don't carry MAY_OPEN in op->acc_mode
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 struct inode *inode = last->inode;
594 if (last->cookie && inode->i_op->put_link) {
595 inode->i_op->put_link(inode, last->cookie);
596 last->cookie = NULL;
597 }
598 }
599 }
600
601 static void terminate_walk(struct nameidata *nd)
602 {
603 drop_links(nd);
604 if (!(nd->flags & LOOKUP_RCU)) {
605 int i;
606 path_put(&nd->path);
607 for (i = 0; i < nd->depth; i++)
608 path_put(&nd->stack[i].link);
609 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
610 path_put(&nd->root);
611 nd->root.mnt = NULL;
612 }
613 } else {
614 nd->flags &= ~LOOKUP_RCU;
615 if (!(nd->flags & LOOKUP_ROOT))
616 nd->root.mnt = NULL;
617 rcu_read_unlock();
618 }
619 nd->depth = 0;
620 }
621
622 /* path_put is needed afterwards regardless of success or failure */
623 static bool legitimize_path(struct nameidata *nd,
624 struct path *path, unsigned seq)
625 {
626 int res = __legitimize_mnt(path->mnt, nd->m_seq);
627 if (unlikely(res)) {
628 if (res > 0)
629 path->mnt = NULL;
630 path->dentry = NULL;
631 return false;
632 }
633 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
634 path->dentry = NULL;
635 return false;
636 }
637 return !read_seqcount_retry(&path->dentry->d_seq, seq);
638 }
639
640 static bool legitimize_links(struct nameidata *nd)
641 {
642 int i;
643 for (i = 0; i < nd->depth; i++) {
644 struct saved *last = nd->stack + i;
645 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
646 drop_links(nd);
647 nd->depth = i + 1;
648 return false;
649 }
650 }
651 return true;
652 }
653
654 /*
655 * Path walking has 2 modes, rcu-walk and ref-walk (see
656 * Documentation/filesystems/path-lookup.txt). In situations when we can't
657 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
658 * normal reference counts on dentries and vfsmounts to transition to ref-walk
659 * mode. Refcounts are grabbed at the last known good point before rcu-walk
660 * got stuck, so ref-walk may continue from there. If this is not successful
661 * (eg. a seqcount has changed), then failure is returned and it's up to caller
662 * to restart the path walk from the beginning in ref-walk mode.
663 */
664
665 /**
666 * unlazy_walk - try to switch to ref-walk mode.
667 * @nd: nameidata pathwalk data
668 * @dentry: child of nd->path.dentry or NULL
669 * @seq: seq number to check dentry against
670 * Returns: 0 on success, -ECHILD on failure
671 *
672 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
673 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
674 * @nd or NULL. Must be called from rcu-walk context.
675 * Nothing should touch nameidata between unlazy_walk() failure and
676 * terminate_walk().
677 */
678 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
679 {
680 struct dentry *parent = nd->path.dentry;
681
682 BUG_ON(!(nd->flags & LOOKUP_RCU));
683
684 nd->flags &= ~LOOKUP_RCU;
685 if (unlikely(!legitimize_links(nd)))
686 goto out2;
687 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
688 goto out2;
689 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
690 goto out1;
691
692 /*
693 * For a negative lookup, the lookup sequence point is the parents
694 * sequence point, and it only needs to revalidate the parent dentry.
695 *
696 * For a positive lookup, we need to move both the parent and the
697 * dentry from the RCU domain to be properly refcounted. And the
698 * sequence number in the dentry validates *both* dentry counters,
699 * since we checked the sequence number of the parent after we got
700 * the child sequence number. So we know the parent must still
701 * be valid if the child sequence number is still valid.
702 */
703 if (!dentry) {
704 if (read_seqcount_retry(&parent->d_seq, nd->seq))
705 goto out;
706 BUG_ON(nd->inode != parent->d_inode);
707 } else {
708 if (!lockref_get_not_dead(&dentry->d_lockref))
709 goto out;
710 if (read_seqcount_retry(&dentry->d_seq, seq))
711 goto drop_dentry;
712 }
713
714 /*
715 * Sequence counts matched. Now make sure that the root is
716 * still valid and get it if required.
717 */
718 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
719 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
720 rcu_read_unlock();
721 dput(dentry);
722 return -ECHILD;
723 }
724 }
725
726 rcu_read_unlock();
727 return 0;
728
729 drop_dentry:
730 rcu_read_unlock();
731 dput(dentry);
732 goto drop_root_mnt;
733 out2:
734 nd->path.mnt = NULL;
735 out1:
736 nd->path.dentry = NULL;
737 out:
738 rcu_read_unlock();
739 drop_root_mnt:
740 if (!(nd->flags & LOOKUP_ROOT))
741 nd->root.mnt = NULL;
742 return -ECHILD;
743 }
744
745 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
746 {
747 if (unlikely(!legitimize_path(nd, link, seq))) {
748 drop_links(nd);
749 nd->depth = 0;
750 nd->flags &= ~LOOKUP_RCU;
751 nd->path.mnt = NULL;
752 nd->path.dentry = NULL;
753 if (!(nd->flags & LOOKUP_ROOT))
754 nd->root.mnt = NULL;
755 rcu_read_unlock();
756 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
757 return 0;
758 }
759 path_put(link);
760 return -ECHILD;
761 }
762
763 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
764 {
765 return dentry->d_op->d_revalidate(dentry, flags);
766 }
767
768 /**
769 * complete_walk - successful completion of path walk
770 * @nd: pointer nameidata
771 *
772 * If we had been in RCU mode, drop out of it and legitimize nd->path.
773 * Revalidate the final result, unless we'd already done that during
774 * the path walk or the filesystem doesn't ask for it. Return 0 on
775 * success, -error on failure. In case of failure caller does not
776 * need to drop nd->path.
777 */
778 static int complete_walk(struct nameidata *nd)
779 {
780 struct dentry *dentry = nd->path.dentry;
781 int status;
782
783 if (nd->flags & LOOKUP_RCU) {
784 if (!(nd->flags & LOOKUP_ROOT))
785 nd->root.mnt = NULL;
786 if (unlikely(unlazy_walk(nd, NULL, 0)))
787 return -ECHILD;
788 }
789
790 if (likely(!(nd->flags & LOOKUP_JUMPED)))
791 return 0;
792
793 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
794 return 0;
795
796 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
797 if (status > 0)
798 return 0;
799
800 if (!status)
801 status = -ESTALE;
802
803 return status;
804 }
805
806 static void set_root(struct nameidata *nd)
807 {
808 struct fs_struct *fs = current->fs;
809
810 if (nd->flags & LOOKUP_RCU) {
811 unsigned seq;
812
813 do {
814 seq = read_seqcount_begin(&fs->seq);
815 nd->root = fs->root;
816 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
817 } while (read_seqcount_retry(&fs->seq, seq));
818 } else {
819 get_fs_root(fs, &nd->root);
820 }
821 }
822
823 static void path_put_conditional(struct path *path, struct nameidata *nd)
824 {
825 dput(path->dentry);
826 if (path->mnt != nd->path.mnt)
827 mntput(path->mnt);
828 }
829
830 static inline void path_to_nameidata(const struct path *path,
831 struct nameidata *nd)
832 {
833 if (!(nd->flags & LOOKUP_RCU)) {
834 dput(nd->path.dentry);
835 if (nd->path.mnt != path->mnt)
836 mntput(nd->path.mnt);
837 }
838 nd->path.mnt = path->mnt;
839 nd->path.dentry = path->dentry;
840 }
841
842 static int nd_jump_root(struct nameidata *nd)
843 {
844 if (nd->flags & LOOKUP_RCU) {
845 struct dentry *d;
846 nd->path = nd->root;
847 d = nd->path.dentry;
848 nd->inode = d->d_inode;
849 nd->seq = nd->root_seq;
850 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
851 return -ECHILD;
852 } else {
853 path_put(&nd->path);
854 nd->path = nd->root;
855 path_get(&nd->path);
856 nd->inode = nd->path.dentry->d_inode;
857 }
858 nd->flags |= LOOKUP_JUMPED;
859 return 0;
860 }
861
862 /*
863 * Helper to directly jump to a known parsed path from ->follow_link,
864 * caller must have taken a reference to path beforehand.
865 */
866 void nd_jump_link(struct path *path)
867 {
868 struct nameidata *nd = current->nameidata;
869 path_put(&nd->path);
870
871 nd->path = *path;
872 nd->inode = nd->path.dentry->d_inode;
873 nd->flags |= LOOKUP_JUMPED;
874 }
875
876 static inline void put_link(struct nameidata *nd)
877 {
878 struct saved *last = nd->stack + --nd->depth;
879 struct inode *inode = last->inode;
880 if (last->cookie && inode->i_op->put_link)
881 inode->i_op->put_link(inode, last->cookie);
882 if (!(nd->flags & LOOKUP_RCU))
883 path_put(&last->link);
884 }
885
886 int sysctl_protected_symlinks __read_mostly = 0;
887 int sysctl_protected_hardlinks __read_mostly = 0;
888
889 /**
890 * may_follow_link - Check symlink following for unsafe situations
891 * @nd: nameidata pathwalk data
892 *
893 * In the case of the sysctl_protected_symlinks sysctl being enabled,
894 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
895 * in a sticky world-writable directory. This is to protect privileged
896 * processes from failing races against path names that may change out
897 * from under them by way of other users creating malicious symlinks.
898 * It will permit symlinks to be followed only when outside a sticky
899 * world-writable directory, or when the uid of the symlink and follower
900 * match, or when the directory owner matches the symlink's owner.
901 *
902 * Returns 0 if following the symlink is allowed, -ve on error.
903 */
904 static inline int may_follow_link(struct nameidata *nd)
905 {
906 const struct inode *inode;
907 const struct inode *parent;
908
909 if (!sysctl_protected_symlinks)
910 return 0;
911
912 /* Allowed if owner and follower match. */
913 inode = nd->stack[0].inode;
914 if (uid_eq(current_cred()->fsuid, inode->i_uid))
915 return 0;
916
917 /* Allowed if parent directory not sticky and world-writable. */
918 parent = nd->inode;
919 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
920 return 0;
921
922 /* Allowed if parent directory and link owner match. */
923 if (uid_eq(parent->i_uid, inode->i_uid))
924 return 0;
925
926 if (nd->flags & LOOKUP_RCU)
927 return -ECHILD;
928
929 audit_log_link_denied("follow_link", &nd->stack[0].link);
930 return -EACCES;
931 }
932
933 /**
934 * safe_hardlink_source - Check for safe hardlink conditions
935 * @inode: the source inode to hardlink from
936 *
937 * Return false if at least one of the following conditions:
938 * - inode is not a regular file
939 * - inode is setuid
940 * - inode is setgid and group-exec
941 * - access failure for read and write
942 *
943 * Otherwise returns true.
944 */
945 static bool safe_hardlink_source(struct inode *inode)
946 {
947 umode_t mode = inode->i_mode;
948
949 /* Special files should not get pinned to the filesystem. */
950 if (!S_ISREG(mode))
951 return false;
952
953 /* Setuid files should not get pinned to the filesystem. */
954 if (mode & S_ISUID)
955 return false;
956
957 /* Executable setgid files should not get pinned to the filesystem. */
958 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
959 return false;
960
961 /* Hardlinking to unreadable or unwritable sources is dangerous. */
962 if (inode_permission(inode, MAY_READ | MAY_WRITE))
963 return false;
964
965 return true;
966 }
967
968 /**
969 * may_linkat - Check permissions for creating a hardlink
970 * @link: the source to hardlink from
971 *
972 * Block hardlink when all of:
973 * - sysctl_protected_hardlinks enabled
974 * - fsuid does not match inode
975 * - hardlink source is unsafe (see safe_hardlink_source() above)
976 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
977 *
978 * Returns 0 if successful, -ve on error.
979 */
980 static int may_linkat(struct path *link)
981 {
982 struct inode *inode;
983
984 if (!sysctl_protected_hardlinks)
985 return 0;
986
987 inode = link->dentry->d_inode;
988
989 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
990 * otherwise, it must be a safe source.
991 */
992 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
993 return 0;
994
995 audit_log_link_denied("linkat", link);
996 return -EPERM;
997 }
998
999 static __always_inline
1000 const char *get_link(struct nameidata *nd)
1001 {
1002 struct saved *last = nd->stack + nd->depth - 1;
1003 struct dentry *dentry = last->link.dentry;
1004 struct inode *inode = last->inode;
1005 int error;
1006 const char *res;
1007
1008 if (!(nd->flags & LOOKUP_RCU)) {
1009 touch_atime(&last->link);
1010 cond_resched();
1011 } else if (atime_needs_update(&last->link, inode)) {
1012 if (unlikely(unlazy_walk(nd, NULL, 0)))
1013 return ERR_PTR(-ECHILD);
1014 touch_atime(&last->link);
1015 }
1016
1017 error = security_inode_follow_link(dentry, inode,
1018 nd->flags & LOOKUP_RCU);
1019 if (unlikely(error))
1020 return ERR_PTR(error);
1021
1022 nd->last_type = LAST_BIND;
1023 res = inode->i_link;
1024 if (!res) {
1025 if (nd->flags & LOOKUP_RCU) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 }
1029 res = inode->i_op->follow_link(dentry, &last->cookie);
1030 if (IS_ERR_OR_NULL(res)) {
1031 last->cookie = NULL;
1032 return res;
1033 }
1034 }
1035 if (*res == '/') {
1036 if (!nd->root.mnt)
1037 set_root(nd);
1038 if (unlikely(nd_jump_root(nd)))
1039 return ERR_PTR(-ECHILD);
1040 while (unlikely(*++res == '/'))
1041 ;
1042 }
1043 if (!*res)
1044 res = NULL;
1045 return res;
1046 }
1047
1048 /*
1049 * follow_up - Find the mountpoint of path's vfsmount
1050 *
1051 * Given a path, find the mountpoint of its source file system.
1052 * Replace @path with the path of the mountpoint in the parent mount.
1053 * Up is towards /.
1054 *
1055 * Return 1 if we went up a level and 0 if we were already at the
1056 * root.
1057 */
1058 int follow_up(struct path *path)
1059 {
1060 struct mount *mnt = real_mount(path->mnt);
1061 struct mount *parent;
1062 struct dentry *mountpoint;
1063
1064 read_seqlock_excl(&mount_lock);
1065 parent = mnt->mnt_parent;
1066 if (parent == mnt) {
1067 read_sequnlock_excl(&mount_lock);
1068 return 0;
1069 }
1070 mntget(&parent->mnt);
1071 mountpoint = dget(mnt->mnt_mountpoint);
1072 read_sequnlock_excl(&mount_lock);
1073 dput(path->dentry);
1074 path->dentry = mountpoint;
1075 mntput(path->mnt);
1076 path->mnt = &parent->mnt;
1077 return 1;
1078 }
1079 EXPORT_SYMBOL(follow_up);
1080
1081 /*
1082 * Perform an automount
1083 * - return -EISDIR to tell follow_managed() to stop and return the path we
1084 * were called with.
1085 */
1086 static int follow_automount(struct path *path, struct nameidata *nd,
1087 bool *need_mntput)
1088 {
1089 struct vfsmount *mnt;
1090 int err;
1091
1092 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1093 return -EREMOTE;
1094
1095 /* We don't want to mount if someone's just doing a stat -
1096 * unless they're stat'ing a directory and appended a '/' to
1097 * the name.
1098 *
1099 * We do, however, want to mount if someone wants to open or
1100 * create a file of any type under the mountpoint, wants to
1101 * traverse through the mountpoint or wants to open the
1102 * mounted directory. Also, autofs may mark negative dentries
1103 * as being automount points. These will need the attentions
1104 * of the daemon to instantiate them before they can be used.
1105 */
1106 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1107 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1108 path->dentry->d_inode)
1109 return -EISDIR;
1110
1111 nd->total_link_count++;
1112 if (nd->total_link_count >= 40)
1113 return -ELOOP;
1114
1115 mnt = path->dentry->d_op->d_automount(path);
1116 if (IS_ERR(mnt)) {
1117 /*
1118 * The filesystem is allowed to return -EISDIR here to indicate
1119 * it doesn't want to automount. For instance, autofs would do
1120 * this so that its userspace daemon can mount on this dentry.
1121 *
1122 * However, we can only permit this if it's a terminal point in
1123 * the path being looked up; if it wasn't then the remainder of
1124 * the path is inaccessible and we should say so.
1125 */
1126 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1127 return -EREMOTE;
1128 return PTR_ERR(mnt);
1129 }
1130
1131 if (!mnt) /* mount collision */
1132 return 0;
1133
1134 if (!*need_mntput) {
1135 /* lock_mount() may release path->mnt on error */
1136 mntget(path->mnt);
1137 *need_mntput = true;
1138 }
1139 err = finish_automount(mnt, path);
1140
1141 switch (err) {
1142 case -EBUSY:
1143 /* Someone else made a mount here whilst we were busy */
1144 return 0;
1145 case 0:
1146 path_put(path);
1147 path->mnt = mnt;
1148 path->dentry = dget(mnt->mnt_root);
1149 return 0;
1150 default:
1151 return err;
1152 }
1153
1154 }
1155
1156 /*
1157 * Handle a dentry that is managed in some way.
1158 * - Flagged for transit management (autofs)
1159 * - Flagged as mountpoint
1160 * - Flagged as automount point
1161 *
1162 * This may only be called in refwalk mode.
1163 *
1164 * Serialization is taken care of in namespace.c
1165 */
1166 static int follow_managed(struct path *path, struct nameidata *nd)
1167 {
1168 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1169 unsigned managed;
1170 bool need_mntput = false;
1171 int ret = 0;
1172
1173 /* Given that we're not holding a lock here, we retain the value in a
1174 * local variable for each dentry as we look at it so that we don't see
1175 * the components of that value change under us */
1176 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1177 managed &= DCACHE_MANAGED_DENTRY,
1178 unlikely(managed != 0)) {
1179 /* Allow the filesystem to manage the transit without i_mutex
1180 * being held. */
1181 if (managed & DCACHE_MANAGE_TRANSIT) {
1182 BUG_ON(!path->dentry->d_op);
1183 BUG_ON(!path->dentry->d_op->d_manage);
1184 ret = path->dentry->d_op->d_manage(path->dentry, false);
1185 if (ret < 0)
1186 break;
1187 }
1188
1189 /* Transit to a mounted filesystem. */
1190 if (managed & DCACHE_MOUNTED) {
1191 struct vfsmount *mounted = lookup_mnt(path);
1192 if (mounted) {
1193 dput(path->dentry);
1194 if (need_mntput)
1195 mntput(path->mnt);
1196 path->mnt = mounted;
1197 path->dentry = dget(mounted->mnt_root);
1198 need_mntput = true;
1199 continue;
1200 }
1201
1202 /* Something is mounted on this dentry in another
1203 * namespace and/or whatever was mounted there in this
1204 * namespace got unmounted before lookup_mnt() could
1205 * get it */
1206 }
1207
1208 /* Handle an automount point */
1209 if (managed & DCACHE_NEED_AUTOMOUNT) {
1210 ret = follow_automount(path, nd, &need_mntput);
1211 if (ret < 0)
1212 break;
1213 continue;
1214 }
1215
1216 /* We didn't change the current path point */
1217 break;
1218 }
1219
1220 if (need_mntput && path->mnt == mnt)
1221 mntput(path->mnt);
1222 if (ret == -EISDIR)
1223 ret = 0;
1224 if (need_mntput)
1225 nd->flags |= LOOKUP_JUMPED;
1226 if (unlikely(ret < 0))
1227 path_put_conditional(path, nd);
1228 return ret;
1229 }
1230
1231 int follow_down_one(struct path *path)
1232 {
1233 struct vfsmount *mounted;
1234
1235 mounted = lookup_mnt(path);
1236 if (mounted) {
1237 dput(path->dentry);
1238 mntput(path->mnt);
1239 path->mnt = mounted;
1240 path->dentry = dget(mounted->mnt_root);
1241 return 1;
1242 }
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(follow_down_one);
1246
1247 static inline int managed_dentry_rcu(struct dentry *dentry)
1248 {
1249 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1250 dentry->d_op->d_manage(dentry, true) : 0;
1251 }
1252
1253 /*
1254 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1255 * we meet a managed dentry that would need blocking.
1256 */
1257 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1258 struct inode **inode, unsigned *seqp)
1259 {
1260 for (;;) {
1261 struct mount *mounted;
1262 /*
1263 * Don't forget we might have a non-mountpoint managed dentry
1264 * that wants to block transit.
1265 */
1266 switch (managed_dentry_rcu(path->dentry)) {
1267 case -ECHILD:
1268 default:
1269 return false;
1270 case -EISDIR:
1271 return true;
1272 case 0:
1273 break;
1274 }
1275
1276 if (!d_mountpoint(path->dentry))
1277 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278
1279 mounted = __lookup_mnt(path->mnt, path->dentry);
1280 if (!mounted)
1281 break;
1282 path->mnt = &mounted->mnt;
1283 path->dentry = mounted->mnt.mnt_root;
1284 nd->flags |= LOOKUP_JUMPED;
1285 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1286 /*
1287 * Update the inode too. We don't need to re-check the
1288 * dentry sequence number here after this d_inode read,
1289 * because a mount-point is always pinned.
1290 */
1291 *inode = path->dentry->d_inode;
1292 }
1293 return !read_seqretry(&mount_lock, nd->m_seq) &&
1294 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1295 }
1296
1297 static int follow_dotdot_rcu(struct nameidata *nd)
1298 {
1299 struct inode *inode = nd->inode;
1300
1301 while (1) {
1302 if (path_equal(&nd->path, &nd->root))
1303 break;
1304 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1305 struct dentry *old = nd->path.dentry;
1306 struct dentry *parent = old->d_parent;
1307 unsigned seq;
1308
1309 inode = parent->d_inode;
1310 seq = read_seqcount_begin(&parent->d_seq);
1311 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1312 return -ECHILD;
1313 nd->path.dentry = parent;
1314 nd->seq = seq;
1315 if (unlikely(!path_connected(&nd->path)))
1316 return -ENOENT;
1317 break;
1318 } else {
1319 struct mount *mnt = real_mount(nd->path.mnt);
1320 struct mount *mparent = mnt->mnt_parent;
1321 struct dentry *mountpoint = mnt->mnt_mountpoint;
1322 struct inode *inode2 = mountpoint->d_inode;
1323 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1324 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1325 return -ECHILD;
1326 if (&mparent->mnt == nd->path.mnt)
1327 break;
1328 /* we know that mountpoint was pinned */
1329 nd->path.dentry = mountpoint;
1330 nd->path.mnt = &mparent->mnt;
1331 inode = inode2;
1332 nd->seq = seq;
1333 }
1334 }
1335 while (unlikely(d_mountpoint(nd->path.dentry))) {
1336 struct mount *mounted;
1337 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1338 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1339 return -ECHILD;
1340 if (!mounted)
1341 break;
1342 nd->path.mnt = &mounted->mnt;
1343 nd->path.dentry = mounted->mnt.mnt_root;
1344 inode = nd->path.dentry->d_inode;
1345 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1346 }
1347 nd->inode = inode;
1348 return 0;
1349 }
1350
1351 /*
1352 * Follow down to the covering mount currently visible to userspace. At each
1353 * point, the filesystem owning that dentry may be queried as to whether the
1354 * caller is permitted to proceed or not.
1355 */
1356 int follow_down(struct path *path)
1357 {
1358 unsigned managed;
1359 int ret;
1360
1361 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1362 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1363 /* Allow the filesystem to manage the transit without i_mutex
1364 * being held.
1365 *
1366 * We indicate to the filesystem if someone is trying to mount
1367 * something here. This gives autofs the chance to deny anyone
1368 * other than its daemon the right to mount on its
1369 * superstructure.
1370 *
1371 * The filesystem may sleep at this point.
1372 */
1373 if (managed & DCACHE_MANAGE_TRANSIT) {
1374 BUG_ON(!path->dentry->d_op);
1375 BUG_ON(!path->dentry->d_op->d_manage);
1376 ret = path->dentry->d_op->d_manage(
1377 path->dentry, false);
1378 if (ret < 0)
1379 return ret == -EISDIR ? 0 : ret;
1380 }
1381
1382 /* Transit to a mounted filesystem. */
1383 if (managed & DCACHE_MOUNTED) {
1384 struct vfsmount *mounted = lookup_mnt(path);
1385 if (!mounted)
1386 break;
1387 dput(path->dentry);
1388 mntput(path->mnt);
1389 path->mnt = mounted;
1390 path->dentry = dget(mounted->mnt_root);
1391 continue;
1392 }
1393
1394 /* Don't handle automount points here */
1395 break;
1396 }
1397 return 0;
1398 }
1399 EXPORT_SYMBOL(follow_down);
1400
1401 /*
1402 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1403 */
1404 static void follow_mount(struct path *path)
1405 {
1406 while (d_mountpoint(path->dentry)) {
1407 struct vfsmount *mounted = lookup_mnt(path);
1408 if (!mounted)
1409 break;
1410 dput(path->dentry);
1411 mntput(path->mnt);
1412 path->mnt = mounted;
1413 path->dentry = dget(mounted->mnt_root);
1414 }
1415 }
1416
1417 static int follow_dotdot(struct nameidata *nd)
1418 {
1419 while(1) {
1420 struct dentry *old = nd->path.dentry;
1421
1422 if (nd->path.dentry == nd->root.dentry &&
1423 nd->path.mnt == nd->root.mnt) {
1424 break;
1425 }
1426 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1427 /* rare case of legitimate dget_parent()... */
1428 nd->path.dentry = dget_parent(nd->path.dentry);
1429 dput(old);
1430 if (unlikely(!path_connected(&nd->path)))
1431 return -ENOENT;
1432 break;
1433 }
1434 if (!follow_up(&nd->path))
1435 break;
1436 }
1437 follow_mount(&nd->path);
1438 nd->inode = nd->path.dentry->d_inode;
1439 return 0;
1440 }
1441
1442 /*
1443 * This looks up the name in dcache, possibly revalidates the old dentry and
1444 * allocates a new one if not found or not valid. In the need_lookup argument
1445 * returns whether i_op->lookup is necessary.
1446 *
1447 * dir->d_inode->i_mutex must be held
1448 */
1449 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1450 unsigned int flags, bool *need_lookup)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 *need_lookup = false;
1456 dentry = d_lookup(dir, name);
1457 if (dentry) {
1458 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1459 error = d_revalidate(dentry, flags);
1460 if (unlikely(error <= 0)) {
1461 if (error < 0) {
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 } else {
1465 d_invalidate(dentry);
1466 dput(dentry);
1467 dentry = NULL;
1468 }
1469 }
1470 }
1471 }
1472
1473 if (!dentry) {
1474 dentry = d_alloc(dir, name);
1475 if (unlikely(!dentry))
1476 return ERR_PTR(-ENOMEM);
1477
1478 *need_lookup = true;
1479 }
1480 return dentry;
1481 }
1482
1483 /*
1484 * Call i_op->lookup on the dentry. The dentry must be negative and
1485 * unhashed.
1486 *
1487 * dir->d_inode->i_mutex must be held
1488 */
1489 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1490 unsigned int flags)
1491 {
1492 struct dentry *old;
1493
1494 /* Don't create child dentry for a dead directory. */
1495 if (unlikely(IS_DEADDIR(dir))) {
1496 dput(dentry);
1497 return ERR_PTR(-ENOENT);
1498 }
1499
1500 old = dir->i_op->lookup(dir, dentry, flags);
1501 if (unlikely(old)) {
1502 dput(dentry);
1503 dentry = old;
1504 }
1505 return dentry;
1506 }
1507
1508 static struct dentry *__lookup_hash(struct qstr *name,
1509 struct dentry *base, unsigned int flags)
1510 {
1511 bool need_lookup;
1512 struct dentry *dentry;
1513
1514 dentry = lookup_dcache(name, base, flags, &need_lookup);
1515 if (!need_lookup)
1516 return dentry;
1517
1518 return lookup_real(base->d_inode, dentry, flags);
1519 }
1520
1521 /*
1522 * It's more convoluted than I'd like it to be, but... it's still fairly
1523 * small and for now I'd prefer to have fast path as straight as possible.
1524 * It _is_ time-critical.
1525 */
1526 static int lookup_fast(struct nameidata *nd,
1527 struct path *path, struct inode **inode,
1528 unsigned *seqp)
1529 {
1530 struct vfsmount *mnt = nd->path.mnt;
1531 struct dentry *dentry, *parent = nd->path.dentry;
1532 int need_reval = 1;
1533 int status = 1;
1534 int err;
1535
1536 /*
1537 * Rename seqlock is not required here because in the off chance
1538 * of a false negative due to a concurrent rename, we're going to
1539 * do the non-racy lookup, below.
1540 */
1541 if (nd->flags & LOOKUP_RCU) {
1542 unsigned seq;
1543 bool negative;
1544 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1545 if (!dentry)
1546 goto unlazy;
1547
1548 /*
1549 * This sequence count validates that the inode matches
1550 * the dentry name information from lookup.
1551 */
1552 *inode = d_backing_inode(dentry);
1553 negative = d_is_negative(dentry);
1554 if (read_seqcount_retry(&dentry->d_seq, seq))
1555 return -ECHILD;
1556
1557 /*
1558 * This sequence count validates that the parent had no
1559 * changes while we did the lookup of the dentry above.
1560 *
1561 * The memory barrier in read_seqcount_begin of child is
1562 * enough, we can use __read_seqcount_retry here.
1563 */
1564 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1565 return -ECHILD;
1566
1567 *seqp = seq;
1568 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1569 status = d_revalidate(dentry, nd->flags);
1570 if (unlikely(status <= 0)) {
1571 if (status != -ECHILD)
1572 need_reval = 0;
1573 goto unlazy;
1574 }
1575 }
1576 /*
1577 * Note: do negative dentry check after revalidation in
1578 * case that drops it.
1579 */
1580 if (negative)
1581 return -ENOENT;
1582 path->mnt = mnt;
1583 path->dentry = dentry;
1584 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1585 return 0;
1586 unlazy:
1587 if (unlazy_walk(nd, dentry, seq))
1588 return -ECHILD;
1589 } else {
1590 dentry = __d_lookup(parent, &nd->last);
1591 }
1592
1593 if (unlikely(!dentry))
1594 goto need_lookup;
1595
1596 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1597 status = d_revalidate(dentry, nd->flags);
1598 if (unlikely(status <= 0)) {
1599 if (status < 0) {
1600 dput(dentry);
1601 return status;
1602 }
1603 d_invalidate(dentry);
1604 dput(dentry);
1605 goto need_lookup;
1606 }
1607
1608 if (unlikely(d_is_negative(dentry))) {
1609 dput(dentry);
1610 return -ENOENT;
1611 }
1612 path->mnt = mnt;
1613 path->dentry = dentry;
1614 err = follow_managed(path, nd);
1615 if (likely(!err))
1616 *inode = d_backing_inode(path->dentry);
1617 return err;
1618
1619 need_lookup:
1620 return 1;
1621 }
1622
1623 /* Fast lookup failed, do it the slow way */
1624 static int lookup_slow(struct nameidata *nd, struct path *path)
1625 {
1626 struct dentry *dentry, *parent;
1627
1628 parent = nd->path.dentry;
1629 BUG_ON(nd->inode != parent->d_inode);
1630
1631 mutex_lock(&parent->d_inode->i_mutex);
1632 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1633 mutex_unlock(&parent->d_inode->i_mutex);
1634 if (IS_ERR(dentry))
1635 return PTR_ERR(dentry);
1636 path->mnt = nd->path.mnt;
1637 path->dentry = dentry;
1638 return follow_managed(path, nd);
1639 }
1640
1641 static inline int may_lookup(struct nameidata *nd)
1642 {
1643 if (nd->flags & LOOKUP_RCU) {
1644 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1645 if (err != -ECHILD)
1646 return err;
1647 if (unlazy_walk(nd, NULL, 0))
1648 return -ECHILD;
1649 }
1650 return inode_permission(nd->inode, MAY_EXEC);
1651 }
1652
1653 static inline int handle_dots(struct nameidata *nd, int type)
1654 {
1655 if (type == LAST_DOTDOT) {
1656 if (!nd->root.mnt)
1657 set_root(nd);
1658 if (nd->flags & LOOKUP_RCU) {
1659 return follow_dotdot_rcu(nd);
1660 } else
1661 return follow_dotdot(nd);
1662 }
1663 return 0;
1664 }
1665
1666 static int pick_link(struct nameidata *nd, struct path *link,
1667 struct inode *inode, unsigned seq)
1668 {
1669 int error;
1670 struct saved *last;
1671 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1672 path_to_nameidata(link, nd);
1673 return -ELOOP;
1674 }
1675 if (!(nd->flags & LOOKUP_RCU)) {
1676 if (link->mnt == nd->path.mnt)
1677 mntget(link->mnt);
1678 }
1679 error = nd_alloc_stack(nd);
1680 if (unlikely(error)) {
1681 if (error == -ECHILD) {
1682 if (unlikely(unlazy_link(nd, link, seq)))
1683 return -ECHILD;
1684 error = nd_alloc_stack(nd);
1685 }
1686 if (error) {
1687 path_put(link);
1688 return error;
1689 }
1690 }
1691
1692 last = nd->stack + nd->depth++;
1693 last->link = *link;
1694 last->cookie = NULL;
1695 last->inode = inode;
1696 last->seq = seq;
1697 return 1;
1698 }
1699
1700 /*
1701 * Do we need to follow links? We _really_ want to be able
1702 * to do this check without having to look at inode->i_op,
1703 * so we keep a cache of "no, this doesn't need follow_link"
1704 * for the common case.
1705 */
1706 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1707 int follow,
1708 struct inode *inode, unsigned seq)
1709 {
1710 if (likely(!d_is_symlink(link->dentry)))
1711 return 0;
1712 if (!follow)
1713 return 0;
1714 return pick_link(nd, link, inode, seq);
1715 }
1716
1717 enum {WALK_GET = 1, WALK_PUT = 2};
1718
1719 static int walk_component(struct nameidata *nd, int flags)
1720 {
1721 struct path path;
1722 struct inode *inode;
1723 unsigned seq;
1724 int err;
1725 /*
1726 * "." and ".." are special - ".." especially so because it has
1727 * to be able to know about the current root directory and
1728 * parent relationships.
1729 */
1730 if (unlikely(nd->last_type != LAST_NORM)) {
1731 err = handle_dots(nd, nd->last_type);
1732 if (flags & WALK_PUT)
1733 put_link(nd);
1734 return err;
1735 }
1736 err = lookup_fast(nd, &path, &inode, &seq);
1737 if (unlikely(err)) {
1738 if (err < 0)
1739 return err;
1740
1741 err = lookup_slow(nd, &path);
1742 if (err < 0)
1743 return err;
1744
1745 inode = d_backing_inode(path.dentry);
1746 seq = 0; /* we are already out of RCU mode */
1747 err = -ENOENT;
1748 if (d_is_negative(path.dentry))
1749 goto out_path_put;
1750 }
1751
1752 if (flags & WALK_PUT)
1753 put_link(nd);
1754 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1755 if (unlikely(err))
1756 return err;
1757 path_to_nameidata(&path, nd);
1758 nd->inode = inode;
1759 nd->seq = seq;
1760 return 0;
1761
1762 out_path_put:
1763 path_to_nameidata(&path, nd);
1764 return err;
1765 }
1766
1767 /*
1768 * We can do the critical dentry name comparison and hashing
1769 * operations one word at a time, but we are limited to:
1770 *
1771 * - Architectures with fast unaligned word accesses. We could
1772 * do a "get_unaligned()" if this helps and is sufficiently
1773 * fast.
1774 *
1775 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1776 * do not trap on the (extremely unlikely) case of a page
1777 * crossing operation.
1778 *
1779 * - Furthermore, we need an efficient 64-bit compile for the
1780 * 64-bit case in order to generate the "number of bytes in
1781 * the final mask". Again, that could be replaced with a
1782 * efficient population count instruction or similar.
1783 */
1784 #ifdef CONFIG_DCACHE_WORD_ACCESS
1785
1786 #include <asm/word-at-a-time.h>
1787
1788 #ifdef CONFIG_64BIT
1789
1790 static inline unsigned int fold_hash(unsigned long hash)
1791 {
1792 return hash_64(hash, 32);
1793 }
1794
1795 #else /* 32-bit case */
1796
1797 #define fold_hash(x) (x)
1798
1799 #endif
1800
1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1802 {
1803 unsigned long a, mask;
1804 unsigned long hash = 0;
1805
1806 for (;;) {
1807 a = load_unaligned_zeropad(name);
1808 if (len < sizeof(unsigned long))
1809 break;
1810 hash += a;
1811 hash *= 9;
1812 name += sizeof(unsigned long);
1813 len -= sizeof(unsigned long);
1814 if (!len)
1815 goto done;
1816 }
1817 mask = bytemask_from_count(len);
1818 hash += mask & a;
1819 done:
1820 return fold_hash(hash);
1821 }
1822 EXPORT_SYMBOL(full_name_hash);
1823
1824 /*
1825 * Calculate the length and hash of the path component, and
1826 * return the "hash_len" as the result.
1827 */
1828 static inline u64 hash_name(const char *name)
1829 {
1830 unsigned long a, b, adata, bdata, mask, hash, len;
1831 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1832
1833 hash = a = 0;
1834 len = -sizeof(unsigned long);
1835 do {
1836 hash = (hash + a) * 9;
1837 len += sizeof(unsigned long);
1838 a = load_unaligned_zeropad(name+len);
1839 b = a ^ REPEAT_BYTE('/');
1840 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1841
1842 adata = prep_zero_mask(a, adata, &constants);
1843 bdata = prep_zero_mask(b, bdata, &constants);
1844
1845 mask = create_zero_mask(adata | bdata);
1846
1847 hash += a & zero_bytemask(mask);
1848 len += find_zero(mask);
1849 return hashlen_create(fold_hash(hash), len);
1850 }
1851
1852 #else
1853
1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1855 {
1856 unsigned long hash = init_name_hash();
1857 while (len--)
1858 hash = partial_name_hash(*name++, hash);
1859 return end_name_hash(hash);
1860 }
1861 EXPORT_SYMBOL(full_name_hash);
1862
1863 /*
1864 * We know there's a real path component here of at least
1865 * one character.
1866 */
1867 static inline u64 hash_name(const char *name)
1868 {
1869 unsigned long hash = init_name_hash();
1870 unsigned long len = 0, c;
1871
1872 c = (unsigned char)*name;
1873 do {
1874 len++;
1875 hash = partial_name_hash(c, hash);
1876 c = (unsigned char)name[len];
1877 } while (c && c != '/');
1878 return hashlen_create(end_name_hash(hash), len);
1879 }
1880
1881 #endif
1882
1883 /*
1884 * Name resolution.
1885 * This is the basic name resolution function, turning a pathname into
1886 * the final dentry. We expect 'base' to be positive and a directory.
1887 *
1888 * Returns 0 and nd will have valid dentry and mnt on success.
1889 * Returns error and drops reference to input namei data on failure.
1890 */
1891 static int link_path_walk(const char *name, struct nameidata *nd)
1892 {
1893 int err;
1894
1895 while (*name=='/')
1896 name++;
1897 if (!*name)
1898 return 0;
1899
1900 /* At this point we know we have a real path component. */
1901 for(;;) {
1902 u64 hash_len;
1903 int type;
1904
1905 err = may_lookup(nd);
1906 if (err)
1907 return err;
1908
1909 hash_len = hash_name(name);
1910
1911 type = LAST_NORM;
1912 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1913 case 2:
1914 if (name[1] == '.') {
1915 type = LAST_DOTDOT;
1916 nd->flags |= LOOKUP_JUMPED;
1917 }
1918 break;
1919 case 1:
1920 type = LAST_DOT;
1921 }
1922 if (likely(type == LAST_NORM)) {
1923 struct dentry *parent = nd->path.dentry;
1924 nd->flags &= ~LOOKUP_JUMPED;
1925 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1926 struct qstr this = { { .hash_len = hash_len }, .name = name };
1927 err = parent->d_op->d_hash(parent, &this);
1928 if (err < 0)
1929 return err;
1930 hash_len = this.hash_len;
1931 name = this.name;
1932 }
1933 }
1934
1935 nd->last.hash_len = hash_len;
1936 nd->last.name = name;
1937 nd->last_type = type;
1938
1939 name += hashlen_len(hash_len);
1940 if (!*name)
1941 goto OK;
1942 /*
1943 * If it wasn't NUL, we know it was '/'. Skip that
1944 * slash, and continue until no more slashes.
1945 */
1946 do {
1947 name++;
1948 } while (unlikely(*name == '/'));
1949 if (unlikely(!*name)) {
1950 OK:
1951 /* pathname body, done */
1952 if (!nd->depth)
1953 return 0;
1954 name = nd->stack[nd->depth - 1].name;
1955 /* trailing symlink, done */
1956 if (!name)
1957 return 0;
1958 /* last component of nested symlink */
1959 err = walk_component(nd, WALK_GET | WALK_PUT);
1960 } else {
1961 err = walk_component(nd, WALK_GET);
1962 }
1963 if (err < 0)
1964 return err;
1965
1966 if (err) {
1967 const char *s = get_link(nd);
1968
1969 if (IS_ERR(s))
1970 return PTR_ERR(s);
1971 err = 0;
1972 if (unlikely(!s)) {
1973 /* jumped */
1974 put_link(nd);
1975 } else {
1976 nd->stack[nd->depth - 1].name = name;
1977 name = s;
1978 continue;
1979 }
1980 }
1981 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1982 if (nd->flags & LOOKUP_RCU) {
1983 if (unlazy_walk(nd, NULL, 0))
1984 return -ECHILD;
1985 }
1986 return -ENOTDIR;
1987 }
1988 }
1989 }
1990
1991 static const char *path_init(struct nameidata *nd, unsigned flags)
1992 {
1993 int retval = 0;
1994 const char *s = nd->name->name;
1995
1996 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1997 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1998 nd->depth = 0;
1999 if (flags & LOOKUP_ROOT) {
2000 struct dentry *root = nd->root.dentry;
2001 struct inode *inode = root->d_inode;
2002 if (*s) {
2003 if (!d_can_lookup(root))
2004 return ERR_PTR(-ENOTDIR);
2005 retval = inode_permission(inode, MAY_EXEC);
2006 if (retval)
2007 return ERR_PTR(retval);
2008 }
2009 nd->path = nd->root;
2010 nd->inode = inode;
2011 if (flags & LOOKUP_RCU) {
2012 rcu_read_lock();
2013 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2014 nd->root_seq = nd->seq;
2015 nd->m_seq = read_seqbegin(&mount_lock);
2016 } else {
2017 path_get(&nd->path);
2018 }
2019 return s;
2020 }
2021
2022 nd->root.mnt = NULL;
2023 nd->path.mnt = NULL;
2024 nd->path.dentry = NULL;
2025
2026 nd->m_seq = read_seqbegin(&mount_lock);
2027 if (*s == '/') {
2028 if (flags & LOOKUP_RCU)
2029 rcu_read_lock();
2030 set_root(nd);
2031 if (likely(!nd_jump_root(nd)))
2032 return s;
2033 nd->root.mnt = NULL;
2034 rcu_read_unlock();
2035 return ERR_PTR(-ECHILD);
2036 } else if (nd->dfd == AT_FDCWD) {
2037 if (flags & LOOKUP_RCU) {
2038 struct fs_struct *fs = current->fs;
2039 unsigned seq;
2040
2041 rcu_read_lock();
2042
2043 do {
2044 seq = read_seqcount_begin(&fs->seq);
2045 nd->path = fs->pwd;
2046 nd->inode = nd->path.dentry->d_inode;
2047 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2048 } while (read_seqcount_retry(&fs->seq, seq));
2049 } else {
2050 get_fs_pwd(current->fs, &nd->path);
2051 nd->inode = nd->path.dentry->d_inode;
2052 }
2053 return s;
2054 } else {
2055 /* Caller must check execute permissions on the starting path component */
2056 struct fd f = fdget_raw(nd->dfd);
2057 struct dentry *dentry;
2058
2059 if (!f.file)
2060 return ERR_PTR(-EBADF);
2061
2062 dentry = f.file->f_path.dentry;
2063
2064 if (*s) {
2065 if (!d_can_lookup(dentry)) {
2066 fdput(f);
2067 return ERR_PTR(-ENOTDIR);
2068 }
2069 }
2070
2071 nd->path = f.file->f_path;
2072 if (flags & LOOKUP_RCU) {
2073 rcu_read_lock();
2074 nd->inode = nd->path.dentry->d_inode;
2075 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2076 } else {
2077 path_get(&nd->path);
2078 nd->inode = nd->path.dentry->d_inode;
2079 }
2080 fdput(f);
2081 return s;
2082 }
2083 }
2084
2085 static const char *trailing_symlink(struct nameidata *nd)
2086 {
2087 const char *s;
2088 int error = may_follow_link(nd);
2089 if (unlikely(error))
2090 return ERR_PTR(error);
2091 nd->flags |= LOOKUP_PARENT;
2092 nd->stack[0].name = NULL;
2093 s = get_link(nd);
2094 return s ? s : "";
2095 }
2096
2097 static inline int lookup_last(struct nameidata *nd)
2098 {
2099 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2100 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2101
2102 nd->flags &= ~LOOKUP_PARENT;
2103 return walk_component(nd,
2104 nd->flags & LOOKUP_FOLLOW
2105 ? nd->depth
2106 ? WALK_PUT | WALK_GET
2107 : WALK_GET
2108 : 0);
2109 }
2110
2111 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2112 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2113 {
2114 const char *s = path_init(nd, flags);
2115 int err;
2116
2117 if (IS_ERR(s))
2118 return PTR_ERR(s);
2119 while (!(err = link_path_walk(s, nd))
2120 && ((err = lookup_last(nd)) > 0)) {
2121 s = trailing_symlink(nd);
2122 if (IS_ERR(s)) {
2123 err = PTR_ERR(s);
2124 break;
2125 }
2126 }
2127 if (!err)
2128 err = complete_walk(nd);
2129
2130 if (!err && nd->flags & LOOKUP_DIRECTORY)
2131 if (!d_can_lookup(nd->path.dentry))
2132 err = -ENOTDIR;
2133 if (!err) {
2134 *path = nd->path;
2135 nd->path.mnt = NULL;
2136 nd->path.dentry = NULL;
2137 }
2138 terminate_walk(nd);
2139 return err;
2140 }
2141
2142 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2143 struct path *path, struct path *root)
2144 {
2145 int retval;
2146 struct nameidata nd;
2147 if (IS_ERR(name))
2148 return PTR_ERR(name);
2149 if (unlikely(root)) {
2150 nd.root = *root;
2151 flags |= LOOKUP_ROOT;
2152 }
2153 set_nameidata(&nd, dfd, name);
2154 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2155 if (unlikely(retval == -ECHILD))
2156 retval = path_lookupat(&nd, flags, path);
2157 if (unlikely(retval == -ESTALE))
2158 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2159
2160 if (likely(!retval))
2161 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2162 restore_nameidata();
2163 putname(name);
2164 return retval;
2165 }
2166
2167 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2168 static int path_parentat(struct nameidata *nd, unsigned flags,
2169 struct path *parent)
2170 {
2171 const char *s = path_init(nd, flags);
2172 int err;
2173 if (IS_ERR(s))
2174 return PTR_ERR(s);
2175 err = link_path_walk(s, nd);
2176 if (!err)
2177 err = complete_walk(nd);
2178 if (!err) {
2179 *parent = nd->path;
2180 nd->path.mnt = NULL;
2181 nd->path.dentry = NULL;
2182 }
2183 terminate_walk(nd);
2184 return err;
2185 }
2186
2187 static struct filename *filename_parentat(int dfd, struct filename *name,
2188 unsigned int flags, struct path *parent,
2189 struct qstr *last, int *type)
2190 {
2191 int retval;
2192 struct nameidata nd;
2193
2194 if (IS_ERR(name))
2195 return name;
2196 set_nameidata(&nd, dfd, name);
2197 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2198 if (unlikely(retval == -ECHILD))
2199 retval = path_parentat(&nd, flags, parent);
2200 if (unlikely(retval == -ESTALE))
2201 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2202 if (likely(!retval)) {
2203 *last = nd.last;
2204 *type = nd.last_type;
2205 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2206 } else {
2207 putname(name);
2208 name = ERR_PTR(retval);
2209 }
2210 restore_nameidata();
2211 return name;
2212 }
2213
2214 /* does lookup, returns the object with parent locked */
2215 struct dentry *kern_path_locked(const char *name, struct path *path)
2216 {
2217 struct filename *filename;
2218 struct dentry *d;
2219 struct qstr last;
2220 int type;
2221
2222 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2223 &last, &type);
2224 if (IS_ERR(filename))
2225 return ERR_CAST(filename);
2226 if (unlikely(type != LAST_NORM)) {
2227 path_put(path);
2228 putname(filename);
2229 return ERR_PTR(-EINVAL);
2230 }
2231 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2232 d = __lookup_hash(&last, path->dentry, 0);
2233 if (IS_ERR(d)) {
2234 mutex_unlock(&path->dentry->d_inode->i_mutex);
2235 path_put(path);
2236 }
2237 putname(filename);
2238 return d;
2239 }
2240
2241 int kern_path(const char *name, unsigned int flags, struct path *path)
2242 {
2243 return filename_lookup(AT_FDCWD, getname_kernel(name),
2244 flags, path, NULL);
2245 }
2246 EXPORT_SYMBOL(kern_path);
2247
2248 /**
2249 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2250 * @dentry: pointer to dentry of the base directory
2251 * @mnt: pointer to vfs mount of the base directory
2252 * @name: pointer to file name
2253 * @flags: lookup flags
2254 * @path: pointer to struct path to fill
2255 */
2256 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2257 const char *name, unsigned int flags,
2258 struct path *path)
2259 {
2260 struct path root = {.mnt = mnt, .dentry = dentry};
2261 /* the first argument of filename_lookup() is ignored with root */
2262 return filename_lookup(AT_FDCWD, getname_kernel(name),
2263 flags , path, &root);
2264 }
2265 EXPORT_SYMBOL(vfs_path_lookup);
2266
2267 /**
2268 * lookup_one_len - filesystem helper to lookup single pathname component
2269 * @name: pathname component to lookup
2270 * @base: base directory to lookup from
2271 * @len: maximum length @len should be interpreted to
2272 *
2273 * Note that this routine is purely a helper for filesystem usage and should
2274 * not be called by generic code.
2275 */
2276 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2277 {
2278 struct qstr this;
2279 unsigned int c;
2280 int err;
2281
2282 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2283
2284 this.name = name;
2285 this.len = len;
2286 this.hash = full_name_hash(name, len);
2287 if (!len)
2288 return ERR_PTR(-EACCES);
2289
2290 if (unlikely(name[0] == '.')) {
2291 if (len < 2 || (len == 2 && name[1] == '.'))
2292 return ERR_PTR(-EACCES);
2293 }
2294
2295 while (len--) {
2296 c = *(const unsigned char *)name++;
2297 if (c == '/' || c == '\0')
2298 return ERR_PTR(-EACCES);
2299 }
2300 /*
2301 * See if the low-level filesystem might want
2302 * to use its own hash..
2303 */
2304 if (base->d_flags & DCACHE_OP_HASH) {
2305 int err = base->d_op->d_hash(base, &this);
2306 if (err < 0)
2307 return ERR_PTR(err);
2308 }
2309
2310 err = inode_permission(base->d_inode, MAY_EXEC);
2311 if (err)
2312 return ERR_PTR(err);
2313
2314 return __lookup_hash(&this, base, 0);
2315 }
2316 EXPORT_SYMBOL(lookup_one_len);
2317
2318 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2319 struct path *path, int *empty)
2320 {
2321 return filename_lookup(dfd, getname_flags(name, flags, empty),
2322 flags, path, NULL);
2323 }
2324 EXPORT_SYMBOL(user_path_at_empty);
2325
2326 /*
2327 * NB: most callers don't do anything directly with the reference to the
2328 * to struct filename, but the nd->last pointer points into the name string
2329 * allocated by getname. So we must hold the reference to it until all
2330 * path-walking is complete.
2331 */
2332 static inline struct filename *
2333 user_path_parent(int dfd, const char __user *path,
2334 struct path *parent,
2335 struct qstr *last,
2336 int *type,
2337 unsigned int flags)
2338 {
2339 /* only LOOKUP_REVAL is allowed in extra flags */
2340 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2341 parent, last, type);
2342 }
2343
2344 /**
2345 * mountpoint_last - look up last component for umount
2346 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2347 * @path: pointer to container for result
2348 *
2349 * This is a special lookup_last function just for umount. In this case, we
2350 * need to resolve the path without doing any revalidation.
2351 *
2352 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2353 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2354 * in almost all cases, this lookup will be served out of the dcache. The only
2355 * cases where it won't are if nd->last refers to a symlink or the path is
2356 * bogus and it doesn't exist.
2357 *
2358 * Returns:
2359 * -error: if there was an error during lookup. This includes -ENOENT if the
2360 * lookup found a negative dentry. The nd->path reference will also be
2361 * put in this case.
2362 *
2363 * 0: if we successfully resolved nd->path and found it to not to be a
2364 * symlink that needs to be followed. "path" will also be populated.
2365 * The nd->path reference will also be put.
2366 *
2367 * 1: if we successfully resolved nd->last and found it to be a symlink
2368 * that needs to be followed. "path" will be populated with the path
2369 * to the link, and nd->path will *not* be put.
2370 */
2371 static int
2372 mountpoint_last(struct nameidata *nd, struct path *path)
2373 {
2374 int error = 0;
2375 struct dentry *dentry;
2376 struct dentry *dir = nd->path.dentry;
2377
2378 /* If we're in rcuwalk, drop out of it to handle last component */
2379 if (nd->flags & LOOKUP_RCU) {
2380 if (unlazy_walk(nd, NULL, 0))
2381 return -ECHILD;
2382 }
2383
2384 nd->flags &= ~LOOKUP_PARENT;
2385
2386 if (unlikely(nd->last_type != LAST_NORM)) {
2387 error = handle_dots(nd, nd->last_type);
2388 if (error)
2389 return error;
2390 dentry = dget(nd->path.dentry);
2391 goto done;
2392 }
2393
2394 mutex_lock(&dir->d_inode->i_mutex);
2395 dentry = d_lookup(dir, &nd->last);
2396 if (!dentry) {
2397 /*
2398 * No cached dentry. Mounted dentries are pinned in the cache,
2399 * so that means that this dentry is probably a symlink or the
2400 * path doesn't actually point to a mounted dentry.
2401 */
2402 dentry = d_alloc(dir, &nd->last);
2403 if (!dentry) {
2404 mutex_unlock(&dir->d_inode->i_mutex);
2405 return -ENOMEM;
2406 }
2407 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2408 if (IS_ERR(dentry)) {
2409 mutex_unlock(&dir->d_inode->i_mutex);
2410 return PTR_ERR(dentry);
2411 }
2412 }
2413 mutex_unlock(&dir->d_inode->i_mutex);
2414
2415 done:
2416 if (d_is_negative(dentry)) {
2417 dput(dentry);
2418 return -ENOENT;
2419 }
2420 if (nd->depth)
2421 put_link(nd);
2422 path->dentry = dentry;
2423 path->mnt = nd->path.mnt;
2424 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2425 d_backing_inode(dentry), 0);
2426 if (unlikely(error))
2427 return error;
2428 mntget(path->mnt);
2429 follow_mount(path);
2430 return 0;
2431 }
2432
2433 /**
2434 * path_mountpoint - look up a path to be umounted
2435 * @nd: lookup context
2436 * @flags: lookup flags
2437 * @path: pointer to container for result
2438 *
2439 * Look up the given name, but don't attempt to revalidate the last component.
2440 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2441 */
2442 static int
2443 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2444 {
2445 const char *s = path_init(nd, flags);
2446 int err;
2447 if (IS_ERR(s))
2448 return PTR_ERR(s);
2449 while (!(err = link_path_walk(s, nd)) &&
2450 (err = mountpoint_last(nd, path)) > 0) {
2451 s = trailing_symlink(nd);
2452 if (IS_ERR(s)) {
2453 err = PTR_ERR(s);
2454 break;
2455 }
2456 }
2457 terminate_walk(nd);
2458 return err;
2459 }
2460
2461 static int
2462 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2463 unsigned int flags)
2464 {
2465 struct nameidata nd;
2466 int error;
2467 if (IS_ERR(name))
2468 return PTR_ERR(name);
2469 set_nameidata(&nd, dfd, name);
2470 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2471 if (unlikely(error == -ECHILD))
2472 error = path_mountpoint(&nd, flags, path);
2473 if (unlikely(error == -ESTALE))
2474 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2475 if (likely(!error))
2476 audit_inode(name, path->dentry, 0);
2477 restore_nameidata();
2478 putname(name);
2479 return error;
2480 }
2481
2482 /**
2483 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2484 * @dfd: directory file descriptor
2485 * @name: pathname from userland
2486 * @flags: lookup flags
2487 * @path: pointer to container to hold result
2488 *
2489 * A umount is a special case for path walking. We're not actually interested
2490 * in the inode in this situation, and ESTALE errors can be a problem. We
2491 * simply want track down the dentry and vfsmount attached at the mountpoint
2492 * and avoid revalidating the last component.
2493 *
2494 * Returns 0 and populates "path" on success.
2495 */
2496 int
2497 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2498 struct path *path)
2499 {
2500 return filename_mountpoint(dfd, getname(name), path, flags);
2501 }
2502
2503 int
2504 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2505 unsigned int flags)
2506 {
2507 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2508 }
2509 EXPORT_SYMBOL(kern_path_mountpoint);
2510
2511 int __check_sticky(struct inode *dir, struct inode *inode)
2512 {
2513 kuid_t fsuid = current_fsuid();
2514
2515 if (uid_eq(inode->i_uid, fsuid))
2516 return 0;
2517 if (uid_eq(dir->i_uid, fsuid))
2518 return 0;
2519 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2520 }
2521 EXPORT_SYMBOL(__check_sticky);
2522
2523 /*
2524 * Check whether we can remove a link victim from directory dir, check
2525 * whether the type of victim is right.
2526 * 1. We can't do it if dir is read-only (done in permission())
2527 * 2. We should have write and exec permissions on dir
2528 * 3. We can't remove anything from append-only dir
2529 * 4. We can't do anything with immutable dir (done in permission())
2530 * 5. If the sticky bit on dir is set we should either
2531 * a. be owner of dir, or
2532 * b. be owner of victim, or
2533 * c. have CAP_FOWNER capability
2534 * 6. If the victim is append-only or immutable we can't do antyhing with
2535 * links pointing to it.
2536 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2537 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2538 * 9. We can't remove a root or mountpoint.
2539 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2540 * nfs_async_unlink().
2541 */
2542 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2543 {
2544 struct inode *inode = d_backing_inode(victim);
2545 int error;
2546
2547 if (d_is_negative(victim))
2548 return -ENOENT;
2549 BUG_ON(!inode);
2550
2551 BUG_ON(victim->d_parent->d_inode != dir);
2552 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2553
2554 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2555 if (error)
2556 return error;
2557 if (IS_APPEND(dir))
2558 return -EPERM;
2559
2560 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2561 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2562 return -EPERM;
2563 if (isdir) {
2564 if (!d_is_dir(victim))
2565 return -ENOTDIR;
2566 if (IS_ROOT(victim))
2567 return -EBUSY;
2568 } else if (d_is_dir(victim))
2569 return -EISDIR;
2570 if (IS_DEADDIR(dir))
2571 return -ENOENT;
2572 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2573 return -EBUSY;
2574 return 0;
2575 }
2576
2577 /* Check whether we can create an object with dentry child in directory
2578 * dir.
2579 * 1. We can't do it if child already exists (open has special treatment for
2580 * this case, but since we are inlined it's OK)
2581 * 2. We can't do it if dir is read-only (done in permission())
2582 * 3. We should have write and exec permissions on dir
2583 * 4. We can't do it if dir is immutable (done in permission())
2584 */
2585 static inline int may_create(struct inode *dir, struct dentry *child)
2586 {
2587 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2588 if (child->d_inode)
2589 return -EEXIST;
2590 if (IS_DEADDIR(dir))
2591 return -ENOENT;
2592 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2593 }
2594
2595 /*
2596 * p1 and p2 should be directories on the same fs.
2597 */
2598 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2599 {
2600 struct dentry *p;
2601
2602 if (p1 == p2) {
2603 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2604 return NULL;
2605 }
2606
2607 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2608
2609 p = d_ancestor(p2, p1);
2610 if (p) {
2611 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2612 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2613 return p;
2614 }
2615
2616 p = d_ancestor(p1, p2);
2617 if (p) {
2618 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2619 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2620 return p;
2621 }
2622
2623 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2624 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2625 return NULL;
2626 }
2627 EXPORT_SYMBOL(lock_rename);
2628
2629 void unlock_rename(struct dentry *p1, struct dentry *p2)
2630 {
2631 mutex_unlock(&p1->d_inode->i_mutex);
2632 if (p1 != p2) {
2633 mutex_unlock(&p2->d_inode->i_mutex);
2634 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2635 }
2636 }
2637 EXPORT_SYMBOL(unlock_rename);
2638
2639 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2640 bool want_excl)
2641 {
2642 int error = may_create(dir, dentry);
2643 if (error)
2644 return error;
2645
2646 if (!dir->i_op->create)
2647 return -EACCES; /* shouldn't it be ENOSYS? */
2648 mode &= S_IALLUGO;
2649 mode |= S_IFREG;
2650 error = security_inode_create(dir, dentry, mode);
2651 if (error)
2652 return error;
2653 error = dir->i_op->create(dir, dentry, mode, want_excl);
2654 if (!error)
2655 fsnotify_create(dir, dentry);
2656 return error;
2657 }
2658 EXPORT_SYMBOL(vfs_create);
2659
2660 static int may_open(struct path *path, int acc_mode, int flag)
2661 {
2662 struct dentry *dentry = path->dentry;
2663 struct inode *inode = dentry->d_inode;
2664 int error;
2665
2666 if (!inode)
2667 return -ENOENT;
2668
2669 switch (inode->i_mode & S_IFMT) {
2670 case S_IFLNK:
2671 return -ELOOP;
2672 case S_IFDIR:
2673 if (acc_mode & MAY_WRITE)
2674 return -EISDIR;
2675 break;
2676 case S_IFBLK:
2677 case S_IFCHR:
2678 if (path->mnt->mnt_flags & MNT_NODEV)
2679 return -EACCES;
2680 /*FALLTHRU*/
2681 case S_IFIFO:
2682 case S_IFSOCK:
2683 flag &= ~O_TRUNC;
2684 break;
2685 }
2686
2687 error = inode_permission(inode, MAY_OPEN | acc_mode);
2688 if (error)
2689 return error;
2690
2691 /*
2692 * An append-only file must be opened in append mode for writing.
2693 */
2694 if (IS_APPEND(inode)) {
2695 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2696 return -EPERM;
2697 if (flag & O_TRUNC)
2698 return -EPERM;
2699 }
2700
2701 /* O_NOATIME can only be set by the owner or superuser */
2702 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2703 return -EPERM;
2704
2705 return 0;
2706 }
2707
2708 static int handle_truncate(struct file *filp)
2709 {
2710 struct path *path = &filp->f_path;
2711 struct inode *inode = path->dentry->d_inode;
2712 int error = get_write_access(inode);
2713 if (error)
2714 return error;
2715 /*
2716 * Refuse to truncate files with mandatory locks held on them.
2717 */
2718 error = locks_verify_locked(filp);
2719 if (!error)
2720 error = security_path_truncate(path);
2721 if (!error) {
2722 error = do_truncate(path->dentry, 0,
2723 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2724 filp);
2725 }
2726 put_write_access(inode);
2727 return error;
2728 }
2729
2730 static inline int open_to_namei_flags(int flag)
2731 {
2732 if ((flag & O_ACCMODE) == 3)
2733 flag--;
2734 return flag;
2735 }
2736
2737 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2738 {
2739 int error = security_path_mknod(dir, dentry, mode, 0);
2740 if (error)
2741 return error;
2742
2743 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2744 if (error)
2745 return error;
2746
2747 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2748 }
2749
2750 /*
2751 * Attempt to atomically look up, create and open a file from a negative
2752 * dentry.
2753 *
2754 * Returns 0 if successful. The file will have been created and attached to
2755 * @file by the filesystem calling finish_open().
2756 *
2757 * Returns 1 if the file was looked up only or didn't need creating. The
2758 * caller will need to perform the open themselves. @path will have been
2759 * updated to point to the new dentry. This may be negative.
2760 *
2761 * Returns an error code otherwise.
2762 */
2763 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2764 struct path *path, struct file *file,
2765 const struct open_flags *op,
2766 bool got_write, bool need_lookup,
2767 int *opened)
2768 {
2769 struct inode *dir = nd->path.dentry->d_inode;
2770 unsigned open_flag = open_to_namei_flags(op->open_flag);
2771 umode_t mode;
2772 int error;
2773 int acc_mode;
2774 int create_error = 0;
2775 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2776 bool excl;
2777
2778 BUG_ON(dentry->d_inode);
2779
2780 /* Don't create child dentry for a dead directory. */
2781 if (unlikely(IS_DEADDIR(dir))) {
2782 error = -ENOENT;
2783 goto out;
2784 }
2785
2786 mode = op->mode;
2787 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2788 mode &= ~current_umask();
2789
2790 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2791 if (excl)
2792 open_flag &= ~O_TRUNC;
2793
2794 /*
2795 * Checking write permission is tricky, bacuse we don't know if we are
2796 * going to actually need it: O_CREAT opens should work as long as the
2797 * file exists. But checking existence breaks atomicity. The trick is
2798 * to check access and if not granted clear O_CREAT from the flags.
2799 *
2800 * Another problem is returing the "right" error value (e.g. for an
2801 * O_EXCL open we want to return EEXIST not EROFS).
2802 */
2803 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2804 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2805 if (!(open_flag & O_CREAT)) {
2806 /*
2807 * No O_CREATE -> atomicity not a requirement -> fall
2808 * back to lookup + open
2809 */
2810 goto no_open;
2811 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2812 /* Fall back and fail with the right error */
2813 create_error = -EROFS;
2814 goto no_open;
2815 } else {
2816 /* No side effects, safe to clear O_CREAT */
2817 create_error = -EROFS;
2818 open_flag &= ~O_CREAT;
2819 }
2820 }
2821
2822 if (open_flag & O_CREAT) {
2823 error = may_o_create(&nd->path, dentry, mode);
2824 if (error) {
2825 create_error = error;
2826 if (open_flag & O_EXCL)
2827 goto no_open;
2828 open_flag &= ~O_CREAT;
2829 }
2830 }
2831
2832 if (nd->flags & LOOKUP_DIRECTORY)
2833 open_flag |= O_DIRECTORY;
2834
2835 file->f_path.dentry = DENTRY_NOT_SET;
2836 file->f_path.mnt = nd->path.mnt;
2837 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2838 opened);
2839 if (error < 0) {
2840 if (create_error && error == -ENOENT)
2841 error = create_error;
2842 goto out;
2843 }
2844
2845 if (error) { /* returned 1, that is */
2846 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2847 error = -EIO;
2848 goto out;
2849 }
2850 if (file->f_path.dentry) {
2851 dput(dentry);
2852 dentry = file->f_path.dentry;
2853 }
2854 if (*opened & FILE_CREATED)
2855 fsnotify_create(dir, dentry);
2856 if (!dentry->d_inode) {
2857 WARN_ON(*opened & FILE_CREATED);
2858 if (create_error) {
2859 error = create_error;
2860 goto out;
2861 }
2862 } else {
2863 if (excl && !(*opened & FILE_CREATED)) {
2864 error = -EEXIST;
2865 goto out;
2866 }
2867 }
2868 goto looked_up;
2869 }
2870
2871 /*
2872 * We didn't have the inode before the open, so check open permission
2873 * here.
2874 */
2875 acc_mode = op->acc_mode;
2876 if (*opened & FILE_CREATED) {
2877 WARN_ON(!(open_flag & O_CREAT));
2878 fsnotify_create(dir, dentry);
2879 acc_mode = 0;
2880 }
2881 error = may_open(&file->f_path, acc_mode, open_flag);
2882 if (error)
2883 fput(file);
2884
2885 out:
2886 dput(dentry);
2887 return error;
2888
2889 no_open:
2890 if (need_lookup) {
2891 dentry = lookup_real(dir, dentry, nd->flags);
2892 if (IS_ERR(dentry))
2893 return PTR_ERR(dentry);
2894
2895 if (create_error) {
2896 int open_flag = op->open_flag;
2897
2898 error = create_error;
2899 if ((open_flag & O_EXCL)) {
2900 if (!dentry->d_inode)
2901 goto out;
2902 } else if (!dentry->d_inode) {
2903 goto out;
2904 } else if ((open_flag & O_TRUNC) &&
2905 d_is_reg(dentry)) {
2906 goto out;
2907 }
2908 /* will fail later, go on to get the right error */
2909 }
2910 }
2911 looked_up:
2912 path->dentry = dentry;
2913 path->mnt = nd->path.mnt;
2914 return 1;
2915 }
2916
2917 /*
2918 * Look up and maybe create and open the last component.
2919 *
2920 * Must be called with i_mutex held on parent.
2921 *
2922 * Returns 0 if the file was successfully atomically created (if necessary) and
2923 * opened. In this case the file will be returned attached to @file.
2924 *
2925 * Returns 1 if the file was not completely opened at this time, though lookups
2926 * and creations will have been performed and the dentry returned in @path will
2927 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2928 * specified then a negative dentry may be returned.
2929 *
2930 * An error code is returned otherwise.
2931 *
2932 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2933 * cleared otherwise prior to returning.
2934 */
2935 static int lookup_open(struct nameidata *nd, struct path *path,
2936 struct file *file,
2937 const struct open_flags *op,
2938 bool got_write, int *opened)
2939 {
2940 struct dentry *dir = nd->path.dentry;
2941 struct inode *dir_inode = dir->d_inode;
2942 struct dentry *dentry;
2943 int error;
2944 bool need_lookup;
2945
2946 *opened &= ~FILE_CREATED;
2947 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2948 if (IS_ERR(dentry))
2949 return PTR_ERR(dentry);
2950
2951 /* Cached positive dentry: will open in f_op->open */
2952 if (!need_lookup && dentry->d_inode)
2953 goto out_no_open;
2954
2955 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2956 return atomic_open(nd, dentry, path, file, op, got_write,
2957 need_lookup, opened);
2958 }
2959
2960 if (need_lookup) {
2961 BUG_ON(dentry->d_inode);
2962
2963 dentry = lookup_real(dir_inode, dentry, nd->flags);
2964 if (IS_ERR(dentry))
2965 return PTR_ERR(dentry);
2966 }
2967
2968 /* Negative dentry, just create the file */
2969 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2970 umode_t mode = op->mode;
2971 if (!IS_POSIXACL(dir->d_inode))
2972 mode &= ~current_umask();
2973 /*
2974 * This write is needed to ensure that a
2975 * rw->ro transition does not occur between
2976 * the time when the file is created and when
2977 * a permanent write count is taken through
2978 * the 'struct file' in finish_open().
2979 */
2980 if (!got_write) {
2981 error = -EROFS;
2982 goto out_dput;
2983 }
2984 *opened |= FILE_CREATED;
2985 error = security_path_mknod(&nd->path, dentry, mode, 0);
2986 if (error)
2987 goto out_dput;
2988 error = vfs_create(dir->d_inode, dentry, mode,
2989 nd->flags & LOOKUP_EXCL);
2990 if (error)
2991 goto out_dput;
2992 }
2993 out_no_open:
2994 path->dentry = dentry;
2995 path->mnt = nd->path.mnt;
2996 return 1;
2997
2998 out_dput:
2999 dput(dentry);
3000 return error;
3001 }
3002
3003 /*
3004 * Handle the last step of open()
3005 */
3006 static int do_last(struct nameidata *nd,
3007 struct file *file, const struct open_flags *op,
3008 int *opened)
3009 {
3010 struct dentry *dir = nd->path.dentry;
3011 int open_flag = op->open_flag;
3012 bool will_truncate = (open_flag & O_TRUNC) != 0;
3013 bool got_write = false;
3014 int acc_mode = op->acc_mode;
3015 unsigned seq;
3016 struct inode *inode;
3017 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3018 struct path path;
3019 bool retried = false;
3020 int error;
3021
3022 nd->flags &= ~LOOKUP_PARENT;
3023 nd->flags |= op->intent;
3024
3025 if (nd->last_type != LAST_NORM) {
3026 error = handle_dots(nd, nd->last_type);
3027 if (unlikely(error))
3028 return error;
3029 goto finish_open;
3030 }
3031
3032 if (!(open_flag & O_CREAT)) {
3033 if (nd->last.name[nd->last.len])
3034 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3035 /* we _can_ be in RCU mode here */
3036 error = lookup_fast(nd, &path, &inode, &seq);
3037 if (likely(!error))
3038 goto finish_lookup;
3039
3040 if (error < 0)
3041 return error;
3042
3043 BUG_ON(nd->inode != dir->d_inode);
3044 } else {
3045 /* create side of things */
3046 /*
3047 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3048 * has been cleared when we got to the last component we are
3049 * about to look up
3050 */
3051 error = complete_walk(nd);
3052 if (error)
3053 return error;
3054
3055 audit_inode(nd->name, dir, LOOKUP_PARENT);
3056 /* trailing slashes? */
3057 if (unlikely(nd->last.name[nd->last.len]))
3058 return -EISDIR;
3059 }
3060
3061 retry_lookup:
3062 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3063 error = mnt_want_write(nd->path.mnt);
3064 if (!error)
3065 got_write = true;
3066 /*
3067 * do _not_ fail yet - we might not need that or fail with
3068 * a different error; let lookup_open() decide; we'll be
3069 * dropping this one anyway.
3070 */
3071 }
3072 mutex_lock(&dir->d_inode->i_mutex);
3073 error = lookup_open(nd, &path, file, op, got_write, opened);
3074 mutex_unlock(&dir->d_inode->i_mutex);
3075
3076 if (error <= 0) {
3077 if (error)
3078 goto out;
3079
3080 if ((*opened & FILE_CREATED) ||
3081 !S_ISREG(file_inode(file)->i_mode))
3082 will_truncate = false;
3083
3084 audit_inode(nd->name, file->f_path.dentry, 0);
3085 goto opened;
3086 }
3087
3088 if (*opened & FILE_CREATED) {
3089 /* Don't check for write permission, don't truncate */
3090 open_flag &= ~O_TRUNC;
3091 will_truncate = false;
3092 acc_mode = 0;
3093 path_to_nameidata(&path, nd);
3094 goto finish_open_created;
3095 }
3096
3097 /*
3098 * create/update audit record if it already exists.
3099 */
3100 if (d_is_positive(path.dentry))
3101 audit_inode(nd->name, path.dentry, 0);
3102
3103 /*
3104 * If atomic_open() acquired write access it is dropped now due to
3105 * possible mount and symlink following (this might be optimized away if
3106 * necessary...)
3107 */
3108 if (got_write) {
3109 mnt_drop_write(nd->path.mnt);
3110 got_write = false;
3111 }
3112
3113 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3114 path_to_nameidata(&path, nd);
3115 return -EEXIST;
3116 }
3117
3118 error = follow_managed(&path, nd);
3119 if (unlikely(error < 0))
3120 return error;
3121
3122 BUG_ON(nd->flags & LOOKUP_RCU);
3123 inode = d_backing_inode(path.dentry);
3124 seq = 0; /* out of RCU mode, so the value doesn't matter */
3125 if (unlikely(d_is_negative(path.dentry))) {
3126 path_to_nameidata(&path, nd);
3127 return -ENOENT;
3128 }
3129 finish_lookup:
3130 if (nd->depth)
3131 put_link(nd);
3132 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3133 inode, seq);
3134 if (unlikely(error))
3135 return error;
3136
3137 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3138 path_to_nameidata(&path, nd);
3139 return -ELOOP;
3140 }
3141
3142 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3143 path_to_nameidata(&path, nd);
3144 } else {
3145 save_parent.dentry = nd->path.dentry;
3146 save_parent.mnt = mntget(path.mnt);
3147 nd->path.dentry = path.dentry;
3148
3149 }
3150 nd->inode = inode;
3151 nd->seq = seq;
3152 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3153 finish_open:
3154 error = complete_walk(nd);
3155 if (error) {
3156 path_put(&save_parent);
3157 return error;
3158 }
3159 audit_inode(nd->name, nd->path.dentry, 0);
3160 error = -EISDIR;
3161 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3162 goto out;
3163 error = -ENOTDIR;
3164 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3165 goto out;
3166 if (!d_is_reg(nd->path.dentry))
3167 will_truncate = false;
3168
3169 if (will_truncate) {
3170 error = mnt_want_write(nd->path.mnt);
3171 if (error)
3172 goto out;
3173 got_write = true;
3174 }
3175 finish_open_created:
3176 if (likely(!(open_flag & O_PATH))) {
3177 error = may_open(&nd->path, acc_mode, open_flag);
3178 if (error)
3179 goto out;
3180 }
3181 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3182 error = vfs_open(&nd->path, file, current_cred());
3183 if (!error) {
3184 *opened |= FILE_OPENED;
3185 } else {
3186 if (error == -EOPENSTALE)
3187 goto stale_open;
3188 goto out;
3189 }
3190 opened:
3191 error = open_check_o_direct(file);
3192 if (error)
3193 goto exit_fput;
3194 error = ima_file_check(file, op->acc_mode, *opened);
3195 if (error)
3196 goto exit_fput;
3197
3198 if (will_truncate) {
3199 error = handle_truncate(file);
3200 if (error)
3201 goto exit_fput;
3202 }
3203 out:
3204 if (got_write)
3205 mnt_drop_write(nd->path.mnt);
3206 path_put(&save_parent);
3207 return error;
3208
3209 exit_fput:
3210 fput(file);
3211 goto out;
3212
3213 stale_open:
3214 /* If no saved parent or already retried then can't retry */
3215 if (!save_parent.dentry || retried)
3216 goto out;
3217
3218 BUG_ON(save_parent.dentry != dir);
3219 path_put(&nd->path);
3220 nd->path = save_parent;
3221 nd->inode = dir->d_inode;
3222 save_parent.mnt = NULL;
3223 save_parent.dentry = NULL;
3224 if (got_write) {
3225 mnt_drop_write(nd->path.mnt);
3226 got_write = false;
3227 }
3228 retried = true;
3229 goto retry_lookup;
3230 }
3231
3232 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3233 const struct open_flags *op,
3234 struct file *file, int *opened)
3235 {
3236 static const struct qstr name = QSTR_INIT("/", 1);
3237 struct dentry *child;
3238 struct inode *dir;
3239 struct path path;
3240 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3241 if (unlikely(error))
3242 return error;
3243 error = mnt_want_write(path.mnt);
3244 if (unlikely(error))
3245 goto out;
3246 dir = path.dentry->d_inode;
3247 /* we want directory to be writable */
3248 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3249 if (error)
3250 goto out2;
3251 if (!dir->i_op->tmpfile) {
3252 error = -EOPNOTSUPP;
3253 goto out2;
3254 }
3255 child = d_alloc(path.dentry, &name);
3256 if (unlikely(!child)) {
3257 error = -ENOMEM;
3258 goto out2;
3259 }
3260 dput(path.dentry);
3261 path.dentry = child;
3262 error = dir->i_op->tmpfile(dir, child, op->mode);
3263 if (error)
3264 goto out2;
3265 audit_inode(nd->name, child, 0);
3266 /* Don't check for other permissions, the inode was just created */
3267 error = may_open(&path, 0, op->open_flag);
3268 if (error)
3269 goto out2;
3270 file->f_path.mnt = path.mnt;
3271 error = finish_open(file, child, NULL, opened);
3272 if (error)
3273 goto out2;
3274 error = open_check_o_direct(file);
3275 if (error) {
3276 fput(file);
3277 } else if (!(op->open_flag & O_EXCL)) {
3278 struct inode *inode = file_inode(file);
3279 spin_lock(&inode->i_lock);
3280 inode->i_state |= I_LINKABLE;
3281 spin_unlock(&inode->i_lock);
3282 }
3283 out2:
3284 mnt_drop_write(path.mnt);
3285 out:
3286 path_put(&path);
3287 return error;
3288 }
3289
3290 static struct file *path_openat(struct nameidata *nd,
3291 const struct open_flags *op, unsigned flags)
3292 {
3293 const char *s;
3294 struct file *file;
3295 int opened = 0;
3296 int error;
3297
3298 file = get_empty_filp();
3299 if (IS_ERR(file))
3300 return file;
3301
3302 file->f_flags = op->open_flag;
3303
3304 if (unlikely(file->f_flags & __O_TMPFILE)) {
3305 error = do_tmpfile(nd, flags, op, file, &opened);
3306 goto out2;
3307 }
3308
3309 s = path_init(nd, flags);
3310 if (IS_ERR(s)) {
3311 put_filp(file);
3312 return ERR_CAST(s);
3313 }
3314 while (!(error = link_path_walk(s, nd)) &&
3315 (error = do_last(nd, file, op, &opened)) > 0) {
3316 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3317 s = trailing_symlink(nd);
3318 if (IS_ERR(s)) {
3319 error = PTR_ERR(s);
3320 break;
3321 }
3322 }
3323 terminate_walk(nd);
3324 out2:
3325 if (!(opened & FILE_OPENED)) {
3326 BUG_ON(!error);
3327 put_filp(file);
3328 }
3329 if (unlikely(error)) {
3330 if (error == -EOPENSTALE) {
3331 if (flags & LOOKUP_RCU)
3332 error = -ECHILD;
3333 else
3334 error = -ESTALE;
3335 }
3336 file = ERR_PTR(error);
3337 }
3338 return file;
3339 }
3340
3341 struct file *do_filp_open(int dfd, struct filename *pathname,
3342 const struct open_flags *op)
3343 {
3344 struct nameidata nd;
3345 int flags = op->lookup_flags;
3346 struct file *filp;
3347
3348 set_nameidata(&nd, dfd, pathname);
3349 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3350 if (unlikely(filp == ERR_PTR(-ECHILD)))
3351 filp = path_openat(&nd, op, flags);
3352 if (unlikely(filp == ERR_PTR(-ESTALE)))
3353 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3354 restore_nameidata();
3355 return filp;
3356 }
3357
3358 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3359 const char *name, const struct open_flags *op)
3360 {
3361 struct nameidata nd;
3362 struct file *file;
3363 struct filename *filename;
3364 int flags = op->lookup_flags | LOOKUP_ROOT;
3365
3366 nd.root.mnt = mnt;
3367 nd.root.dentry = dentry;
3368
3369 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3370 return ERR_PTR(-ELOOP);
3371
3372 filename = getname_kernel(name);
3373 if (IS_ERR(filename))
3374 return ERR_CAST(filename);
3375
3376 set_nameidata(&nd, -1, filename);
3377 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3378 if (unlikely(file == ERR_PTR(-ECHILD)))
3379 file = path_openat(&nd, op, flags);
3380 if (unlikely(file == ERR_PTR(-ESTALE)))
3381 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3382 restore_nameidata();
3383 putname(filename);
3384 return file;
3385 }
3386
3387 static struct dentry *filename_create(int dfd, struct filename *name,
3388 struct path *path, unsigned int lookup_flags)
3389 {
3390 struct dentry *dentry = ERR_PTR(-EEXIST);
3391 struct qstr last;
3392 int type;
3393 int err2;
3394 int error;
3395 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3396
3397 /*
3398 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3399 * other flags passed in are ignored!
3400 */
3401 lookup_flags &= LOOKUP_REVAL;
3402
3403 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3404 if (IS_ERR(name))
3405 return ERR_CAST(name);
3406
3407 /*
3408 * Yucky last component or no last component at all?
3409 * (foo/., foo/.., /////)
3410 */
3411 if (unlikely(type != LAST_NORM))
3412 goto out;
3413
3414 /* don't fail immediately if it's r/o, at least try to report other errors */
3415 err2 = mnt_want_write(path->mnt);
3416 /*
3417 * Do the final lookup.
3418 */
3419 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3420 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3421 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3422 if (IS_ERR(dentry))
3423 goto unlock;
3424
3425 error = -EEXIST;
3426 if (d_is_positive(dentry))
3427 goto fail;
3428
3429 /*
3430 * Special case - lookup gave negative, but... we had foo/bar/
3431 * From the vfs_mknod() POV we just have a negative dentry -
3432 * all is fine. Let's be bastards - you had / on the end, you've
3433 * been asking for (non-existent) directory. -ENOENT for you.
3434 */
3435 if (unlikely(!is_dir && last.name[last.len])) {
3436 error = -ENOENT;
3437 goto fail;
3438 }
3439 if (unlikely(err2)) {
3440 error = err2;
3441 goto fail;
3442 }
3443 putname(name);
3444 return dentry;
3445 fail:
3446 dput(dentry);
3447 dentry = ERR_PTR(error);
3448 unlock:
3449 mutex_unlock(&path->dentry->d_inode->i_mutex);
3450 if (!err2)
3451 mnt_drop_write(path->mnt);
3452 out:
3453 path_put(path);
3454 putname(name);
3455 return dentry;
3456 }
3457
3458 struct dentry *kern_path_create(int dfd, const char *pathname,
3459 struct path *path, unsigned int lookup_flags)
3460 {
3461 return filename_create(dfd, getname_kernel(pathname),
3462 path, lookup_flags);
3463 }
3464 EXPORT_SYMBOL(kern_path_create);
3465
3466 void done_path_create(struct path *path, struct dentry *dentry)
3467 {
3468 dput(dentry);
3469 mutex_unlock(&path->dentry->d_inode->i_mutex);
3470 mnt_drop_write(path->mnt);
3471 path_put(path);
3472 }
3473 EXPORT_SYMBOL(done_path_create);
3474
3475 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3476 struct path *path, unsigned int lookup_flags)
3477 {
3478 return filename_create(dfd, getname(pathname), path, lookup_flags);
3479 }
3480 EXPORT_SYMBOL(user_path_create);
3481
3482 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3483 {
3484 int error = may_create(dir, dentry);
3485
3486 if (error)
3487 return error;
3488
3489 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3490 return -EPERM;
3491
3492 if (!dir->i_op->mknod)
3493 return -EPERM;
3494
3495 error = devcgroup_inode_mknod(mode, dev);
3496 if (error)
3497 return error;
3498
3499 error = security_inode_mknod(dir, dentry, mode, dev);
3500 if (error)
3501 return error;
3502
3503 error = dir->i_op->mknod(dir, dentry, mode, dev);
3504 if (!error)
3505 fsnotify_create(dir, dentry);
3506 return error;
3507 }
3508 EXPORT_SYMBOL(vfs_mknod);
3509
3510 static int may_mknod(umode_t mode)
3511 {
3512 switch (mode & S_IFMT) {
3513 case S_IFREG:
3514 case S_IFCHR:
3515 case S_IFBLK:
3516 case S_IFIFO:
3517 case S_IFSOCK:
3518 case 0: /* zero mode translates to S_IFREG */
3519 return 0;
3520 case S_IFDIR:
3521 return -EPERM;
3522 default:
3523 return -EINVAL;
3524 }
3525 }
3526
3527 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3528 unsigned, dev)
3529 {
3530 struct dentry *dentry;
3531 struct path path;
3532 int error;
3533 unsigned int lookup_flags = 0;
3534
3535 error = may_mknod(mode);
3536 if (error)
3537 return error;
3538 retry:
3539 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3540 if (IS_ERR(dentry))
3541 return PTR_ERR(dentry);
3542
3543 if (!IS_POSIXACL(path.dentry->d_inode))
3544 mode &= ~current_umask();
3545 error = security_path_mknod(&path, dentry, mode, dev);
3546 if (error)
3547 goto out;
3548 switch (mode & S_IFMT) {
3549 case 0: case S_IFREG:
3550 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3551 break;
3552 case S_IFCHR: case S_IFBLK:
3553 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3554 new_decode_dev(dev));
3555 break;
3556 case S_IFIFO: case S_IFSOCK:
3557 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3558 break;
3559 }
3560 out:
3561 done_path_create(&path, dentry);
3562 if (retry_estale(error, lookup_flags)) {
3563 lookup_flags |= LOOKUP_REVAL;
3564 goto retry;
3565 }
3566 return error;
3567 }
3568
3569 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3570 {
3571 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3572 }
3573
3574 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3575 {
3576 int error = may_create(dir, dentry);
3577 unsigned max_links = dir->i_sb->s_max_links;
3578
3579 if (error)
3580 return error;
3581
3582 if (!dir->i_op->mkdir)
3583 return -EPERM;
3584
3585 mode &= (S_IRWXUGO|S_ISVTX);
3586 error = security_inode_mkdir(dir, dentry, mode);
3587 if (error)
3588 return error;
3589
3590 if (max_links && dir->i_nlink >= max_links)
3591 return -EMLINK;
3592
3593 error = dir->i_op->mkdir(dir, dentry, mode);
3594 if (!error)
3595 fsnotify_mkdir(dir, dentry);
3596 return error;
3597 }
3598 EXPORT_SYMBOL(vfs_mkdir);
3599
3600 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3601 {
3602 struct dentry *dentry;
3603 struct path path;
3604 int error;
3605 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3606
3607 retry:
3608 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3609 if (IS_ERR(dentry))
3610 return PTR_ERR(dentry);
3611
3612 if (!IS_POSIXACL(path.dentry->d_inode))
3613 mode &= ~current_umask();
3614 error = security_path_mkdir(&path, dentry, mode);
3615 if (!error)
3616 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3617 done_path_create(&path, dentry);
3618 if (retry_estale(error, lookup_flags)) {
3619 lookup_flags |= LOOKUP_REVAL;
3620 goto retry;
3621 }
3622 return error;
3623 }
3624
3625 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3626 {
3627 return sys_mkdirat(AT_FDCWD, pathname, mode);
3628 }
3629
3630 /*
3631 * The dentry_unhash() helper will try to drop the dentry early: we
3632 * should have a usage count of 1 if we're the only user of this
3633 * dentry, and if that is true (possibly after pruning the dcache),
3634 * then we drop the dentry now.
3635 *
3636 * A low-level filesystem can, if it choses, legally
3637 * do a
3638 *
3639 * if (!d_unhashed(dentry))
3640 * return -EBUSY;
3641 *
3642 * if it cannot handle the case of removing a directory
3643 * that is still in use by something else..
3644 */
3645 void dentry_unhash(struct dentry *dentry)
3646 {
3647 shrink_dcache_parent(dentry);
3648 spin_lock(&dentry->d_lock);
3649 if (dentry->d_lockref.count == 1)
3650 __d_drop(dentry);
3651 spin_unlock(&dentry->d_lock);
3652 }
3653 EXPORT_SYMBOL(dentry_unhash);
3654
3655 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3656 {
3657 int error = may_delete(dir, dentry, 1);
3658
3659 if (error)
3660 return error;
3661
3662 if (!dir->i_op->rmdir)
3663 return -EPERM;
3664
3665 dget(dentry);
3666 mutex_lock(&dentry->d_inode->i_mutex);
3667
3668 error = -EBUSY;
3669 if (is_local_mountpoint(dentry))
3670 goto out;
3671
3672 error = security_inode_rmdir(dir, dentry);
3673 if (error)
3674 goto out;
3675
3676 shrink_dcache_parent(dentry);
3677 error = dir->i_op->rmdir(dir, dentry);
3678 if (error)
3679 goto out;
3680
3681 dentry->d_inode->i_flags |= S_DEAD;
3682 dont_mount(dentry);
3683 detach_mounts(dentry);
3684
3685 out:
3686 mutex_unlock(&dentry->d_inode->i_mutex);
3687 dput(dentry);
3688 if (!error)
3689 d_delete(dentry);
3690 return error;
3691 }
3692 EXPORT_SYMBOL(vfs_rmdir);
3693
3694 static long do_rmdir(int dfd, const char __user *pathname)
3695 {
3696 int error = 0;
3697 struct filename *name;
3698 struct dentry *dentry;
3699 struct path path;
3700 struct qstr last;
3701 int type;
3702 unsigned int lookup_flags = 0;
3703 retry:
3704 name = user_path_parent(dfd, pathname,
3705 &path, &last, &type, lookup_flags);
3706 if (IS_ERR(name))
3707 return PTR_ERR(name);
3708
3709 switch (type) {
3710 case LAST_DOTDOT:
3711 error = -ENOTEMPTY;
3712 goto exit1;
3713 case LAST_DOT:
3714 error = -EINVAL;
3715 goto exit1;
3716 case LAST_ROOT:
3717 error = -EBUSY;
3718 goto exit1;
3719 }
3720
3721 error = mnt_want_write(path.mnt);
3722 if (error)
3723 goto exit1;
3724
3725 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3726 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3727 error = PTR_ERR(dentry);
3728 if (IS_ERR(dentry))
3729 goto exit2;
3730 if (!dentry->d_inode) {
3731 error = -ENOENT;
3732 goto exit3;
3733 }
3734 error = security_path_rmdir(&path, dentry);
3735 if (error)
3736 goto exit3;
3737 error = vfs_rmdir(path.dentry->d_inode, dentry);
3738 exit3:
3739 dput(dentry);
3740 exit2:
3741 mutex_unlock(&path.dentry->d_inode->i_mutex);
3742 mnt_drop_write(path.mnt);
3743 exit1:
3744 path_put(&path);
3745 putname(name);
3746 if (retry_estale(error, lookup_flags)) {
3747 lookup_flags |= LOOKUP_REVAL;
3748 goto retry;
3749 }
3750 return error;
3751 }
3752
3753 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3754 {
3755 return do_rmdir(AT_FDCWD, pathname);
3756 }
3757
3758 /**
3759 * vfs_unlink - unlink a filesystem object
3760 * @dir: parent directory
3761 * @dentry: victim
3762 * @delegated_inode: returns victim inode, if the inode is delegated.
3763 *
3764 * The caller must hold dir->i_mutex.
3765 *
3766 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3767 * return a reference to the inode in delegated_inode. The caller
3768 * should then break the delegation on that inode and retry. Because
3769 * breaking a delegation may take a long time, the caller should drop
3770 * dir->i_mutex before doing so.
3771 *
3772 * Alternatively, a caller may pass NULL for delegated_inode. This may
3773 * be appropriate for callers that expect the underlying filesystem not
3774 * to be NFS exported.
3775 */
3776 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3777 {
3778 struct inode *target = dentry->d_inode;
3779 int error = may_delete(dir, dentry, 0);
3780
3781 if (error)
3782 return error;
3783
3784 if (!dir->i_op->unlink)
3785 return -EPERM;
3786
3787 mutex_lock(&target->i_mutex);
3788 if (is_local_mountpoint(dentry))
3789 error = -EBUSY;
3790 else {
3791 error = security_inode_unlink(dir, dentry);
3792 if (!error) {
3793 error = try_break_deleg(target, delegated_inode);
3794 if (error)
3795 goto out;
3796 error = dir->i_op->unlink(dir, dentry);
3797 if (!error) {
3798 dont_mount(dentry);
3799 detach_mounts(dentry);
3800 }
3801 }
3802 }
3803 out:
3804 mutex_unlock(&target->i_mutex);
3805
3806 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3807 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3808 fsnotify_link_count(target);
3809 d_delete(dentry);
3810 }
3811
3812 return error;
3813 }
3814 EXPORT_SYMBOL(vfs_unlink);
3815
3816 /*
3817 * Make sure that the actual truncation of the file will occur outside its
3818 * directory's i_mutex. Truncate can take a long time if there is a lot of
3819 * writeout happening, and we don't want to prevent access to the directory
3820 * while waiting on the I/O.
3821 */
3822 static long do_unlinkat(int dfd, const char __user *pathname)
3823 {
3824 int error;
3825 struct filename *name;
3826 struct dentry *dentry;
3827 struct path path;
3828 struct qstr last;
3829 int type;
3830 struct inode *inode = NULL;
3831 struct inode *delegated_inode = NULL;
3832 unsigned int lookup_flags = 0;
3833 retry:
3834 name = user_path_parent(dfd, pathname,
3835 &path, &last, &type, lookup_flags);
3836 if (IS_ERR(name))
3837 return PTR_ERR(name);
3838
3839 error = -EISDIR;
3840 if (type != LAST_NORM)
3841 goto exit1;
3842
3843 error = mnt_want_write(path.mnt);
3844 if (error)
3845 goto exit1;
3846 retry_deleg:
3847 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3848 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3849 error = PTR_ERR(dentry);
3850 if (!IS_ERR(dentry)) {
3851 /* Why not before? Because we want correct error value */
3852 if (last.name[last.len])
3853 goto slashes;
3854 inode = dentry->d_inode;
3855 if (d_is_negative(dentry))
3856 goto slashes;
3857 ihold(inode);
3858 error = security_path_unlink(&path, dentry);
3859 if (error)
3860 goto exit2;
3861 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3862 exit2:
3863 dput(dentry);
3864 }
3865 mutex_unlock(&path.dentry->d_inode->i_mutex);
3866 if (inode)
3867 iput(inode); /* truncate the inode here */
3868 inode = NULL;
3869 if (delegated_inode) {
3870 error = break_deleg_wait(&delegated_inode);
3871 if (!error)
3872 goto retry_deleg;
3873 }
3874 mnt_drop_write(path.mnt);
3875 exit1:
3876 path_put(&path);
3877 putname(name);
3878 if (retry_estale(error, lookup_flags)) {
3879 lookup_flags |= LOOKUP_REVAL;
3880 inode = NULL;
3881 goto retry;
3882 }
3883 return error;
3884
3885 slashes:
3886 if (d_is_negative(dentry))
3887 error = -ENOENT;
3888 else if (d_is_dir(dentry))
3889 error = -EISDIR;
3890 else
3891 error = -ENOTDIR;
3892 goto exit2;
3893 }
3894
3895 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3896 {
3897 if ((flag & ~AT_REMOVEDIR) != 0)
3898 return -EINVAL;
3899
3900 if (flag & AT_REMOVEDIR)
3901 return do_rmdir(dfd, pathname);
3902
3903 return do_unlinkat(dfd, pathname);
3904 }
3905
3906 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3907 {
3908 return do_unlinkat(AT_FDCWD, pathname);
3909 }
3910
3911 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3912 {
3913 int error = may_create(dir, dentry);
3914
3915 if (error)
3916 return error;
3917
3918 if (!dir->i_op->symlink)
3919 return -EPERM;
3920
3921 error = security_inode_symlink(dir, dentry, oldname);
3922 if (error)
3923 return error;
3924
3925 error = dir->i_op->symlink(dir, dentry, oldname);
3926 if (!error)
3927 fsnotify_create(dir, dentry);
3928 return error;
3929 }
3930 EXPORT_SYMBOL(vfs_symlink);
3931
3932 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3933 int, newdfd, const char __user *, newname)
3934 {
3935 int error;
3936 struct filename *from;
3937 struct dentry *dentry;
3938 struct path path;
3939 unsigned int lookup_flags = 0;
3940
3941 from = getname(oldname);
3942 if (IS_ERR(from))
3943 return PTR_ERR(from);
3944 retry:
3945 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3946 error = PTR_ERR(dentry);
3947 if (IS_ERR(dentry))
3948 goto out_putname;
3949
3950 error = security_path_symlink(&path, dentry, from->name);
3951 if (!error)
3952 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3953 done_path_create(&path, dentry);
3954 if (retry_estale(error, lookup_flags)) {
3955 lookup_flags |= LOOKUP_REVAL;
3956 goto retry;
3957 }
3958 out_putname:
3959 putname(from);
3960 return error;
3961 }
3962
3963 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3964 {
3965 return sys_symlinkat(oldname, AT_FDCWD, newname);
3966 }
3967
3968 /**
3969 * vfs_link - create a new link
3970 * @old_dentry: object to be linked
3971 * @dir: new parent
3972 * @new_dentry: where to create the new link
3973 * @delegated_inode: returns inode needing a delegation break
3974 *
3975 * The caller must hold dir->i_mutex
3976 *
3977 * If vfs_link discovers a delegation on the to-be-linked file in need
3978 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3979 * inode in delegated_inode. The caller should then break the delegation
3980 * and retry. Because breaking a delegation may take a long time, the
3981 * caller should drop the i_mutex before doing so.
3982 *
3983 * Alternatively, a caller may pass NULL for delegated_inode. This may
3984 * be appropriate for callers that expect the underlying filesystem not
3985 * to be NFS exported.
3986 */
3987 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3988 {
3989 struct inode *inode = old_dentry->d_inode;
3990 unsigned max_links = dir->i_sb->s_max_links;
3991 int error;
3992
3993 if (!inode)
3994 return -ENOENT;
3995
3996 error = may_create(dir, new_dentry);
3997 if (error)
3998 return error;
3999
4000 if (dir->i_sb != inode->i_sb)
4001 return -EXDEV;
4002
4003 /*
4004 * A link to an append-only or immutable file cannot be created.
4005 */
4006 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4007 return -EPERM;
4008 if (!dir->i_op->link)
4009 return -EPERM;
4010 if (S_ISDIR(inode->i_mode))
4011 return -EPERM;
4012
4013 error = security_inode_link(old_dentry, dir, new_dentry);
4014 if (error)
4015 return error;
4016
4017 mutex_lock(&inode->i_mutex);
4018 /* Make sure we don't allow creating hardlink to an unlinked file */
4019 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4020 error = -ENOENT;
4021 else if (max_links && inode->i_nlink >= max_links)
4022 error = -EMLINK;
4023 else {
4024 error = try_break_deleg(inode, delegated_inode);
4025 if (!error)
4026 error = dir->i_op->link(old_dentry, dir, new_dentry);
4027 }
4028
4029 if (!error && (inode->i_state & I_LINKABLE)) {
4030 spin_lock(&inode->i_lock);
4031 inode->i_state &= ~I_LINKABLE;
4032 spin_unlock(&inode->i_lock);
4033 }
4034 mutex_unlock(&inode->i_mutex);
4035 if (!error)
4036 fsnotify_link(dir, inode, new_dentry);
4037 return error;
4038 }
4039 EXPORT_SYMBOL(vfs_link);
4040
4041 /*
4042 * Hardlinks are often used in delicate situations. We avoid
4043 * security-related surprises by not following symlinks on the
4044 * newname. --KAB
4045 *
4046 * We don't follow them on the oldname either to be compatible
4047 * with linux 2.0, and to avoid hard-linking to directories
4048 * and other special files. --ADM
4049 */
4050 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4051 int, newdfd, const char __user *, newname, int, flags)
4052 {
4053 struct dentry *new_dentry;
4054 struct path old_path, new_path;
4055 struct inode *delegated_inode = NULL;
4056 int how = 0;
4057 int error;
4058
4059 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4060 return -EINVAL;
4061 /*
4062 * To use null names we require CAP_DAC_READ_SEARCH
4063 * This ensures that not everyone will be able to create
4064 * handlink using the passed filedescriptor.
4065 */
4066 if (flags & AT_EMPTY_PATH) {
4067 if (!capable(CAP_DAC_READ_SEARCH))
4068 return -ENOENT;
4069 how = LOOKUP_EMPTY;
4070 }
4071
4072 if (flags & AT_SYMLINK_FOLLOW)
4073 how |= LOOKUP_FOLLOW;
4074 retry:
4075 error = user_path_at(olddfd, oldname, how, &old_path);
4076 if (error)
4077 return error;
4078
4079 new_dentry = user_path_create(newdfd, newname, &new_path,
4080 (how & LOOKUP_REVAL));
4081 error = PTR_ERR(new_dentry);
4082 if (IS_ERR(new_dentry))
4083 goto out;
4084
4085 error = -EXDEV;
4086 if (old_path.mnt != new_path.mnt)
4087 goto out_dput;
4088 error = may_linkat(&old_path);
4089 if (unlikely(error))
4090 goto out_dput;
4091 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4092 if (error)
4093 goto out_dput;
4094 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4095 out_dput:
4096 done_path_create(&new_path, new_dentry);
4097 if (delegated_inode) {
4098 error = break_deleg_wait(&delegated_inode);
4099 if (!error) {
4100 path_put(&old_path);
4101 goto retry;
4102 }
4103 }
4104 if (retry_estale(error, how)) {
4105 path_put(&old_path);
4106 how |= LOOKUP_REVAL;
4107 goto retry;
4108 }
4109 out:
4110 path_put(&old_path);
4111
4112 return error;
4113 }
4114
4115 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4116 {
4117 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4118 }
4119
4120 /**
4121 * vfs_rename - rename a filesystem object
4122 * @old_dir: parent of source
4123 * @old_dentry: source
4124 * @new_dir: parent of destination
4125 * @new_dentry: destination
4126 * @delegated_inode: returns an inode needing a delegation break
4127 * @flags: rename flags
4128 *
4129 * The caller must hold multiple mutexes--see lock_rename()).
4130 *
4131 * If vfs_rename discovers a delegation in need of breaking at either
4132 * the source or destination, it will return -EWOULDBLOCK and return a
4133 * reference to the inode in delegated_inode. The caller should then
4134 * break the delegation and retry. Because breaking a delegation may
4135 * take a long time, the caller should drop all locks before doing
4136 * so.
4137 *
4138 * Alternatively, a caller may pass NULL for delegated_inode. This may
4139 * be appropriate for callers that expect the underlying filesystem not
4140 * to be NFS exported.
4141 *
4142 * The worst of all namespace operations - renaming directory. "Perverted"
4143 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4144 * Problems:
4145 * a) we can get into loop creation.
4146 * b) race potential - two innocent renames can create a loop together.
4147 * That's where 4.4 screws up. Current fix: serialization on
4148 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4149 * story.
4150 * c) we have to lock _four_ objects - parents and victim (if it exists),
4151 * and source (if it is not a directory).
4152 * And that - after we got ->i_mutex on parents (until then we don't know
4153 * whether the target exists). Solution: try to be smart with locking
4154 * order for inodes. We rely on the fact that tree topology may change
4155 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4156 * move will be locked. Thus we can rank directories by the tree
4157 * (ancestors first) and rank all non-directories after them.
4158 * That works since everybody except rename does "lock parent, lookup,
4159 * lock child" and rename is under ->s_vfs_rename_mutex.
4160 * HOWEVER, it relies on the assumption that any object with ->lookup()
4161 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4162 * we'd better make sure that there's no link(2) for them.
4163 * d) conversion from fhandle to dentry may come in the wrong moment - when
4164 * we are removing the target. Solution: we will have to grab ->i_mutex
4165 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4166 * ->i_mutex on parents, which works but leads to some truly excessive
4167 * locking].
4168 */
4169 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4170 struct inode *new_dir, struct dentry *new_dentry,
4171 struct inode **delegated_inode, unsigned int flags)
4172 {
4173 int error;
4174 bool is_dir = d_is_dir(old_dentry);
4175 const unsigned char *old_name;
4176 struct inode *source = old_dentry->d_inode;
4177 struct inode *target = new_dentry->d_inode;
4178 bool new_is_dir = false;
4179 unsigned max_links = new_dir->i_sb->s_max_links;
4180
4181 if (source == target)
4182 return 0;
4183
4184 error = may_delete(old_dir, old_dentry, is_dir);
4185 if (error)
4186 return error;
4187
4188 if (!target) {
4189 error = may_create(new_dir, new_dentry);
4190 } else {
4191 new_is_dir = d_is_dir(new_dentry);
4192
4193 if (!(flags & RENAME_EXCHANGE))
4194 error = may_delete(new_dir, new_dentry, is_dir);
4195 else
4196 error = may_delete(new_dir, new_dentry, new_is_dir);
4197 }
4198 if (error)
4199 return error;
4200
4201 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4202 return -EPERM;
4203
4204 if (flags && !old_dir->i_op->rename2)
4205 return -EINVAL;
4206
4207 /*
4208 * If we are going to change the parent - check write permissions,
4209 * we'll need to flip '..'.
4210 */
4211 if (new_dir != old_dir) {
4212 if (is_dir) {
4213 error = inode_permission(source, MAY_WRITE);
4214 if (error)
4215 return error;
4216 }
4217 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4218 error = inode_permission(target, MAY_WRITE);
4219 if (error)
4220 return error;
4221 }
4222 }
4223
4224 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4225 flags);
4226 if (error)
4227 return error;
4228
4229 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4230 dget(new_dentry);
4231 if (!is_dir || (flags & RENAME_EXCHANGE))
4232 lock_two_nondirectories(source, target);
4233 else if (target)
4234 mutex_lock(&target->i_mutex);
4235
4236 error = -EBUSY;
4237 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4238 goto out;
4239
4240 if (max_links && new_dir != old_dir) {
4241 error = -EMLINK;
4242 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4243 goto out;
4244 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4245 old_dir->i_nlink >= max_links)
4246 goto out;
4247 }
4248 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4249 shrink_dcache_parent(new_dentry);
4250 if (!is_dir) {
4251 error = try_break_deleg(source, delegated_inode);
4252 if (error)
4253 goto out;
4254 }
4255 if (target && !new_is_dir) {
4256 error = try_break_deleg(target, delegated_inode);
4257 if (error)
4258 goto out;
4259 }
4260 if (!old_dir->i_op->rename2) {
4261 error = old_dir->i_op->rename(old_dir, old_dentry,
4262 new_dir, new_dentry);
4263 } else {
4264 WARN_ON(old_dir->i_op->rename != NULL);
4265 error = old_dir->i_op->rename2(old_dir, old_dentry,
4266 new_dir, new_dentry, flags);
4267 }
4268 if (error)
4269 goto out;
4270
4271 if (!(flags & RENAME_EXCHANGE) && target) {
4272 if (is_dir)
4273 target->i_flags |= S_DEAD;
4274 dont_mount(new_dentry);
4275 detach_mounts(new_dentry);
4276 }
4277 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4278 if (!(flags & RENAME_EXCHANGE))
4279 d_move(old_dentry, new_dentry);
4280 else
4281 d_exchange(old_dentry, new_dentry);
4282 }
4283 out:
4284 if (!is_dir || (flags & RENAME_EXCHANGE))
4285 unlock_two_nondirectories(source, target);
4286 else if (target)
4287 mutex_unlock(&target->i_mutex);
4288 dput(new_dentry);
4289 if (!error) {
4290 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4291 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4292 if (flags & RENAME_EXCHANGE) {
4293 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4294 new_is_dir, NULL, new_dentry);
4295 }
4296 }
4297 fsnotify_oldname_free(old_name);
4298
4299 return error;
4300 }
4301 EXPORT_SYMBOL(vfs_rename);
4302
4303 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4304 int, newdfd, const char __user *, newname, unsigned int, flags)
4305 {
4306 struct dentry *old_dentry, *new_dentry;
4307 struct dentry *trap;
4308 struct path old_path, new_path;
4309 struct qstr old_last, new_last;
4310 int old_type, new_type;
4311 struct inode *delegated_inode = NULL;
4312 struct filename *from;
4313 struct filename *to;
4314 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4315 bool should_retry = false;
4316 int error;
4317
4318 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4319 return -EINVAL;
4320
4321 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4322 (flags & RENAME_EXCHANGE))
4323 return -EINVAL;
4324
4325 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4326 return -EPERM;
4327
4328 if (flags & RENAME_EXCHANGE)
4329 target_flags = 0;
4330
4331 retry:
4332 from = user_path_parent(olddfd, oldname,
4333 &old_path, &old_last, &old_type, lookup_flags);
4334 if (IS_ERR(from)) {
4335 error = PTR_ERR(from);
4336 goto exit;
4337 }
4338
4339 to = user_path_parent(newdfd, newname,
4340 &new_path, &new_last, &new_type, lookup_flags);
4341 if (IS_ERR(to)) {
4342 error = PTR_ERR(to);
4343 goto exit1;
4344 }
4345
4346 error = -EXDEV;
4347 if (old_path.mnt != new_path.mnt)
4348 goto exit2;
4349
4350 error = -EBUSY;
4351 if (old_type != LAST_NORM)
4352 goto exit2;
4353
4354 if (flags & RENAME_NOREPLACE)
4355 error = -EEXIST;
4356 if (new_type != LAST_NORM)
4357 goto exit2;
4358
4359 error = mnt_want_write(old_path.mnt);
4360 if (error)
4361 goto exit2;
4362
4363 retry_deleg:
4364 trap = lock_rename(new_path.dentry, old_path.dentry);
4365
4366 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4367 error = PTR_ERR(old_dentry);
4368 if (IS_ERR(old_dentry))
4369 goto exit3;
4370 /* source must exist */
4371 error = -ENOENT;
4372 if (d_is_negative(old_dentry))
4373 goto exit4;
4374 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4375 error = PTR_ERR(new_dentry);
4376 if (IS_ERR(new_dentry))
4377 goto exit4;
4378 error = -EEXIST;
4379 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4380 goto exit5;
4381 if (flags & RENAME_EXCHANGE) {
4382 error = -ENOENT;
4383 if (d_is_negative(new_dentry))
4384 goto exit5;
4385
4386 if (!d_is_dir(new_dentry)) {
4387 error = -ENOTDIR;
4388 if (new_last.name[new_last.len])
4389 goto exit5;
4390 }
4391 }
4392 /* unless the source is a directory trailing slashes give -ENOTDIR */
4393 if (!d_is_dir(old_dentry)) {
4394 error = -ENOTDIR;
4395 if (old_last.name[old_last.len])
4396 goto exit5;
4397 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4398 goto exit5;
4399 }
4400 /* source should not be ancestor of target */
4401 error = -EINVAL;
4402 if (old_dentry == trap)
4403 goto exit5;
4404 /* target should not be an ancestor of source */
4405 if (!(flags & RENAME_EXCHANGE))
4406 error = -ENOTEMPTY;
4407 if (new_dentry == trap)
4408 goto exit5;
4409
4410 error = security_path_rename(&old_path, old_dentry,
4411 &new_path, new_dentry, flags);
4412 if (error)
4413 goto exit5;
4414 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4415 new_path.dentry->d_inode, new_dentry,
4416 &delegated_inode, flags);
4417 exit5:
4418 dput(new_dentry);
4419 exit4:
4420 dput(old_dentry);
4421 exit3:
4422 unlock_rename(new_path.dentry, old_path.dentry);
4423 if (delegated_inode) {
4424 error = break_deleg_wait(&delegated_inode);
4425 if (!error)
4426 goto retry_deleg;
4427 }
4428 mnt_drop_write(old_path.mnt);
4429 exit2:
4430 if (retry_estale(error, lookup_flags))
4431 should_retry = true;
4432 path_put(&new_path);
4433 putname(to);
4434 exit1:
4435 path_put(&old_path);
4436 putname(from);
4437 if (should_retry) {
4438 should_retry = false;
4439 lookup_flags |= LOOKUP_REVAL;
4440 goto retry;
4441 }
4442 exit:
4443 return error;
4444 }
4445
4446 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4447 int, newdfd, const char __user *, newname)
4448 {
4449 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4450 }
4451
4452 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4453 {
4454 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4455 }
4456
4457 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4458 {
4459 int error = may_create(dir, dentry);
4460 if (error)
4461 return error;
4462
4463 if (!dir->i_op->mknod)
4464 return -EPERM;
4465
4466 return dir->i_op->mknod(dir, dentry,
4467 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4468 }
4469 EXPORT_SYMBOL(vfs_whiteout);
4470
4471 int readlink_copy(char __user *buffer, int buflen, const char *link)
4472 {
4473 int len = PTR_ERR(link);
4474 if (IS_ERR(link))
4475 goto out;
4476
4477 len = strlen(link);
4478 if (len > (unsigned) buflen)
4479 len = buflen;
4480 if (copy_to_user(buffer, link, len))
4481 len = -EFAULT;
4482 out:
4483 return len;
4484 }
4485 EXPORT_SYMBOL(readlink_copy);
4486
4487 /*
4488 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4489 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4490 * using) it for any given inode is up to filesystem.
4491 */
4492 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4493 {
4494 void *cookie;
4495 struct inode *inode = d_inode(dentry);
4496 const char *link = inode->i_link;
4497 int res;
4498
4499 if (!link) {
4500 link = inode->i_op->follow_link(dentry, &cookie);
4501 if (IS_ERR(link))
4502 return PTR_ERR(link);
4503 }
4504 res = readlink_copy(buffer, buflen, link);
4505 if (inode->i_op->put_link)
4506 inode->i_op->put_link(inode, cookie);
4507 return res;
4508 }
4509 EXPORT_SYMBOL(generic_readlink);
4510
4511 /* get the link contents into pagecache */
4512 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4513 {
4514 char *kaddr;
4515 struct page *page;
4516 struct address_space *mapping = dentry->d_inode->i_mapping;
4517 page = read_mapping_page(mapping, 0, NULL);
4518 if (IS_ERR(page))
4519 return (char*)page;
4520 *ppage = page;
4521 kaddr = kmap(page);
4522 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4523 return kaddr;
4524 }
4525
4526 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4527 {
4528 struct page *page = NULL;
4529 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4530 if (page) {
4531 kunmap(page);
4532 page_cache_release(page);
4533 }
4534 return res;
4535 }
4536 EXPORT_SYMBOL(page_readlink);
4537
4538 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4539 {
4540 struct page *page = NULL;
4541 char *res = page_getlink(dentry, &page);
4542 if (!IS_ERR(res))
4543 *cookie = page;
4544 return res;
4545 }
4546 EXPORT_SYMBOL(page_follow_link_light);
4547
4548 void page_put_link(struct inode *unused, void *cookie)
4549 {
4550 struct page *page = cookie;
4551 kunmap(page);
4552 page_cache_release(page);
4553 }
4554 EXPORT_SYMBOL(page_put_link);
4555
4556 /*
4557 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4558 */
4559 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4560 {
4561 struct address_space *mapping = inode->i_mapping;
4562 struct page *page;
4563 void *fsdata;
4564 int err;
4565 char *kaddr;
4566 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4567 if (nofs)
4568 flags |= AOP_FLAG_NOFS;
4569
4570 retry:
4571 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4572 flags, &page, &fsdata);
4573 if (err)
4574 goto fail;
4575
4576 kaddr = kmap_atomic(page);
4577 memcpy(kaddr, symname, len-1);
4578 kunmap_atomic(kaddr);
4579
4580 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4581 page, fsdata);
4582 if (err < 0)
4583 goto fail;
4584 if (err < len-1)
4585 goto retry;
4586
4587 mark_inode_dirty(inode);
4588 return 0;
4589 fail:
4590 return err;
4591 }
4592 EXPORT_SYMBOL(__page_symlink);
4593
4594 int page_symlink(struct inode *inode, const char *symname, int len)
4595 {
4596 return __page_symlink(inode, symname, len,
4597 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4598 }
4599 EXPORT_SYMBOL(page_symlink);
4600
4601 const struct inode_operations page_symlink_inode_operations = {
4602 .readlink = generic_readlink,
4603 .follow_link = page_follow_link_light,
4604 .put_link = page_put_link,
4605 };
4606 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.129219 seconds and 5 git commands to generate.