file_llseek(file, offset, whence);
1516 inode_unlock(inode);
1517
1518 return ret;
1519 }
1520
1521 const struct file_operations kernfs_dir_fops = {
1522 .read = generic_read_dir,
1523 .iterate = kernfs_fop_readdir,
1524 .release = kernfs_dir_fop_release,
1525 .llseek = kernfs_dir_fop_llseek,
1526 };
This page took 0.062494 seconds and 6 git commands to generate.