switch path_lookupat() to struct filename
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result + sizeof(*result);
144 result->name = kname;
145 result->separate = false;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 kname = (char *)result;
161
162 result = kzalloc(sizeof(*result), GFP_KERNEL);
163 if (unlikely(!result)) {
164 __putname(kname);
165 return ERR_PTR(-ENOMEM);
166 }
167 result->name = kname;
168 result->separate = true;
169 len = strncpy_from_user(kname, filename, PATH_MAX);
170 if (unlikely(len < 0)) {
171 __putname(kname);
172 kfree(result);
173 return ERR_PTR(len);
174 }
175 if (unlikely(len == PATH_MAX)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(-ENAMETOOLONG);
179 }
180 }
181
182 result->refcnt = 1;
183 /* The empty path is special. */
184 if (unlikely(!len)) {
185 if (empty)
186 *empty = 1;
187 if (!(flags & LOOKUP_EMPTY)) {
188 putname(result);
189 return ERR_PTR(-ENOENT);
190 }
191 }
192
193 result->uptr = filename;
194 result->aname = NULL;
195 audit_getname(result);
196 return result;
197 }
198
199 struct filename *
200 getname(const char __user * filename)
201 {
202 return getname_flags(filename, 0, NULL);
203 }
204
205 struct filename *
206 getname_kernel(const char * filename)
207 {
208 struct filename *result;
209 int len = strlen(filename) + 1;
210
211 result = __getname();
212 if (unlikely(!result))
213 return ERR_PTR(-ENOMEM);
214
215 if (len <= EMBEDDED_NAME_MAX) {
216 result->name = (char *)(result) + sizeof(*result);
217 result->separate = false;
218 } else if (len <= PATH_MAX) {
219 struct filename *tmp;
220
221 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
222 if (unlikely(!tmp)) {
223 __putname(result);
224 return ERR_PTR(-ENOMEM);
225 }
226 tmp->name = (char *)result;
227 tmp->separate = true;
228 result = tmp;
229 } else {
230 __putname(result);
231 return ERR_PTR(-ENAMETOOLONG);
232 }
233 memcpy((char *)result->name, filename, len);
234 result->uptr = NULL;
235 result->aname = NULL;
236 result->refcnt = 1;
237 audit_getname(result);
238
239 return result;
240 }
241
242 void putname(struct filename *name)
243 {
244 BUG_ON(name->refcnt <= 0);
245
246 if (--name->refcnt > 0)
247 return;
248
249 if (name->separate) {
250 __putname(name->name);
251 kfree(name);
252 } else
253 __putname(name);
254 }
255
256 static int check_acl(struct inode *inode, int mask)
257 {
258 #ifdef CONFIG_FS_POSIX_ACL
259 struct posix_acl *acl;
260
261 if (mask & MAY_NOT_BLOCK) {
262 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
263 if (!acl)
264 return -EAGAIN;
265 /* no ->get_acl() calls in RCU mode... */
266 if (acl == ACL_NOT_CACHED)
267 return -ECHILD;
268 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
269 }
270
271 acl = get_acl(inode, ACL_TYPE_ACCESS);
272 if (IS_ERR(acl))
273 return PTR_ERR(acl);
274 if (acl) {
275 int error = posix_acl_permission(inode, acl, mask);
276 posix_acl_release(acl);
277 return error;
278 }
279 #endif
280
281 return -EAGAIN;
282 }
283
284 /*
285 * This does the basic permission checking
286 */
287 static int acl_permission_check(struct inode *inode, int mask)
288 {
289 unsigned int mode = inode->i_mode;
290
291 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
292 mode >>= 6;
293 else {
294 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
295 int error = check_acl(inode, mask);
296 if (error != -EAGAIN)
297 return error;
298 }
299
300 if (in_group_p(inode->i_gid))
301 mode >>= 3;
302 }
303
304 /*
305 * If the DACs are ok we don't need any capability check.
306 */
307 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
308 return 0;
309 return -EACCES;
310 }
311
312 /**
313 * generic_permission - check for access rights on a Posix-like filesystem
314 * @inode: inode to check access rights for
315 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
316 *
317 * Used to check for read/write/execute permissions on a file.
318 * We use "fsuid" for this, letting us set arbitrary permissions
319 * for filesystem access without changing the "normal" uids which
320 * are used for other things.
321 *
322 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
323 * request cannot be satisfied (eg. requires blocking or too much complexity).
324 * It would then be called again in ref-walk mode.
325 */
326 int generic_permission(struct inode *inode, int mask)
327 {
328 int ret;
329
330 /*
331 * Do the basic permission checks.
332 */
333 ret = acl_permission_check(inode, mask);
334 if (ret != -EACCES)
335 return ret;
336
337 if (S_ISDIR(inode->i_mode)) {
338 /* DACs are overridable for directories */
339 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
340 return 0;
341 if (!(mask & MAY_WRITE))
342 if (capable_wrt_inode_uidgid(inode,
343 CAP_DAC_READ_SEARCH))
344 return 0;
345 return -EACCES;
346 }
347 /*
348 * Read/write DACs are always overridable.
349 * Executable DACs are overridable when there is
350 * at least one exec bit set.
351 */
352 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
353 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
354 return 0;
355
356 /*
357 * Searching includes executable on directories, else just read.
358 */
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
363
364 return -EACCES;
365 }
366 EXPORT_SYMBOL(generic_permission);
367
368 /*
369 * We _really_ want to just do "generic_permission()" without
370 * even looking at the inode->i_op values. So we keep a cache
371 * flag in inode->i_opflags, that says "this has not special
372 * permission function, use the fast case".
373 */
374 static inline int do_inode_permission(struct inode *inode, int mask)
375 {
376 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
377 if (likely(inode->i_op->permission))
378 return inode->i_op->permission(inode, mask);
379
380 /* This gets set once for the inode lifetime */
381 spin_lock(&inode->i_lock);
382 inode->i_opflags |= IOP_FASTPERM;
383 spin_unlock(&inode->i_lock);
384 }
385 return generic_permission(inode, mask);
386 }
387
388 /**
389 * __inode_permission - Check for access rights to a given inode
390 * @inode: Inode to check permission on
391 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
392 *
393 * Check for read/write/execute permissions on an inode.
394 *
395 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
396 *
397 * This does not check for a read-only file system. You probably want
398 * inode_permission().
399 */
400 int __inode_permission(struct inode *inode, int mask)
401 {
402 int retval;
403
404 if (unlikely(mask & MAY_WRITE)) {
405 /*
406 * Nobody gets write access to an immutable file.
407 */
408 if (IS_IMMUTABLE(inode))
409 return -EACCES;
410 }
411
412 retval = do_inode_permission(inode, mask);
413 if (retval)
414 return retval;
415
416 retval = devcgroup_inode_permission(inode, mask);
417 if (retval)
418 return retval;
419
420 return security_inode_permission(inode, mask);
421 }
422 EXPORT_SYMBOL(__inode_permission);
423
424 /**
425 * sb_permission - Check superblock-level permissions
426 * @sb: Superblock of inode to check permission on
427 * @inode: Inode to check permission on
428 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
429 *
430 * Separate out file-system wide checks from inode-specific permission checks.
431 */
432 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
433 {
434 if (unlikely(mask & MAY_WRITE)) {
435 umode_t mode = inode->i_mode;
436
437 /* Nobody gets write access to a read-only fs. */
438 if ((sb->s_flags & MS_RDONLY) &&
439 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
440 return -EROFS;
441 }
442 return 0;
443 }
444
445 /**
446 * inode_permission - Check for access rights to a given inode
447 * @inode: Inode to check permission on
448 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
449 *
450 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
451 * this, letting us set arbitrary permissions for filesystem access without
452 * changing the "normal" UIDs which are used for other things.
453 *
454 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
455 */
456 int inode_permission(struct inode *inode, int mask)
457 {
458 int retval;
459
460 retval = sb_permission(inode->i_sb, inode, mask);
461 if (retval)
462 return retval;
463 return __inode_permission(inode, mask);
464 }
465 EXPORT_SYMBOL(inode_permission);
466
467 /**
468 * path_get - get a reference to a path
469 * @path: path to get the reference to
470 *
471 * Given a path increment the reference count to the dentry and the vfsmount.
472 */
473 void path_get(const struct path *path)
474 {
475 mntget(path->mnt);
476 dget(path->dentry);
477 }
478 EXPORT_SYMBOL(path_get);
479
480 /**
481 * path_put - put a reference to a path
482 * @path: path to put the reference to
483 *
484 * Given a path decrement the reference count to the dentry and the vfsmount.
485 */
486 void path_put(const struct path *path)
487 {
488 dput(path->dentry);
489 mntput(path->mnt);
490 }
491 EXPORT_SYMBOL(path_put);
492
493 struct nameidata {
494 struct path path;
495 struct qstr last;
496 struct path root;
497 struct inode *inode; /* path.dentry.d_inode */
498 unsigned int flags;
499 unsigned seq, m_seq;
500 int last_type;
501 unsigned depth;
502 struct file *base;
503 char *saved_names[MAX_NESTED_LINKS + 1];
504 };
505
506 /*
507 * Path walking has 2 modes, rcu-walk and ref-walk (see
508 * Documentation/filesystems/path-lookup.txt). In situations when we can't
509 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
510 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
511 * mode. Refcounts are grabbed at the last known good point before rcu-walk
512 * got stuck, so ref-walk may continue from there. If this is not successful
513 * (eg. a seqcount has changed), then failure is returned and it's up to caller
514 * to restart the path walk from the beginning in ref-walk mode.
515 */
516
517 /**
518 * unlazy_walk - try to switch to ref-walk mode.
519 * @nd: nameidata pathwalk data
520 * @dentry: child of nd->path.dentry or NULL
521 * Returns: 0 on success, -ECHILD on failure
522 *
523 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
524 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
525 * @nd or NULL. Must be called from rcu-walk context.
526 */
527 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
528 {
529 struct fs_struct *fs = current->fs;
530 struct dentry *parent = nd->path.dentry;
531
532 BUG_ON(!(nd->flags & LOOKUP_RCU));
533
534 /*
535 * After legitimizing the bastards, terminate_walk()
536 * will do the right thing for non-RCU mode, and all our
537 * subsequent exit cases should rcu_read_unlock()
538 * before returning. Do vfsmount first; if dentry
539 * can't be legitimized, just set nd->path.dentry to NULL
540 * and rely on dput(NULL) being a no-op.
541 */
542 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
543 return -ECHILD;
544 nd->flags &= ~LOOKUP_RCU;
545
546 if (!lockref_get_not_dead(&parent->d_lockref)) {
547 nd->path.dentry = NULL;
548 goto out;
549 }
550
551 /*
552 * For a negative lookup, the lookup sequence point is the parents
553 * sequence point, and it only needs to revalidate the parent dentry.
554 *
555 * For a positive lookup, we need to move both the parent and the
556 * dentry from the RCU domain to be properly refcounted. And the
557 * sequence number in the dentry validates *both* dentry counters,
558 * since we checked the sequence number of the parent after we got
559 * the child sequence number. So we know the parent must still
560 * be valid if the child sequence number is still valid.
561 */
562 if (!dentry) {
563 if (read_seqcount_retry(&parent->d_seq, nd->seq))
564 goto out;
565 BUG_ON(nd->inode != parent->d_inode);
566 } else {
567 if (!lockref_get_not_dead(&dentry->d_lockref))
568 goto out;
569 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
570 goto drop_dentry;
571 }
572
573 /*
574 * Sequence counts matched. Now make sure that the root is
575 * still valid and get it if required.
576 */
577 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
578 spin_lock(&fs->lock);
579 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
580 goto unlock_and_drop_dentry;
581 path_get(&nd->root);
582 spin_unlock(&fs->lock);
583 }
584
585 rcu_read_unlock();
586 return 0;
587
588 unlock_and_drop_dentry:
589 spin_unlock(&fs->lock);
590 drop_dentry:
591 rcu_read_unlock();
592 dput(dentry);
593 goto drop_root_mnt;
594 out:
595 rcu_read_unlock();
596 drop_root_mnt:
597 if (!(nd->flags & LOOKUP_ROOT))
598 nd->root.mnt = NULL;
599 return -ECHILD;
600 }
601
602 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
603 {
604 return dentry->d_op->d_revalidate(dentry, flags);
605 }
606
607 /**
608 * complete_walk - successful completion of path walk
609 * @nd: pointer nameidata
610 *
611 * If we had been in RCU mode, drop out of it and legitimize nd->path.
612 * Revalidate the final result, unless we'd already done that during
613 * the path walk or the filesystem doesn't ask for it. Return 0 on
614 * success, -error on failure. In case of failure caller does not
615 * need to drop nd->path.
616 */
617 static int complete_walk(struct nameidata *nd)
618 {
619 struct dentry *dentry = nd->path.dentry;
620 int status;
621
622 if (nd->flags & LOOKUP_RCU) {
623 nd->flags &= ~LOOKUP_RCU;
624 if (!(nd->flags & LOOKUP_ROOT))
625 nd->root.mnt = NULL;
626
627 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
628 rcu_read_unlock();
629 return -ECHILD;
630 }
631 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
632 rcu_read_unlock();
633 mntput(nd->path.mnt);
634 return -ECHILD;
635 }
636 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
637 rcu_read_unlock();
638 dput(dentry);
639 mntput(nd->path.mnt);
640 return -ECHILD;
641 }
642 rcu_read_unlock();
643 }
644
645 if (likely(!(nd->flags & LOOKUP_JUMPED)))
646 return 0;
647
648 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
649 return 0;
650
651 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
652 if (status > 0)
653 return 0;
654
655 if (!status)
656 status = -ESTALE;
657
658 path_put(&nd->path);
659 return status;
660 }
661
662 static __always_inline void set_root(struct nameidata *nd)
663 {
664 get_fs_root(current->fs, &nd->root);
665 }
666
667 static int link_path_walk(const char *, struct nameidata *);
668
669 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
670 {
671 struct fs_struct *fs = current->fs;
672 unsigned seq, res;
673
674 do {
675 seq = read_seqcount_begin(&fs->seq);
676 nd->root = fs->root;
677 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
678 } while (read_seqcount_retry(&fs->seq, seq));
679 return res;
680 }
681
682 static void path_put_conditional(struct path *path, struct nameidata *nd)
683 {
684 dput(path->dentry);
685 if (path->mnt != nd->path.mnt)
686 mntput(path->mnt);
687 }
688
689 static inline void path_to_nameidata(const struct path *path,
690 struct nameidata *nd)
691 {
692 if (!(nd->flags & LOOKUP_RCU)) {
693 dput(nd->path.dentry);
694 if (nd->path.mnt != path->mnt)
695 mntput(nd->path.mnt);
696 }
697 nd->path.mnt = path->mnt;
698 nd->path.dentry = path->dentry;
699 }
700
701 /*
702 * Helper to directly jump to a known parsed path from ->follow_link,
703 * caller must have taken a reference to path beforehand.
704 */
705 void nd_jump_link(struct nameidata *nd, struct path *path)
706 {
707 path_put(&nd->path);
708
709 nd->path = *path;
710 nd->inode = nd->path.dentry->d_inode;
711 nd->flags |= LOOKUP_JUMPED;
712 }
713
714 void nd_set_link(struct nameidata *nd, char *path)
715 {
716 nd->saved_names[nd->depth] = path;
717 }
718 EXPORT_SYMBOL(nd_set_link);
719
720 char *nd_get_link(struct nameidata *nd)
721 {
722 return nd->saved_names[nd->depth];
723 }
724 EXPORT_SYMBOL(nd_get_link);
725
726 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
727 {
728 struct inode *inode = link->dentry->d_inode;
729 if (inode->i_op->put_link)
730 inode->i_op->put_link(link->dentry, nd, cookie);
731 path_put(link);
732 }
733
734 int sysctl_protected_symlinks __read_mostly = 0;
735 int sysctl_protected_hardlinks __read_mostly = 0;
736
737 /**
738 * may_follow_link - Check symlink following for unsafe situations
739 * @link: The path of the symlink
740 * @nd: nameidata pathwalk data
741 *
742 * In the case of the sysctl_protected_symlinks sysctl being enabled,
743 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
744 * in a sticky world-writable directory. This is to protect privileged
745 * processes from failing races against path names that may change out
746 * from under them by way of other users creating malicious symlinks.
747 * It will permit symlinks to be followed only when outside a sticky
748 * world-writable directory, or when the uid of the symlink and follower
749 * match, or when the directory owner matches the symlink's owner.
750 *
751 * Returns 0 if following the symlink is allowed, -ve on error.
752 */
753 static inline int may_follow_link(struct path *link, struct nameidata *nd)
754 {
755 const struct inode *inode;
756 const struct inode *parent;
757
758 if (!sysctl_protected_symlinks)
759 return 0;
760
761 /* Allowed if owner and follower match. */
762 inode = link->dentry->d_inode;
763 if (uid_eq(current_cred()->fsuid, inode->i_uid))
764 return 0;
765
766 /* Allowed if parent directory not sticky and world-writable. */
767 parent = nd->path.dentry->d_inode;
768 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
769 return 0;
770
771 /* Allowed if parent directory and link owner match. */
772 if (uid_eq(parent->i_uid, inode->i_uid))
773 return 0;
774
775 audit_log_link_denied("follow_link", link);
776 path_put_conditional(link, nd);
777 path_put(&nd->path);
778 return -EACCES;
779 }
780
781 /**
782 * safe_hardlink_source - Check for safe hardlink conditions
783 * @inode: the source inode to hardlink from
784 *
785 * Return false if at least one of the following conditions:
786 * - inode is not a regular file
787 * - inode is setuid
788 * - inode is setgid and group-exec
789 * - access failure for read and write
790 *
791 * Otherwise returns true.
792 */
793 static bool safe_hardlink_source(struct inode *inode)
794 {
795 umode_t mode = inode->i_mode;
796
797 /* Special files should not get pinned to the filesystem. */
798 if (!S_ISREG(mode))
799 return false;
800
801 /* Setuid files should not get pinned to the filesystem. */
802 if (mode & S_ISUID)
803 return false;
804
805 /* Executable setgid files should not get pinned to the filesystem. */
806 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
807 return false;
808
809 /* Hardlinking to unreadable or unwritable sources is dangerous. */
810 if (inode_permission(inode, MAY_READ | MAY_WRITE))
811 return false;
812
813 return true;
814 }
815
816 /**
817 * may_linkat - Check permissions for creating a hardlink
818 * @link: the source to hardlink from
819 *
820 * Block hardlink when all of:
821 * - sysctl_protected_hardlinks enabled
822 * - fsuid does not match inode
823 * - hardlink source is unsafe (see safe_hardlink_source() above)
824 * - not CAP_FOWNER
825 *
826 * Returns 0 if successful, -ve on error.
827 */
828 static int may_linkat(struct path *link)
829 {
830 const struct cred *cred;
831 struct inode *inode;
832
833 if (!sysctl_protected_hardlinks)
834 return 0;
835
836 cred = current_cred();
837 inode = link->dentry->d_inode;
838
839 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
840 * otherwise, it must be a safe source.
841 */
842 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
843 capable(CAP_FOWNER))
844 return 0;
845
846 audit_log_link_denied("linkat", link);
847 return -EPERM;
848 }
849
850 static __always_inline int
851 follow_link(struct path *link, struct nameidata *nd, void **p)
852 {
853 struct dentry *dentry = link->dentry;
854 int error;
855 char *s;
856
857 BUG_ON(nd->flags & LOOKUP_RCU);
858
859 if (link->mnt == nd->path.mnt)
860 mntget(link->mnt);
861
862 error = -ELOOP;
863 if (unlikely(current->total_link_count >= 40))
864 goto out_put_nd_path;
865
866 cond_resched();
867 current->total_link_count++;
868
869 touch_atime(link);
870 nd_set_link(nd, NULL);
871
872 error = security_inode_follow_link(link->dentry, nd);
873 if (error)
874 goto out_put_nd_path;
875
876 nd->last_type = LAST_BIND;
877 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
878 error = PTR_ERR(*p);
879 if (IS_ERR(*p))
880 goto out_put_nd_path;
881
882 error = 0;
883 s = nd_get_link(nd);
884 if (s) {
885 if (unlikely(IS_ERR(s))) {
886 path_put(&nd->path);
887 put_link(nd, link, *p);
888 return PTR_ERR(s);
889 }
890 if (*s == '/') {
891 if (!nd->root.mnt)
892 set_root(nd);
893 path_put(&nd->path);
894 nd->path = nd->root;
895 path_get(&nd->root);
896 nd->flags |= LOOKUP_JUMPED;
897 }
898 nd->inode = nd->path.dentry->d_inode;
899 error = link_path_walk(s, nd);
900 if (unlikely(error))
901 put_link(nd, link, *p);
902 }
903
904 return error;
905
906 out_put_nd_path:
907 *p = NULL;
908 path_put(&nd->path);
909 path_put(link);
910 return error;
911 }
912
913 static int follow_up_rcu(struct path *path)
914 {
915 struct mount *mnt = real_mount(path->mnt);
916 struct mount *parent;
917 struct dentry *mountpoint;
918
919 parent = mnt->mnt_parent;
920 if (&parent->mnt == path->mnt)
921 return 0;
922 mountpoint = mnt->mnt_mountpoint;
923 path->dentry = mountpoint;
924 path->mnt = &parent->mnt;
925 return 1;
926 }
927
928 /*
929 * follow_up - Find the mountpoint of path's vfsmount
930 *
931 * Given a path, find the mountpoint of its source file system.
932 * Replace @path with the path of the mountpoint in the parent mount.
933 * Up is towards /.
934 *
935 * Return 1 if we went up a level and 0 if we were already at the
936 * root.
937 */
938 int follow_up(struct path *path)
939 {
940 struct mount *mnt = real_mount(path->mnt);
941 struct mount *parent;
942 struct dentry *mountpoint;
943
944 read_seqlock_excl(&mount_lock);
945 parent = mnt->mnt_parent;
946 if (parent == mnt) {
947 read_sequnlock_excl(&mount_lock);
948 return 0;
949 }
950 mntget(&parent->mnt);
951 mountpoint = dget(mnt->mnt_mountpoint);
952 read_sequnlock_excl(&mount_lock);
953 dput(path->dentry);
954 path->dentry = mountpoint;
955 mntput(path->mnt);
956 path->mnt = &parent->mnt;
957 return 1;
958 }
959 EXPORT_SYMBOL(follow_up);
960
961 /*
962 * Perform an automount
963 * - return -EISDIR to tell follow_managed() to stop and return the path we
964 * were called with.
965 */
966 static int follow_automount(struct path *path, unsigned flags,
967 bool *need_mntput)
968 {
969 struct vfsmount *mnt;
970 int err;
971
972 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
973 return -EREMOTE;
974
975 /* We don't want to mount if someone's just doing a stat -
976 * unless they're stat'ing a directory and appended a '/' to
977 * the name.
978 *
979 * We do, however, want to mount if someone wants to open or
980 * create a file of any type under the mountpoint, wants to
981 * traverse through the mountpoint or wants to open the
982 * mounted directory. Also, autofs may mark negative dentries
983 * as being automount points. These will need the attentions
984 * of the daemon to instantiate them before they can be used.
985 */
986 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
987 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
988 path->dentry->d_inode)
989 return -EISDIR;
990
991 current->total_link_count++;
992 if (current->total_link_count >= 40)
993 return -ELOOP;
994
995 mnt = path->dentry->d_op->d_automount(path);
996 if (IS_ERR(mnt)) {
997 /*
998 * The filesystem is allowed to return -EISDIR here to indicate
999 * it doesn't want to automount. For instance, autofs would do
1000 * this so that its userspace daemon can mount on this dentry.
1001 *
1002 * However, we can only permit this if it's a terminal point in
1003 * the path being looked up; if it wasn't then the remainder of
1004 * the path is inaccessible and we should say so.
1005 */
1006 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1007 return -EREMOTE;
1008 return PTR_ERR(mnt);
1009 }
1010
1011 if (!mnt) /* mount collision */
1012 return 0;
1013
1014 if (!*need_mntput) {
1015 /* lock_mount() may release path->mnt on error */
1016 mntget(path->mnt);
1017 *need_mntput = true;
1018 }
1019 err = finish_automount(mnt, path);
1020
1021 switch (err) {
1022 case -EBUSY:
1023 /* Someone else made a mount here whilst we were busy */
1024 return 0;
1025 case 0:
1026 path_put(path);
1027 path->mnt = mnt;
1028 path->dentry = dget(mnt->mnt_root);
1029 return 0;
1030 default:
1031 return err;
1032 }
1033
1034 }
1035
1036 /*
1037 * Handle a dentry that is managed in some way.
1038 * - Flagged for transit management (autofs)
1039 * - Flagged as mountpoint
1040 * - Flagged as automount point
1041 *
1042 * This may only be called in refwalk mode.
1043 *
1044 * Serialization is taken care of in namespace.c
1045 */
1046 static int follow_managed(struct path *path, unsigned flags)
1047 {
1048 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1049 unsigned managed;
1050 bool need_mntput = false;
1051 int ret = 0;
1052
1053 /* Given that we're not holding a lock here, we retain the value in a
1054 * local variable for each dentry as we look at it so that we don't see
1055 * the components of that value change under us */
1056 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1057 managed &= DCACHE_MANAGED_DENTRY,
1058 unlikely(managed != 0)) {
1059 /* Allow the filesystem to manage the transit without i_mutex
1060 * being held. */
1061 if (managed & DCACHE_MANAGE_TRANSIT) {
1062 BUG_ON(!path->dentry->d_op);
1063 BUG_ON(!path->dentry->d_op->d_manage);
1064 ret = path->dentry->d_op->d_manage(path->dentry, false);
1065 if (ret < 0)
1066 break;
1067 }
1068
1069 /* Transit to a mounted filesystem. */
1070 if (managed & DCACHE_MOUNTED) {
1071 struct vfsmount *mounted = lookup_mnt(path);
1072 if (mounted) {
1073 dput(path->dentry);
1074 if (need_mntput)
1075 mntput(path->mnt);
1076 path->mnt = mounted;
1077 path->dentry = dget(mounted->mnt_root);
1078 need_mntput = true;
1079 continue;
1080 }
1081
1082 /* Something is mounted on this dentry in another
1083 * namespace and/or whatever was mounted there in this
1084 * namespace got unmounted before lookup_mnt() could
1085 * get it */
1086 }
1087
1088 /* Handle an automount point */
1089 if (managed & DCACHE_NEED_AUTOMOUNT) {
1090 ret = follow_automount(path, flags, &need_mntput);
1091 if (ret < 0)
1092 break;
1093 continue;
1094 }
1095
1096 /* We didn't change the current path point */
1097 break;
1098 }
1099
1100 if (need_mntput && path->mnt == mnt)
1101 mntput(path->mnt);
1102 if (ret == -EISDIR)
1103 ret = 0;
1104 return ret < 0 ? ret : need_mntput;
1105 }
1106
1107 int follow_down_one(struct path *path)
1108 {
1109 struct vfsmount *mounted;
1110
1111 mounted = lookup_mnt(path);
1112 if (mounted) {
1113 dput(path->dentry);
1114 mntput(path->mnt);
1115 path->mnt = mounted;
1116 path->dentry = dget(mounted->mnt_root);
1117 return 1;
1118 }
1119 return 0;
1120 }
1121 EXPORT_SYMBOL(follow_down_one);
1122
1123 static inline int managed_dentry_rcu(struct dentry *dentry)
1124 {
1125 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1126 dentry->d_op->d_manage(dentry, true) : 0;
1127 }
1128
1129 /*
1130 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1131 * we meet a managed dentry that would need blocking.
1132 */
1133 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1134 struct inode **inode)
1135 {
1136 for (;;) {
1137 struct mount *mounted;
1138 /*
1139 * Don't forget we might have a non-mountpoint managed dentry
1140 * that wants to block transit.
1141 */
1142 switch (managed_dentry_rcu(path->dentry)) {
1143 case -ECHILD:
1144 default:
1145 return false;
1146 case -EISDIR:
1147 return true;
1148 case 0:
1149 break;
1150 }
1151
1152 if (!d_mountpoint(path->dentry))
1153 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1154
1155 mounted = __lookup_mnt(path->mnt, path->dentry);
1156 if (!mounted)
1157 break;
1158 path->mnt = &mounted->mnt;
1159 path->dentry = mounted->mnt.mnt_root;
1160 nd->flags |= LOOKUP_JUMPED;
1161 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1162 /*
1163 * Update the inode too. We don't need to re-check the
1164 * dentry sequence number here after this d_inode read,
1165 * because a mount-point is always pinned.
1166 */
1167 *inode = path->dentry->d_inode;
1168 }
1169 return !read_seqretry(&mount_lock, nd->m_seq) &&
1170 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1171 }
1172
1173 static int follow_dotdot_rcu(struct nameidata *nd)
1174 {
1175 struct inode *inode = nd->inode;
1176 if (!nd->root.mnt)
1177 set_root_rcu(nd);
1178
1179 while (1) {
1180 if (nd->path.dentry == nd->root.dentry &&
1181 nd->path.mnt == nd->root.mnt) {
1182 break;
1183 }
1184 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1185 struct dentry *old = nd->path.dentry;
1186 struct dentry *parent = old->d_parent;
1187 unsigned seq;
1188
1189 inode = parent->d_inode;
1190 seq = read_seqcount_begin(&parent->d_seq);
1191 if (read_seqcount_retry(&old->d_seq, nd->seq))
1192 goto failed;
1193 nd->path.dentry = parent;
1194 nd->seq = seq;
1195 break;
1196 }
1197 if (!follow_up_rcu(&nd->path))
1198 break;
1199 inode = nd->path.dentry->d_inode;
1200 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1201 }
1202 while (d_mountpoint(nd->path.dentry)) {
1203 struct mount *mounted;
1204 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1205 if (!mounted)
1206 break;
1207 nd->path.mnt = &mounted->mnt;
1208 nd->path.dentry = mounted->mnt.mnt_root;
1209 inode = nd->path.dentry->d_inode;
1210 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1211 if (read_seqretry(&mount_lock, nd->m_seq))
1212 goto failed;
1213 }
1214 nd->inode = inode;
1215 return 0;
1216
1217 failed:
1218 nd->flags &= ~LOOKUP_RCU;
1219 if (!(nd->flags & LOOKUP_ROOT))
1220 nd->root.mnt = NULL;
1221 rcu_read_unlock();
1222 return -ECHILD;
1223 }
1224
1225 /*
1226 * Follow down to the covering mount currently visible to userspace. At each
1227 * point, the filesystem owning that dentry may be queried as to whether the
1228 * caller is permitted to proceed or not.
1229 */
1230 int follow_down(struct path *path)
1231 {
1232 unsigned managed;
1233 int ret;
1234
1235 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1236 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1237 /* Allow the filesystem to manage the transit without i_mutex
1238 * being held.
1239 *
1240 * We indicate to the filesystem if someone is trying to mount
1241 * something here. This gives autofs the chance to deny anyone
1242 * other than its daemon the right to mount on its
1243 * superstructure.
1244 *
1245 * The filesystem may sleep at this point.
1246 */
1247 if (managed & DCACHE_MANAGE_TRANSIT) {
1248 BUG_ON(!path->dentry->d_op);
1249 BUG_ON(!path->dentry->d_op->d_manage);
1250 ret = path->dentry->d_op->d_manage(
1251 path->dentry, false);
1252 if (ret < 0)
1253 return ret == -EISDIR ? 0 : ret;
1254 }
1255
1256 /* Transit to a mounted filesystem. */
1257 if (managed & DCACHE_MOUNTED) {
1258 struct vfsmount *mounted = lookup_mnt(path);
1259 if (!mounted)
1260 break;
1261 dput(path->dentry);
1262 mntput(path->mnt);
1263 path->mnt = mounted;
1264 path->dentry = dget(mounted->mnt_root);
1265 continue;
1266 }
1267
1268 /* Don't handle automount points here */
1269 break;
1270 }
1271 return 0;
1272 }
1273 EXPORT_SYMBOL(follow_down);
1274
1275 /*
1276 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1277 */
1278 static void follow_mount(struct path *path)
1279 {
1280 while (d_mountpoint(path->dentry)) {
1281 struct vfsmount *mounted = lookup_mnt(path);
1282 if (!mounted)
1283 break;
1284 dput(path->dentry);
1285 mntput(path->mnt);
1286 path->mnt = mounted;
1287 path->dentry = dget(mounted->mnt_root);
1288 }
1289 }
1290
1291 static void follow_dotdot(struct nameidata *nd)
1292 {
1293 if (!nd->root.mnt)
1294 set_root(nd);
1295
1296 while(1) {
1297 struct dentry *old = nd->path.dentry;
1298
1299 if (nd->path.dentry == nd->root.dentry &&
1300 nd->path.mnt == nd->root.mnt) {
1301 break;
1302 }
1303 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1304 /* rare case of legitimate dget_parent()... */
1305 nd->path.dentry = dget_parent(nd->path.dentry);
1306 dput(old);
1307 break;
1308 }
1309 if (!follow_up(&nd->path))
1310 break;
1311 }
1312 follow_mount(&nd->path);
1313 nd->inode = nd->path.dentry->d_inode;
1314 }
1315
1316 /*
1317 * This looks up the name in dcache, possibly revalidates the old dentry and
1318 * allocates a new one if not found or not valid. In the need_lookup argument
1319 * returns whether i_op->lookup is necessary.
1320 *
1321 * dir->d_inode->i_mutex must be held
1322 */
1323 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1324 unsigned int flags, bool *need_lookup)
1325 {
1326 struct dentry *dentry;
1327 int error;
1328
1329 *need_lookup = false;
1330 dentry = d_lookup(dir, name);
1331 if (dentry) {
1332 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1333 error = d_revalidate(dentry, flags);
1334 if (unlikely(error <= 0)) {
1335 if (error < 0) {
1336 dput(dentry);
1337 return ERR_PTR(error);
1338 } else {
1339 d_invalidate(dentry);
1340 dput(dentry);
1341 dentry = NULL;
1342 }
1343 }
1344 }
1345 }
1346
1347 if (!dentry) {
1348 dentry = d_alloc(dir, name);
1349 if (unlikely(!dentry))
1350 return ERR_PTR(-ENOMEM);
1351
1352 *need_lookup = true;
1353 }
1354 return dentry;
1355 }
1356
1357 /*
1358 * Call i_op->lookup on the dentry. The dentry must be negative and
1359 * unhashed.
1360 *
1361 * dir->d_inode->i_mutex must be held
1362 */
1363 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1364 unsigned int flags)
1365 {
1366 struct dentry *old;
1367
1368 /* Don't create child dentry for a dead directory. */
1369 if (unlikely(IS_DEADDIR(dir))) {
1370 dput(dentry);
1371 return ERR_PTR(-ENOENT);
1372 }
1373
1374 old = dir->i_op->lookup(dir, dentry, flags);
1375 if (unlikely(old)) {
1376 dput(dentry);
1377 dentry = old;
1378 }
1379 return dentry;
1380 }
1381
1382 static struct dentry *__lookup_hash(struct qstr *name,
1383 struct dentry *base, unsigned int flags)
1384 {
1385 bool need_lookup;
1386 struct dentry *dentry;
1387
1388 dentry = lookup_dcache(name, base, flags, &need_lookup);
1389 if (!need_lookup)
1390 return dentry;
1391
1392 return lookup_real(base->d_inode, dentry, flags);
1393 }
1394
1395 /*
1396 * It's more convoluted than I'd like it to be, but... it's still fairly
1397 * small and for now I'd prefer to have fast path as straight as possible.
1398 * It _is_ time-critical.
1399 */
1400 static int lookup_fast(struct nameidata *nd,
1401 struct path *path, struct inode **inode)
1402 {
1403 struct vfsmount *mnt = nd->path.mnt;
1404 struct dentry *dentry, *parent = nd->path.dentry;
1405 int need_reval = 1;
1406 int status = 1;
1407 int err;
1408
1409 /*
1410 * Rename seqlock is not required here because in the off chance
1411 * of a false negative due to a concurrent rename, we're going to
1412 * do the non-racy lookup, below.
1413 */
1414 if (nd->flags & LOOKUP_RCU) {
1415 unsigned seq;
1416 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1417 if (!dentry)
1418 goto unlazy;
1419
1420 /*
1421 * This sequence count validates that the inode matches
1422 * the dentry name information from lookup.
1423 */
1424 *inode = dentry->d_inode;
1425 if (read_seqcount_retry(&dentry->d_seq, seq))
1426 return -ECHILD;
1427
1428 /*
1429 * This sequence count validates that the parent had no
1430 * changes while we did the lookup of the dentry above.
1431 *
1432 * The memory barrier in read_seqcount_begin of child is
1433 * enough, we can use __read_seqcount_retry here.
1434 */
1435 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1436 return -ECHILD;
1437 nd->seq = seq;
1438
1439 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1440 status = d_revalidate(dentry, nd->flags);
1441 if (unlikely(status <= 0)) {
1442 if (status != -ECHILD)
1443 need_reval = 0;
1444 goto unlazy;
1445 }
1446 }
1447 path->mnt = mnt;
1448 path->dentry = dentry;
1449 if (likely(__follow_mount_rcu(nd, path, inode)))
1450 return 0;
1451 unlazy:
1452 if (unlazy_walk(nd, dentry))
1453 return -ECHILD;
1454 } else {
1455 dentry = __d_lookup(parent, &nd->last);
1456 }
1457
1458 if (unlikely(!dentry))
1459 goto need_lookup;
1460
1461 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1462 status = d_revalidate(dentry, nd->flags);
1463 if (unlikely(status <= 0)) {
1464 if (status < 0) {
1465 dput(dentry);
1466 return status;
1467 }
1468 d_invalidate(dentry);
1469 dput(dentry);
1470 goto need_lookup;
1471 }
1472
1473 path->mnt = mnt;
1474 path->dentry = dentry;
1475 err = follow_managed(path, nd->flags);
1476 if (unlikely(err < 0)) {
1477 path_put_conditional(path, nd);
1478 return err;
1479 }
1480 if (err)
1481 nd->flags |= LOOKUP_JUMPED;
1482 *inode = path->dentry->d_inode;
1483 return 0;
1484
1485 need_lookup:
1486 return 1;
1487 }
1488
1489 /* Fast lookup failed, do it the slow way */
1490 static int lookup_slow(struct nameidata *nd, struct path *path)
1491 {
1492 struct dentry *dentry, *parent;
1493 int err;
1494
1495 parent = nd->path.dentry;
1496 BUG_ON(nd->inode != parent->d_inode);
1497
1498 mutex_lock(&parent->d_inode->i_mutex);
1499 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1500 mutex_unlock(&parent->d_inode->i_mutex);
1501 if (IS_ERR(dentry))
1502 return PTR_ERR(dentry);
1503 path->mnt = nd->path.mnt;
1504 path->dentry = dentry;
1505 err = follow_managed(path, nd->flags);
1506 if (unlikely(err < 0)) {
1507 path_put_conditional(path, nd);
1508 return err;
1509 }
1510 if (err)
1511 nd->flags |= LOOKUP_JUMPED;
1512 return 0;
1513 }
1514
1515 static inline int may_lookup(struct nameidata *nd)
1516 {
1517 if (nd->flags & LOOKUP_RCU) {
1518 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1519 if (err != -ECHILD)
1520 return err;
1521 if (unlazy_walk(nd, NULL))
1522 return -ECHILD;
1523 }
1524 return inode_permission(nd->inode, MAY_EXEC);
1525 }
1526
1527 static inline int handle_dots(struct nameidata *nd, int type)
1528 {
1529 if (type == LAST_DOTDOT) {
1530 if (nd->flags & LOOKUP_RCU) {
1531 if (follow_dotdot_rcu(nd))
1532 return -ECHILD;
1533 } else
1534 follow_dotdot(nd);
1535 }
1536 return 0;
1537 }
1538
1539 static void terminate_walk(struct nameidata *nd)
1540 {
1541 if (!(nd->flags & LOOKUP_RCU)) {
1542 path_put(&nd->path);
1543 } else {
1544 nd->flags &= ~LOOKUP_RCU;
1545 if (!(nd->flags & LOOKUP_ROOT))
1546 nd->root.mnt = NULL;
1547 rcu_read_unlock();
1548 }
1549 }
1550
1551 /*
1552 * Do we need to follow links? We _really_ want to be able
1553 * to do this check without having to look at inode->i_op,
1554 * so we keep a cache of "no, this doesn't need follow_link"
1555 * for the common case.
1556 */
1557 static inline int should_follow_link(struct dentry *dentry, int follow)
1558 {
1559 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1560 }
1561
1562 static inline int walk_component(struct nameidata *nd, struct path *path,
1563 int follow)
1564 {
1565 struct inode *inode;
1566 int err;
1567 /*
1568 * "." and ".." are special - ".." especially so because it has
1569 * to be able to know about the current root directory and
1570 * parent relationships.
1571 */
1572 if (unlikely(nd->last_type != LAST_NORM))
1573 return handle_dots(nd, nd->last_type);
1574 err = lookup_fast(nd, path, &inode);
1575 if (unlikely(err)) {
1576 if (err < 0)
1577 goto out_err;
1578
1579 err = lookup_slow(nd, path);
1580 if (err < 0)
1581 goto out_err;
1582
1583 inode = path->dentry->d_inode;
1584 }
1585 err = -ENOENT;
1586 if (!inode || d_is_negative(path->dentry))
1587 goto out_path_put;
1588
1589 if (should_follow_link(path->dentry, follow)) {
1590 if (nd->flags & LOOKUP_RCU) {
1591 if (unlikely(unlazy_walk(nd, path->dentry))) {
1592 err = -ECHILD;
1593 goto out_err;
1594 }
1595 }
1596 BUG_ON(inode != path->dentry->d_inode);
1597 return 1;
1598 }
1599 path_to_nameidata(path, nd);
1600 nd->inode = inode;
1601 return 0;
1602
1603 out_path_put:
1604 path_to_nameidata(path, nd);
1605 out_err:
1606 terminate_walk(nd);
1607 return err;
1608 }
1609
1610 /*
1611 * This limits recursive symlink follows to 8, while
1612 * limiting consecutive symlinks to 40.
1613 *
1614 * Without that kind of total limit, nasty chains of consecutive
1615 * symlinks can cause almost arbitrarily long lookups.
1616 */
1617 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1618 {
1619 int res;
1620
1621 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1622 path_put_conditional(path, nd);
1623 path_put(&nd->path);
1624 return -ELOOP;
1625 }
1626 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1627
1628 nd->depth++;
1629 current->link_count++;
1630
1631 do {
1632 struct path link = *path;
1633 void *cookie;
1634
1635 res = follow_link(&link, nd, &cookie);
1636 if (res)
1637 break;
1638 res = walk_component(nd, path, LOOKUP_FOLLOW);
1639 put_link(nd, &link, cookie);
1640 } while (res > 0);
1641
1642 current->link_count--;
1643 nd->depth--;
1644 return res;
1645 }
1646
1647 /*
1648 * We can do the critical dentry name comparison and hashing
1649 * operations one word at a time, but we are limited to:
1650 *
1651 * - Architectures with fast unaligned word accesses. We could
1652 * do a "get_unaligned()" if this helps and is sufficiently
1653 * fast.
1654 *
1655 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1656 * do not trap on the (extremely unlikely) case of a page
1657 * crossing operation.
1658 *
1659 * - Furthermore, we need an efficient 64-bit compile for the
1660 * 64-bit case in order to generate the "number of bytes in
1661 * the final mask". Again, that could be replaced with a
1662 * efficient population count instruction or similar.
1663 */
1664 #ifdef CONFIG_DCACHE_WORD_ACCESS
1665
1666 #include <asm/word-at-a-time.h>
1667
1668 #ifdef CONFIG_64BIT
1669
1670 static inline unsigned int fold_hash(unsigned long hash)
1671 {
1672 return hash_64(hash, 32);
1673 }
1674
1675 #else /* 32-bit case */
1676
1677 #define fold_hash(x) (x)
1678
1679 #endif
1680
1681 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1682 {
1683 unsigned long a, mask;
1684 unsigned long hash = 0;
1685
1686 for (;;) {
1687 a = load_unaligned_zeropad(name);
1688 if (len < sizeof(unsigned long))
1689 break;
1690 hash += a;
1691 hash *= 9;
1692 name += sizeof(unsigned long);
1693 len -= sizeof(unsigned long);
1694 if (!len)
1695 goto done;
1696 }
1697 mask = bytemask_from_count(len);
1698 hash += mask & a;
1699 done:
1700 return fold_hash(hash);
1701 }
1702 EXPORT_SYMBOL(full_name_hash);
1703
1704 /*
1705 * Calculate the length and hash of the path component, and
1706 * return the "hash_len" as the result.
1707 */
1708 static inline u64 hash_name(const char *name)
1709 {
1710 unsigned long a, b, adata, bdata, mask, hash, len;
1711 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1712
1713 hash = a = 0;
1714 len = -sizeof(unsigned long);
1715 do {
1716 hash = (hash + a) * 9;
1717 len += sizeof(unsigned long);
1718 a = load_unaligned_zeropad(name+len);
1719 b = a ^ REPEAT_BYTE('/');
1720 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1721
1722 adata = prep_zero_mask(a, adata, &constants);
1723 bdata = prep_zero_mask(b, bdata, &constants);
1724
1725 mask = create_zero_mask(adata | bdata);
1726
1727 hash += a & zero_bytemask(mask);
1728 len += find_zero(mask);
1729 return hashlen_create(fold_hash(hash), len);
1730 }
1731
1732 #else
1733
1734 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1735 {
1736 unsigned long hash = init_name_hash();
1737 while (len--)
1738 hash = partial_name_hash(*name++, hash);
1739 return end_name_hash(hash);
1740 }
1741 EXPORT_SYMBOL(full_name_hash);
1742
1743 /*
1744 * We know there's a real path component here of at least
1745 * one character.
1746 */
1747 static inline u64 hash_name(const char *name)
1748 {
1749 unsigned long hash = init_name_hash();
1750 unsigned long len = 0, c;
1751
1752 c = (unsigned char)*name;
1753 do {
1754 len++;
1755 hash = partial_name_hash(c, hash);
1756 c = (unsigned char)name[len];
1757 } while (c && c != '/');
1758 return hashlen_create(end_name_hash(hash), len);
1759 }
1760
1761 #endif
1762
1763 /*
1764 * Name resolution.
1765 * This is the basic name resolution function, turning a pathname into
1766 * the final dentry. We expect 'base' to be positive and a directory.
1767 *
1768 * Returns 0 and nd will have valid dentry and mnt on success.
1769 * Returns error and drops reference to input namei data on failure.
1770 */
1771 static int link_path_walk(const char *name, struct nameidata *nd)
1772 {
1773 struct path next;
1774 int err;
1775
1776 while (*name=='/')
1777 name++;
1778 if (!*name)
1779 return 0;
1780
1781 /* At this point we know we have a real path component. */
1782 for(;;) {
1783 u64 hash_len;
1784 int type;
1785
1786 err = may_lookup(nd);
1787 if (err)
1788 break;
1789
1790 hash_len = hash_name(name);
1791
1792 type = LAST_NORM;
1793 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1794 case 2:
1795 if (name[1] == '.') {
1796 type = LAST_DOTDOT;
1797 nd->flags |= LOOKUP_JUMPED;
1798 }
1799 break;
1800 case 1:
1801 type = LAST_DOT;
1802 }
1803 if (likely(type == LAST_NORM)) {
1804 struct dentry *parent = nd->path.dentry;
1805 nd->flags &= ~LOOKUP_JUMPED;
1806 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1807 struct qstr this = { { .hash_len = hash_len }, .name = name };
1808 err = parent->d_op->d_hash(parent, &this);
1809 if (err < 0)
1810 break;
1811 hash_len = this.hash_len;
1812 name = this.name;
1813 }
1814 }
1815
1816 nd->last.hash_len = hash_len;
1817 nd->last.name = name;
1818 nd->last_type = type;
1819
1820 name += hashlen_len(hash_len);
1821 if (!*name)
1822 return 0;
1823 /*
1824 * If it wasn't NUL, we know it was '/'. Skip that
1825 * slash, and continue until no more slashes.
1826 */
1827 do {
1828 name++;
1829 } while (unlikely(*name == '/'));
1830 if (!*name)
1831 return 0;
1832
1833 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1834 if (err < 0)
1835 return err;
1836
1837 if (err) {
1838 err = nested_symlink(&next, nd);
1839 if (err)
1840 return err;
1841 }
1842 if (!d_can_lookup(nd->path.dentry)) {
1843 err = -ENOTDIR;
1844 break;
1845 }
1846 }
1847 terminate_walk(nd);
1848 return err;
1849 }
1850
1851 static int path_init(int dfd, const char *name, unsigned int flags,
1852 struct nameidata *nd)
1853 {
1854 int retval = 0;
1855
1856 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1857 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1858 nd->depth = 0;
1859 nd->base = NULL;
1860 if (flags & LOOKUP_ROOT) {
1861 struct dentry *root = nd->root.dentry;
1862 struct inode *inode = root->d_inode;
1863 if (*name) {
1864 if (!d_can_lookup(root))
1865 return -ENOTDIR;
1866 retval = inode_permission(inode, MAY_EXEC);
1867 if (retval)
1868 return retval;
1869 }
1870 nd->path = nd->root;
1871 nd->inode = inode;
1872 if (flags & LOOKUP_RCU) {
1873 rcu_read_lock();
1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 nd->m_seq = read_seqbegin(&mount_lock);
1876 } else {
1877 path_get(&nd->path);
1878 }
1879 goto done;
1880 }
1881
1882 nd->root.mnt = NULL;
1883
1884 nd->m_seq = read_seqbegin(&mount_lock);
1885 if (*name=='/') {
1886 if (flags & LOOKUP_RCU) {
1887 rcu_read_lock();
1888 nd->seq = set_root_rcu(nd);
1889 } else {
1890 set_root(nd);
1891 path_get(&nd->root);
1892 }
1893 nd->path = nd->root;
1894 } else if (dfd == AT_FDCWD) {
1895 if (flags & LOOKUP_RCU) {
1896 struct fs_struct *fs = current->fs;
1897 unsigned seq;
1898
1899 rcu_read_lock();
1900
1901 do {
1902 seq = read_seqcount_begin(&fs->seq);
1903 nd->path = fs->pwd;
1904 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1905 } while (read_seqcount_retry(&fs->seq, seq));
1906 } else {
1907 get_fs_pwd(current->fs, &nd->path);
1908 }
1909 } else {
1910 /* Caller must check execute permissions on the starting path component */
1911 struct fd f = fdget_raw(dfd);
1912 struct dentry *dentry;
1913
1914 if (!f.file)
1915 return -EBADF;
1916
1917 dentry = f.file->f_path.dentry;
1918
1919 if (*name) {
1920 if (!d_can_lookup(dentry)) {
1921 fdput(f);
1922 return -ENOTDIR;
1923 }
1924 }
1925
1926 nd->path = f.file->f_path;
1927 if (flags & LOOKUP_RCU) {
1928 if (f.flags & FDPUT_FPUT)
1929 nd->base = f.file;
1930 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1931 rcu_read_lock();
1932 } else {
1933 path_get(&nd->path);
1934 fdput(f);
1935 }
1936 }
1937
1938 nd->inode = nd->path.dentry->d_inode;
1939 if (!(flags & LOOKUP_RCU))
1940 goto done;
1941 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1942 goto done;
1943 if (!(nd->flags & LOOKUP_ROOT))
1944 nd->root.mnt = NULL;
1945 rcu_read_unlock();
1946 return -ECHILD;
1947 done:
1948 current->total_link_count = 0;
1949 return link_path_walk(name, nd);
1950 }
1951
1952 static void path_cleanup(struct nameidata *nd)
1953 {
1954 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1955 path_put(&nd->root);
1956 nd->root.mnt = NULL;
1957 }
1958 if (unlikely(nd->base))
1959 fput(nd->base);
1960 }
1961
1962 static inline int lookup_last(struct nameidata *nd, struct path *path)
1963 {
1964 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1965 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1966
1967 nd->flags &= ~LOOKUP_PARENT;
1968 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1969 }
1970
1971 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1972 static int path_lookupat(int dfd, const struct filename *name,
1973 unsigned int flags, struct nameidata *nd)
1974 {
1975 struct path path;
1976 int err;
1977
1978 /*
1979 * Path walking is largely split up into 2 different synchronisation
1980 * schemes, rcu-walk and ref-walk (explained in
1981 * Documentation/filesystems/path-lookup.txt). These share much of the
1982 * path walk code, but some things particularly setup, cleanup, and
1983 * following mounts are sufficiently divergent that functions are
1984 * duplicated. Typically there is a function foo(), and its RCU
1985 * analogue, foo_rcu().
1986 *
1987 * -ECHILD is the error number of choice (just to avoid clashes) that
1988 * is returned if some aspect of an rcu-walk fails. Such an error must
1989 * be handled by restarting a traditional ref-walk (which will always
1990 * be able to complete).
1991 */
1992 err = path_init(dfd, name->name, flags, nd);
1993 if (!err && !(flags & LOOKUP_PARENT)) {
1994 err = lookup_last(nd, &path);
1995 while (err > 0) {
1996 void *cookie;
1997 struct path link = path;
1998 err = may_follow_link(&link, nd);
1999 if (unlikely(err))
2000 break;
2001 nd->flags |= LOOKUP_PARENT;
2002 err = follow_link(&link, nd, &cookie);
2003 if (err)
2004 break;
2005 err = lookup_last(nd, &path);
2006 put_link(nd, &link, cookie);
2007 }
2008 }
2009
2010 if (!err)
2011 err = complete_walk(nd);
2012
2013 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2014 if (!d_can_lookup(nd->path.dentry)) {
2015 path_put(&nd->path);
2016 err = -ENOTDIR;
2017 }
2018 }
2019
2020 path_cleanup(nd);
2021 return err;
2022 }
2023
2024 static int filename_lookup(int dfd, struct filename *name,
2025 unsigned int flags, struct nameidata *nd)
2026 {
2027 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2028 if (unlikely(retval == -ECHILD))
2029 retval = path_lookupat(dfd, name, flags, nd);
2030 if (unlikely(retval == -ESTALE))
2031 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2032
2033 if (likely(!retval))
2034 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2035 return retval;
2036 }
2037
2038 static int do_path_lookup(int dfd, const char *name,
2039 unsigned int flags, struct nameidata *nd)
2040 {
2041 struct filename *filename = getname_kernel(name);
2042 int retval = PTR_ERR(filename);
2043
2044 if (!IS_ERR(filename)) {
2045 retval = filename_lookup(dfd, filename, flags, nd);
2046 putname(filename);
2047 }
2048 return retval;
2049 }
2050
2051 /* does lookup, returns the object with parent locked */
2052 struct dentry *kern_path_locked(const char *name, struct path *path)
2053 {
2054 struct filename *filename = getname_kernel(name);
2055 struct nameidata nd;
2056 struct dentry *d;
2057 int err;
2058
2059 if (IS_ERR(filename))
2060 return ERR_CAST(filename);
2061
2062 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2063 if (err) {
2064 d = ERR_PTR(err);
2065 goto out;
2066 }
2067 if (nd.last_type != LAST_NORM) {
2068 path_put(&nd.path);
2069 d = ERR_PTR(-EINVAL);
2070 goto out;
2071 }
2072 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2073 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2074 if (IS_ERR(d)) {
2075 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2076 path_put(&nd.path);
2077 goto out;
2078 }
2079 *path = nd.path;
2080 out:
2081 putname(filename);
2082 return d;
2083 }
2084
2085 int kern_path(const char *name, unsigned int flags, struct path *path)
2086 {
2087 struct nameidata nd;
2088 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2089 if (!res)
2090 *path = nd.path;
2091 return res;
2092 }
2093 EXPORT_SYMBOL(kern_path);
2094
2095 /**
2096 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2097 * @dentry: pointer to dentry of the base directory
2098 * @mnt: pointer to vfs mount of the base directory
2099 * @name: pointer to file name
2100 * @flags: lookup flags
2101 * @path: pointer to struct path to fill
2102 */
2103 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2104 const char *name, unsigned int flags,
2105 struct path *path)
2106 {
2107 struct nameidata nd;
2108 int err;
2109 nd.root.dentry = dentry;
2110 nd.root.mnt = mnt;
2111 BUG_ON(flags & LOOKUP_PARENT);
2112 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2113 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2114 if (!err)
2115 *path = nd.path;
2116 return err;
2117 }
2118 EXPORT_SYMBOL(vfs_path_lookup);
2119
2120 /*
2121 * Restricted form of lookup. Doesn't follow links, single-component only,
2122 * needs parent already locked. Doesn't follow mounts.
2123 * SMP-safe.
2124 */
2125 static struct dentry *lookup_hash(struct nameidata *nd)
2126 {
2127 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2128 }
2129
2130 /**
2131 * lookup_one_len - filesystem helper to lookup single pathname component
2132 * @name: pathname component to lookup
2133 * @base: base directory to lookup from
2134 * @len: maximum length @len should be interpreted to
2135 *
2136 * Note that this routine is purely a helper for filesystem usage and should
2137 * not be called by generic code. Also note that by using this function the
2138 * nameidata argument is passed to the filesystem methods and a filesystem
2139 * using this helper needs to be prepared for that.
2140 */
2141 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2142 {
2143 struct qstr this;
2144 unsigned int c;
2145 int err;
2146
2147 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2148
2149 this.name = name;
2150 this.len = len;
2151 this.hash = full_name_hash(name, len);
2152 if (!len)
2153 return ERR_PTR(-EACCES);
2154
2155 if (unlikely(name[0] == '.')) {
2156 if (len < 2 || (len == 2 && name[1] == '.'))
2157 return ERR_PTR(-EACCES);
2158 }
2159
2160 while (len--) {
2161 c = *(const unsigned char *)name++;
2162 if (c == '/' || c == '\0')
2163 return ERR_PTR(-EACCES);
2164 }
2165 /*
2166 * See if the low-level filesystem might want
2167 * to use its own hash..
2168 */
2169 if (base->d_flags & DCACHE_OP_HASH) {
2170 int err = base->d_op->d_hash(base, &this);
2171 if (err < 0)
2172 return ERR_PTR(err);
2173 }
2174
2175 err = inode_permission(base->d_inode, MAY_EXEC);
2176 if (err)
2177 return ERR_PTR(err);
2178
2179 return __lookup_hash(&this, base, 0);
2180 }
2181 EXPORT_SYMBOL(lookup_one_len);
2182
2183 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2184 struct path *path, int *empty)
2185 {
2186 struct nameidata nd;
2187 struct filename *tmp = getname_flags(name, flags, empty);
2188 int err = PTR_ERR(tmp);
2189 if (!IS_ERR(tmp)) {
2190
2191 BUG_ON(flags & LOOKUP_PARENT);
2192
2193 err = filename_lookup(dfd, tmp, flags, &nd);
2194 putname(tmp);
2195 if (!err)
2196 *path = nd.path;
2197 }
2198 return err;
2199 }
2200
2201 int user_path_at(int dfd, const char __user *name, unsigned flags,
2202 struct path *path)
2203 {
2204 return user_path_at_empty(dfd, name, flags, path, NULL);
2205 }
2206 EXPORT_SYMBOL(user_path_at);
2207
2208 /*
2209 * NB: most callers don't do anything directly with the reference to the
2210 * to struct filename, but the nd->last pointer points into the name string
2211 * allocated by getname. So we must hold the reference to it until all
2212 * path-walking is complete.
2213 */
2214 static struct filename *
2215 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2216 unsigned int flags)
2217 {
2218 struct filename *s = getname(path);
2219 int error;
2220
2221 /* only LOOKUP_REVAL is allowed in extra flags */
2222 flags &= LOOKUP_REVAL;
2223
2224 if (IS_ERR(s))
2225 return s;
2226
2227 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2228 if (error) {
2229 putname(s);
2230 return ERR_PTR(error);
2231 }
2232
2233 return s;
2234 }
2235
2236 /**
2237 * mountpoint_last - look up last component for umount
2238 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2239 * @path: pointer to container for result
2240 *
2241 * This is a special lookup_last function just for umount. In this case, we
2242 * need to resolve the path without doing any revalidation.
2243 *
2244 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2245 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2246 * in almost all cases, this lookup will be served out of the dcache. The only
2247 * cases where it won't are if nd->last refers to a symlink or the path is
2248 * bogus and it doesn't exist.
2249 *
2250 * Returns:
2251 * -error: if there was an error during lookup. This includes -ENOENT if the
2252 * lookup found a negative dentry. The nd->path reference will also be
2253 * put in this case.
2254 *
2255 * 0: if we successfully resolved nd->path and found it to not to be a
2256 * symlink that needs to be followed. "path" will also be populated.
2257 * The nd->path reference will also be put.
2258 *
2259 * 1: if we successfully resolved nd->last and found it to be a symlink
2260 * that needs to be followed. "path" will be populated with the path
2261 * to the link, and nd->path will *not* be put.
2262 */
2263 static int
2264 mountpoint_last(struct nameidata *nd, struct path *path)
2265 {
2266 int error = 0;
2267 struct dentry *dentry;
2268 struct dentry *dir = nd->path.dentry;
2269
2270 /* If we're in rcuwalk, drop out of it to handle last component */
2271 if (nd->flags & LOOKUP_RCU) {
2272 if (unlazy_walk(nd, NULL)) {
2273 error = -ECHILD;
2274 goto out;
2275 }
2276 }
2277
2278 nd->flags &= ~LOOKUP_PARENT;
2279
2280 if (unlikely(nd->last_type != LAST_NORM)) {
2281 error = handle_dots(nd, nd->last_type);
2282 if (error)
2283 goto out;
2284 dentry = dget(nd->path.dentry);
2285 goto done;
2286 }
2287
2288 mutex_lock(&dir->d_inode->i_mutex);
2289 dentry = d_lookup(dir, &nd->last);
2290 if (!dentry) {
2291 /*
2292 * No cached dentry. Mounted dentries are pinned in the cache,
2293 * so that means that this dentry is probably a symlink or the
2294 * path doesn't actually point to a mounted dentry.
2295 */
2296 dentry = d_alloc(dir, &nd->last);
2297 if (!dentry) {
2298 error = -ENOMEM;
2299 mutex_unlock(&dir->d_inode->i_mutex);
2300 goto out;
2301 }
2302 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2303 error = PTR_ERR(dentry);
2304 if (IS_ERR(dentry)) {
2305 mutex_unlock(&dir->d_inode->i_mutex);
2306 goto out;
2307 }
2308 }
2309 mutex_unlock(&dir->d_inode->i_mutex);
2310
2311 done:
2312 if (!dentry->d_inode || d_is_negative(dentry)) {
2313 error = -ENOENT;
2314 dput(dentry);
2315 goto out;
2316 }
2317 path->dentry = dentry;
2318 path->mnt = nd->path.mnt;
2319 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2320 return 1;
2321 mntget(path->mnt);
2322 follow_mount(path);
2323 error = 0;
2324 out:
2325 terminate_walk(nd);
2326 return error;
2327 }
2328
2329 /**
2330 * path_mountpoint - look up a path to be umounted
2331 * @dfd: directory file descriptor to start walk from
2332 * @name: full pathname to walk
2333 * @path: pointer to container for result
2334 * @flags: lookup flags
2335 *
2336 * Look up the given name, but don't attempt to revalidate the last component.
2337 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2338 */
2339 static int
2340 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2341 {
2342 struct nameidata nd;
2343 int err;
2344
2345 err = path_init(dfd, name, flags, &nd);
2346 if (unlikely(err))
2347 goto out;
2348
2349 err = mountpoint_last(&nd, path);
2350 while (err > 0) {
2351 void *cookie;
2352 struct path link = *path;
2353 err = may_follow_link(&link, &nd);
2354 if (unlikely(err))
2355 break;
2356 nd.flags |= LOOKUP_PARENT;
2357 err = follow_link(&link, &nd, &cookie);
2358 if (err)
2359 break;
2360 err = mountpoint_last(&nd, path);
2361 put_link(&nd, &link, cookie);
2362 }
2363 out:
2364 path_cleanup(&nd);
2365 return err;
2366 }
2367
2368 static int
2369 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2370 unsigned int flags)
2371 {
2372 int error;
2373 if (IS_ERR(s))
2374 return PTR_ERR(s);
2375 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2376 if (unlikely(error == -ECHILD))
2377 error = path_mountpoint(dfd, s->name, path, flags);
2378 if (unlikely(error == -ESTALE))
2379 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2380 if (likely(!error))
2381 audit_inode(s, path->dentry, 0);
2382 putname(s);
2383 return error;
2384 }
2385
2386 /**
2387 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2388 * @dfd: directory file descriptor
2389 * @name: pathname from userland
2390 * @flags: lookup flags
2391 * @path: pointer to container to hold result
2392 *
2393 * A umount is a special case for path walking. We're not actually interested
2394 * in the inode in this situation, and ESTALE errors can be a problem. We
2395 * simply want track down the dentry and vfsmount attached at the mountpoint
2396 * and avoid revalidating the last component.
2397 *
2398 * Returns 0 and populates "path" on success.
2399 */
2400 int
2401 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2402 struct path *path)
2403 {
2404 return filename_mountpoint(dfd, getname(name), path, flags);
2405 }
2406
2407 int
2408 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2409 unsigned int flags)
2410 {
2411 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2412 }
2413 EXPORT_SYMBOL(kern_path_mountpoint);
2414
2415 int __check_sticky(struct inode *dir, struct inode *inode)
2416 {
2417 kuid_t fsuid = current_fsuid();
2418
2419 if (uid_eq(inode->i_uid, fsuid))
2420 return 0;
2421 if (uid_eq(dir->i_uid, fsuid))
2422 return 0;
2423 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2424 }
2425 EXPORT_SYMBOL(__check_sticky);
2426
2427 /*
2428 * Check whether we can remove a link victim from directory dir, check
2429 * whether the type of victim is right.
2430 * 1. We can't do it if dir is read-only (done in permission())
2431 * 2. We should have write and exec permissions on dir
2432 * 3. We can't remove anything from append-only dir
2433 * 4. We can't do anything with immutable dir (done in permission())
2434 * 5. If the sticky bit on dir is set we should either
2435 * a. be owner of dir, or
2436 * b. be owner of victim, or
2437 * c. have CAP_FOWNER capability
2438 * 6. If the victim is append-only or immutable we can't do antyhing with
2439 * links pointing to it.
2440 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2441 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2442 * 9. We can't remove a root or mountpoint.
2443 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2444 * nfs_async_unlink().
2445 */
2446 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2447 {
2448 struct inode *inode = victim->d_inode;
2449 int error;
2450
2451 if (d_is_negative(victim))
2452 return -ENOENT;
2453 BUG_ON(!inode);
2454
2455 BUG_ON(victim->d_parent->d_inode != dir);
2456 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2457
2458 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2459 if (error)
2460 return error;
2461 if (IS_APPEND(dir))
2462 return -EPERM;
2463
2464 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2465 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2466 return -EPERM;
2467 if (isdir) {
2468 if (!d_is_dir(victim))
2469 return -ENOTDIR;
2470 if (IS_ROOT(victim))
2471 return -EBUSY;
2472 } else if (d_is_dir(victim))
2473 return -EISDIR;
2474 if (IS_DEADDIR(dir))
2475 return -ENOENT;
2476 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2477 return -EBUSY;
2478 return 0;
2479 }
2480
2481 /* Check whether we can create an object with dentry child in directory
2482 * dir.
2483 * 1. We can't do it if child already exists (open has special treatment for
2484 * this case, but since we are inlined it's OK)
2485 * 2. We can't do it if dir is read-only (done in permission())
2486 * 3. We should have write and exec permissions on dir
2487 * 4. We can't do it if dir is immutable (done in permission())
2488 */
2489 static inline int may_create(struct inode *dir, struct dentry *child)
2490 {
2491 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2492 if (child->d_inode)
2493 return -EEXIST;
2494 if (IS_DEADDIR(dir))
2495 return -ENOENT;
2496 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2497 }
2498
2499 /*
2500 * p1 and p2 should be directories on the same fs.
2501 */
2502 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2503 {
2504 struct dentry *p;
2505
2506 if (p1 == p2) {
2507 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2508 return NULL;
2509 }
2510
2511 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2512
2513 p = d_ancestor(p2, p1);
2514 if (p) {
2515 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2516 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2517 return p;
2518 }
2519
2520 p = d_ancestor(p1, p2);
2521 if (p) {
2522 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2523 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2524 return p;
2525 }
2526
2527 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2528 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2529 return NULL;
2530 }
2531 EXPORT_SYMBOL(lock_rename);
2532
2533 void unlock_rename(struct dentry *p1, struct dentry *p2)
2534 {
2535 mutex_unlock(&p1->d_inode->i_mutex);
2536 if (p1 != p2) {
2537 mutex_unlock(&p2->d_inode->i_mutex);
2538 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2539 }
2540 }
2541 EXPORT_SYMBOL(unlock_rename);
2542
2543 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2544 bool want_excl)
2545 {
2546 int error = may_create(dir, dentry);
2547 if (error)
2548 return error;
2549
2550 if (!dir->i_op->create)
2551 return -EACCES; /* shouldn't it be ENOSYS? */
2552 mode &= S_IALLUGO;
2553 mode |= S_IFREG;
2554 error = security_inode_create(dir, dentry, mode);
2555 if (error)
2556 return error;
2557 error = dir->i_op->create(dir, dentry, mode, want_excl);
2558 if (!error)
2559 fsnotify_create(dir, dentry);
2560 return error;
2561 }
2562 EXPORT_SYMBOL(vfs_create);
2563
2564 static int may_open(struct path *path, int acc_mode, int flag)
2565 {
2566 struct dentry *dentry = path->dentry;
2567 struct inode *inode = dentry->d_inode;
2568 int error;
2569
2570 /* O_PATH? */
2571 if (!acc_mode)
2572 return 0;
2573
2574 if (!inode)
2575 return -ENOENT;
2576
2577 switch (inode->i_mode & S_IFMT) {
2578 case S_IFLNK:
2579 return -ELOOP;
2580 case S_IFDIR:
2581 if (acc_mode & MAY_WRITE)
2582 return -EISDIR;
2583 break;
2584 case S_IFBLK:
2585 case S_IFCHR:
2586 if (path->mnt->mnt_flags & MNT_NODEV)
2587 return -EACCES;
2588 /*FALLTHRU*/
2589 case S_IFIFO:
2590 case S_IFSOCK:
2591 flag &= ~O_TRUNC;
2592 break;
2593 }
2594
2595 error = inode_permission(inode, acc_mode);
2596 if (error)
2597 return error;
2598
2599 /*
2600 * An append-only file must be opened in append mode for writing.
2601 */
2602 if (IS_APPEND(inode)) {
2603 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2604 return -EPERM;
2605 if (flag & O_TRUNC)
2606 return -EPERM;
2607 }
2608
2609 /* O_NOATIME can only be set by the owner or superuser */
2610 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2611 return -EPERM;
2612
2613 return 0;
2614 }
2615
2616 static int handle_truncate(struct file *filp)
2617 {
2618 struct path *path = &filp->f_path;
2619 struct inode *inode = path->dentry->d_inode;
2620 int error = get_write_access(inode);
2621 if (error)
2622 return error;
2623 /*
2624 * Refuse to truncate files with mandatory locks held on them.
2625 */
2626 error = locks_verify_locked(filp);
2627 if (!error)
2628 error = security_path_truncate(path);
2629 if (!error) {
2630 error = do_truncate(path->dentry, 0,
2631 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2632 filp);
2633 }
2634 put_write_access(inode);
2635 return error;
2636 }
2637
2638 static inline int open_to_namei_flags(int flag)
2639 {
2640 if ((flag & O_ACCMODE) == 3)
2641 flag--;
2642 return flag;
2643 }
2644
2645 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2646 {
2647 int error = security_path_mknod(dir, dentry, mode, 0);
2648 if (error)
2649 return error;
2650
2651 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2652 if (error)
2653 return error;
2654
2655 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2656 }
2657
2658 /*
2659 * Attempt to atomically look up, create and open a file from a negative
2660 * dentry.
2661 *
2662 * Returns 0 if successful. The file will have been created and attached to
2663 * @file by the filesystem calling finish_open().
2664 *
2665 * Returns 1 if the file was looked up only or didn't need creating. The
2666 * caller will need to perform the open themselves. @path will have been
2667 * updated to point to the new dentry. This may be negative.
2668 *
2669 * Returns an error code otherwise.
2670 */
2671 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2672 struct path *path, struct file *file,
2673 const struct open_flags *op,
2674 bool got_write, bool need_lookup,
2675 int *opened)
2676 {
2677 struct inode *dir = nd->path.dentry->d_inode;
2678 unsigned open_flag = open_to_namei_flags(op->open_flag);
2679 umode_t mode;
2680 int error;
2681 int acc_mode;
2682 int create_error = 0;
2683 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2684 bool excl;
2685
2686 BUG_ON(dentry->d_inode);
2687
2688 /* Don't create child dentry for a dead directory. */
2689 if (unlikely(IS_DEADDIR(dir))) {
2690 error = -ENOENT;
2691 goto out;
2692 }
2693
2694 mode = op->mode;
2695 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2696 mode &= ~current_umask();
2697
2698 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2699 if (excl)
2700 open_flag &= ~O_TRUNC;
2701
2702 /*
2703 * Checking write permission is tricky, bacuse we don't know if we are
2704 * going to actually need it: O_CREAT opens should work as long as the
2705 * file exists. But checking existence breaks atomicity. The trick is
2706 * to check access and if not granted clear O_CREAT from the flags.
2707 *
2708 * Another problem is returing the "right" error value (e.g. for an
2709 * O_EXCL open we want to return EEXIST not EROFS).
2710 */
2711 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2712 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2713 if (!(open_flag & O_CREAT)) {
2714 /*
2715 * No O_CREATE -> atomicity not a requirement -> fall
2716 * back to lookup + open
2717 */
2718 goto no_open;
2719 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2720 /* Fall back and fail with the right error */
2721 create_error = -EROFS;
2722 goto no_open;
2723 } else {
2724 /* No side effects, safe to clear O_CREAT */
2725 create_error = -EROFS;
2726 open_flag &= ~O_CREAT;
2727 }
2728 }
2729
2730 if (open_flag & O_CREAT) {
2731 error = may_o_create(&nd->path, dentry, mode);
2732 if (error) {
2733 create_error = error;
2734 if (open_flag & O_EXCL)
2735 goto no_open;
2736 open_flag &= ~O_CREAT;
2737 }
2738 }
2739
2740 if (nd->flags & LOOKUP_DIRECTORY)
2741 open_flag |= O_DIRECTORY;
2742
2743 file->f_path.dentry = DENTRY_NOT_SET;
2744 file->f_path.mnt = nd->path.mnt;
2745 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2746 opened);
2747 if (error < 0) {
2748 if (create_error && error == -ENOENT)
2749 error = create_error;
2750 goto out;
2751 }
2752
2753 if (error) { /* returned 1, that is */
2754 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2755 error = -EIO;
2756 goto out;
2757 }
2758 if (file->f_path.dentry) {
2759 dput(dentry);
2760 dentry = file->f_path.dentry;
2761 }
2762 if (*opened & FILE_CREATED)
2763 fsnotify_create(dir, dentry);
2764 if (!dentry->d_inode) {
2765 WARN_ON(*opened & FILE_CREATED);
2766 if (create_error) {
2767 error = create_error;
2768 goto out;
2769 }
2770 } else {
2771 if (excl && !(*opened & FILE_CREATED)) {
2772 error = -EEXIST;
2773 goto out;
2774 }
2775 }
2776 goto looked_up;
2777 }
2778
2779 /*
2780 * We didn't have the inode before the open, so check open permission
2781 * here.
2782 */
2783 acc_mode = op->acc_mode;
2784 if (*opened & FILE_CREATED) {
2785 WARN_ON(!(open_flag & O_CREAT));
2786 fsnotify_create(dir, dentry);
2787 acc_mode = MAY_OPEN;
2788 }
2789 error = may_open(&file->f_path, acc_mode, open_flag);
2790 if (error)
2791 fput(file);
2792
2793 out:
2794 dput(dentry);
2795 return error;
2796
2797 no_open:
2798 if (need_lookup) {
2799 dentry = lookup_real(dir, dentry, nd->flags);
2800 if (IS_ERR(dentry))
2801 return PTR_ERR(dentry);
2802
2803 if (create_error) {
2804 int open_flag = op->open_flag;
2805
2806 error = create_error;
2807 if ((open_flag & O_EXCL)) {
2808 if (!dentry->d_inode)
2809 goto out;
2810 } else if (!dentry->d_inode) {
2811 goto out;
2812 } else if ((open_flag & O_TRUNC) &&
2813 d_is_reg(dentry)) {
2814 goto out;
2815 }
2816 /* will fail later, go on to get the right error */
2817 }
2818 }
2819 looked_up:
2820 path->dentry = dentry;
2821 path->mnt = nd->path.mnt;
2822 return 1;
2823 }
2824
2825 /*
2826 * Look up and maybe create and open the last component.
2827 *
2828 * Must be called with i_mutex held on parent.
2829 *
2830 * Returns 0 if the file was successfully atomically created (if necessary) and
2831 * opened. In this case the file will be returned attached to @file.
2832 *
2833 * Returns 1 if the file was not completely opened at this time, though lookups
2834 * and creations will have been performed and the dentry returned in @path will
2835 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2836 * specified then a negative dentry may be returned.
2837 *
2838 * An error code is returned otherwise.
2839 *
2840 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2841 * cleared otherwise prior to returning.
2842 */
2843 static int lookup_open(struct nameidata *nd, struct path *path,
2844 struct file *file,
2845 const struct open_flags *op,
2846 bool got_write, int *opened)
2847 {
2848 struct dentry *dir = nd->path.dentry;
2849 struct inode *dir_inode = dir->d_inode;
2850 struct dentry *dentry;
2851 int error;
2852 bool need_lookup;
2853
2854 *opened &= ~FILE_CREATED;
2855 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2856 if (IS_ERR(dentry))
2857 return PTR_ERR(dentry);
2858
2859 /* Cached positive dentry: will open in f_op->open */
2860 if (!need_lookup && dentry->d_inode)
2861 goto out_no_open;
2862
2863 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2864 return atomic_open(nd, dentry, path, file, op, got_write,
2865 need_lookup, opened);
2866 }
2867
2868 if (need_lookup) {
2869 BUG_ON(dentry->d_inode);
2870
2871 dentry = lookup_real(dir_inode, dentry, nd->flags);
2872 if (IS_ERR(dentry))
2873 return PTR_ERR(dentry);
2874 }
2875
2876 /* Negative dentry, just create the file */
2877 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2878 umode_t mode = op->mode;
2879 if (!IS_POSIXACL(dir->d_inode))
2880 mode &= ~current_umask();
2881 /*
2882 * This write is needed to ensure that a
2883 * rw->ro transition does not occur between
2884 * the time when the file is created and when
2885 * a permanent write count is taken through
2886 * the 'struct file' in finish_open().
2887 */
2888 if (!got_write) {
2889 error = -EROFS;
2890 goto out_dput;
2891 }
2892 *opened |= FILE_CREATED;
2893 error = security_path_mknod(&nd->path, dentry, mode, 0);
2894 if (error)
2895 goto out_dput;
2896 error = vfs_create(dir->d_inode, dentry, mode,
2897 nd->flags & LOOKUP_EXCL);
2898 if (error)
2899 goto out_dput;
2900 }
2901 out_no_open:
2902 path->dentry = dentry;
2903 path->mnt = nd->path.mnt;
2904 return 1;
2905
2906 out_dput:
2907 dput(dentry);
2908 return error;
2909 }
2910
2911 /*
2912 * Handle the last step of open()
2913 */
2914 static int do_last(struct nameidata *nd, struct path *path,
2915 struct file *file, const struct open_flags *op,
2916 int *opened, struct filename *name)
2917 {
2918 struct dentry *dir = nd->path.dentry;
2919 int open_flag = op->open_flag;
2920 bool will_truncate = (open_flag & O_TRUNC) != 0;
2921 bool got_write = false;
2922 int acc_mode = op->acc_mode;
2923 struct inode *inode;
2924 bool symlink_ok = false;
2925 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2926 bool retried = false;
2927 int error;
2928
2929 nd->flags &= ~LOOKUP_PARENT;
2930 nd->flags |= op->intent;
2931
2932 if (nd->last_type != LAST_NORM) {
2933 error = handle_dots(nd, nd->last_type);
2934 if (error)
2935 return error;
2936 goto finish_open;
2937 }
2938
2939 if (!(open_flag & O_CREAT)) {
2940 if (nd->last.name[nd->last.len])
2941 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2942 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2943 symlink_ok = true;
2944 /* we _can_ be in RCU mode here */
2945 error = lookup_fast(nd, path, &inode);
2946 if (likely(!error))
2947 goto finish_lookup;
2948
2949 if (error < 0)
2950 goto out;
2951
2952 BUG_ON(nd->inode != dir->d_inode);
2953 } else {
2954 /* create side of things */
2955 /*
2956 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2957 * has been cleared when we got to the last component we are
2958 * about to look up
2959 */
2960 error = complete_walk(nd);
2961 if (error)
2962 return error;
2963
2964 audit_inode(name, dir, LOOKUP_PARENT);
2965 error = -EISDIR;
2966 /* trailing slashes? */
2967 if (nd->last.name[nd->last.len])
2968 goto out;
2969 }
2970
2971 retry_lookup:
2972 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2973 error = mnt_want_write(nd->path.mnt);
2974 if (!error)
2975 got_write = true;
2976 /*
2977 * do _not_ fail yet - we might not need that or fail with
2978 * a different error; let lookup_open() decide; we'll be
2979 * dropping this one anyway.
2980 */
2981 }
2982 mutex_lock(&dir->d_inode->i_mutex);
2983 error = lookup_open(nd, path, file, op, got_write, opened);
2984 mutex_unlock(&dir->d_inode->i_mutex);
2985
2986 if (error <= 0) {
2987 if (error)
2988 goto out;
2989
2990 if ((*opened & FILE_CREATED) ||
2991 !S_ISREG(file_inode(file)->i_mode))
2992 will_truncate = false;
2993
2994 audit_inode(name, file->f_path.dentry, 0);
2995 goto opened;
2996 }
2997
2998 if (*opened & FILE_CREATED) {
2999 /* Don't check for write permission, don't truncate */
3000 open_flag &= ~O_TRUNC;
3001 will_truncate = false;
3002 acc_mode = MAY_OPEN;
3003 path_to_nameidata(path, nd);
3004 goto finish_open_created;
3005 }
3006
3007 /*
3008 * create/update audit record if it already exists.
3009 */
3010 if (d_is_positive(path->dentry))
3011 audit_inode(name, path->dentry, 0);
3012
3013 /*
3014 * If atomic_open() acquired write access it is dropped now due to
3015 * possible mount and symlink following (this might be optimized away if
3016 * necessary...)
3017 */
3018 if (got_write) {
3019 mnt_drop_write(nd->path.mnt);
3020 got_write = false;
3021 }
3022
3023 error = -EEXIST;
3024 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3025 goto exit_dput;
3026
3027 error = follow_managed(path, nd->flags);
3028 if (error < 0)
3029 goto exit_dput;
3030
3031 if (error)
3032 nd->flags |= LOOKUP_JUMPED;
3033
3034 BUG_ON(nd->flags & LOOKUP_RCU);
3035 inode = path->dentry->d_inode;
3036 finish_lookup:
3037 /* we _can_ be in RCU mode here */
3038 error = -ENOENT;
3039 if (!inode || d_is_negative(path->dentry)) {
3040 path_to_nameidata(path, nd);
3041 goto out;
3042 }
3043
3044 if (should_follow_link(path->dentry, !symlink_ok)) {
3045 if (nd->flags & LOOKUP_RCU) {
3046 if (unlikely(unlazy_walk(nd, path->dentry))) {
3047 error = -ECHILD;
3048 goto out;
3049 }
3050 }
3051 BUG_ON(inode != path->dentry->d_inode);
3052 return 1;
3053 }
3054
3055 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3056 path_to_nameidata(path, nd);
3057 } else {
3058 save_parent.dentry = nd->path.dentry;
3059 save_parent.mnt = mntget(path->mnt);
3060 nd->path.dentry = path->dentry;
3061
3062 }
3063 nd->inode = inode;
3064 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3065 finish_open:
3066 error = complete_walk(nd);
3067 if (error) {
3068 path_put(&save_parent);
3069 return error;
3070 }
3071 audit_inode(name, nd->path.dentry, 0);
3072 error = -EISDIR;
3073 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3074 goto out;
3075 error = -ENOTDIR;
3076 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3077 goto out;
3078 if (!S_ISREG(nd->inode->i_mode))
3079 will_truncate = false;
3080
3081 if (will_truncate) {
3082 error = mnt_want_write(nd->path.mnt);
3083 if (error)
3084 goto out;
3085 got_write = true;
3086 }
3087 finish_open_created:
3088 error = may_open(&nd->path, acc_mode, open_flag);
3089 if (error)
3090 goto out;
3091
3092 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3093 error = vfs_open(&nd->path, file, current_cred());
3094 if (!error) {
3095 *opened |= FILE_OPENED;
3096 } else {
3097 if (error == -EOPENSTALE)
3098 goto stale_open;
3099 goto out;
3100 }
3101 opened:
3102 error = open_check_o_direct(file);
3103 if (error)
3104 goto exit_fput;
3105 error = ima_file_check(file, op->acc_mode, *opened);
3106 if (error)
3107 goto exit_fput;
3108
3109 if (will_truncate) {
3110 error = handle_truncate(file);
3111 if (error)
3112 goto exit_fput;
3113 }
3114 out:
3115 if (got_write)
3116 mnt_drop_write(nd->path.mnt);
3117 path_put(&save_parent);
3118 terminate_walk(nd);
3119 return error;
3120
3121 exit_dput:
3122 path_put_conditional(path, nd);
3123 goto out;
3124 exit_fput:
3125 fput(file);
3126 goto out;
3127
3128 stale_open:
3129 /* If no saved parent or already retried then can't retry */
3130 if (!save_parent.dentry || retried)
3131 goto out;
3132
3133 BUG_ON(save_parent.dentry != dir);
3134 path_put(&nd->path);
3135 nd->path = save_parent;
3136 nd->inode = dir->d_inode;
3137 save_parent.mnt = NULL;
3138 save_parent.dentry = NULL;
3139 if (got_write) {
3140 mnt_drop_write(nd->path.mnt);
3141 got_write = false;
3142 }
3143 retried = true;
3144 goto retry_lookup;
3145 }
3146
3147 static int do_tmpfile(int dfd, struct filename *pathname,
3148 struct nameidata *nd, int flags,
3149 const struct open_flags *op,
3150 struct file *file, int *opened)
3151 {
3152 static const struct qstr name = QSTR_INIT("/", 1);
3153 struct dentry *dentry, *child;
3154 struct inode *dir;
3155 int error = path_lookupat(dfd, pathname,
3156 flags | LOOKUP_DIRECTORY, nd);
3157 if (unlikely(error))
3158 return error;
3159 error = mnt_want_write(nd->path.mnt);
3160 if (unlikely(error))
3161 goto out;
3162 /* we want directory to be writable */
3163 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3164 if (error)
3165 goto out2;
3166 dentry = nd->path.dentry;
3167 dir = dentry->d_inode;
3168 if (!dir->i_op->tmpfile) {
3169 error = -EOPNOTSUPP;
3170 goto out2;
3171 }
3172 child = d_alloc(dentry, &name);
3173 if (unlikely(!child)) {
3174 error = -ENOMEM;
3175 goto out2;
3176 }
3177 nd->flags &= ~LOOKUP_DIRECTORY;
3178 nd->flags |= op->intent;
3179 dput(nd->path.dentry);
3180 nd->path.dentry = child;
3181 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3182 if (error)
3183 goto out2;
3184 audit_inode(pathname, nd->path.dentry, 0);
3185 /* Don't check for other permissions, the inode was just created */
3186 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3187 if (error)
3188 goto out2;
3189 file->f_path.mnt = nd->path.mnt;
3190 error = finish_open(file, nd->path.dentry, NULL, opened);
3191 if (error)
3192 goto out2;
3193 error = open_check_o_direct(file);
3194 if (error) {
3195 fput(file);
3196 } else if (!(op->open_flag & O_EXCL)) {
3197 struct inode *inode = file_inode(file);
3198 spin_lock(&inode->i_lock);
3199 inode->i_state |= I_LINKABLE;
3200 spin_unlock(&inode->i_lock);
3201 }
3202 out2:
3203 mnt_drop_write(nd->path.mnt);
3204 out:
3205 path_put(&nd->path);
3206 return error;
3207 }
3208
3209 static struct file *path_openat(int dfd, struct filename *pathname,
3210 struct nameidata *nd, const struct open_flags *op, int flags)
3211 {
3212 struct file *file;
3213 struct path path;
3214 int opened = 0;
3215 int error;
3216
3217 file = get_empty_filp();
3218 if (IS_ERR(file))
3219 return file;
3220
3221 file->f_flags = op->open_flag;
3222
3223 if (unlikely(file->f_flags & __O_TMPFILE)) {
3224 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3225 goto out;
3226 }
3227
3228 error = path_init(dfd, pathname->name, flags, nd);
3229 if (unlikely(error))
3230 goto out;
3231
3232 error = do_last(nd, &path, file, op, &opened, pathname);
3233 while (unlikely(error > 0)) { /* trailing symlink */
3234 struct path link = path;
3235 void *cookie;
3236 if (!(nd->flags & LOOKUP_FOLLOW)) {
3237 path_put_conditional(&path, nd);
3238 path_put(&nd->path);
3239 error = -ELOOP;
3240 break;
3241 }
3242 error = may_follow_link(&link, nd);
3243 if (unlikely(error))
3244 break;
3245 nd->flags |= LOOKUP_PARENT;
3246 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3247 error = follow_link(&link, nd, &cookie);
3248 if (unlikely(error))
3249 break;
3250 error = do_last(nd, &path, file, op, &opened, pathname);
3251 put_link(nd, &link, cookie);
3252 }
3253 out:
3254 path_cleanup(nd);
3255 if (!(opened & FILE_OPENED)) {
3256 BUG_ON(!error);
3257 put_filp(file);
3258 }
3259 if (unlikely(error)) {
3260 if (error == -EOPENSTALE) {
3261 if (flags & LOOKUP_RCU)
3262 error = -ECHILD;
3263 else
3264 error = -ESTALE;
3265 }
3266 file = ERR_PTR(error);
3267 }
3268 return file;
3269 }
3270
3271 struct file *do_filp_open(int dfd, struct filename *pathname,
3272 const struct open_flags *op)
3273 {
3274 struct nameidata nd;
3275 int flags = op->lookup_flags;
3276 struct file *filp;
3277
3278 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3279 if (unlikely(filp == ERR_PTR(-ECHILD)))
3280 filp = path_openat(dfd, pathname, &nd, op, flags);
3281 if (unlikely(filp == ERR_PTR(-ESTALE)))
3282 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3283 return filp;
3284 }
3285
3286 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3287 const char *name, const struct open_flags *op)
3288 {
3289 struct nameidata nd;
3290 struct file *file;
3291 struct filename *filename;
3292 int flags = op->lookup_flags | LOOKUP_ROOT;
3293
3294 nd.root.mnt = mnt;
3295 nd.root.dentry = dentry;
3296
3297 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3298 return ERR_PTR(-ELOOP);
3299
3300 filename = getname_kernel(name);
3301 if (unlikely(IS_ERR(filename)))
3302 return ERR_CAST(filename);
3303
3304 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3305 if (unlikely(file == ERR_PTR(-ECHILD)))
3306 file = path_openat(-1, filename, &nd, op, flags);
3307 if (unlikely(file == ERR_PTR(-ESTALE)))
3308 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3309 putname(filename);
3310 return file;
3311 }
3312
3313 static struct dentry *filename_create(int dfd, struct filename *name,
3314 struct path *path, unsigned int lookup_flags)
3315 {
3316 struct dentry *dentry = ERR_PTR(-EEXIST);
3317 struct nameidata nd;
3318 int err2;
3319 int error;
3320 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3321
3322 /*
3323 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3324 * other flags passed in are ignored!
3325 */
3326 lookup_flags &= LOOKUP_REVAL;
3327
3328 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3329 if (error)
3330 return ERR_PTR(error);
3331
3332 /*
3333 * Yucky last component or no last component at all?
3334 * (foo/., foo/.., /////)
3335 */
3336 if (nd.last_type != LAST_NORM)
3337 goto out;
3338 nd.flags &= ~LOOKUP_PARENT;
3339 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3340
3341 /* don't fail immediately if it's r/o, at least try to report other errors */
3342 err2 = mnt_want_write(nd.path.mnt);
3343 /*
3344 * Do the final lookup.
3345 */
3346 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3347 dentry = lookup_hash(&nd);
3348 if (IS_ERR(dentry))
3349 goto unlock;
3350
3351 error = -EEXIST;
3352 if (d_is_positive(dentry))
3353 goto fail;
3354
3355 /*
3356 * Special case - lookup gave negative, but... we had foo/bar/
3357 * From the vfs_mknod() POV we just have a negative dentry -
3358 * all is fine. Let's be bastards - you had / on the end, you've
3359 * been asking for (non-existent) directory. -ENOENT for you.
3360 */
3361 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3362 error = -ENOENT;
3363 goto fail;
3364 }
3365 if (unlikely(err2)) {
3366 error = err2;
3367 goto fail;
3368 }
3369 *path = nd.path;
3370 return dentry;
3371 fail:
3372 dput(dentry);
3373 dentry = ERR_PTR(error);
3374 unlock:
3375 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3376 if (!err2)
3377 mnt_drop_write(nd.path.mnt);
3378 out:
3379 path_put(&nd.path);
3380 return dentry;
3381 }
3382
3383 struct dentry *kern_path_create(int dfd, const char *pathname,
3384 struct path *path, unsigned int lookup_flags)
3385 {
3386 struct filename *filename = getname_kernel(pathname);
3387 struct dentry *res;
3388
3389 if (IS_ERR(filename))
3390 return ERR_CAST(filename);
3391 res = filename_create(dfd, filename, path, lookup_flags);
3392 putname(filename);
3393 return res;
3394 }
3395 EXPORT_SYMBOL(kern_path_create);
3396
3397 void done_path_create(struct path *path, struct dentry *dentry)
3398 {
3399 dput(dentry);
3400 mutex_unlock(&path->dentry->d_inode->i_mutex);
3401 mnt_drop_write(path->mnt);
3402 path_put(path);
3403 }
3404 EXPORT_SYMBOL(done_path_create);
3405
3406 struct dentry *user_path_create(int dfd, const char __user *pathname,
3407 struct path *path, unsigned int lookup_flags)
3408 {
3409 struct filename *tmp = getname(pathname);
3410 struct dentry *res;
3411 if (IS_ERR(tmp))
3412 return ERR_CAST(tmp);
3413 res = filename_create(dfd, tmp, path, lookup_flags);
3414 putname(tmp);
3415 return res;
3416 }
3417 EXPORT_SYMBOL(user_path_create);
3418
3419 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3420 {
3421 int error = may_create(dir, dentry);
3422
3423 if (error)
3424 return error;
3425
3426 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3427 return -EPERM;
3428
3429 if (!dir->i_op->mknod)
3430 return -EPERM;
3431
3432 error = devcgroup_inode_mknod(mode, dev);
3433 if (error)
3434 return error;
3435
3436 error = security_inode_mknod(dir, dentry, mode, dev);
3437 if (error)
3438 return error;
3439
3440 error = dir->i_op->mknod(dir, dentry, mode, dev);
3441 if (!error)
3442 fsnotify_create(dir, dentry);
3443 return error;
3444 }
3445 EXPORT_SYMBOL(vfs_mknod);
3446
3447 static int may_mknod(umode_t mode)
3448 {
3449 switch (mode & S_IFMT) {
3450 case S_IFREG:
3451 case S_IFCHR:
3452 case S_IFBLK:
3453 case S_IFIFO:
3454 case S_IFSOCK:
3455 case 0: /* zero mode translates to S_IFREG */
3456 return 0;
3457 case S_IFDIR:
3458 return -EPERM;
3459 default:
3460 return -EINVAL;
3461 }
3462 }
3463
3464 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3465 unsigned, dev)
3466 {
3467 struct dentry *dentry;
3468 struct path path;
3469 int error;
3470 unsigned int lookup_flags = 0;
3471
3472 error = may_mknod(mode);
3473 if (error)
3474 return error;
3475 retry:
3476 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3477 if (IS_ERR(dentry))
3478 return PTR_ERR(dentry);
3479
3480 if (!IS_POSIXACL(path.dentry->d_inode))
3481 mode &= ~current_umask();
3482 error = security_path_mknod(&path, dentry, mode, dev);
3483 if (error)
3484 goto out;
3485 switch (mode & S_IFMT) {
3486 case 0: case S_IFREG:
3487 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3488 break;
3489 case S_IFCHR: case S_IFBLK:
3490 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3491 new_decode_dev(dev));
3492 break;
3493 case S_IFIFO: case S_IFSOCK:
3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3495 break;
3496 }
3497 out:
3498 done_path_create(&path, dentry);
3499 if (retry_estale(error, lookup_flags)) {
3500 lookup_flags |= LOOKUP_REVAL;
3501 goto retry;
3502 }
3503 return error;
3504 }
3505
3506 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3507 {
3508 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3509 }
3510
3511 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3512 {
3513 int error = may_create(dir, dentry);
3514 unsigned max_links = dir->i_sb->s_max_links;
3515
3516 if (error)
3517 return error;
3518
3519 if (!dir->i_op->mkdir)
3520 return -EPERM;
3521
3522 mode &= (S_IRWXUGO|S_ISVTX);
3523 error = security_inode_mkdir(dir, dentry, mode);
3524 if (error)
3525 return error;
3526
3527 if (max_links && dir->i_nlink >= max_links)
3528 return -EMLINK;
3529
3530 error = dir->i_op->mkdir(dir, dentry, mode);
3531 if (!error)
3532 fsnotify_mkdir(dir, dentry);
3533 return error;
3534 }
3535 EXPORT_SYMBOL(vfs_mkdir);
3536
3537 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3538 {
3539 struct dentry *dentry;
3540 struct path path;
3541 int error;
3542 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3543
3544 retry:
3545 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3546 if (IS_ERR(dentry))
3547 return PTR_ERR(dentry);
3548
3549 if (!IS_POSIXACL(path.dentry->d_inode))
3550 mode &= ~current_umask();
3551 error = security_path_mkdir(&path, dentry, mode);
3552 if (!error)
3553 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3554 done_path_create(&path, dentry);
3555 if (retry_estale(error, lookup_flags)) {
3556 lookup_flags |= LOOKUP_REVAL;
3557 goto retry;
3558 }
3559 return error;
3560 }
3561
3562 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3563 {
3564 return sys_mkdirat(AT_FDCWD, pathname, mode);
3565 }
3566
3567 /*
3568 * The dentry_unhash() helper will try to drop the dentry early: we
3569 * should have a usage count of 1 if we're the only user of this
3570 * dentry, and if that is true (possibly after pruning the dcache),
3571 * then we drop the dentry now.
3572 *
3573 * A low-level filesystem can, if it choses, legally
3574 * do a
3575 *
3576 * if (!d_unhashed(dentry))
3577 * return -EBUSY;
3578 *
3579 * if it cannot handle the case of removing a directory
3580 * that is still in use by something else..
3581 */
3582 void dentry_unhash(struct dentry *dentry)
3583 {
3584 shrink_dcache_parent(dentry);
3585 spin_lock(&dentry->d_lock);
3586 if (dentry->d_lockref.count == 1)
3587 __d_drop(dentry);
3588 spin_unlock(&dentry->d_lock);
3589 }
3590 EXPORT_SYMBOL(dentry_unhash);
3591
3592 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3593 {
3594 int error = may_delete(dir, dentry, 1);
3595
3596 if (error)
3597 return error;
3598
3599 if (!dir->i_op->rmdir)
3600 return -EPERM;
3601
3602 dget(dentry);
3603 mutex_lock(&dentry->d_inode->i_mutex);
3604
3605 error = -EBUSY;
3606 if (is_local_mountpoint(dentry))
3607 goto out;
3608
3609 error = security_inode_rmdir(dir, dentry);
3610 if (error)
3611 goto out;
3612
3613 shrink_dcache_parent(dentry);
3614 error = dir->i_op->rmdir(dir, dentry);
3615 if (error)
3616 goto out;
3617
3618 dentry->d_inode->i_flags |= S_DEAD;
3619 dont_mount(dentry);
3620 detach_mounts(dentry);
3621
3622 out:
3623 mutex_unlock(&dentry->d_inode->i_mutex);
3624 dput(dentry);
3625 if (!error)
3626 d_delete(dentry);
3627 return error;
3628 }
3629 EXPORT_SYMBOL(vfs_rmdir);
3630
3631 static long do_rmdir(int dfd, const char __user *pathname)
3632 {
3633 int error = 0;
3634 struct filename *name;
3635 struct dentry *dentry;
3636 struct nameidata nd;
3637 unsigned int lookup_flags = 0;
3638 retry:
3639 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3640 if (IS_ERR(name))
3641 return PTR_ERR(name);
3642
3643 switch(nd.last_type) {
3644 case LAST_DOTDOT:
3645 error = -ENOTEMPTY;
3646 goto exit1;
3647 case LAST_DOT:
3648 error = -EINVAL;
3649 goto exit1;
3650 case LAST_ROOT:
3651 error = -EBUSY;
3652 goto exit1;
3653 }
3654
3655 nd.flags &= ~LOOKUP_PARENT;
3656 error = mnt_want_write(nd.path.mnt);
3657 if (error)
3658 goto exit1;
3659
3660 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3661 dentry = lookup_hash(&nd);
3662 error = PTR_ERR(dentry);
3663 if (IS_ERR(dentry))
3664 goto exit2;
3665 if (!dentry->d_inode) {
3666 error = -ENOENT;
3667 goto exit3;
3668 }
3669 error = security_path_rmdir(&nd.path, dentry);
3670 if (error)
3671 goto exit3;
3672 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3673 exit3:
3674 dput(dentry);
3675 exit2:
3676 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3677 mnt_drop_write(nd.path.mnt);
3678 exit1:
3679 path_put(&nd.path);
3680 putname(name);
3681 if (retry_estale(error, lookup_flags)) {
3682 lookup_flags |= LOOKUP_REVAL;
3683 goto retry;
3684 }
3685 return error;
3686 }
3687
3688 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3689 {
3690 return do_rmdir(AT_FDCWD, pathname);
3691 }
3692
3693 /**
3694 * vfs_unlink - unlink a filesystem object
3695 * @dir: parent directory
3696 * @dentry: victim
3697 * @delegated_inode: returns victim inode, if the inode is delegated.
3698 *
3699 * The caller must hold dir->i_mutex.
3700 *
3701 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3702 * return a reference to the inode in delegated_inode. The caller
3703 * should then break the delegation on that inode and retry. Because
3704 * breaking a delegation may take a long time, the caller should drop
3705 * dir->i_mutex before doing so.
3706 *
3707 * Alternatively, a caller may pass NULL for delegated_inode. This may
3708 * be appropriate for callers that expect the underlying filesystem not
3709 * to be NFS exported.
3710 */
3711 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3712 {
3713 struct inode *target = dentry->d_inode;
3714 int error = may_delete(dir, dentry, 0);
3715
3716 if (error)
3717 return error;
3718
3719 if (!dir->i_op->unlink)
3720 return -EPERM;
3721
3722 mutex_lock(&target->i_mutex);
3723 if (is_local_mountpoint(dentry))
3724 error = -EBUSY;
3725 else {
3726 error = security_inode_unlink(dir, dentry);
3727 if (!error) {
3728 error = try_break_deleg(target, delegated_inode);
3729 if (error)
3730 goto out;
3731 error = dir->i_op->unlink(dir, dentry);
3732 if (!error) {
3733 dont_mount(dentry);
3734 detach_mounts(dentry);
3735 }
3736 }
3737 }
3738 out:
3739 mutex_unlock(&target->i_mutex);
3740
3741 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3742 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3743 fsnotify_link_count(target);
3744 d_delete(dentry);
3745 }
3746
3747 return error;
3748 }
3749 EXPORT_SYMBOL(vfs_unlink);
3750
3751 /*
3752 * Make sure that the actual truncation of the file will occur outside its
3753 * directory's i_mutex. Truncate can take a long time if there is a lot of
3754 * writeout happening, and we don't want to prevent access to the directory
3755 * while waiting on the I/O.
3756 */
3757 static long do_unlinkat(int dfd, const char __user *pathname)
3758 {
3759 int error;
3760 struct filename *name;
3761 struct dentry *dentry;
3762 struct nameidata nd;
3763 struct inode *inode = NULL;
3764 struct inode *delegated_inode = NULL;
3765 unsigned int lookup_flags = 0;
3766 retry:
3767 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3768 if (IS_ERR(name))
3769 return PTR_ERR(name);
3770
3771 error = -EISDIR;
3772 if (nd.last_type != LAST_NORM)
3773 goto exit1;
3774
3775 nd.flags &= ~LOOKUP_PARENT;
3776 error = mnt_want_write(nd.path.mnt);
3777 if (error)
3778 goto exit1;
3779 retry_deleg:
3780 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3781 dentry = lookup_hash(&nd);
3782 error = PTR_ERR(dentry);
3783 if (!IS_ERR(dentry)) {
3784 /* Why not before? Because we want correct error value */
3785 if (nd.last.name[nd.last.len])
3786 goto slashes;
3787 inode = dentry->d_inode;
3788 if (d_is_negative(dentry))
3789 goto slashes;
3790 ihold(inode);
3791 error = security_path_unlink(&nd.path, dentry);
3792 if (error)
3793 goto exit2;
3794 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3795 exit2:
3796 dput(dentry);
3797 }
3798 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3799 if (inode)
3800 iput(inode); /* truncate the inode here */
3801 inode = NULL;
3802 if (delegated_inode) {
3803 error = break_deleg_wait(&delegated_inode);
3804 if (!error)
3805 goto retry_deleg;
3806 }
3807 mnt_drop_write(nd.path.mnt);
3808 exit1:
3809 path_put(&nd.path);
3810 putname(name);
3811 if (retry_estale(error, lookup_flags)) {
3812 lookup_flags |= LOOKUP_REVAL;
3813 inode = NULL;
3814 goto retry;
3815 }
3816 return error;
3817
3818 slashes:
3819 if (d_is_negative(dentry))
3820 error = -ENOENT;
3821 else if (d_is_dir(dentry))
3822 error = -EISDIR;
3823 else
3824 error = -ENOTDIR;
3825 goto exit2;
3826 }
3827
3828 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3829 {
3830 if ((flag & ~AT_REMOVEDIR) != 0)
3831 return -EINVAL;
3832
3833 if (flag & AT_REMOVEDIR)
3834 return do_rmdir(dfd, pathname);
3835
3836 return do_unlinkat(dfd, pathname);
3837 }
3838
3839 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3840 {
3841 return do_unlinkat(AT_FDCWD, pathname);
3842 }
3843
3844 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3845 {
3846 int error = may_create(dir, dentry);
3847
3848 if (error)
3849 return error;
3850
3851 if (!dir->i_op->symlink)
3852 return -EPERM;
3853
3854 error = security_inode_symlink(dir, dentry, oldname);
3855 if (error)
3856 return error;
3857
3858 error = dir->i_op->symlink(dir, dentry, oldname);
3859 if (!error)
3860 fsnotify_create(dir, dentry);
3861 return error;
3862 }
3863 EXPORT_SYMBOL(vfs_symlink);
3864
3865 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3866 int, newdfd, const char __user *, newname)
3867 {
3868 int error;
3869 struct filename *from;
3870 struct dentry *dentry;
3871 struct path path;
3872 unsigned int lookup_flags = 0;
3873
3874 from = getname(oldname);
3875 if (IS_ERR(from))
3876 return PTR_ERR(from);
3877 retry:
3878 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3879 error = PTR_ERR(dentry);
3880 if (IS_ERR(dentry))
3881 goto out_putname;
3882
3883 error = security_path_symlink(&path, dentry, from->name);
3884 if (!error)
3885 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3886 done_path_create(&path, dentry);
3887 if (retry_estale(error, lookup_flags)) {
3888 lookup_flags |= LOOKUP_REVAL;
3889 goto retry;
3890 }
3891 out_putname:
3892 putname(from);
3893 return error;
3894 }
3895
3896 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3897 {
3898 return sys_symlinkat(oldname, AT_FDCWD, newname);
3899 }
3900
3901 /**
3902 * vfs_link - create a new link
3903 * @old_dentry: object to be linked
3904 * @dir: new parent
3905 * @new_dentry: where to create the new link
3906 * @delegated_inode: returns inode needing a delegation break
3907 *
3908 * The caller must hold dir->i_mutex
3909 *
3910 * If vfs_link discovers a delegation on the to-be-linked file in need
3911 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3912 * inode in delegated_inode. The caller should then break the delegation
3913 * and retry. Because breaking a delegation may take a long time, the
3914 * caller should drop the i_mutex before doing so.
3915 *
3916 * Alternatively, a caller may pass NULL for delegated_inode. This may
3917 * be appropriate for callers that expect the underlying filesystem not
3918 * to be NFS exported.
3919 */
3920 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3921 {
3922 struct inode *inode = old_dentry->d_inode;
3923 unsigned max_links = dir->i_sb->s_max_links;
3924 int error;
3925
3926 if (!inode)
3927 return -ENOENT;
3928
3929 error = may_create(dir, new_dentry);
3930 if (error)
3931 return error;
3932
3933 if (dir->i_sb != inode->i_sb)
3934 return -EXDEV;
3935
3936 /*
3937 * A link to an append-only or immutable file cannot be created.
3938 */
3939 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3940 return -EPERM;
3941 if (!dir->i_op->link)
3942 return -EPERM;
3943 if (S_ISDIR(inode->i_mode))
3944 return -EPERM;
3945
3946 error = security_inode_link(old_dentry, dir, new_dentry);
3947 if (error)
3948 return error;
3949
3950 mutex_lock(&inode->i_mutex);
3951 /* Make sure we don't allow creating hardlink to an unlinked file */
3952 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3953 error = -ENOENT;
3954 else if (max_links && inode->i_nlink >= max_links)
3955 error = -EMLINK;
3956 else {
3957 error = try_break_deleg(inode, delegated_inode);
3958 if (!error)
3959 error = dir->i_op->link(old_dentry, dir, new_dentry);
3960 }
3961
3962 if (!error && (inode->i_state & I_LINKABLE)) {
3963 spin_lock(&inode->i_lock);
3964 inode->i_state &= ~I_LINKABLE;
3965 spin_unlock(&inode->i_lock);
3966 }
3967 mutex_unlock(&inode->i_mutex);
3968 if (!error)
3969 fsnotify_link(dir, inode, new_dentry);
3970 return error;
3971 }
3972 EXPORT_SYMBOL(vfs_link);
3973
3974 /*
3975 * Hardlinks are often used in delicate situations. We avoid
3976 * security-related surprises by not following symlinks on the
3977 * newname. --KAB
3978 *
3979 * We don't follow them on the oldname either to be compatible
3980 * with linux 2.0, and to avoid hard-linking to directories
3981 * and other special files. --ADM
3982 */
3983 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3984 int, newdfd, const char __user *, newname, int, flags)
3985 {
3986 struct dentry *new_dentry;
3987 struct path old_path, new_path;
3988 struct inode *delegated_inode = NULL;
3989 int how = 0;
3990 int error;
3991
3992 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3993 return -EINVAL;
3994 /*
3995 * To use null names we require CAP_DAC_READ_SEARCH
3996 * This ensures that not everyone will be able to create
3997 * handlink using the passed filedescriptor.
3998 */
3999 if (flags & AT_EMPTY_PATH) {
4000 if (!capable(CAP_DAC_READ_SEARCH))
4001 return -ENOENT;
4002 how = LOOKUP_EMPTY;
4003 }
4004
4005 if (flags & AT_SYMLINK_FOLLOW)
4006 how |= LOOKUP_FOLLOW;
4007 retry:
4008 error = user_path_at(olddfd, oldname, how, &old_path);
4009 if (error)
4010 return error;
4011
4012 new_dentry = user_path_create(newdfd, newname, &new_path,
4013 (how & LOOKUP_REVAL));
4014 error = PTR_ERR(new_dentry);
4015 if (IS_ERR(new_dentry))
4016 goto out;
4017
4018 error = -EXDEV;
4019 if (old_path.mnt != new_path.mnt)
4020 goto out_dput;
4021 error = may_linkat(&old_path);
4022 if (unlikely(error))
4023 goto out_dput;
4024 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4025 if (error)
4026 goto out_dput;
4027 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4028 out_dput:
4029 done_path_create(&new_path, new_dentry);
4030 if (delegated_inode) {
4031 error = break_deleg_wait(&delegated_inode);
4032 if (!error) {
4033 path_put(&old_path);
4034 goto retry;
4035 }
4036 }
4037 if (retry_estale(error, how)) {
4038 path_put(&old_path);
4039 how |= LOOKUP_REVAL;
4040 goto retry;
4041 }
4042 out:
4043 path_put(&old_path);
4044
4045 return error;
4046 }
4047
4048 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4049 {
4050 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4051 }
4052
4053 /**
4054 * vfs_rename - rename a filesystem object
4055 * @old_dir: parent of source
4056 * @old_dentry: source
4057 * @new_dir: parent of destination
4058 * @new_dentry: destination
4059 * @delegated_inode: returns an inode needing a delegation break
4060 * @flags: rename flags
4061 *
4062 * The caller must hold multiple mutexes--see lock_rename()).
4063 *
4064 * If vfs_rename discovers a delegation in need of breaking at either
4065 * the source or destination, it will return -EWOULDBLOCK and return a
4066 * reference to the inode in delegated_inode. The caller should then
4067 * break the delegation and retry. Because breaking a delegation may
4068 * take a long time, the caller should drop all locks before doing
4069 * so.
4070 *
4071 * Alternatively, a caller may pass NULL for delegated_inode. This may
4072 * be appropriate for callers that expect the underlying filesystem not
4073 * to be NFS exported.
4074 *
4075 * The worst of all namespace operations - renaming directory. "Perverted"
4076 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4077 * Problems:
4078 * a) we can get into loop creation.
4079 * b) race potential - two innocent renames can create a loop together.
4080 * That's where 4.4 screws up. Current fix: serialization on
4081 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4082 * story.
4083 * c) we have to lock _four_ objects - parents and victim (if it exists),
4084 * and source (if it is not a directory).
4085 * And that - after we got ->i_mutex on parents (until then we don't know
4086 * whether the target exists). Solution: try to be smart with locking
4087 * order for inodes. We rely on the fact that tree topology may change
4088 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4089 * move will be locked. Thus we can rank directories by the tree
4090 * (ancestors first) and rank all non-directories after them.
4091 * That works since everybody except rename does "lock parent, lookup,
4092 * lock child" and rename is under ->s_vfs_rename_mutex.
4093 * HOWEVER, it relies on the assumption that any object with ->lookup()
4094 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4095 * we'd better make sure that there's no link(2) for them.
4096 * d) conversion from fhandle to dentry may come in the wrong moment - when
4097 * we are removing the target. Solution: we will have to grab ->i_mutex
4098 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4099 * ->i_mutex on parents, which works but leads to some truly excessive
4100 * locking].
4101 */
4102 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4103 struct inode *new_dir, struct dentry *new_dentry,
4104 struct inode **delegated_inode, unsigned int flags)
4105 {
4106 int error;
4107 bool is_dir = d_is_dir(old_dentry);
4108 const unsigned char *old_name;
4109 struct inode *source = old_dentry->d_inode;
4110 struct inode *target = new_dentry->d_inode;
4111 bool new_is_dir = false;
4112 unsigned max_links = new_dir->i_sb->s_max_links;
4113
4114 if (source == target)
4115 return 0;
4116
4117 error = may_delete(old_dir, old_dentry, is_dir);
4118 if (error)
4119 return error;
4120
4121 if (!target) {
4122 error = may_create(new_dir, new_dentry);
4123 } else {
4124 new_is_dir = d_is_dir(new_dentry);
4125
4126 if (!(flags & RENAME_EXCHANGE))
4127 error = may_delete(new_dir, new_dentry, is_dir);
4128 else
4129 error = may_delete(new_dir, new_dentry, new_is_dir);
4130 }
4131 if (error)
4132 return error;
4133
4134 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4135 return -EPERM;
4136
4137 if (flags && !old_dir->i_op->rename2)
4138 return -EINVAL;
4139
4140 /*
4141 * If we are going to change the parent - check write permissions,
4142 * we'll need to flip '..'.
4143 */
4144 if (new_dir != old_dir) {
4145 if (is_dir) {
4146 error = inode_permission(source, MAY_WRITE);
4147 if (error)
4148 return error;
4149 }
4150 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4151 error = inode_permission(target, MAY_WRITE);
4152 if (error)
4153 return error;
4154 }
4155 }
4156
4157 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4158 flags);
4159 if (error)
4160 return error;
4161
4162 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4163 dget(new_dentry);
4164 if (!is_dir || (flags & RENAME_EXCHANGE))
4165 lock_two_nondirectories(source, target);
4166 else if (target)
4167 mutex_lock(&target->i_mutex);
4168
4169 error = -EBUSY;
4170 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4171 goto out;
4172
4173 if (max_links && new_dir != old_dir) {
4174 error = -EMLINK;
4175 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4176 goto out;
4177 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4178 old_dir->i_nlink >= max_links)
4179 goto out;
4180 }
4181 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4182 shrink_dcache_parent(new_dentry);
4183 if (!is_dir) {
4184 error = try_break_deleg(source, delegated_inode);
4185 if (error)
4186 goto out;
4187 }
4188 if (target && !new_is_dir) {
4189 error = try_break_deleg(target, delegated_inode);
4190 if (error)
4191 goto out;
4192 }
4193 if (!old_dir->i_op->rename2) {
4194 error = old_dir->i_op->rename(old_dir, old_dentry,
4195 new_dir, new_dentry);
4196 } else {
4197 WARN_ON(old_dir->i_op->rename != NULL);
4198 error = old_dir->i_op->rename2(old_dir, old_dentry,
4199 new_dir, new_dentry, flags);
4200 }
4201 if (error)
4202 goto out;
4203
4204 if (!(flags & RENAME_EXCHANGE) && target) {
4205 if (is_dir)
4206 target->i_flags |= S_DEAD;
4207 dont_mount(new_dentry);
4208 detach_mounts(new_dentry);
4209 }
4210 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4211 if (!(flags & RENAME_EXCHANGE))
4212 d_move(old_dentry, new_dentry);
4213 else
4214 d_exchange(old_dentry, new_dentry);
4215 }
4216 out:
4217 if (!is_dir || (flags & RENAME_EXCHANGE))
4218 unlock_two_nondirectories(source, target);
4219 else if (target)
4220 mutex_unlock(&target->i_mutex);
4221 dput(new_dentry);
4222 if (!error) {
4223 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4224 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4225 if (flags & RENAME_EXCHANGE) {
4226 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4227 new_is_dir, NULL, new_dentry);
4228 }
4229 }
4230 fsnotify_oldname_free(old_name);
4231
4232 return error;
4233 }
4234 EXPORT_SYMBOL(vfs_rename);
4235
4236 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4237 int, newdfd, const char __user *, newname, unsigned int, flags)
4238 {
4239 struct dentry *old_dir, *new_dir;
4240 struct dentry *old_dentry, *new_dentry;
4241 struct dentry *trap;
4242 struct nameidata oldnd, newnd;
4243 struct inode *delegated_inode = NULL;
4244 struct filename *from;
4245 struct filename *to;
4246 unsigned int lookup_flags = 0;
4247 bool should_retry = false;
4248 int error;
4249
4250 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4251 return -EINVAL;
4252
4253 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4254 (flags & RENAME_EXCHANGE))
4255 return -EINVAL;
4256
4257 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4258 return -EPERM;
4259
4260 retry:
4261 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4262 if (IS_ERR(from)) {
4263 error = PTR_ERR(from);
4264 goto exit;
4265 }
4266
4267 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4268 if (IS_ERR(to)) {
4269 error = PTR_ERR(to);
4270 goto exit1;
4271 }
4272
4273 error = -EXDEV;
4274 if (oldnd.path.mnt != newnd.path.mnt)
4275 goto exit2;
4276
4277 old_dir = oldnd.path.dentry;
4278 error = -EBUSY;
4279 if (oldnd.last_type != LAST_NORM)
4280 goto exit2;
4281
4282 new_dir = newnd.path.dentry;
4283 if (flags & RENAME_NOREPLACE)
4284 error = -EEXIST;
4285 if (newnd.last_type != LAST_NORM)
4286 goto exit2;
4287
4288 error = mnt_want_write(oldnd.path.mnt);
4289 if (error)
4290 goto exit2;
4291
4292 oldnd.flags &= ~LOOKUP_PARENT;
4293 newnd.flags &= ~LOOKUP_PARENT;
4294 if (!(flags & RENAME_EXCHANGE))
4295 newnd.flags |= LOOKUP_RENAME_TARGET;
4296
4297 retry_deleg:
4298 trap = lock_rename(new_dir, old_dir);
4299
4300 old_dentry = lookup_hash(&oldnd);
4301 error = PTR_ERR(old_dentry);
4302 if (IS_ERR(old_dentry))
4303 goto exit3;
4304 /* source must exist */
4305 error = -ENOENT;
4306 if (d_is_negative(old_dentry))
4307 goto exit4;
4308 new_dentry = lookup_hash(&newnd);
4309 error = PTR_ERR(new_dentry);
4310 if (IS_ERR(new_dentry))
4311 goto exit4;
4312 error = -EEXIST;
4313 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4314 goto exit5;
4315 if (flags & RENAME_EXCHANGE) {
4316 error = -ENOENT;
4317 if (d_is_negative(new_dentry))
4318 goto exit5;
4319
4320 if (!d_is_dir(new_dentry)) {
4321 error = -ENOTDIR;
4322 if (newnd.last.name[newnd.last.len])
4323 goto exit5;
4324 }
4325 }
4326 /* unless the source is a directory trailing slashes give -ENOTDIR */
4327 if (!d_is_dir(old_dentry)) {
4328 error = -ENOTDIR;
4329 if (oldnd.last.name[oldnd.last.len])
4330 goto exit5;
4331 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4332 goto exit5;
4333 }
4334 /* source should not be ancestor of target */
4335 error = -EINVAL;
4336 if (old_dentry == trap)
4337 goto exit5;
4338 /* target should not be an ancestor of source */
4339 if (!(flags & RENAME_EXCHANGE))
4340 error = -ENOTEMPTY;
4341 if (new_dentry == trap)
4342 goto exit5;
4343
4344 error = security_path_rename(&oldnd.path, old_dentry,
4345 &newnd.path, new_dentry, flags);
4346 if (error)
4347 goto exit5;
4348 error = vfs_rename(old_dir->d_inode, old_dentry,
4349 new_dir->d_inode, new_dentry,
4350 &delegated_inode, flags);
4351 exit5:
4352 dput(new_dentry);
4353 exit4:
4354 dput(old_dentry);
4355 exit3:
4356 unlock_rename(new_dir, old_dir);
4357 if (delegated_inode) {
4358 error = break_deleg_wait(&delegated_inode);
4359 if (!error)
4360 goto retry_deleg;
4361 }
4362 mnt_drop_write(oldnd.path.mnt);
4363 exit2:
4364 if (retry_estale(error, lookup_flags))
4365 should_retry = true;
4366 path_put(&newnd.path);
4367 putname(to);
4368 exit1:
4369 path_put(&oldnd.path);
4370 putname(from);
4371 if (should_retry) {
4372 should_retry = false;
4373 lookup_flags |= LOOKUP_REVAL;
4374 goto retry;
4375 }
4376 exit:
4377 return error;
4378 }
4379
4380 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4381 int, newdfd, const char __user *, newname)
4382 {
4383 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4384 }
4385
4386 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4387 {
4388 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4389 }
4390
4391 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4392 {
4393 int error = may_create(dir, dentry);
4394 if (error)
4395 return error;
4396
4397 if (!dir->i_op->mknod)
4398 return -EPERM;
4399
4400 return dir->i_op->mknod(dir, dentry,
4401 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4402 }
4403 EXPORT_SYMBOL(vfs_whiteout);
4404
4405 int readlink_copy(char __user *buffer, int buflen, const char *link)
4406 {
4407 int len = PTR_ERR(link);
4408 if (IS_ERR(link))
4409 goto out;
4410
4411 len = strlen(link);
4412 if (len > (unsigned) buflen)
4413 len = buflen;
4414 if (copy_to_user(buffer, link, len))
4415 len = -EFAULT;
4416 out:
4417 return len;
4418 }
4419 EXPORT_SYMBOL(readlink_copy);
4420
4421 /*
4422 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4423 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4424 * using) it for any given inode is up to filesystem.
4425 */
4426 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4427 {
4428 struct nameidata nd;
4429 void *cookie;
4430 int res;
4431
4432 nd.depth = 0;
4433 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4434 if (IS_ERR(cookie))
4435 return PTR_ERR(cookie);
4436
4437 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4438 if (dentry->d_inode->i_op->put_link)
4439 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4440 return res;
4441 }
4442 EXPORT_SYMBOL(generic_readlink);
4443
4444 /* get the link contents into pagecache */
4445 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4446 {
4447 char *kaddr;
4448 struct page *page;
4449 struct address_space *mapping = dentry->d_inode->i_mapping;
4450 page = read_mapping_page(mapping, 0, NULL);
4451 if (IS_ERR(page))
4452 return (char*)page;
4453 *ppage = page;
4454 kaddr = kmap(page);
4455 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4456 return kaddr;
4457 }
4458
4459 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4460 {
4461 struct page *page = NULL;
4462 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4463 if (page) {
4464 kunmap(page);
4465 page_cache_release(page);
4466 }
4467 return res;
4468 }
4469 EXPORT_SYMBOL(page_readlink);
4470
4471 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4472 {
4473 struct page *page = NULL;
4474 nd_set_link(nd, page_getlink(dentry, &page));
4475 return page;
4476 }
4477 EXPORT_SYMBOL(page_follow_link_light);
4478
4479 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4480 {
4481 struct page *page = cookie;
4482
4483 if (page) {
4484 kunmap(page);
4485 page_cache_release(page);
4486 }
4487 }
4488 EXPORT_SYMBOL(page_put_link);
4489
4490 /*
4491 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4492 */
4493 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4494 {
4495 struct address_space *mapping = inode->i_mapping;
4496 struct page *page;
4497 void *fsdata;
4498 int err;
4499 char *kaddr;
4500 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4501 if (nofs)
4502 flags |= AOP_FLAG_NOFS;
4503
4504 retry:
4505 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4506 flags, &page, &fsdata);
4507 if (err)
4508 goto fail;
4509
4510 kaddr = kmap_atomic(page);
4511 memcpy(kaddr, symname, len-1);
4512 kunmap_atomic(kaddr);
4513
4514 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4515 page, fsdata);
4516 if (err < 0)
4517 goto fail;
4518 if (err < len-1)
4519 goto retry;
4520
4521 mark_inode_dirty(inode);
4522 return 0;
4523 fail:
4524 return err;
4525 }
4526 EXPORT_SYMBOL(__page_symlink);
4527
4528 int page_symlink(struct inode *inode, const char *symname, int len)
4529 {
4530 return __page_symlink(inode, symname, len,
4531 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4532 }
4533 EXPORT_SYMBOL(page_symlink);
4534
4535 const struct inode_operations page_symlink_inode_operations = {
4536 .readlink = generic_readlink,
4537 .follow_link = page_follow_link_light,
4538 .put_link = page_put_link,
4539 };
4540 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.747636 seconds and 5 git commands to generate.