nfs: teach the NFS client how to treat PG_swapcache pages
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356 *
357 * Separate out file-system wide checks from inode-specific permission checks.
358 */
359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
360 {
361 if (unlikely(mask & MAY_WRITE)) {
362 umode_t mode = inode->i_mode;
363
364 /* Nobody gets write access to a read-only fs. */
365 if ((sb->s_flags & MS_RDONLY) &&
366 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
367 return -EROFS;
368 }
369 return 0;
370 }
371
372 /**
373 * inode_permission - Check for access rights to a given inode
374 * @inode: Inode to check permission on
375 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376 *
377 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
378 * this, letting us set arbitrary permissions for filesystem access without
379 * changing the "normal" UIDs which are used for other things.
380 *
381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382 */
383 int inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 retval = sb_permission(inode->i_sb, inode, mask);
388 if (retval)
389 return retval;
390 return __inode_permission(inode, mask);
391 }
392
393 /**
394 * path_get - get a reference to a path
395 * @path: path to get the reference to
396 *
397 * Given a path increment the reference count to the dentry and the vfsmount.
398 */
399 void path_get(struct path *path)
400 {
401 mntget(path->mnt);
402 dget(path->dentry);
403 }
404 EXPORT_SYMBOL(path_get);
405
406 /**
407 * path_put - put a reference to a path
408 * @path: path to put the reference to
409 *
410 * Given a path decrement the reference count to the dentry and the vfsmount.
411 */
412 void path_put(struct path *path)
413 {
414 dput(path->dentry);
415 mntput(path->mnt);
416 }
417 EXPORT_SYMBOL(path_put);
418
419 /*
420 * Path walking has 2 modes, rcu-walk and ref-walk (see
421 * Documentation/filesystems/path-lookup.txt). In situations when we can't
422 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
423 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
424 * mode. Refcounts are grabbed at the last known good point before rcu-walk
425 * got stuck, so ref-walk may continue from there. If this is not successful
426 * (eg. a seqcount has changed), then failure is returned and it's up to caller
427 * to restart the path walk from the beginning in ref-walk mode.
428 */
429
430 static inline void lock_rcu_walk(void)
431 {
432 br_read_lock(&vfsmount_lock);
433 rcu_read_lock();
434 }
435
436 static inline void unlock_rcu_walk(void)
437 {
438 rcu_read_unlock();
439 br_read_unlock(&vfsmount_lock);
440 }
441
442 /**
443 * unlazy_walk - try to switch to ref-walk mode.
444 * @nd: nameidata pathwalk data
445 * @dentry: child of nd->path.dentry or NULL
446 * Returns: 0 on success, -ECHILD on failure
447 *
448 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
449 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
450 * @nd or NULL. Must be called from rcu-walk context.
451 */
452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
453 {
454 struct fs_struct *fs = current->fs;
455 struct dentry *parent = nd->path.dentry;
456 int want_root = 0;
457
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
460 want_root = 1;
461 spin_lock(&fs->lock);
462 if (nd->root.mnt != fs->root.mnt ||
463 nd->root.dentry != fs->root.dentry)
464 goto err_root;
465 }
466 spin_lock(&parent->d_lock);
467 if (!dentry) {
468 if (!__d_rcu_to_refcount(parent, nd->seq))
469 goto err_parent;
470 BUG_ON(nd->inode != parent->d_inode);
471 } else {
472 if (dentry->d_parent != parent)
473 goto err_parent;
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err_child;
477 /*
478 * If the sequence check on the child dentry passed, then
479 * the child has not been removed from its parent. This
480 * means the parent dentry must be valid and able to take
481 * a reference at this point.
482 */
483 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
484 BUG_ON(!parent->d_count);
485 parent->d_count++;
486 spin_unlock(&dentry->d_lock);
487 }
488 spin_unlock(&parent->d_lock);
489 if (want_root) {
490 path_get(&nd->root);
491 spin_unlock(&fs->lock);
492 }
493 mntget(nd->path.mnt);
494
495 unlock_rcu_walk();
496 nd->flags &= ~LOOKUP_RCU;
497 return 0;
498
499 err_child:
500 spin_unlock(&dentry->d_lock);
501 err_parent:
502 spin_unlock(&parent->d_lock);
503 err_root:
504 if (want_root)
505 spin_unlock(&fs->lock);
506 return -ECHILD;
507 }
508
509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
510 {
511 return dentry->d_op->d_revalidate(dentry, flags);
512 }
513
514 /**
515 * complete_walk - successful completion of path walk
516 * @nd: pointer nameidata
517 *
518 * If we had been in RCU mode, drop out of it and legitimize nd->path.
519 * Revalidate the final result, unless we'd already done that during
520 * the path walk or the filesystem doesn't ask for it. Return 0 on
521 * success, -error on failure. In case of failure caller does not
522 * need to drop nd->path.
523 */
524 static int complete_walk(struct nameidata *nd)
525 {
526 struct dentry *dentry = nd->path.dentry;
527 int status;
528
529 if (nd->flags & LOOKUP_RCU) {
530 nd->flags &= ~LOOKUP_RCU;
531 if (!(nd->flags & LOOKUP_ROOT))
532 nd->root.mnt = NULL;
533 spin_lock(&dentry->d_lock);
534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 spin_unlock(&dentry->d_lock);
536 unlock_rcu_walk();
537 return -ECHILD;
538 }
539 BUG_ON(nd->inode != dentry->d_inode);
540 spin_unlock(&dentry->d_lock);
541 mntget(nd->path.mnt);
542 unlock_rcu_walk();
543 }
544
545 if (likely(!(nd->flags & LOOKUP_JUMPED)))
546 return 0;
547
548 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
549 return 0;
550
551 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
552 return 0;
553
554 /* Note: we do not d_invalidate() */
555 status = d_revalidate(dentry, nd->flags);
556 if (status > 0)
557 return 0;
558
559 if (!status)
560 status = -ESTALE;
561
562 path_put(&nd->path);
563 return status;
564 }
565
566 static __always_inline void set_root(struct nameidata *nd)
567 {
568 if (!nd->root.mnt)
569 get_fs_root(current->fs, &nd->root);
570 }
571
572 static int link_path_walk(const char *, struct nameidata *);
573
574 static __always_inline void set_root_rcu(struct nameidata *nd)
575 {
576 if (!nd->root.mnt) {
577 struct fs_struct *fs = current->fs;
578 unsigned seq;
579
580 do {
581 seq = read_seqcount_begin(&fs->seq);
582 nd->root = fs->root;
583 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
584 } while (read_seqcount_retry(&fs->seq, seq));
585 }
586 }
587
588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
589 {
590 int ret;
591
592 if (IS_ERR(link))
593 goto fail;
594
595 if (*link == '/') {
596 set_root(nd);
597 path_put(&nd->path);
598 nd->path = nd->root;
599 path_get(&nd->root);
600 nd->flags |= LOOKUP_JUMPED;
601 }
602 nd->inode = nd->path.dentry->d_inode;
603
604 ret = link_path_walk(link, nd);
605 return ret;
606 fail:
607 path_put(&nd->path);
608 return PTR_ERR(link);
609 }
610
611 static void path_put_conditional(struct path *path, struct nameidata *nd)
612 {
613 dput(path->dentry);
614 if (path->mnt != nd->path.mnt)
615 mntput(path->mnt);
616 }
617
618 static inline void path_to_nameidata(const struct path *path,
619 struct nameidata *nd)
620 {
621 if (!(nd->flags & LOOKUP_RCU)) {
622 dput(nd->path.dentry);
623 if (nd->path.mnt != path->mnt)
624 mntput(nd->path.mnt);
625 }
626 nd->path.mnt = path->mnt;
627 nd->path.dentry = path->dentry;
628 }
629
630 /*
631 * Helper to directly jump to a known parsed path from ->follow_link,
632 * caller must have taken a reference to path beforehand.
633 */
634 void nd_jump_link(struct nameidata *nd, struct path *path)
635 {
636 path_put(&nd->path);
637
638 nd->path = *path;
639 nd->inode = nd->path.dentry->d_inode;
640 nd->flags |= LOOKUP_JUMPED;
641
642 BUG_ON(nd->inode->i_op->follow_link);
643 }
644
645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
646 {
647 struct inode *inode = link->dentry->d_inode;
648 if (inode->i_op->put_link)
649 inode->i_op->put_link(link->dentry, nd, cookie);
650 path_put(link);
651 }
652
653 static __always_inline int
654 follow_link(struct path *link, struct nameidata *nd, void **p)
655 {
656 struct dentry *dentry = link->dentry;
657 int error;
658 char *s;
659
660 BUG_ON(nd->flags & LOOKUP_RCU);
661
662 if (link->mnt == nd->path.mnt)
663 mntget(link->mnt);
664
665 error = -ELOOP;
666 if (unlikely(current->total_link_count >= 40))
667 goto out_put_nd_path;
668
669 cond_resched();
670 current->total_link_count++;
671
672 touch_atime(link);
673 nd_set_link(nd, NULL);
674
675 error = security_inode_follow_link(link->dentry, nd);
676 if (error)
677 goto out_put_nd_path;
678
679 nd->last_type = LAST_BIND;
680 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
681 error = PTR_ERR(*p);
682 if (IS_ERR(*p))
683 goto out_put_nd_path;
684
685 error = 0;
686 s = nd_get_link(nd);
687 if (s) {
688 error = __vfs_follow_link(nd, s);
689 if (unlikely(error))
690 put_link(nd, link, *p);
691 }
692
693 return error;
694
695 out_put_nd_path:
696 path_put(&nd->path);
697 path_put(link);
698 return error;
699 }
700
701 static int follow_up_rcu(struct path *path)
702 {
703 struct mount *mnt = real_mount(path->mnt);
704 struct mount *parent;
705 struct dentry *mountpoint;
706
707 parent = mnt->mnt_parent;
708 if (&parent->mnt == path->mnt)
709 return 0;
710 mountpoint = mnt->mnt_mountpoint;
711 path->dentry = mountpoint;
712 path->mnt = &parent->mnt;
713 return 1;
714 }
715
716 /*
717 * follow_up - Find the mountpoint of path's vfsmount
718 *
719 * Given a path, find the mountpoint of its source file system.
720 * Replace @path with the path of the mountpoint in the parent mount.
721 * Up is towards /.
722 *
723 * Return 1 if we went up a level and 0 if we were already at the
724 * root.
725 */
726 int follow_up(struct path *path)
727 {
728 struct mount *mnt = real_mount(path->mnt);
729 struct mount *parent;
730 struct dentry *mountpoint;
731
732 br_read_lock(&vfsmount_lock);
733 parent = mnt->mnt_parent;
734 if (parent == mnt) {
735 br_read_unlock(&vfsmount_lock);
736 return 0;
737 }
738 mntget(&parent->mnt);
739 mountpoint = dget(mnt->mnt_mountpoint);
740 br_read_unlock(&vfsmount_lock);
741 dput(path->dentry);
742 path->dentry = mountpoint;
743 mntput(path->mnt);
744 path->mnt = &parent->mnt;
745 return 1;
746 }
747
748 /*
749 * Perform an automount
750 * - return -EISDIR to tell follow_managed() to stop and return the path we
751 * were called with.
752 */
753 static int follow_automount(struct path *path, unsigned flags,
754 bool *need_mntput)
755 {
756 struct vfsmount *mnt;
757 int err;
758
759 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
760 return -EREMOTE;
761
762 /* We don't want to mount if someone's just doing a stat -
763 * unless they're stat'ing a directory and appended a '/' to
764 * the name.
765 *
766 * We do, however, want to mount if someone wants to open or
767 * create a file of any type under the mountpoint, wants to
768 * traverse through the mountpoint or wants to open the
769 * mounted directory. Also, autofs may mark negative dentries
770 * as being automount points. These will need the attentions
771 * of the daemon to instantiate them before they can be used.
772 */
773 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
774 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
775 path->dentry->d_inode)
776 return -EISDIR;
777
778 current->total_link_count++;
779 if (current->total_link_count >= 40)
780 return -ELOOP;
781
782 mnt = path->dentry->d_op->d_automount(path);
783 if (IS_ERR(mnt)) {
784 /*
785 * The filesystem is allowed to return -EISDIR here to indicate
786 * it doesn't want to automount. For instance, autofs would do
787 * this so that its userspace daemon can mount on this dentry.
788 *
789 * However, we can only permit this if it's a terminal point in
790 * the path being looked up; if it wasn't then the remainder of
791 * the path is inaccessible and we should say so.
792 */
793 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
794 return -EREMOTE;
795 return PTR_ERR(mnt);
796 }
797
798 if (!mnt) /* mount collision */
799 return 0;
800
801 if (!*need_mntput) {
802 /* lock_mount() may release path->mnt on error */
803 mntget(path->mnt);
804 *need_mntput = true;
805 }
806 err = finish_automount(mnt, path);
807
808 switch (err) {
809 case -EBUSY:
810 /* Someone else made a mount here whilst we were busy */
811 return 0;
812 case 0:
813 path_put(path);
814 path->mnt = mnt;
815 path->dentry = dget(mnt->mnt_root);
816 return 0;
817 default:
818 return err;
819 }
820
821 }
822
823 /*
824 * Handle a dentry that is managed in some way.
825 * - Flagged for transit management (autofs)
826 * - Flagged as mountpoint
827 * - Flagged as automount point
828 *
829 * This may only be called in refwalk mode.
830 *
831 * Serialization is taken care of in namespace.c
832 */
833 static int follow_managed(struct path *path, unsigned flags)
834 {
835 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
836 unsigned managed;
837 bool need_mntput = false;
838 int ret = 0;
839
840 /* Given that we're not holding a lock here, we retain the value in a
841 * local variable for each dentry as we look at it so that we don't see
842 * the components of that value change under us */
843 while (managed = ACCESS_ONCE(path->dentry->d_flags),
844 managed &= DCACHE_MANAGED_DENTRY,
845 unlikely(managed != 0)) {
846 /* Allow the filesystem to manage the transit without i_mutex
847 * being held. */
848 if (managed & DCACHE_MANAGE_TRANSIT) {
849 BUG_ON(!path->dentry->d_op);
850 BUG_ON(!path->dentry->d_op->d_manage);
851 ret = path->dentry->d_op->d_manage(path->dentry, false);
852 if (ret < 0)
853 break;
854 }
855
856 /* Transit to a mounted filesystem. */
857 if (managed & DCACHE_MOUNTED) {
858 struct vfsmount *mounted = lookup_mnt(path);
859 if (mounted) {
860 dput(path->dentry);
861 if (need_mntput)
862 mntput(path->mnt);
863 path->mnt = mounted;
864 path->dentry = dget(mounted->mnt_root);
865 need_mntput = true;
866 continue;
867 }
868
869 /* Something is mounted on this dentry in another
870 * namespace and/or whatever was mounted there in this
871 * namespace got unmounted before we managed to get the
872 * vfsmount_lock */
873 }
874
875 /* Handle an automount point */
876 if (managed & DCACHE_NEED_AUTOMOUNT) {
877 ret = follow_automount(path, flags, &need_mntput);
878 if (ret < 0)
879 break;
880 continue;
881 }
882
883 /* We didn't change the current path point */
884 break;
885 }
886
887 if (need_mntput && path->mnt == mnt)
888 mntput(path->mnt);
889 if (ret == -EISDIR)
890 ret = 0;
891 return ret < 0 ? ret : need_mntput;
892 }
893
894 int follow_down_one(struct path *path)
895 {
896 struct vfsmount *mounted;
897
898 mounted = lookup_mnt(path);
899 if (mounted) {
900 dput(path->dentry);
901 mntput(path->mnt);
902 path->mnt = mounted;
903 path->dentry = dget(mounted->mnt_root);
904 return 1;
905 }
906 return 0;
907 }
908
909 static inline bool managed_dentry_might_block(struct dentry *dentry)
910 {
911 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
912 dentry->d_op->d_manage(dentry, true) < 0);
913 }
914
915 /*
916 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
917 * we meet a managed dentry that would need blocking.
918 */
919 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
920 struct inode **inode)
921 {
922 for (;;) {
923 struct mount *mounted;
924 /*
925 * Don't forget we might have a non-mountpoint managed dentry
926 * that wants to block transit.
927 */
928 if (unlikely(managed_dentry_might_block(path->dentry)))
929 return false;
930
931 if (!d_mountpoint(path->dentry))
932 break;
933
934 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
935 if (!mounted)
936 break;
937 path->mnt = &mounted->mnt;
938 path->dentry = mounted->mnt.mnt_root;
939 nd->flags |= LOOKUP_JUMPED;
940 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
941 /*
942 * Update the inode too. We don't need to re-check the
943 * dentry sequence number here after this d_inode read,
944 * because a mount-point is always pinned.
945 */
946 *inode = path->dentry->d_inode;
947 }
948 return true;
949 }
950
951 static void follow_mount_rcu(struct nameidata *nd)
952 {
953 while (d_mountpoint(nd->path.dentry)) {
954 struct mount *mounted;
955 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
956 if (!mounted)
957 break;
958 nd->path.mnt = &mounted->mnt;
959 nd->path.dentry = mounted->mnt.mnt_root;
960 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
961 }
962 }
963
964 static int follow_dotdot_rcu(struct nameidata *nd)
965 {
966 set_root_rcu(nd);
967
968 while (1) {
969 if (nd->path.dentry == nd->root.dentry &&
970 nd->path.mnt == nd->root.mnt) {
971 break;
972 }
973 if (nd->path.dentry != nd->path.mnt->mnt_root) {
974 struct dentry *old = nd->path.dentry;
975 struct dentry *parent = old->d_parent;
976 unsigned seq;
977
978 seq = read_seqcount_begin(&parent->d_seq);
979 if (read_seqcount_retry(&old->d_seq, nd->seq))
980 goto failed;
981 nd->path.dentry = parent;
982 nd->seq = seq;
983 break;
984 }
985 if (!follow_up_rcu(&nd->path))
986 break;
987 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
988 }
989 follow_mount_rcu(nd);
990 nd->inode = nd->path.dentry->d_inode;
991 return 0;
992
993 failed:
994 nd->flags &= ~LOOKUP_RCU;
995 if (!(nd->flags & LOOKUP_ROOT))
996 nd->root.mnt = NULL;
997 unlock_rcu_walk();
998 return -ECHILD;
999 }
1000
1001 /*
1002 * Follow down to the covering mount currently visible to userspace. At each
1003 * point, the filesystem owning that dentry may be queried as to whether the
1004 * caller is permitted to proceed or not.
1005 */
1006 int follow_down(struct path *path)
1007 {
1008 unsigned managed;
1009 int ret;
1010
1011 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1013 /* Allow the filesystem to manage the transit without i_mutex
1014 * being held.
1015 *
1016 * We indicate to the filesystem if someone is trying to mount
1017 * something here. This gives autofs the chance to deny anyone
1018 * other than its daemon the right to mount on its
1019 * superstructure.
1020 *
1021 * The filesystem may sleep at this point.
1022 */
1023 if (managed & DCACHE_MANAGE_TRANSIT) {
1024 BUG_ON(!path->dentry->d_op);
1025 BUG_ON(!path->dentry->d_op->d_manage);
1026 ret = path->dentry->d_op->d_manage(
1027 path->dentry, false);
1028 if (ret < 0)
1029 return ret == -EISDIR ? 0 : ret;
1030 }
1031
1032 /* Transit to a mounted filesystem. */
1033 if (managed & DCACHE_MOUNTED) {
1034 struct vfsmount *mounted = lookup_mnt(path);
1035 if (!mounted)
1036 break;
1037 dput(path->dentry);
1038 mntput(path->mnt);
1039 path->mnt = mounted;
1040 path->dentry = dget(mounted->mnt_root);
1041 continue;
1042 }
1043
1044 /* Don't handle automount points here */
1045 break;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1052 */
1053 static void follow_mount(struct path *path)
1054 {
1055 while (d_mountpoint(path->dentry)) {
1056 struct vfsmount *mounted = lookup_mnt(path);
1057 if (!mounted)
1058 break;
1059 dput(path->dentry);
1060 mntput(path->mnt);
1061 path->mnt = mounted;
1062 path->dentry = dget(mounted->mnt_root);
1063 }
1064 }
1065
1066 static void follow_dotdot(struct nameidata *nd)
1067 {
1068 set_root(nd);
1069
1070 while(1) {
1071 struct dentry *old = nd->path.dentry;
1072
1073 if (nd->path.dentry == nd->root.dentry &&
1074 nd->path.mnt == nd->root.mnt) {
1075 break;
1076 }
1077 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1078 /* rare case of legitimate dget_parent()... */
1079 nd->path.dentry = dget_parent(nd->path.dentry);
1080 dput(old);
1081 break;
1082 }
1083 if (!follow_up(&nd->path))
1084 break;
1085 }
1086 follow_mount(&nd->path);
1087 nd->inode = nd->path.dentry->d_inode;
1088 }
1089
1090 /*
1091 * This looks up the name in dcache, possibly revalidates the old dentry and
1092 * allocates a new one if not found or not valid. In the need_lookup argument
1093 * returns whether i_op->lookup is necessary.
1094 *
1095 * dir->d_inode->i_mutex must be held
1096 */
1097 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1098 unsigned int flags, bool *need_lookup)
1099 {
1100 struct dentry *dentry;
1101 int error;
1102
1103 *need_lookup = false;
1104 dentry = d_lookup(dir, name);
1105 if (dentry) {
1106 if (d_need_lookup(dentry)) {
1107 *need_lookup = true;
1108 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1109 error = d_revalidate(dentry, flags);
1110 if (unlikely(error <= 0)) {
1111 if (error < 0) {
1112 dput(dentry);
1113 return ERR_PTR(error);
1114 } else if (!d_invalidate(dentry)) {
1115 dput(dentry);
1116 dentry = NULL;
1117 }
1118 }
1119 }
1120 }
1121
1122 if (!dentry) {
1123 dentry = d_alloc(dir, name);
1124 if (unlikely(!dentry))
1125 return ERR_PTR(-ENOMEM);
1126
1127 *need_lookup = true;
1128 }
1129 return dentry;
1130 }
1131
1132 /*
1133 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1134 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1135 *
1136 * dir->d_inode->i_mutex must be held
1137 */
1138 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1139 unsigned int flags)
1140 {
1141 struct dentry *old;
1142
1143 /* Don't create child dentry for a dead directory. */
1144 if (unlikely(IS_DEADDIR(dir))) {
1145 dput(dentry);
1146 return ERR_PTR(-ENOENT);
1147 }
1148
1149 old = dir->i_op->lookup(dir, dentry, flags);
1150 if (unlikely(old)) {
1151 dput(dentry);
1152 dentry = old;
1153 }
1154 return dentry;
1155 }
1156
1157 static struct dentry *__lookup_hash(struct qstr *name,
1158 struct dentry *base, unsigned int flags)
1159 {
1160 bool need_lookup;
1161 struct dentry *dentry;
1162
1163 dentry = lookup_dcache(name, base, flags, &need_lookup);
1164 if (!need_lookup)
1165 return dentry;
1166
1167 return lookup_real(base->d_inode, dentry, flags);
1168 }
1169
1170 /*
1171 * It's more convoluted than I'd like it to be, but... it's still fairly
1172 * small and for now I'd prefer to have fast path as straight as possible.
1173 * It _is_ time-critical.
1174 */
1175 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1176 struct path *path, struct inode **inode)
1177 {
1178 struct vfsmount *mnt = nd->path.mnt;
1179 struct dentry *dentry, *parent = nd->path.dentry;
1180 int need_reval = 1;
1181 int status = 1;
1182 int err;
1183
1184 /*
1185 * Rename seqlock is not required here because in the off chance
1186 * of a false negative due to a concurrent rename, we're going to
1187 * do the non-racy lookup, below.
1188 */
1189 if (nd->flags & LOOKUP_RCU) {
1190 unsigned seq;
1191 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1192 if (!dentry)
1193 goto unlazy;
1194
1195 /*
1196 * This sequence count validates that the inode matches
1197 * the dentry name information from lookup.
1198 */
1199 *inode = dentry->d_inode;
1200 if (read_seqcount_retry(&dentry->d_seq, seq))
1201 return -ECHILD;
1202
1203 /*
1204 * This sequence count validates that the parent had no
1205 * changes while we did the lookup of the dentry above.
1206 *
1207 * The memory barrier in read_seqcount_begin of child is
1208 * enough, we can use __read_seqcount_retry here.
1209 */
1210 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1211 return -ECHILD;
1212 nd->seq = seq;
1213
1214 if (unlikely(d_need_lookup(dentry)))
1215 goto unlazy;
1216 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1217 status = d_revalidate(dentry, nd->flags);
1218 if (unlikely(status <= 0)) {
1219 if (status != -ECHILD)
1220 need_reval = 0;
1221 goto unlazy;
1222 }
1223 }
1224 path->mnt = mnt;
1225 path->dentry = dentry;
1226 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1227 goto unlazy;
1228 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1229 goto unlazy;
1230 return 0;
1231 unlazy:
1232 if (unlazy_walk(nd, dentry))
1233 return -ECHILD;
1234 } else {
1235 dentry = __d_lookup(parent, name);
1236 }
1237
1238 if (unlikely(!dentry))
1239 goto need_lookup;
1240
1241 if (unlikely(d_need_lookup(dentry))) {
1242 dput(dentry);
1243 goto need_lookup;
1244 }
1245
1246 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1247 status = d_revalidate(dentry, nd->flags);
1248 if (unlikely(status <= 0)) {
1249 if (status < 0) {
1250 dput(dentry);
1251 return status;
1252 }
1253 if (!d_invalidate(dentry)) {
1254 dput(dentry);
1255 goto need_lookup;
1256 }
1257 }
1258
1259 path->mnt = mnt;
1260 path->dentry = dentry;
1261 err = follow_managed(path, nd->flags);
1262 if (unlikely(err < 0)) {
1263 path_put_conditional(path, nd);
1264 return err;
1265 }
1266 if (err)
1267 nd->flags |= LOOKUP_JUMPED;
1268 *inode = path->dentry->d_inode;
1269 return 0;
1270
1271 need_lookup:
1272 return 1;
1273 }
1274
1275 /* Fast lookup failed, do it the slow way */
1276 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1277 struct path *path)
1278 {
1279 struct dentry *dentry, *parent;
1280 int err;
1281
1282 parent = nd->path.dentry;
1283 BUG_ON(nd->inode != parent->d_inode);
1284
1285 mutex_lock(&parent->d_inode->i_mutex);
1286 dentry = __lookup_hash(name, parent, nd->flags);
1287 mutex_unlock(&parent->d_inode->i_mutex);
1288 if (IS_ERR(dentry))
1289 return PTR_ERR(dentry);
1290 path->mnt = nd->path.mnt;
1291 path->dentry = dentry;
1292 err = follow_managed(path, nd->flags);
1293 if (unlikely(err < 0)) {
1294 path_put_conditional(path, nd);
1295 return err;
1296 }
1297 if (err)
1298 nd->flags |= LOOKUP_JUMPED;
1299 return 0;
1300 }
1301
1302 static inline int may_lookup(struct nameidata *nd)
1303 {
1304 if (nd->flags & LOOKUP_RCU) {
1305 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1306 if (err != -ECHILD)
1307 return err;
1308 if (unlazy_walk(nd, NULL))
1309 return -ECHILD;
1310 }
1311 return inode_permission(nd->inode, MAY_EXEC);
1312 }
1313
1314 static inline int handle_dots(struct nameidata *nd, int type)
1315 {
1316 if (type == LAST_DOTDOT) {
1317 if (nd->flags & LOOKUP_RCU) {
1318 if (follow_dotdot_rcu(nd))
1319 return -ECHILD;
1320 } else
1321 follow_dotdot(nd);
1322 }
1323 return 0;
1324 }
1325
1326 static void terminate_walk(struct nameidata *nd)
1327 {
1328 if (!(nd->flags & LOOKUP_RCU)) {
1329 path_put(&nd->path);
1330 } else {
1331 nd->flags &= ~LOOKUP_RCU;
1332 if (!(nd->flags & LOOKUP_ROOT))
1333 nd->root.mnt = NULL;
1334 unlock_rcu_walk();
1335 }
1336 }
1337
1338 /*
1339 * Do we need to follow links? We _really_ want to be able
1340 * to do this check without having to look at inode->i_op,
1341 * so we keep a cache of "no, this doesn't need follow_link"
1342 * for the common case.
1343 */
1344 static inline int should_follow_link(struct inode *inode, int follow)
1345 {
1346 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1347 if (likely(inode->i_op->follow_link))
1348 return follow;
1349
1350 /* This gets set once for the inode lifetime */
1351 spin_lock(&inode->i_lock);
1352 inode->i_opflags |= IOP_NOFOLLOW;
1353 spin_unlock(&inode->i_lock);
1354 }
1355 return 0;
1356 }
1357
1358 static inline int walk_component(struct nameidata *nd, struct path *path,
1359 struct qstr *name, int type, int follow)
1360 {
1361 struct inode *inode;
1362 int err;
1363 /*
1364 * "." and ".." are special - ".." especially so because it has
1365 * to be able to know about the current root directory and
1366 * parent relationships.
1367 */
1368 if (unlikely(type != LAST_NORM))
1369 return handle_dots(nd, type);
1370 err = lookup_fast(nd, name, path, &inode);
1371 if (unlikely(err)) {
1372 if (err < 0)
1373 goto out_err;
1374
1375 err = lookup_slow(nd, name, path);
1376 if (err < 0)
1377 goto out_err;
1378
1379 inode = path->dentry->d_inode;
1380 }
1381 err = -ENOENT;
1382 if (!inode)
1383 goto out_path_put;
1384
1385 if (should_follow_link(inode, follow)) {
1386 if (nd->flags & LOOKUP_RCU) {
1387 if (unlikely(unlazy_walk(nd, path->dentry))) {
1388 err = -ECHILD;
1389 goto out_err;
1390 }
1391 }
1392 BUG_ON(inode != path->dentry->d_inode);
1393 return 1;
1394 }
1395 path_to_nameidata(path, nd);
1396 nd->inode = inode;
1397 return 0;
1398
1399 out_path_put:
1400 path_to_nameidata(path, nd);
1401 out_err:
1402 terminate_walk(nd);
1403 return err;
1404 }
1405
1406 /*
1407 * This limits recursive symlink follows to 8, while
1408 * limiting consecutive symlinks to 40.
1409 *
1410 * Without that kind of total limit, nasty chains of consecutive
1411 * symlinks can cause almost arbitrarily long lookups.
1412 */
1413 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1414 {
1415 int res;
1416
1417 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1418 path_put_conditional(path, nd);
1419 path_put(&nd->path);
1420 return -ELOOP;
1421 }
1422 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1423
1424 nd->depth++;
1425 current->link_count++;
1426
1427 do {
1428 struct path link = *path;
1429 void *cookie;
1430
1431 res = follow_link(&link, nd, &cookie);
1432 if (res)
1433 break;
1434 res = walk_component(nd, path, &nd->last,
1435 nd->last_type, LOOKUP_FOLLOW);
1436 put_link(nd, &link, cookie);
1437 } while (res > 0);
1438
1439 current->link_count--;
1440 nd->depth--;
1441 return res;
1442 }
1443
1444 /*
1445 * We really don't want to look at inode->i_op->lookup
1446 * when we don't have to. So we keep a cache bit in
1447 * the inode ->i_opflags field that says "yes, we can
1448 * do lookup on this inode".
1449 */
1450 static inline int can_lookup(struct inode *inode)
1451 {
1452 if (likely(inode->i_opflags & IOP_LOOKUP))
1453 return 1;
1454 if (likely(!inode->i_op->lookup))
1455 return 0;
1456
1457 /* We do this once for the lifetime of the inode */
1458 spin_lock(&inode->i_lock);
1459 inode->i_opflags |= IOP_LOOKUP;
1460 spin_unlock(&inode->i_lock);
1461 return 1;
1462 }
1463
1464 /*
1465 * We can do the critical dentry name comparison and hashing
1466 * operations one word at a time, but we are limited to:
1467 *
1468 * - Architectures with fast unaligned word accesses. We could
1469 * do a "get_unaligned()" if this helps and is sufficiently
1470 * fast.
1471 *
1472 * - Little-endian machines (so that we can generate the mask
1473 * of low bytes efficiently). Again, we *could* do a byte
1474 * swapping load on big-endian architectures if that is not
1475 * expensive enough to make the optimization worthless.
1476 *
1477 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1478 * do not trap on the (extremely unlikely) case of a page
1479 * crossing operation.
1480 *
1481 * - Furthermore, we need an efficient 64-bit compile for the
1482 * 64-bit case in order to generate the "number of bytes in
1483 * the final mask". Again, that could be replaced with a
1484 * efficient population count instruction or similar.
1485 */
1486 #ifdef CONFIG_DCACHE_WORD_ACCESS
1487
1488 #include <asm/word-at-a-time.h>
1489
1490 #ifdef CONFIG_64BIT
1491
1492 static inline unsigned int fold_hash(unsigned long hash)
1493 {
1494 hash += hash >> (8*sizeof(int));
1495 return hash;
1496 }
1497
1498 #else /* 32-bit case */
1499
1500 #define fold_hash(x) (x)
1501
1502 #endif
1503
1504 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1505 {
1506 unsigned long a, mask;
1507 unsigned long hash = 0;
1508
1509 for (;;) {
1510 a = load_unaligned_zeropad(name);
1511 if (len < sizeof(unsigned long))
1512 break;
1513 hash += a;
1514 hash *= 9;
1515 name += sizeof(unsigned long);
1516 len -= sizeof(unsigned long);
1517 if (!len)
1518 goto done;
1519 }
1520 mask = ~(~0ul << len*8);
1521 hash += mask & a;
1522 done:
1523 return fold_hash(hash);
1524 }
1525 EXPORT_SYMBOL(full_name_hash);
1526
1527 /*
1528 * Calculate the length and hash of the path component, and
1529 * return the length of the component;
1530 */
1531 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1532 {
1533 unsigned long a, b, adata, bdata, mask, hash, len;
1534 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1535
1536 hash = a = 0;
1537 len = -sizeof(unsigned long);
1538 do {
1539 hash = (hash + a) * 9;
1540 len += sizeof(unsigned long);
1541 a = load_unaligned_zeropad(name+len);
1542 b = a ^ REPEAT_BYTE('/');
1543 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1544
1545 adata = prep_zero_mask(a, adata, &constants);
1546 bdata = prep_zero_mask(b, bdata, &constants);
1547
1548 mask = create_zero_mask(adata | bdata);
1549
1550 hash += a & zero_bytemask(mask);
1551 *hashp = fold_hash(hash);
1552
1553 return len + find_zero(mask);
1554 }
1555
1556 #else
1557
1558 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1559 {
1560 unsigned long hash = init_name_hash();
1561 while (len--)
1562 hash = partial_name_hash(*name++, hash);
1563 return end_name_hash(hash);
1564 }
1565 EXPORT_SYMBOL(full_name_hash);
1566
1567 /*
1568 * We know there's a real path component here of at least
1569 * one character.
1570 */
1571 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1572 {
1573 unsigned long hash = init_name_hash();
1574 unsigned long len = 0, c;
1575
1576 c = (unsigned char)*name;
1577 do {
1578 len++;
1579 hash = partial_name_hash(c, hash);
1580 c = (unsigned char)name[len];
1581 } while (c && c != '/');
1582 *hashp = end_name_hash(hash);
1583 return len;
1584 }
1585
1586 #endif
1587
1588 /*
1589 * Name resolution.
1590 * This is the basic name resolution function, turning a pathname into
1591 * the final dentry. We expect 'base' to be positive and a directory.
1592 *
1593 * Returns 0 and nd will have valid dentry and mnt on success.
1594 * Returns error and drops reference to input namei data on failure.
1595 */
1596 static int link_path_walk(const char *name, struct nameidata *nd)
1597 {
1598 struct path next;
1599 int err;
1600
1601 while (*name=='/')
1602 name++;
1603 if (!*name)
1604 return 0;
1605
1606 /* At this point we know we have a real path component. */
1607 for(;;) {
1608 struct qstr this;
1609 long len;
1610 int type;
1611
1612 err = may_lookup(nd);
1613 if (err)
1614 break;
1615
1616 len = hash_name(name, &this.hash);
1617 this.name = name;
1618 this.len = len;
1619
1620 type = LAST_NORM;
1621 if (name[0] == '.') switch (len) {
1622 case 2:
1623 if (name[1] == '.') {
1624 type = LAST_DOTDOT;
1625 nd->flags |= LOOKUP_JUMPED;
1626 }
1627 break;
1628 case 1:
1629 type = LAST_DOT;
1630 }
1631 if (likely(type == LAST_NORM)) {
1632 struct dentry *parent = nd->path.dentry;
1633 nd->flags &= ~LOOKUP_JUMPED;
1634 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1635 err = parent->d_op->d_hash(parent, nd->inode,
1636 &this);
1637 if (err < 0)
1638 break;
1639 }
1640 }
1641
1642 if (!name[len])
1643 goto last_component;
1644 /*
1645 * If it wasn't NUL, we know it was '/'. Skip that
1646 * slash, and continue until no more slashes.
1647 */
1648 do {
1649 len++;
1650 } while (unlikely(name[len] == '/'));
1651 if (!name[len])
1652 goto last_component;
1653 name += len;
1654
1655 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1656 if (err < 0)
1657 return err;
1658
1659 if (err) {
1660 err = nested_symlink(&next, nd);
1661 if (err)
1662 return err;
1663 }
1664 if (can_lookup(nd->inode))
1665 continue;
1666 err = -ENOTDIR;
1667 break;
1668 /* here ends the main loop */
1669
1670 last_component:
1671 nd->last = this;
1672 nd->last_type = type;
1673 return 0;
1674 }
1675 terminate_walk(nd);
1676 return err;
1677 }
1678
1679 static int path_init(int dfd, const char *name, unsigned int flags,
1680 struct nameidata *nd, struct file **fp)
1681 {
1682 int retval = 0;
1683 int fput_needed;
1684 struct file *file;
1685
1686 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1687 nd->flags = flags | LOOKUP_JUMPED;
1688 nd->depth = 0;
1689 if (flags & LOOKUP_ROOT) {
1690 struct inode *inode = nd->root.dentry->d_inode;
1691 if (*name) {
1692 if (!inode->i_op->lookup)
1693 return -ENOTDIR;
1694 retval = inode_permission(inode, MAY_EXEC);
1695 if (retval)
1696 return retval;
1697 }
1698 nd->path = nd->root;
1699 nd->inode = inode;
1700 if (flags & LOOKUP_RCU) {
1701 lock_rcu_walk();
1702 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1703 } else {
1704 path_get(&nd->path);
1705 }
1706 return 0;
1707 }
1708
1709 nd->root.mnt = NULL;
1710
1711 if (*name=='/') {
1712 if (flags & LOOKUP_RCU) {
1713 lock_rcu_walk();
1714 set_root_rcu(nd);
1715 } else {
1716 set_root(nd);
1717 path_get(&nd->root);
1718 }
1719 nd->path = nd->root;
1720 } else if (dfd == AT_FDCWD) {
1721 if (flags & LOOKUP_RCU) {
1722 struct fs_struct *fs = current->fs;
1723 unsigned seq;
1724
1725 lock_rcu_walk();
1726
1727 do {
1728 seq = read_seqcount_begin(&fs->seq);
1729 nd->path = fs->pwd;
1730 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1731 } while (read_seqcount_retry(&fs->seq, seq));
1732 } else {
1733 get_fs_pwd(current->fs, &nd->path);
1734 }
1735 } else {
1736 struct dentry *dentry;
1737
1738 file = fget_raw_light(dfd, &fput_needed);
1739 retval = -EBADF;
1740 if (!file)
1741 goto out_fail;
1742
1743 dentry = file->f_path.dentry;
1744
1745 if (*name) {
1746 retval = -ENOTDIR;
1747 if (!S_ISDIR(dentry->d_inode->i_mode))
1748 goto fput_fail;
1749
1750 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1751 if (retval)
1752 goto fput_fail;
1753 }
1754
1755 nd->path = file->f_path;
1756 if (flags & LOOKUP_RCU) {
1757 if (fput_needed)
1758 *fp = file;
1759 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1760 lock_rcu_walk();
1761 } else {
1762 path_get(&file->f_path);
1763 fput_light(file, fput_needed);
1764 }
1765 }
1766
1767 nd->inode = nd->path.dentry->d_inode;
1768 return 0;
1769
1770 fput_fail:
1771 fput_light(file, fput_needed);
1772 out_fail:
1773 return retval;
1774 }
1775
1776 static inline int lookup_last(struct nameidata *nd, struct path *path)
1777 {
1778 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1779 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1780
1781 nd->flags &= ~LOOKUP_PARENT;
1782 return walk_component(nd, path, &nd->last, nd->last_type,
1783 nd->flags & LOOKUP_FOLLOW);
1784 }
1785
1786 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1787 static int path_lookupat(int dfd, const char *name,
1788 unsigned int flags, struct nameidata *nd)
1789 {
1790 struct file *base = NULL;
1791 struct path path;
1792 int err;
1793
1794 /*
1795 * Path walking is largely split up into 2 different synchronisation
1796 * schemes, rcu-walk and ref-walk (explained in
1797 * Documentation/filesystems/path-lookup.txt). These share much of the
1798 * path walk code, but some things particularly setup, cleanup, and
1799 * following mounts are sufficiently divergent that functions are
1800 * duplicated. Typically there is a function foo(), and its RCU
1801 * analogue, foo_rcu().
1802 *
1803 * -ECHILD is the error number of choice (just to avoid clashes) that
1804 * is returned if some aspect of an rcu-walk fails. Such an error must
1805 * be handled by restarting a traditional ref-walk (which will always
1806 * be able to complete).
1807 */
1808 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1809
1810 if (unlikely(err))
1811 return err;
1812
1813 current->total_link_count = 0;
1814 err = link_path_walk(name, nd);
1815
1816 if (!err && !(flags & LOOKUP_PARENT)) {
1817 err = lookup_last(nd, &path);
1818 while (err > 0) {
1819 void *cookie;
1820 struct path link = path;
1821 nd->flags |= LOOKUP_PARENT;
1822 err = follow_link(&link, nd, &cookie);
1823 if (err)
1824 break;
1825 err = lookup_last(nd, &path);
1826 put_link(nd, &link, cookie);
1827 }
1828 }
1829
1830 if (!err)
1831 err = complete_walk(nd);
1832
1833 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1834 if (!nd->inode->i_op->lookup) {
1835 path_put(&nd->path);
1836 err = -ENOTDIR;
1837 }
1838 }
1839
1840 if (base)
1841 fput(base);
1842
1843 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1844 path_put(&nd->root);
1845 nd->root.mnt = NULL;
1846 }
1847 return err;
1848 }
1849
1850 static int do_path_lookup(int dfd, const char *name,
1851 unsigned int flags, struct nameidata *nd)
1852 {
1853 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1854 if (unlikely(retval == -ECHILD))
1855 retval = path_lookupat(dfd, name, flags, nd);
1856 if (unlikely(retval == -ESTALE))
1857 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1858
1859 if (likely(!retval)) {
1860 if (unlikely(!audit_dummy_context())) {
1861 if (nd->path.dentry && nd->inode)
1862 audit_inode(name, nd->path.dentry);
1863 }
1864 }
1865 return retval;
1866 }
1867
1868 /* does lookup, returns the object with parent locked */
1869 struct dentry *kern_path_locked(const char *name, struct path *path)
1870 {
1871 struct nameidata nd;
1872 struct dentry *d;
1873 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1874 if (err)
1875 return ERR_PTR(err);
1876 if (nd.last_type != LAST_NORM) {
1877 path_put(&nd.path);
1878 return ERR_PTR(-EINVAL);
1879 }
1880 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1881 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1882 if (IS_ERR(d)) {
1883 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1884 path_put(&nd.path);
1885 return d;
1886 }
1887 *path = nd.path;
1888 return d;
1889 }
1890
1891 int kern_path(const char *name, unsigned int flags, struct path *path)
1892 {
1893 struct nameidata nd;
1894 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1895 if (!res)
1896 *path = nd.path;
1897 return res;
1898 }
1899
1900 /**
1901 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1902 * @dentry: pointer to dentry of the base directory
1903 * @mnt: pointer to vfs mount of the base directory
1904 * @name: pointer to file name
1905 * @flags: lookup flags
1906 * @path: pointer to struct path to fill
1907 */
1908 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1909 const char *name, unsigned int flags,
1910 struct path *path)
1911 {
1912 struct nameidata nd;
1913 int err;
1914 nd.root.dentry = dentry;
1915 nd.root.mnt = mnt;
1916 BUG_ON(flags & LOOKUP_PARENT);
1917 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1918 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1919 if (!err)
1920 *path = nd.path;
1921 return err;
1922 }
1923
1924 /*
1925 * Restricted form of lookup. Doesn't follow links, single-component only,
1926 * needs parent already locked. Doesn't follow mounts.
1927 * SMP-safe.
1928 */
1929 static struct dentry *lookup_hash(struct nameidata *nd)
1930 {
1931 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
1932 }
1933
1934 /**
1935 * lookup_one_len - filesystem helper to lookup single pathname component
1936 * @name: pathname component to lookup
1937 * @base: base directory to lookup from
1938 * @len: maximum length @len should be interpreted to
1939 *
1940 * Note that this routine is purely a helper for filesystem usage and should
1941 * not be called by generic code. Also note that by using this function the
1942 * nameidata argument is passed to the filesystem methods and a filesystem
1943 * using this helper needs to be prepared for that.
1944 */
1945 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1946 {
1947 struct qstr this;
1948 unsigned int c;
1949 int err;
1950
1951 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1952
1953 this.name = name;
1954 this.len = len;
1955 this.hash = full_name_hash(name, len);
1956 if (!len)
1957 return ERR_PTR(-EACCES);
1958
1959 while (len--) {
1960 c = *(const unsigned char *)name++;
1961 if (c == '/' || c == '\0')
1962 return ERR_PTR(-EACCES);
1963 }
1964 /*
1965 * See if the low-level filesystem might want
1966 * to use its own hash..
1967 */
1968 if (base->d_flags & DCACHE_OP_HASH) {
1969 int err = base->d_op->d_hash(base, base->d_inode, &this);
1970 if (err < 0)
1971 return ERR_PTR(err);
1972 }
1973
1974 err = inode_permission(base->d_inode, MAY_EXEC);
1975 if (err)
1976 return ERR_PTR(err);
1977
1978 return __lookup_hash(&this, base, 0);
1979 }
1980
1981 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1982 struct path *path, int *empty)
1983 {
1984 struct nameidata nd;
1985 char *tmp = getname_flags(name, flags, empty);
1986 int err = PTR_ERR(tmp);
1987 if (!IS_ERR(tmp)) {
1988
1989 BUG_ON(flags & LOOKUP_PARENT);
1990
1991 err = do_path_lookup(dfd, tmp, flags, &nd);
1992 putname(tmp);
1993 if (!err)
1994 *path = nd.path;
1995 }
1996 return err;
1997 }
1998
1999 int user_path_at(int dfd, const char __user *name, unsigned flags,
2000 struct path *path)
2001 {
2002 return user_path_at_empty(dfd, name, flags, path, NULL);
2003 }
2004
2005 static int user_path_parent(int dfd, const char __user *path,
2006 struct nameidata *nd, char **name)
2007 {
2008 char *s = getname(path);
2009 int error;
2010
2011 if (IS_ERR(s))
2012 return PTR_ERR(s);
2013
2014 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2015 if (error)
2016 putname(s);
2017 else
2018 *name = s;
2019
2020 return error;
2021 }
2022
2023 /*
2024 * It's inline, so penalty for filesystems that don't use sticky bit is
2025 * minimal.
2026 */
2027 static inline int check_sticky(struct inode *dir, struct inode *inode)
2028 {
2029 kuid_t fsuid = current_fsuid();
2030
2031 if (!(dir->i_mode & S_ISVTX))
2032 return 0;
2033 if (uid_eq(inode->i_uid, fsuid))
2034 return 0;
2035 if (uid_eq(dir->i_uid, fsuid))
2036 return 0;
2037 return !inode_capable(inode, CAP_FOWNER);
2038 }
2039
2040 /*
2041 * Check whether we can remove a link victim from directory dir, check
2042 * whether the type of victim is right.
2043 * 1. We can't do it if dir is read-only (done in permission())
2044 * 2. We should have write and exec permissions on dir
2045 * 3. We can't remove anything from append-only dir
2046 * 4. We can't do anything with immutable dir (done in permission())
2047 * 5. If the sticky bit on dir is set we should either
2048 * a. be owner of dir, or
2049 * b. be owner of victim, or
2050 * c. have CAP_FOWNER capability
2051 * 6. If the victim is append-only or immutable we can't do antyhing with
2052 * links pointing to it.
2053 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2054 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2055 * 9. We can't remove a root or mountpoint.
2056 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2057 * nfs_async_unlink().
2058 */
2059 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2060 {
2061 int error;
2062
2063 if (!victim->d_inode)
2064 return -ENOENT;
2065
2066 BUG_ON(victim->d_parent->d_inode != dir);
2067 audit_inode_child(victim, dir);
2068
2069 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2070 if (error)
2071 return error;
2072 if (IS_APPEND(dir))
2073 return -EPERM;
2074 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2075 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2076 return -EPERM;
2077 if (isdir) {
2078 if (!S_ISDIR(victim->d_inode->i_mode))
2079 return -ENOTDIR;
2080 if (IS_ROOT(victim))
2081 return -EBUSY;
2082 } else if (S_ISDIR(victim->d_inode->i_mode))
2083 return -EISDIR;
2084 if (IS_DEADDIR(dir))
2085 return -ENOENT;
2086 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2087 return -EBUSY;
2088 return 0;
2089 }
2090
2091 /* Check whether we can create an object with dentry child in directory
2092 * dir.
2093 * 1. We can't do it if child already exists (open has special treatment for
2094 * this case, but since we are inlined it's OK)
2095 * 2. We can't do it if dir is read-only (done in permission())
2096 * 3. We should have write and exec permissions on dir
2097 * 4. We can't do it if dir is immutable (done in permission())
2098 */
2099 static inline int may_create(struct inode *dir, struct dentry *child)
2100 {
2101 if (child->d_inode)
2102 return -EEXIST;
2103 if (IS_DEADDIR(dir))
2104 return -ENOENT;
2105 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2106 }
2107
2108 /*
2109 * p1 and p2 should be directories on the same fs.
2110 */
2111 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2112 {
2113 struct dentry *p;
2114
2115 if (p1 == p2) {
2116 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2117 return NULL;
2118 }
2119
2120 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2121
2122 p = d_ancestor(p2, p1);
2123 if (p) {
2124 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2125 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2126 return p;
2127 }
2128
2129 p = d_ancestor(p1, p2);
2130 if (p) {
2131 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2132 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2133 return p;
2134 }
2135
2136 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2137 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2138 return NULL;
2139 }
2140
2141 void unlock_rename(struct dentry *p1, struct dentry *p2)
2142 {
2143 mutex_unlock(&p1->d_inode->i_mutex);
2144 if (p1 != p2) {
2145 mutex_unlock(&p2->d_inode->i_mutex);
2146 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2147 }
2148 }
2149
2150 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2151 bool want_excl)
2152 {
2153 int error = may_create(dir, dentry);
2154 if (error)
2155 return error;
2156
2157 if (!dir->i_op->create)
2158 return -EACCES; /* shouldn't it be ENOSYS? */
2159 mode &= S_IALLUGO;
2160 mode |= S_IFREG;
2161 error = security_inode_create(dir, dentry, mode);
2162 if (error)
2163 return error;
2164 error = dir->i_op->create(dir, dentry, mode, want_excl);
2165 if (!error)
2166 fsnotify_create(dir, dentry);
2167 return error;
2168 }
2169
2170 static int may_open(struct path *path, int acc_mode, int flag)
2171 {
2172 struct dentry *dentry = path->dentry;
2173 struct inode *inode = dentry->d_inode;
2174 int error;
2175
2176 /* O_PATH? */
2177 if (!acc_mode)
2178 return 0;
2179
2180 if (!inode)
2181 return -ENOENT;
2182
2183 switch (inode->i_mode & S_IFMT) {
2184 case S_IFLNK:
2185 return -ELOOP;
2186 case S_IFDIR:
2187 if (acc_mode & MAY_WRITE)
2188 return -EISDIR;
2189 break;
2190 case S_IFBLK:
2191 case S_IFCHR:
2192 if (path->mnt->mnt_flags & MNT_NODEV)
2193 return -EACCES;
2194 /*FALLTHRU*/
2195 case S_IFIFO:
2196 case S_IFSOCK:
2197 flag &= ~O_TRUNC;
2198 break;
2199 }
2200
2201 error = inode_permission(inode, acc_mode);
2202 if (error)
2203 return error;
2204
2205 /*
2206 * An append-only file must be opened in append mode for writing.
2207 */
2208 if (IS_APPEND(inode)) {
2209 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2210 return -EPERM;
2211 if (flag & O_TRUNC)
2212 return -EPERM;
2213 }
2214
2215 /* O_NOATIME can only be set by the owner or superuser */
2216 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2217 return -EPERM;
2218
2219 return 0;
2220 }
2221
2222 static int handle_truncate(struct file *filp)
2223 {
2224 struct path *path = &filp->f_path;
2225 struct inode *inode = path->dentry->d_inode;
2226 int error = get_write_access(inode);
2227 if (error)
2228 return error;
2229 /*
2230 * Refuse to truncate files with mandatory locks held on them.
2231 */
2232 error = locks_verify_locked(inode);
2233 if (!error)
2234 error = security_path_truncate(path);
2235 if (!error) {
2236 error = do_truncate(path->dentry, 0,
2237 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2238 filp);
2239 }
2240 put_write_access(inode);
2241 return error;
2242 }
2243
2244 static inline int open_to_namei_flags(int flag)
2245 {
2246 if ((flag & O_ACCMODE) == 3)
2247 flag--;
2248 return flag;
2249 }
2250
2251 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2252 {
2253 int error = security_path_mknod(dir, dentry, mode, 0);
2254 if (error)
2255 return error;
2256
2257 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2258 if (error)
2259 return error;
2260
2261 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2262 }
2263
2264 /*
2265 * Attempt to atomically look up, create and open a file from a negative
2266 * dentry.
2267 *
2268 * Returns 0 if successful. The file will have been created and attached to
2269 * @file by the filesystem calling finish_open().
2270 *
2271 * Returns 1 if the file was looked up only or didn't need creating. The
2272 * caller will need to perform the open themselves. @path will have been
2273 * updated to point to the new dentry. This may be negative.
2274 *
2275 * Returns an error code otherwise.
2276 */
2277 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2278 struct path *path, struct file *file,
2279 const struct open_flags *op,
2280 bool *want_write, bool need_lookup,
2281 int *opened)
2282 {
2283 struct inode *dir = nd->path.dentry->d_inode;
2284 unsigned open_flag = open_to_namei_flags(op->open_flag);
2285 umode_t mode;
2286 int error;
2287 int acc_mode;
2288 int create_error = 0;
2289 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2290
2291 BUG_ON(dentry->d_inode);
2292
2293 /* Don't create child dentry for a dead directory. */
2294 if (unlikely(IS_DEADDIR(dir))) {
2295 error = -ENOENT;
2296 goto out;
2297 }
2298
2299 mode = op->mode & S_IALLUGO;
2300 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2301 mode &= ~current_umask();
2302
2303 if (open_flag & O_EXCL) {
2304 open_flag &= ~O_TRUNC;
2305 *opened |= FILE_CREATED;
2306 }
2307
2308 /*
2309 * Checking write permission is tricky, bacuse we don't know if we are
2310 * going to actually need it: O_CREAT opens should work as long as the
2311 * file exists. But checking existence breaks atomicity. The trick is
2312 * to check access and if not granted clear O_CREAT from the flags.
2313 *
2314 * Another problem is returing the "right" error value (e.g. for an
2315 * O_EXCL open we want to return EEXIST not EROFS).
2316 */
2317 if ((open_flag & (O_CREAT | O_TRUNC)) ||
2318 (open_flag & O_ACCMODE) != O_RDONLY) {
2319 error = mnt_want_write(nd->path.mnt);
2320 if (!error) {
2321 *want_write = true;
2322 } else if (!(open_flag & O_CREAT)) {
2323 /*
2324 * No O_CREATE -> atomicity not a requirement -> fall
2325 * back to lookup + open
2326 */
2327 goto no_open;
2328 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2329 /* Fall back and fail with the right error */
2330 create_error = error;
2331 goto no_open;
2332 } else {
2333 /* No side effects, safe to clear O_CREAT */
2334 create_error = error;
2335 open_flag &= ~O_CREAT;
2336 }
2337 }
2338
2339 if (open_flag & O_CREAT) {
2340 error = may_o_create(&nd->path, dentry, op->mode);
2341 if (error) {
2342 create_error = error;
2343 if (open_flag & O_EXCL)
2344 goto no_open;
2345 open_flag &= ~O_CREAT;
2346 }
2347 }
2348
2349 if (nd->flags & LOOKUP_DIRECTORY)
2350 open_flag |= O_DIRECTORY;
2351
2352 file->f_path.dentry = DENTRY_NOT_SET;
2353 file->f_path.mnt = nd->path.mnt;
2354 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2355 opened);
2356 if (error < 0) {
2357 if (create_error && error == -ENOENT)
2358 error = create_error;
2359 goto out;
2360 }
2361
2362 acc_mode = op->acc_mode;
2363 if (*opened & FILE_CREATED) {
2364 fsnotify_create(dir, dentry);
2365 acc_mode = MAY_OPEN;
2366 }
2367
2368 if (error) { /* returned 1, that is */
2369 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2370 error = -EIO;
2371 goto out;
2372 }
2373 if (file->f_path.dentry) {
2374 dput(dentry);
2375 dentry = file->f_path.dentry;
2376 }
2377 goto looked_up;
2378 }
2379
2380 /*
2381 * We didn't have the inode before the open, so check open permission
2382 * here.
2383 */
2384 error = may_open(&file->f_path, acc_mode, open_flag);
2385 if (error)
2386 fput(file);
2387
2388 out:
2389 dput(dentry);
2390 return error;
2391
2392 no_open:
2393 if (need_lookup) {
2394 dentry = lookup_real(dir, dentry, nd->flags);
2395 if (IS_ERR(dentry))
2396 return PTR_ERR(dentry);
2397
2398 if (create_error) {
2399 int open_flag = op->open_flag;
2400
2401 error = create_error;
2402 if ((open_flag & O_EXCL)) {
2403 if (!dentry->d_inode)
2404 goto out;
2405 } else if (!dentry->d_inode) {
2406 goto out;
2407 } else if ((open_flag & O_TRUNC) &&
2408 S_ISREG(dentry->d_inode->i_mode)) {
2409 goto out;
2410 }
2411 /* will fail later, go on to get the right error */
2412 }
2413 }
2414 looked_up:
2415 path->dentry = dentry;
2416 path->mnt = nd->path.mnt;
2417 return 1;
2418 }
2419
2420 /*
2421 * Look up and maybe create and open the last component.
2422 *
2423 * Must be called with i_mutex held on parent.
2424 *
2425 * Returns 0 if the file was successfully atomically created (if necessary) and
2426 * opened. In this case the file will be returned attached to @file.
2427 *
2428 * Returns 1 if the file was not completely opened at this time, though lookups
2429 * and creations will have been performed and the dentry returned in @path will
2430 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2431 * specified then a negative dentry may be returned.
2432 *
2433 * An error code is returned otherwise.
2434 *
2435 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2436 * cleared otherwise prior to returning.
2437 */
2438 static int lookup_open(struct nameidata *nd, struct path *path,
2439 struct file *file,
2440 const struct open_flags *op,
2441 bool *want_write, int *opened)
2442 {
2443 struct dentry *dir = nd->path.dentry;
2444 struct inode *dir_inode = dir->d_inode;
2445 struct dentry *dentry;
2446 int error;
2447 bool need_lookup;
2448
2449 *opened &= ~FILE_CREATED;
2450 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2451 if (IS_ERR(dentry))
2452 return PTR_ERR(dentry);
2453
2454 /* Cached positive dentry: will open in f_op->open */
2455 if (!need_lookup && dentry->d_inode)
2456 goto out_no_open;
2457
2458 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2459 return atomic_open(nd, dentry, path, file, op, want_write,
2460 need_lookup, opened);
2461 }
2462
2463 if (need_lookup) {
2464 BUG_ON(dentry->d_inode);
2465
2466 dentry = lookup_real(dir_inode, dentry, nd->flags);
2467 if (IS_ERR(dentry))
2468 return PTR_ERR(dentry);
2469 }
2470
2471 /* Negative dentry, just create the file */
2472 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2473 umode_t mode = op->mode;
2474 if (!IS_POSIXACL(dir->d_inode))
2475 mode &= ~current_umask();
2476 /*
2477 * This write is needed to ensure that a
2478 * rw->ro transition does not occur between
2479 * the time when the file is created and when
2480 * a permanent write count is taken through
2481 * the 'struct file' in finish_open().
2482 */
2483 error = mnt_want_write(nd->path.mnt);
2484 if (error)
2485 goto out_dput;
2486 *want_write = true;
2487 *opened |= FILE_CREATED;
2488 error = security_path_mknod(&nd->path, dentry, mode, 0);
2489 if (error)
2490 goto out_dput;
2491 error = vfs_create(dir->d_inode, dentry, mode,
2492 nd->flags & LOOKUP_EXCL);
2493 if (error)
2494 goto out_dput;
2495 }
2496 out_no_open:
2497 path->dentry = dentry;
2498 path->mnt = nd->path.mnt;
2499 return 1;
2500
2501 out_dput:
2502 dput(dentry);
2503 return error;
2504 }
2505
2506 /*
2507 * Handle the last step of open()
2508 */
2509 static int do_last(struct nameidata *nd, struct path *path,
2510 struct file *file, const struct open_flags *op,
2511 int *opened, const char *pathname)
2512 {
2513 struct dentry *dir = nd->path.dentry;
2514 int open_flag = op->open_flag;
2515 bool will_truncate = (open_flag & O_TRUNC) != 0;
2516 bool want_write = false;
2517 int acc_mode = op->acc_mode;
2518 struct inode *inode;
2519 bool symlink_ok = false;
2520 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2521 bool retried = false;
2522 int error;
2523
2524 nd->flags &= ~LOOKUP_PARENT;
2525 nd->flags |= op->intent;
2526
2527 switch (nd->last_type) {
2528 case LAST_DOTDOT:
2529 case LAST_DOT:
2530 error = handle_dots(nd, nd->last_type);
2531 if (error)
2532 return error;
2533 /* fallthrough */
2534 case LAST_ROOT:
2535 error = complete_walk(nd);
2536 if (error)
2537 return error;
2538 audit_inode(pathname, nd->path.dentry);
2539 if (open_flag & O_CREAT) {
2540 error = -EISDIR;
2541 goto out;
2542 }
2543 goto finish_open;
2544 case LAST_BIND:
2545 error = complete_walk(nd);
2546 if (error)
2547 return error;
2548 audit_inode(pathname, dir);
2549 goto finish_open;
2550 }
2551
2552 if (!(open_flag & O_CREAT)) {
2553 if (nd->last.name[nd->last.len])
2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2555 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2556 symlink_ok = true;
2557 /* we _can_ be in RCU mode here */
2558 error = lookup_fast(nd, &nd->last, path, &inode);
2559 if (likely(!error))
2560 goto finish_lookup;
2561
2562 if (error < 0)
2563 goto out;
2564
2565 BUG_ON(nd->inode != dir->d_inode);
2566 } else {
2567 /* create side of things */
2568 /*
2569 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2570 * has been cleared when we got to the last component we are
2571 * about to look up
2572 */
2573 error = complete_walk(nd);
2574 if (error)
2575 return error;
2576
2577 audit_inode(pathname, dir);
2578 error = -EISDIR;
2579 /* trailing slashes? */
2580 if (nd->last.name[nd->last.len])
2581 goto out;
2582 }
2583
2584 retry_lookup:
2585 mutex_lock(&dir->d_inode->i_mutex);
2586 error = lookup_open(nd, path, file, op, &want_write, opened);
2587 mutex_unlock(&dir->d_inode->i_mutex);
2588
2589 if (error <= 0) {
2590 if (error)
2591 goto out;
2592
2593 if ((*opened & FILE_CREATED) ||
2594 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2595 will_truncate = false;
2596
2597 audit_inode(pathname, file->f_path.dentry);
2598 goto opened;
2599 }
2600
2601 if (*opened & FILE_CREATED) {
2602 /* Don't check for write permission, don't truncate */
2603 open_flag &= ~O_TRUNC;
2604 will_truncate = false;
2605 acc_mode = MAY_OPEN;
2606 path_to_nameidata(path, nd);
2607 goto finish_open_created;
2608 }
2609
2610 /*
2611 * It already exists.
2612 */
2613 audit_inode(pathname, path->dentry);
2614
2615 /*
2616 * If atomic_open() acquired write access it is dropped now due to
2617 * possible mount and symlink following (this might be optimized away if
2618 * necessary...)
2619 */
2620 if (want_write) {
2621 mnt_drop_write(nd->path.mnt);
2622 want_write = false;
2623 }
2624
2625 error = -EEXIST;
2626 if (open_flag & O_EXCL)
2627 goto exit_dput;
2628
2629 error = follow_managed(path, nd->flags);
2630 if (error < 0)
2631 goto exit_dput;
2632
2633 if (error)
2634 nd->flags |= LOOKUP_JUMPED;
2635
2636 BUG_ON(nd->flags & LOOKUP_RCU);
2637 inode = path->dentry->d_inode;
2638 finish_lookup:
2639 /* we _can_ be in RCU mode here */
2640 error = -ENOENT;
2641 if (!inode) {
2642 path_to_nameidata(path, nd);
2643 goto out;
2644 }
2645
2646 if (should_follow_link(inode, !symlink_ok)) {
2647 if (nd->flags & LOOKUP_RCU) {
2648 if (unlikely(unlazy_walk(nd, path->dentry))) {
2649 error = -ECHILD;
2650 goto out;
2651 }
2652 }
2653 BUG_ON(inode != path->dentry->d_inode);
2654 return 1;
2655 }
2656
2657 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2658 path_to_nameidata(path, nd);
2659 } else {
2660 save_parent.dentry = nd->path.dentry;
2661 save_parent.mnt = mntget(path->mnt);
2662 nd->path.dentry = path->dentry;
2663
2664 }
2665 nd->inode = inode;
2666 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2667 error = complete_walk(nd);
2668 if (error) {
2669 path_put(&save_parent);
2670 return error;
2671 }
2672 error = -EISDIR;
2673 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2674 goto out;
2675 error = -ENOTDIR;
2676 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2677 goto out;
2678 audit_inode(pathname, nd->path.dentry);
2679 finish_open:
2680 if (!S_ISREG(nd->inode->i_mode))
2681 will_truncate = false;
2682
2683 if (will_truncate) {
2684 error = mnt_want_write(nd->path.mnt);
2685 if (error)
2686 goto out;
2687 want_write = true;
2688 }
2689 finish_open_created:
2690 error = may_open(&nd->path, acc_mode, open_flag);
2691 if (error)
2692 goto out;
2693 file->f_path.mnt = nd->path.mnt;
2694 error = finish_open(file, nd->path.dentry, NULL, opened);
2695 if (error) {
2696 if (error == -EOPENSTALE)
2697 goto stale_open;
2698 goto out;
2699 }
2700 opened:
2701 error = open_check_o_direct(file);
2702 if (error)
2703 goto exit_fput;
2704 error = ima_file_check(file, op->acc_mode);
2705 if (error)
2706 goto exit_fput;
2707
2708 if (will_truncate) {
2709 error = handle_truncate(file);
2710 if (error)
2711 goto exit_fput;
2712 }
2713 out:
2714 if (want_write)
2715 mnt_drop_write(nd->path.mnt);
2716 path_put(&save_parent);
2717 terminate_walk(nd);
2718 return error;
2719
2720 exit_dput:
2721 path_put_conditional(path, nd);
2722 goto out;
2723 exit_fput:
2724 fput(file);
2725 goto out;
2726
2727 stale_open:
2728 /* If no saved parent or already retried then can't retry */
2729 if (!save_parent.dentry || retried)
2730 goto out;
2731
2732 BUG_ON(save_parent.dentry != dir);
2733 path_put(&nd->path);
2734 nd->path = save_parent;
2735 nd->inode = dir->d_inode;
2736 save_parent.mnt = NULL;
2737 save_parent.dentry = NULL;
2738 if (want_write) {
2739 mnt_drop_write(nd->path.mnt);
2740 want_write = false;
2741 }
2742 retried = true;
2743 goto retry_lookup;
2744 }
2745
2746 static struct file *path_openat(int dfd, const char *pathname,
2747 struct nameidata *nd, const struct open_flags *op, int flags)
2748 {
2749 struct file *base = NULL;
2750 struct file *file;
2751 struct path path;
2752 int opened = 0;
2753 int error;
2754
2755 file = get_empty_filp();
2756 if (!file)
2757 return ERR_PTR(-ENFILE);
2758
2759 file->f_flags = op->open_flag;
2760
2761 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2762 if (unlikely(error))
2763 goto out;
2764
2765 current->total_link_count = 0;
2766 error = link_path_walk(pathname, nd);
2767 if (unlikely(error))
2768 goto out;
2769
2770 error = do_last(nd, &path, file, op, &opened, pathname);
2771 while (unlikely(error > 0)) { /* trailing symlink */
2772 struct path link = path;
2773 void *cookie;
2774 if (!(nd->flags & LOOKUP_FOLLOW)) {
2775 path_put_conditional(&path, nd);
2776 path_put(&nd->path);
2777 error = -ELOOP;
2778 break;
2779 }
2780 nd->flags |= LOOKUP_PARENT;
2781 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2782 error = follow_link(&link, nd, &cookie);
2783 if (unlikely(error))
2784 break;
2785 error = do_last(nd, &path, file, op, &opened, pathname);
2786 put_link(nd, &link, cookie);
2787 }
2788 out:
2789 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2790 path_put(&nd->root);
2791 if (base)
2792 fput(base);
2793 if (!(opened & FILE_OPENED)) {
2794 BUG_ON(!error);
2795 put_filp(file);
2796 }
2797 if (unlikely(error)) {
2798 if (error == -EOPENSTALE) {
2799 if (flags & LOOKUP_RCU)
2800 error = -ECHILD;
2801 else
2802 error = -ESTALE;
2803 }
2804 file = ERR_PTR(error);
2805 }
2806 return file;
2807 }
2808
2809 struct file *do_filp_open(int dfd, const char *pathname,
2810 const struct open_flags *op, int flags)
2811 {
2812 struct nameidata nd;
2813 struct file *filp;
2814
2815 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2816 if (unlikely(filp == ERR_PTR(-ECHILD)))
2817 filp = path_openat(dfd, pathname, &nd, op, flags);
2818 if (unlikely(filp == ERR_PTR(-ESTALE)))
2819 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2820 return filp;
2821 }
2822
2823 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2824 const char *name, const struct open_flags *op, int flags)
2825 {
2826 struct nameidata nd;
2827 struct file *file;
2828
2829 nd.root.mnt = mnt;
2830 nd.root.dentry = dentry;
2831
2832 flags |= LOOKUP_ROOT;
2833
2834 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2835 return ERR_PTR(-ELOOP);
2836
2837 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2838 if (unlikely(file == ERR_PTR(-ECHILD)))
2839 file = path_openat(-1, name, &nd, op, flags);
2840 if (unlikely(file == ERR_PTR(-ESTALE)))
2841 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2842 return file;
2843 }
2844
2845 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2846 {
2847 struct dentry *dentry = ERR_PTR(-EEXIST);
2848 struct nameidata nd;
2849 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2850 if (error)
2851 return ERR_PTR(error);
2852
2853 /*
2854 * Yucky last component or no last component at all?
2855 * (foo/., foo/.., /////)
2856 */
2857 if (nd.last_type != LAST_NORM)
2858 goto out;
2859 nd.flags &= ~LOOKUP_PARENT;
2860 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2861
2862 /*
2863 * Do the final lookup.
2864 */
2865 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2866 dentry = lookup_hash(&nd);
2867 if (IS_ERR(dentry))
2868 goto fail;
2869
2870 if (dentry->d_inode)
2871 goto eexist;
2872 /*
2873 * Special case - lookup gave negative, but... we had foo/bar/
2874 * From the vfs_mknod() POV we just have a negative dentry -
2875 * all is fine. Let's be bastards - you had / on the end, you've
2876 * been asking for (non-existent) directory. -ENOENT for you.
2877 */
2878 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2879 dput(dentry);
2880 dentry = ERR_PTR(-ENOENT);
2881 goto fail;
2882 }
2883 *path = nd.path;
2884 return dentry;
2885 eexist:
2886 dput(dentry);
2887 dentry = ERR_PTR(-EEXIST);
2888 fail:
2889 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2890 out:
2891 path_put(&nd.path);
2892 return dentry;
2893 }
2894 EXPORT_SYMBOL(kern_path_create);
2895
2896 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2897 {
2898 char *tmp = getname(pathname);
2899 struct dentry *res;
2900 if (IS_ERR(tmp))
2901 return ERR_CAST(tmp);
2902 res = kern_path_create(dfd, tmp, path, is_dir);
2903 putname(tmp);
2904 return res;
2905 }
2906 EXPORT_SYMBOL(user_path_create);
2907
2908 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2909 {
2910 int error = may_create(dir, dentry);
2911
2912 if (error)
2913 return error;
2914
2915 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2916 return -EPERM;
2917
2918 if (!dir->i_op->mknod)
2919 return -EPERM;
2920
2921 error = devcgroup_inode_mknod(mode, dev);
2922 if (error)
2923 return error;
2924
2925 error = security_inode_mknod(dir, dentry, mode, dev);
2926 if (error)
2927 return error;
2928
2929 error = dir->i_op->mknod(dir, dentry, mode, dev);
2930 if (!error)
2931 fsnotify_create(dir, dentry);
2932 return error;
2933 }
2934
2935 static int may_mknod(umode_t mode)
2936 {
2937 switch (mode & S_IFMT) {
2938 case S_IFREG:
2939 case S_IFCHR:
2940 case S_IFBLK:
2941 case S_IFIFO:
2942 case S_IFSOCK:
2943 case 0: /* zero mode translates to S_IFREG */
2944 return 0;
2945 case S_IFDIR:
2946 return -EPERM;
2947 default:
2948 return -EINVAL;
2949 }
2950 }
2951
2952 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2953 unsigned, dev)
2954 {
2955 struct dentry *dentry;
2956 struct path path;
2957 int error;
2958
2959 if (S_ISDIR(mode))
2960 return -EPERM;
2961
2962 dentry = user_path_create(dfd, filename, &path, 0);
2963 if (IS_ERR(dentry))
2964 return PTR_ERR(dentry);
2965
2966 if (!IS_POSIXACL(path.dentry->d_inode))
2967 mode &= ~current_umask();
2968 error = may_mknod(mode);
2969 if (error)
2970 goto out_dput;
2971 error = mnt_want_write(path.mnt);
2972 if (error)
2973 goto out_dput;
2974 error = security_path_mknod(&path, dentry, mode, dev);
2975 if (error)
2976 goto out_drop_write;
2977 switch (mode & S_IFMT) {
2978 case 0: case S_IFREG:
2979 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
2980 break;
2981 case S_IFCHR: case S_IFBLK:
2982 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2983 new_decode_dev(dev));
2984 break;
2985 case S_IFIFO: case S_IFSOCK:
2986 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2987 break;
2988 }
2989 out_drop_write:
2990 mnt_drop_write(path.mnt);
2991 out_dput:
2992 dput(dentry);
2993 mutex_unlock(&path.dentry->d_inode->i_mutex);
2994 path_put(&path);
2995
2996 return error;
2997 }
2998
2999 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3000 {
3001 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3002 }
3003
3004 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3005 {
3006 int error = may_create(dir, dentry);
3007 unsigned max_links = dir->i_sb->s_max_links;
3008
3009 if (error)
3010 return error;
3011
3012 if (!dir->i_op->mkdir)
3013 return -EPERM;
3014
3015 mode &= (S_IRWXUGO|S_ISVTX);
3016 error = security_inode_mkdir(dir, dentry, mode);
3017 if (error)
3018 return error;
3019
3020 if (max_links && dir->i_nlink >= max_links)
3021 return -EMLINK;
3022
3023 error = dir->i_op->mkdir(dir, dentry, mode);
3024 if (!error)
3025 fsnotify_mkdir(dir, dentry);
3026 return error;
3027 }
3028
3029 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3030 {
3031 struct dentry *dentry;
3032 struct path path;
3033 int error;
3034
3035 dentry = user_path_create(dfd, pathname, &path, 1);
3036 if (IS_ERR(dentry))
3037 return PTR_ERR(dentry);
3038
3039 if (!IS_POSIXACL(path.dentry->d_inode))
3040 mode &= ~current_umask();
3041 error = mnt_want_write(path.mnt);
3042 if (error)
3043 goto out_dput;
3044 error = security_path_mkdir(&path, dentry, mode);
3045 if (error)
3046 goto out_drop_write;
3047 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3048 out_drop_write:
3049 mnt_drop_write(path.mnt);
3050 out_dput:
3051 dput(dentry);
3052 mutex_unlock(&path.dentry->d_inode->i_mutex);
3053 path_put(&path);
3054 return error;
3055 }
3056
3057 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3058 {
3059 return sys_mkdirat(AT_FDCWD, pathname, mode);
3060 }
3061
3062 /*
3063 * The dentry_unhash() helper will try to drop the dentry early: we
3064 * should have a usage count of 1 if we're the only user of this
3065 * dentry, and if that is true (possibly after pruning the dcache),
3066 * then we drop the dentry now.
3067 *
3068 * A low-level filesystem can, if it choses, legally
3069 * do a
3070 *
3071 * if (!d_unhashed(dentry))
3072 * return -EBUSY;
3073 *
3074 * if it cannot handle the case of removing a directory
3075 * that is still in use by something else..
3076 */
3077 void dentry_unhash(struct dentry *dentry)
3078 {
3079 shrink_dcache_parent(dentry);
3080 spin_lock(&dentry->d_lock);
3081 if (dentry->d_count == 1)
3082 __d_drop(dentry);
3083 spin_unlock(&dentry->d_lock);
3084 }
3085
3086 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3087 {
3088 int error = may_delete(dir, dentry, 1);
3089
3090 if (error)
3091 return error;
3092
3093 if (!dir->i_op->rmdir)
3094 return -EPERM;
3095
3096 dget(dentry);
3097 mutex_lock(&dentry->d_inode->i_mutex);
3098
3099 error = -EBUSY;
3100 if (d_mountpoint(dentry))
3101 goto out;
3102
3103 error = security_inode_rmdir(dir, dentry);
3104 if (error)
3105 goto out;
3106
3107 shrink_dcache_parent(dentry);
3108 error = dir->i_op->rmdir(dir, dentry);
3109 if (error)
3110 goto out;
3111
3112 dentry->d_inode->i_flags |= S_DEAD;
3113 dont_mount(dentry);
3114
3115 out:
3116 mutex_unlock(&dentry->d_inode->i_mutex);
3117 dput(dentry);
3118 if (!error)
3119 d_delete(dentry);
3120 return error;
3121 }
3122
3123 static long do_rmdir(int dfd, const char __user *pathname)
3124 {
3125 int error = 0;
3126 char * name;
3127 struct dentry *dentry;
3128 struct nameidata nd;
3129
3130 error = user_path_parent(dfd, pathname, &nd, &name);
3131 if (error)
3132 return error;
3133
3134 switch(nd.last_type) {
3135 case LAST_DOTDOT:
3136 error = -ENOTEMPTY;
3137 goto exit1;
3138 case LAST_DOT:
3139 error = -EINVAL;
3140 goto exit1;
3141 case LAST_ROOT:
3142 error = -EBUSY;
3143 goto exit1;
3144 }
3145
3146 nd.flags &= ~LOOKUP_PARENT;
3147
3148 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3149 dentry = lookup_hash(&nd);
3150 error = PTR_ERR(dentry);
3151 if (IS_ERR(dentry))
3152 goto exit2;
3153 if (!dentry->d_inode) {
3154 error = -ENOENT;
3155 goto exit3;
3156 }
3157 error = mnt_want_write(nd.path.mnt);
3158 if (error)
3159 goto exit3;
3160 error = security_path_rmdir(&nd.path, dentry);
3161 if (error)
3162 goto exit4;
3163 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3164 exit4:
3165 mnt_drop_write(nd.path.mnt);
3166 exit3:
3167 dput(dentry);
3168 exit2:
3169 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3170 exit1:
3171 path_put(&nd.path);
3172 putname(name);
3173 return error;
3174 }
3175
3176 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3177 {
3178 return do_rmdir(AT_FDCWD, pathname);
3179 }
3180
3181 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3182 {
3183 int error = may_delete(dir, dentry, 0);
3184
3185 if (error)
3186 return error;
3187
3188 if (!dir->i_op->unlink)
3189 return -EPERM;
3190
3191 mutex_lock(&dentry->d_inode->i_mutex);
3192 if (d_mountpoint(dentry))
3193 error = -EBUSY;
3194 else {
3195 error = security_inode_unlink(dir, dentry);
3196 if (!error) {
3197 error = dir->i_op->unlink(dir, dentry);
3198 if (!error)
3199 dont_mount(dentry);
3200 }
3201 }
3202 mutex_unlock(&dentry->d_inode->i_mutex);
3203
3204 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3205 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3206 fsnotify_link_count(dentry->d_inode);
3207 d_delete(dentry);
3208 }
3209
3210 return error;
3211 }
3212
3213 /*
3214 * Make sure that the actual truncation of the file will occur outside its
3215 * directory's i_mutex. Truncate can take a long time if there is a lot of
3216 * writeout happening, and we don't want to prevent access to the directory
3217 * while waiting on the I/O.
3218 */
3219 static long do_unlinkat(int dfd, const char __user *pathname)
3220 {
3221 int error;
3222 char *name;
3223 struct dentry *dentry;
3224 struct nameidata nd;
3225 struct inode *inode = NULL;
3226
3227 error = user_path_parent(dfd, pathname, &nd, &name);
3228 if (error)
3229 return error;
3230
3231 error = -EISDIR;
3232 if (nd.last_type != LAST_NORM)
3233 goto exit1;
3234
3235 nd.flags &= ~LOOKUP_PARENT;
3236
3237 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3238 dentry = lookup_hash(&nd);
3239 error = PTR_ERR(dentry);
3240 if (!IS_ERR(dentry)) {
3241 /* Why not before? Because we want correct error value */
3242 if (nd.last.name[nd.last.len])
3243 goto slashes;
3244 inode = dentry->d_inode;
3245 if (!inode)
3246 goto slashes;
3247 ihold(inode);
3248 error = mnt_want_write(nd.path.mnt);
3249 if (error)
3250 goto exit2;
3251 error = security_path_unlink(&nd.path, dentry);
3252 if (error)
3253 goto exit3;
3254 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3255 exit3:
3256 mnt_drop_write(nd.path.mnt);
3257 exit2:
3258 dput(dentry);
3259 }
3260 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3261 if (inode)
3262 iput(inode); /* truncate the inode here */
3263 exit1:
3264 path_put(&nd.path);
3265 putname(name);
3266 return error;
3267
3268 slashes:
3269 error = !dentry->d_inode ? -ENOENT :
3270 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3271 goto exit2;
3272 }
3273
3274 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3275 {
3276 if ((flag & ~AT_REMOVEDIR) != 0)
3277 return -EINVAL;
3278
3279 if (flag & AT_REMOVEDIR)
3280 return do_rmdir(dfd, pathname);
3281
3282 return do_unlinkat(dfd, pathname);
3283 }
3284
3285 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3286 {
3287 return do_unlinkat(AT_FDCWD, pathname);
3288 }
3289
3290 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3291 {
3292 int error = may_create(dir, dentry);
3293
3294 if (error)
3295 return error;
3296
3297 if (!dir->i_op->symlink)
3298 return -EPERM;
3299
3300 error = security_inode_symlink(dir, dentry, oldname);
3301 if (error)
3302 return error;
3303
3304 error = dir->i_op->symlink(dir, dentry, oldname);
3305 if (!error)
3306 fsnotify_create(dir, dentry);
3307 return error;
3308 }
3309
3310 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3311 int, newdfd, const char __user *, newname)
3312 {
3313 int error;
3314 char *from;
3315 struct dentry *dentry;
3316 struct path path;
3317
3318 from = getname(oldname);
3319 if (IS_ERR(from))
3320 return PTR_ERR(from);
3321
3322 dentry = user_path_create(newdfd, newname, &path, 0);
3323 error = PTR_ERR(dentry);
3324 if (IS_ERR(dentry))
3325 goto out_putname;
3326
3327 error = mnt_want_write(path.mnt);
3328 if (error)
3329 goto out_dput;
3330 error = security_path_symlink(&path, dentry, from);
3331 if (error)
3332 goto out_drop_write;
3333 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3334 out_drop_write:
3335 mnt_drop_write(path.mnt);
3336 out_dput:
3337 dput(dentry);
3338 mutex_unlock(&path.dentry->d_inode->i_mutex);
3339 path_put(&path);
3340 out_putname:
3341 putname(from);
3342 return error;
3343 }
3344
3345 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3346 {
3347 return sys_symlinkat(oldname, AT_FDCWD, newname);
3348 }
3349
3350 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3351 {
3352 struct inode *inode = old_dentry->d_inode;
3353 unsigned max_links = dir->i_sb->s_max_links;
3354 int error;
3355
3356 if (!inode)
3357 return -ENOENT;
3358
3359 error = may_create(dir, new_dentry);
3360 if (error)
3361 return error;
3362
3363 if (dir->i_sb != inode->i_sb)
3364 return -EXDEV;
3365
3366 /*
3367 * A link to an append-only or immutable file cannot be created.
3368 */
3369 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3370 return -EPERM;
3371 if (!dir->i_op->link)
3372 return -EPERM;
3373 if (S_ISDIR(inode->i_mode))
3374 return -EPERM;
3375
3376 error = security_inode_link(old_dentry, dir, new_dentry);
3377 if (error)
3378 return error;
3379
3380 mutex_lock(&inode->i_mutex);
3381 /* Make sure we don't allow creating hardlink to an unlinked file */
3382 if (inode->i_nlink == 0)
3383 error = -ENOENT;
3384 else if (max_links && inode->i_nlink >= max_links)
3385 error = -EMLINK;
3386 else
3387 error = dir->i_op->link(old_dentry, dir, new_dentry);
3388 mutex_unlock(&inode->i_mutex);
3389 if (!error)
3390 fsnotify_link(dir, inode, new_dentry);
3391 return error;
3392 }
3393
3394 /*
3395 * Hardlinks are often used in delicate situations. We avoid
3396 * security-related surprises by not following symlinks on the
3397 * newname. --KAB
3398 *
3399 * We don't follow them on the oldname either to be compatible
3400 * with linux 2.0, and to avoid hard-linking to directories
3401 * and other special files. --ADM
3402 */
3403 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3404 int, newdfd, const char __user *, newname, int, flags)
3405 {
3406 struct dentry *new_dentry;
3407 struct path old_path, new_path;
3408 int how = 0;
3409 int error;
3410
3411 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3412 return -EINVAL;
3413 /*
3414 * To use null names we require CAP_DAC_READ_SEARCH
3415 * This ensures that not everyone will be able to create
3416 * handlink using the passed filedescriptor.
3417 */
3418 if (flags & AT_EMPTY_PATH) {
3419 if (!capable(CAP_DAC_READ_SEARCH))
3420 return -ENOENT;
3421 how = LOOKUP_EMPTY;
3422 }
3423
3424 if (flags & AT_SYMLINK_FOLLOW)
3425 how |= LOOKUP_FOLLOW;
3426
3427 error = user_path_at(olddfd, oldname, how, &old_path);
3428 if (error)
3429 return error;
3430
3431 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3432 error = PTR_ERR(new_dentry);
3433 if (IS_ERR(new_dentry))
3434 goto out;
3435
3436 error = -EXDEV;
3437 if (old_path.mnt != new_path.mnt)
3438 goto out_dput;
3439 error = mnt_want_write(new_path.mnt);
3440 if (error)
3441 goto out_dput;
3442 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3443 if (error)
3444 goto out_drop_write;
3445 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3446 out_drop_write:
3447 mnt_drop_write(new_path.mnt);
3448 out_dput:
3449 dput(new_dentry);
3450 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3451 path_put(&new_path);
3452 out:
3453 path_put(&old_path);
3454
3455 return error;
3456 }
3457
3458 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3459 {
3460 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3461 }
3462
3463 /*
3464 * The worst of all namespace operations - renaming directory. "Perverted"
3465 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3466 * Problems:
3467 * a) we can get into loop creation. Check is done in is_subdir().
3468 * b) race potential - two innocent renames can create a loop together.
3469 * That's where 4.4 screws up. Current fix: serialization on
3470 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3471 * story.
3472 * c) we have to lock _three_ objects - parents and victim (if it exists).
3473 * And that - after we got ->i_mutex on parents (until then we don't know
3474 * whether the target exists). Solution: try to be smart with locking
3475 * order for inodes. We rely on the fact that tree topology may change
3476 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3477 * move will be locked. Thus we can rank directories by the tree
3478 * (ancestors first) and rank all non-directories after them.
3479 * That works since everybody except rename does "lock parent, lookup,
3480 * lock child" and rename is under ->s_vfs_rename_mutex.
3481 * HOWEVER, it relies on the assumption that any object with ->lookup()
3482 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3483 * we'd better make sure that there's no link(2) for them.
3484 * d) conversion from fhandle to dentry may come in the wrong moment - when
3485 * we are removing the target. Solution: we will have to grab ->i_mutex
3486 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3487 * ->i_mutex on parents, which works but leads to some truly excessive
3488 * locking].
3489 */
3490 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3491 struct inode *new_dir, struct dentry *new_dentry)
3492 {
3493 int error = 0;
3494 struct inode *target = new_dentry->d_inode;
3495 unsigned max_links = new_dir->i_sb->s_max_links;
3496
3497 /*
3498 * If we are going to change the parent - check write permissions,
3499 * we'll need to flip '..'.
3500 */
3501 if (new_dir != old_dir) {
3502 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3503 if (error)
3504 return error;
3505 }
3506
3507 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3508 if (error)
3509 return error;
3510
3511 dget(new_dentry);
3512 if (target)
3513 mutex_lock(&target->i_mutex);
3514
3515 error = -EBUSY;
3516 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3517 goto out;
3518
3519 error = -EMLINK;
3520 if (max_links && !target && new_dir != old_dir &&
3521 new_dir->i_nlink >= max_links)
3522 goto out;
3523
3524 if (target)
3525 shrink_dcache_parent(new_dentry);
3526 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3527 if (error)
3528 goto out;
3529
3530 if (target) {
3531 target->i_flags |= S_DEAD;
3532 dont_mount(new_dentry);
3533 }
3534 out:
3535 if (target)
3536 mutex_unlock(&target->i_mutex);
3537 dput(new_dentry);
3538 if (!error)
3539 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3540 d_move(old_dentry,new_dentry);
3541 return error;
3542 }
3543
3544 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3545 struct inode *new_dir, struct dentry *new_dentry)
3546 {
3547 struct inode *target = new_dentry->d_inode;
3548 int error;
3549
3550 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3551 if (error)
3552 return error;
3553
3554 dget(new_dentry);
3555 if (target)
3556 mutex_lock(&target->i_mutex);
3557
3558 error = -EBUSY;
3559 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3560 goto out;
3561
3562 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3563 if (error)
3564 goto out;
3565
3566 if (target)
3567 dont_mount(new_dentry);
3568 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3569 d_move(old_dentry, new_dentry);
3570 out:
3571 if (target)
3572 mutex_unlock(&target->i_mutex);
3573 dput(new_dentry);
3574 return error;
3575 }
3576
3577 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3578 struct inode *new_dir, struct dentry *new_dentry)
3579 {
3580 int error;
3581 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3582 const unsigned char *old_name;
3583
3584 if (old_dentry->d_inode == new_dentry->d_inode)
3585 return 0;
3586
3587 error = may_delete(old_dir, old_dentry, is_dir);
3588 if (error)
3589 return error;
3590
3591 if (!new_dentry->d_inode)
3592 error = may_create(new_dir, new_dentry);
3593 else
3594 error = may_delete(new_dir, new_dentry, is_dir);
3595 if (error)
3596 return error;
3597
3598 if (!old_dir->i_op->rename)
3599 return -EPERM;
3600
3601 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3602
3603 if (is_dir)
3604 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3605 else
3606 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3607 if (!error)
3608 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3609 new_dentry->d_inode, old_dentry);
3610 fsnotify_oldname_free(old_name);
3611
3612 return error;
3613 }
3614
3615 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3616 int, newdfd, const char __user *, newname)
3617 {
3618 struct dentry *old_dir, *new_dir;
3619 struct dentry *old_dentry, *new_dentry;
3620 struct dentry *trap;
3621 struct nameidata oldnd, newnd;
3622 char *from;
3623 char *to;
3624 int error;
3625
3626 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3627 if (error)
3628 goto exit;
3629
3630 error = user_path_parent(newdfd, newname, &newnd, &to);
3631 if (error)
3632 goto exit1;
3633
3634 error = -EXDEV;
3635 if (oldnd.path.mnt != newnd.path.mnt)
3636 goto exit2;
3637
3638 old_dir = oldnd.path.dentry;
3639 error = -EBUSY;
3640 if (oldnd.last_type != LAST_NORM)
3641 goto exit2;
3642
3643 new_dir = newnd.path.dentry;
3644 if (newnd.last_type != LAST_NORM)
3645 goto exit2;
3646
3647 oldnd.flags &= ~LOOKUP_PARENT;
3648 newnd.flags &= ~LOOKUP_PARENT;
3649 newnd.flags |= LOOKUP_RENAME_TARGET;
3650
3651 trap = lock_rename(new_dir, old_dir);
3652
3653 old_dentry = lookup_hash(&oldnd);
3654 error = PTR_ERR(old_dentry);
3655 if (IS_ERR(old_dentry))
3656 goto exit3;
3657 /* source must exist */
3658 error = -ENOENT;
3659 if (!old_dentry->d_inode)
3660 goto exit4;
3661 /* unless the source is a directory trailing slashes give -ENOTDIR */
3662 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3663 error = -ENOTDIR;
3664 if (oldnd.last.name[oldnd.last.len])
3665 goto exit4;
3666 if (newnd.last.name[newnd.last.len])
3667 goto exit4;
3668 }
3669 /* source should not be ancestor of target */
3670 error = -EINVAL;
3671 if (old_dentry == trap)
3672 goto exit4;
3673 new_dentry = lookup_hash(&newnd);
3674 error = PTR_ERR(new_dentry);
3675 if (IS_ERR(new_dentry))
3676 goto exit4;
3677 /* target should not be an ancestor of source */
3678 error = -ENOTEMPTY;
3679 if (new_dentry == trap)
3680 goto exit5;
3681
3682 error = mnt_want_write(oldnd.path.mnt);
3683 if (error)
3684 goto exit5;
3685 error = security_path_rename(&oldnd.path, old_dentry,
3686 &newnd.path, new_dentry);
3687 if (error)
3688 goto exit6;
3689 error = vfs_rename(old_dir->d_inode, old_dentry,
3690 new_dir->d_inode, new_dentry);
3691 exit6:
3692 mnt_drop_write(oldnd.path.mnt);
3693 exit5:
3694 dput(new_dentry);
3695 exit4:
3696 dput(old_dentry);
3697 exit3:
3698 unlock_rename(new_dir, old_dir);
3699 exit2:
3700 path_put(&newnd.path);
3701 putname(to);
3702 exit1:
3703 path_put(&oldnd.path);
3704 putname(from);
3705 exit:
3706 return error;
3707 }
3708
3709 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3710 {
3711 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3712 }
3713
3714 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3715 {
3716 int len;
3717
3718 len = PTR_ERR(link);
3719 if (IS_ERR(link))
3720 goto out;
3721
3722 len = strlen(link);
3723 if (len > (unsigned) buflen)
3724 len = buflen;
3725 if (copy_to_user(buffer, link, len))
3726 len = -EFAULT;
3727 out:
3728 return len;
3729 }
3730
3731 /*
3732 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3733 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3734 * using) it for any given inode is up to filesystem.
3735 */
3736 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3737 {
3738 struct nameidata nd;
3739 void *cookie;
3740 int res;
3741
3742 nd.depth = 0;
3743 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3744 if (IS_ERR(cookie))
3745 return PTR_ERR(cookie);
3746
3747 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3748 if (dentry->d_inode->i_op->put_link)
3749 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3750 return res;
3751 }
3752
3753 int vfs_follow_link(struct nameidata *nd, const char *link)
3754 {
3755 return __vfs_follow_link(nd, link);
3756 }
3757
3758 /* get the link contents into pagecache */
3759 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3760 {
3761 char *kaddr;
3762 struct page *page;
3763 struct address_space *mapping = dentry->d_inode->i_mapping;
3764 page = read_mapping_page(mapping, 0, NULL);
3765 if (IS_ERR(page))
3766 return (char*)page;
3767 *ppage = page;
3768 kaddr = kmap(page);
3769 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3770 return kaddr;
3771 }
3772
3773 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3774 {
3775 struct page *page = NULL;
3776 char *s = page_getlink(dentry, &page);
3777 int res = vfs_readlink(dentry,buffer,buflen,s);
3778 if (page) {
3779 kunmap(page);
3780 page_cache_release(page);
3781 }
3782 return res;
3783 }
3784
3785 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3786 {
3787 struct page *page = NULL;
3788 nd_set_link(nd, page_getlink(dentry, &page));
3789 return page;
3790 }
3791
3792 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3793 {
3794 struct page *page = cookie;
3795
3796 if (page) {
3797 kunmap(page);
3798 page_cache_release(page);
3799 }
3800 }
3801
3802 /*
3803 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3804 */
3805 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3806 {
3807 struct address_space *mapping = inode->i_mapping;
3808 struct page *page;
3809 void *fsdata;
3810 int err;
3811 char *kaddr;
3812 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3813 if (nofs)
3814 flags |= AOP_FLAG_NOFS;
3815
3816 retry:
3817 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3818 flags, &page, &fsdata);
3819 if (err)
3820 goto fail;
3821
3822 kaddr = kmap_atomic(page);
3823 memcpy(kaddr, symname, len-1);
3824 kunmap_atomic(kaddr);
3825
3826 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3827 page, fsdata);
3828 if (err < 0)
3829 goto fail;
3830 if (err < len-1)
3831 goto retry;
3832
3833 mark_inode_dirty(inode);
3834 return 0;
3835 fail:
3836 return err;
3837 }
3838
3839 int page_symlink(struct inode *inode, const char *symname, int len)
3840 {
3841 return __page_symlink(inode, symname, len,
3842 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3843 }
3844
3845 const struct inode_operations page_symlink_inode_operations = {
3846 .readlink = generic_readlink,
3847 .follow_link = page_follow_link_light,
3848 .put_link = page_put_link,
3849 };
3850
3851 EXPORT_SYMBOL(user_path_at);
3852 EXPORT_SYMBOL(follow_down_one);
3853 EXPORT_SYMBOL(follow_down);
3854 EXPORT_SYMBOL(follow_up);
3855 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3856 EXPORT_SYMBOL(getname);
3857 EXPORT_SYMBOL(lock_rename);
3858 EXPORT_SYMBOL(lookup_one_len);
3859 EXPORT_SYMBOL(page_follow_link_light);
3860 EXPORT_SYMBOL(page_put_link);
3861 EXPORT_SYMBOL(page_readlink);
3862 EXPORT_SYMBOL(__page_symlink);
3863 EXPORT_SYMBOL(page_symlink);
3864 EXPORT_SYMBOL(page_symlink_inode_operations);
3865 EXPORT_SYMBOL(kern_path);
3866 EXPORT_SYMBOL(vfs_path_lookup);
3867 EXPORT_SYMBOL(inode_permission);
3868 EXPORT_SYMBOL(unlock_rename);
3869 EXPORT_SYMBOL(vfs_create);
3870 EXPORT_SYMBOL(vfs_follow_link);
3871 EXPORT_SYMBOL(vfs_link);
3872 EXPORT_SYMBOL(vfs_mkdir);
3873 EXPORT_SYMBOL(vfs_mknod);
3874 EXPORT_SYMBOL(generic_permission);
3875 EXPORT_SYMBOL(vfs_readlink);
3876 EXPORT_SYMBOL(vfs_rename);
3877 EXPORT_SYMBOL(vfs_rmdir);
3878 EXPORT_SYMBOL(vfs_symlink);
3879 EXPORT_SYMBOL(vfs_unlink);
3880 EXPORT_SYMBOL(dentry_unhash);
3881 EXPORT_SYMBOL(generic_readlink);
This page took 0.111035 seconds and 5 git commands to generate.