NFSD: Get rid of empty function nfs4_state_init
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 /*
215 * The "getname_kernel()" interface doesn't do pathnames longer
216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217 */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 struct filename *result;
222 char *kname;
223 int len;
224
225 len = strlen(filename);
226 if (len >= EMBEDDED_NAME_MAX)
227 return ERR_PTR(-ENAMETOOLONG);
228
229 result = __getname();
230 if (unlikely(!result))
231 return ERR_PTR(-ENOMEM);
232
233 kname = (char *)result + sizeof(*result);
234 result->name = kname;
235 result->uptr = NULL;
236 result->aname = NULL;
237 result->separate = false;
238
239 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 return result;
241 }
242
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 if (unlikely(!audit_dummy_context()))
247 return audit_putname(name);
248 final_putname(name);
249 }
250 #endif
251
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 struct posix_acl *acl;
256
257 if (mask & MAY_NOT_BLOCK) {
258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 if (!acl)
260 return -EAGAIN;
261 /* no ->get_acl() calls in RCU mode... */
262 if (acl == ACL_NOT_CACHED)
263 return -ECHILD;
264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 }
266
267 acl = get_acl(inode, ACL_TYPE_ACCESS);
268 if (IS_ERR(acl))
269 return PTR_ERR(acl);
270 if (acl) {
271 int error = posix_acl_permission(inode, acl, mask);
272 posix_acl_release(acl);
273 return error;
274 }
275 #endif
276
277 return -EAGAIN;
278 }
279
280 /*
281 * This does the basic permission checking
282 */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 unsigned int mode = inode->i_mode;
286
287 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 mode >>= 6;
289 else {
290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 int error = check_acl(inode, mask);
292 if (error != -EAGAIN)
293 return error;
294 }
295
296 if (in_group_p(inode->i_gid))
297 mode >>= 3;
298 }
299
300 /*
301 * If the DACs are ok we don't need any capability check.
302 */
303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 return 0;
305 return -EACCES;
306 }
307
308 /**
309 * generic_permission - check for access rights on a Posix-like filesystem
310 * @inode: inode to check access rights for
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312 *
313 * Used to check for read/write/execute permissions on a file.
314 * We use "fsuid" for this, letting us set arbitrary permissions
315 * for filesystem access without changing the "normal" uids which
316 * are used for other things.
317 *
318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319 * request cannot be satisfied (eg. requires blocking or too much complexity).
320 * It would then be called again in ref-walk mode.
321 */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 int ret;
325
326 /*
327 * Do the basic permission checks.
328 */
329 ret = acl_permission_check(inode, mask);
330 if (ret != -EACCES)
331 return ret;
332
333 if (S_ISDIR(inode->i_mode)) {
334 /* DACs are overridable for directories */
335 if (inode_capable(inode, CAP_DAC_OVERRIDE))
336 return 0;
337 if (!(mask & MAY_WRITE))
338 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
339 return 0;
340 return -EACCES;
341 }
342 /*
343 * Read/write DACs are always overridable.
344 * Executable DACs are overridable when there is
345 * at least one exec bit set.
346 */
347 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
348 if (inode_capable(inode, CAP_DAC_OVERRIDE))
349 return 0;
350
351 /*
352 * Searching includes executable on directories, else just read.
353 */
354 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
355 if (mask == MAY_READ)
356 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
357 return 0;
358
359 return -EACCES;
360 }
361 EXPORT_SYMBOL(generic_permission);
362
363 /*
364 * We _really_ want to just do "generic_permission()" without
365 * even looking at the inode->i_op values. So we keep a cache
366 * flag in inode->i_opflags, that says "this has not special
367 * permission function, use the fast case".
368 */
369 static inline int do_inode_permission(struct inode *inode, int mask)
370 {
371 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
372 if (likely(inode->i_op->permission))
373 return inode->i_op->permission(inode, mask);
374
375 /* This gets set once for the inode lifetime */
376 spin_lock(&inode->i_lock);
377 inode->i_opflags |= IOP_FASTPERM;
378 spin_unlock(&inode->i_lock);
379 }
380 return generic_permission(inode, mask);
381 }
382
383 /**
384 * __inode_permission - Check for access rights to a given inode
385 * @inode: Inode to check permission on
386 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
387 *
388 * Check for read/write/execute permissions on an inode.
389 *
390 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
391 *
392 * This does not check for a read-only file system. You probably want
393 * inode_permission().
394 */
395 int __inode_permission(struct inode *inode, int mask)
396 {
397 int retval;
398
399 if (unlikely(mask & MAY_WRITE)) {
400 /*
401 * Nobody gets write access to an immutable file.
402 */
403 if (IS_IMMUTABLE(inode))
404 return -EACCES;
405 }
406
407 retval = do_inode_permission(inode, mask);
408 if (retval)
409 return retval;
410
411 retval = devcgroup_inode_permission(inode, mask);
412 if (retval)
413 return retval;
414
415 return security_inode_permission(inode, mask);
416 }
417
418 /**
419 * sb_permission - Check superblock-level permissions
420 * @sb: Superblock of inode to check permission on
421 * @inode: Inode to check permission on
422 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
423 *
424 * Separate out file-system wide checks from inode-specific permission checks.
425 */
426 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
427 {
428 if (unlikely(mask & MAY_WRITE)) {
429 umode_t mode = inode->i_mode;
430
431 /* Nobody gets write access to a read-only fs. */
432 if ((sb->s_flags & MS_RDONLY) &&
433 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
434 return -EROFS;
435 }
436 return 0;
437 }
438
439 /**
440 * inode_permission - Check for access rights to a given inode
441 * @inode: Inode to check permission on
442 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443 *
444 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
445 * this, letting us set arbitrary permissions for filesystem access without
446 * changing the "normal" UIDs which are used for other things.
447 *
448 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
449 */
450 int inode_permission(struct inode *inode, int mask)
451 {
452 int retval;
453
454 retval = sb_permission(inode->i_sb, inode, mask);
455 if (retval)
456 return retval;
457 return __inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460
461 /**
462 * path_get - get a reference to a path
463 * @path: path to get the reference to
464 *
465 * Given a path increment the reference count to the dentry and the vfsmount.
466 */
467 void path_get(const struct path *path)
468 {
469 mntget(path->mnt);
470 dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473
474 /**
475 * path_put - put a reference to a path
476 * @path: path to put the reference to
477 *
478 * Given a path decrement the reference count to the dentry and the vfsmount.
479 */
480 void path_put(const struct path *path)
481 {
482 dput(path->dentry);
483 mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486
487 /*
488 * Path walking has 2 modes, rcu-walk and ref-walk (see
489 * Documentation/filesystems/path-lookup.txt). In situations when we can't
490 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
491 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
492 * mode. Refcounts are grabbed at the last known good point before rcu-walk
493 * got stuck, so ref-walk may continue from there. If this is not successful
494 * (eg. a seqcount has changed), then failure is returned and it's up to caller
495 * to restart the path walk from the beginning in ref-walk mode.
496 */
497
498 /**
499 * unlazy_walk - try to switch to ref-walk mode.
500 * @nd: nameidata pathwalk data
501 * @dentry: child of nd->path.dentry or NULL
502 * Returns: 0 on success, -ECHILD on failure
503 *
504 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
505 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
506 * @nd or NULL. Must be called from rcu-walk context.
507 */
508 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
509 {
510 struct fs_struct *fs = current->fs;
511 struct dentry *parent = nd->path.dentry;
512
513 BUG_ON(!(nd->flags & LOOKUP_RCU));
514
515 /*
516 * After legitimizing the bastards, terminate_walk()
517 * will do the right thing for non-RCU mode, and all our
518 * subsequent exit cases should rcu_read_unlock()
519 * before returning. Do vfsmount first; if dentry
520 * can't be legitimized, just set nd->path.dentry to NULL
521 * and rely on dput(NULL) being a no-op.
522 */
523 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
524 return -ECHILD;
525 nd->flags &= ~LOOKUP_RCU;
526
527 if (!lockref_get_not_dead(&parent->d_lockref)) {
528 nd->path.dentry = NULL;
529 goto out;
530 }
531
532 /*
533 * For a negative lookup, the lookup sequence point is the parents
534 * sequence point, and it only needs to revalidate the parent dentry.
535 *
536 * For a positive lookup, we need to move both the parent and the
537 * dentry from the RCU domain to be properly refcounted. And the
538 * sequence number in the dentry validates *both* dentry counters,
539 * since we checked the sequence number of the parent after we got
540 * the child sequence number. So we know the parent must still
541 * be valid if the child sequence number is still valid.
542 */
543 if (!dentry) {
544 if (read_seqcount_retry(&parent->d_seq, nd->seq))
545 goto out;
546 BUG_ON(nd->inode != parent->d_inode);
547 } else {
548 if (!lockref_get_not_dead(&dentry->d_lockref))
549 goto out;
550 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
551 goto drop_dentry;
552 }
553
554 /*
555 * Sequence counts matched. Now make sure that the root is
556 * still valid and get it if required.
557 */
558 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
559 spin_lock(&fs->lock);
560 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
561 goto unlock_and_drop_dentry;
562 path_get(&nd->root);
563 spin_unlock(&fs->lock);
564 }
565
566 rcu_read_unlock();
567 return 0;
568
569 unlock_and_drop_dentry:
570 spin_unlock(&fs->lock);
571 drop_dentry:
572 rcu_read_unlock();
573 dput(dentry);
574 goto drop_root_mnt;
575 out:
576 rcu_read_unlock();
577 drop_root_mnt:
578 if (!(nd->flags & LOOKUP_ROOT))
579 nd->root.mnt = NULL;
580 return -ECHILD;
581 }
582
583 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
584 {
585 return dentry->d_op->d_revalidate(dentry, flags);
586 }
587
588 /**
589 * complete_walk - successful completion of path walk
590 * @nd: pointer nameidata
591 *
592 * If we had been in RCU mode, drop out of it and legitimize nd->path.
593 * Revalidate the final result, unless we'd already done that during
594 * the path walk or the filesystem doesn't ask for it. Return 0 on
595 * success, -error on failure. In case of failure caller does not
596 * need to drop nd->path.
597 */
598 static int complete_walk(struct nameidata *nd)
599 {
600 struct dentry *dentry = nd->path.dentry;
601 int status;
602
603 if (nd->flags & LOOKUP_RCU) {
604 nd->flags &= ~LOOKUP_RCU;
605 if (!(nd->flags & LOOKUP_ROOT))
606 nd->root.mnt = NULL;
607
608 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
609 rcu_read_unlock();
610 return -ECHILD;
611 }
612 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
613 rcu_read_unlock();
614 mntput(nd->path.mnt);
615 return -ECHILD;
616 }
617 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
618 rcu_read_unlock();
619 dput(dentry);
620 mntput(nd->path.mnt);
621 return -ECHILD;
622 }
623 rcu_read_unlock();
624 }
625
626 if (likely(!(nd->flags & LOOKUP_JUMPED)))
627 return 0;
628
629 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
630 return 0;
631
632 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
633 if (status > 0)
634 return 0;
635
636 if (!status)
637 status = -ESTALE;
638
639 path_put(&nd->path);
640 return status;
641 }
642
643 static __always_inline void set_root(struct nameidata *nd)
644 {
645 if (!nd->root.mnt)
646 get_fs_root(current->fs, &nd->root);
647 }
648
649 static int link_path_walk(const char *, struct nameidata *);
650
651 static __always_inline void set_root_rcu(struct nameidata *nd)
652 {
653 if (!nd->root.mnt) {
654 struct fs_struct *fs = current->fs;
655 unsigned seq;
656
657 do {
658 seq = read_seqcount_begin(&fs->seq);
659 nd->root = fs->root;
660 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 } while (read_seqcount_retry(&fs->seq, seq));
662 }
663 }
664
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 dput(path->dentry);
668 if (path->mnt != nd->path.mnt)
669 mntput(path->mnt);
670 }
671
672 static inline void path_to_nameidata(const struct path *path,
673 struct nameidata *nd)
674 {
675 if (!(nd->flags & LOOKUP_RCU)) {
676 dput(nd->path.dentry);
677 if (nd->path.mnt != path->mnt)
678 mntput(nd->path.mnt);
679 }
680 nd->path.mnt = path->mnt;
681 nd->path.dentry = path->dentry;
682 }
683
684 /*
685 * Helper to directly jump to a known parsed path from ->follow_link,
686 * caller must have taken a reference to path beforehand.
687 */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 path_put(&nd->path);
691
692 nd->path = *path;
693 nd->inode = nd->path.dentry->d_inode;
694 nd->flags |= LOOKUP_JUMPED;
695 }
696
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 struct inode *inode = link->dentry->d_inode;
700 if (inode->i_op->put_link)
701 inode->i_op->put_link(link->dentry, nd, cookie);
702 path_put(link);
703 }
704
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707
708 /**
709 * may_follow_link - Check symlink following for unsafe situations
710 * @link: The path of the symlink
711 * @nd: nameidata pathwalk data
712 *
713 * In the case of the sysctl_protected_symlinks sysctl being enabled,
714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715 * in a sticky world-writable directory. This is to protect privileged
716 * processes from failing races against path names that may change out
717 * from under them by way of other users creating malicious symlinks.
718 * It will permit symlinks to be followed only when outside a sticky
719 * world-writable directory, or when the uid of the symlink and follower
720 * match, or when the directory owner matches the symlink's owner.
721 *
722 * Returns 0 if following the symlink is allowed, -ve on error.
723 */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 const struct inode *inode;
727 const struct inode *parent;
728
729 if (!sysctl_protected_symlinks)
730 return 0;
731
732 /* Allowed if owner and follower match. */
733 inode = link->dentry->d_inode;
734 if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 return 0;
736
737 /* Allowed if parent directory not sticky and world-writable. */
738 parent = nd->path.dentry->d_inode;
739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 return 0;
741
742 /* Allowed if parent directory and link owner match. */
743 if (uid_eq(parent->i_uid, inode->i_uid))
744 return 0;
745
746 audit_log_link_denied("follow_link", link);
747 path_put_conditional(link, nd);
748 path_put(&nd->path);
749 return -EACCES;
750 }
751
752 /**
753 * safe_hardlink_source - Check for safe hardlink conditions
754 * @inode: the source inode to hardlink from
755 *
756 * Return false if at least one of the following conditions:
757 * - inode is not a regular file
758 * - inode is setuid
759 * - inode is setgid and group-exec
760 * - access failure for read and write
761 *
762 * Otherwise returns true.
763 */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 umode_t mode = inode->i_mode;
767
768 /* Special files should not get pinned to the filesystem. */
769 if (!S_ISREG(mode))
770 return false;
771
772 /* Setuid files should not get pinned to the filesystem. */
773 if (mode & S_ISUID)
774 return false;
775
776 /* Executable setgid files should not get pinned to the filesystem. */
777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 return false;
779
780 /* Hardlinking to unreadable or unwritable sources is dangerous. */
781 if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 return false;
783
784 return true;
785 }
786
787 /**
788 * may_linkat - Check permissions for creating a hardlink
789 * @link: the source to hardlink from
790 *
791 * Block hardlink when all of:
792 * - sysctl_protected_hardlinks enabled
793 * - fsuid does not match inode
794 * - hardlink source is unsafe (see safe_hardlink_source() above)
795 * - not CAP_FOWNER
796 *
797 * Returns 0 if successful, -ve on error.
798 */
799 static int may_linkat(struct path *link)
800 {
801 const struct cred *cred;
802 struct inode *inode;
803
804 if (!sysctl_protected_hardlinks)
805 return 0;
806
807 cred = current_cred();
808 inode = link->dentry->d_inode;
809
810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 * otherwise, it must be a safe source.
812 */
813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 capable(CAP_FOWNER))
815 return 0;
816
817 audit_log_link_denied("linkat", link);
818 return -EPERM;
819 }
820
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 struct dentry *dentry = link->dentry;
825 int error;
826 char *s;
827
828 BUG_ON(nd->flags & LOOKUP_RCU);
829
830 if (link->mnt == nd->path.mnt)
831 mntget(link->mnt);
832
833 error = -ELOOP;
834 if (unlikely(current->total_link_count >= 40))
835 goto out_put_nd_path;
836
837 cond_resched();
838 current->total_link_count++;
839
840 touch_atime(link);
841 nd_set_link(nd, NULL);
842
843 error = security_inode_follow_link(link->dentry, nd);
844 if (error)
845 goto out_put_nd_path;
846
847 nd->last_type = LAST_BIND;
848 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 error = PTR_ERR(*p);
850 if (IS_ERR(*p))
851 goto out_put_nd_path;
852
853 error = 0;
854 s = nd_get_link(nd);
855 if (s) {
856 if (unlikely(IS_ERR(s))) {
857 path_put(&nd->path);
858 put_link(nd, link, *p);
859 return PTR_ERR(s);
860 }
861 if (*s == '/') {
862 set_root(nd);
863 path_put(&nd->path);
864 nd->path = nd->root;
865 path_get(&nd->root);
866 nd->flags |= LOOKUP_JUMPED;
867 }
868 nd->inode = nd->path.dentry->d_inode;
869 error = link_path_walk(s, nd);
870 if (unlikely(error))
871 put_link(nd, link, *p);
872 }
873
874 return error;
875
876 out_put_nd_path:
877 *p = NULL;
878 path_put(&nd->path);
879 path_put(link);
880 return error;
881 }
882
883 static int follow_up_rcu(struct path *path)
884 {
885 struct mount *mnt = real_mount(path->mnt);
886 struct mount *parent;
887 struct dentry *mountpoint;
888
889 parent = mnt->mnt_parent;
890 if (&parent->mnt == path->mnt)
891 return 0;
892 mountpoint = mnt->mnt_mountpoint;
893 path->dentry = mountpoint;
894 path->mnt = &parent->mnt;
895 return 1;
896 }
897
898 /*
899 * follow_up - Find the mountpoint of path's vfsmount
900 *
901 * Given a path, find the mountpoint of its source file system.
902 * Replace @path with the path of the mountpoint in the parent mount.
903 * Up is towards /.
904 *
905 * Return 1 if we went up a level and 0 if we were already at the
906 * root.
907 */
908 int follow_up(struct path *path)
909 {
910 struct mount *mnt = real_mount(path->mnt);
911 struct mount *parent;
912 struct dentry *mountpoint;
913
914 read_seqlock_excl(&mount_lock);
915 parent = mnt->mnt_parent;
916 if (parent == mnt) {
917 read_sequnlock_excl(&mount_lock);
918 return 0;
919 }
920 mntget(&parent->mnt);
921 mountpoint = dget(mnt->mnt_mountpoint);
922 read_sequnlock_excl(&mount_lock);
923 dput(path->dentry);
924 path->dentry = mountpoint;
925 mntput(path->mnt);
926 path->mnt = &parent->mnt;
927 return 1;
928 }
929 EXPORT_SYMBOL(follow_up);
930
931 /*
932 * Perform an automount
933 * - return -EISDIR to tell follow_managed() to stop and return the path we
934 * were called with.
935 */
936 static int follow_automount(struct path *path, unsigned flags,
937 bool *need_mntput)
938 {
939 struct vfsmount *mnt;
940 int err;
941
942 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
943 return -EREMOTE;
944
945 /* We don't want to mount if someone's just doing a stat -
946 * unless they're stat'ing a directory and appended a '/' to
947 * the name.
948 *
949 * We do, however, want to mount if someone wants to open or
950 * create a file of any type under the mountpoint, wants to
951 * traverse through the mountpoint or wants to open the
952 * mounted directory. Also, autofs may mark negative dentries
953 * as being automount points. These will need the attentions
954 * of the daemon to instantiate them before they can be used.
955 */
956 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
957 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
958 path->dentry->d_inode)
959 return -EISDIR;
960
961 current->total_link_count++;
962 if (current->total_link_count >= 40)
963 return -ELOOP;
964
965 mnt = path->dentry->d_op->d_automount(path);
966 if (IS_ERR(mnt)) {
967 /*
968 * The filesystem is allowed to return -EISDIR here to indicate
969 * it doesn't want to automount. For instance, autofs would do
970 * this so that its userspace daemon can mount on this dentry.
971 *
972 * However, we can only permit this if it's a terminal point in
973 * the path being looked up; if it wasn't then the remainder of
974 * the path is inaccessible and we should say so.
975 */
976 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
977 return -EREMOTE;
978 return PTR_ERR(mnt);
979 }
980
981 if (!mnt) /* mount collision */
982 return 0;
983
984 if (!*need_mntput) {
985 /* lock_mount() may release path->mnt on error */
986 mntget(path->mnt);
987 *need_mntput = true;
988 }
989 err = finish_automount(mnt, path);
990
991 switch (err) {
992 case -EBUSY:
993 /* Someone else made a mount here whilst we were busy */
994 return 0;
995 case 0:
996 path_put(path);
997 path->mnt = mnt;
998 path->dentry = dget(mnt->mnt_root);
999 return 0;
1000 default:
1001 return err;
1002 }
1003
1004 }
1005
1006 /*
1007 * Handle a dentry that is managed in some way.
1008 * - Flagged for transit management (autofs)
1009 * - Flagged as mountpoint
1010 * - Flagged as automount point
1011 *
1012 * This may only be called in refwalk mode.
1013 *
1014 * Serialization is taken care of in namespace.c
1015 */
1016 static int follow_managed(struct path *path, unsigned flags)
1017 {
1018 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1019 unsigned managed;
1020 bool need_mntput = false;
1021 int ret = 0;
1022
1023 /* Given that we're not holding a lock here, we retain the value in a
1024 * local variable for each dentry as we look at it so that we don't see
1025 * the components of that value change under us */
1026 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1027 managed &= DCACHE_MANAGED_DENTRY,
1028 unlikely(managed != 0)) {
1029 /* Allow the filesystem to manage the transit without i_mutex
1030 * being held. */
1031 if (managed & DCACHE_MANAGE_TRANSIT) {
1032 BUG_ON(!path->dentry->d_op);
1033 BUG_ON(!path->dentry->d_op->d_manage);
1034 ret = path->dentry->d_op->d_manage(path->dentry, false);
1035 if (ret < 0)
1036 break;
1037 }
1038
1039 /* Transit to a mounted filesystem. */
1040 if (managed & DCACHE_MOUNTED) {
1041 struct vfsmount *mounted = lookup_mnt(path);
1042 if (mounted) {
1043 dput(path->dentry);
1044 if (need_mntput)
1045 mntput(path->mnt);
1046 path->mnt = mounted;
1047 path->dentry = dget(mounted->mnt_root);
1048 need_mntput = true;
1049 continue;
1050 }
1051
1052 /* Something is mounted on this dentry in another
1053 * namespace and/or whatever was mounted there in this
1054 * namespace got unmounted before lookup_mnt() could
1055 * get it */
1056 }
1057
1058 /* Handle an automount point */
1059 if (managed & DCACHE_NEED_AUTOMOUNT) {
1060 ret = follow_automount(path, flags, &need_mntput);
1061 if (ret < 0)
1062 break;
1063 continue;
1064 }
1065
1066 /* We didn't change the current path point */
1067 break;
1068 }
1069
1070 if (need_mntput && path->mnt == mnt)
1071 mntput(path->mnt);
1072 if (ret == -EISDIR)
1073 ret = 0;
1074 return ret < 0 ? ret : need_mntput;
1075 }
1076
1077 int follow_down_one(struct path *path)
1078 {
1079 struct vfsmount *mounted;
1080
1081 mounted = lookup_mnt(path);
1082 if (mounted) {
1083 dput(path->dentry);
1084 mntput(path->mnt);
1085 path->mnt = mounted;
1086 path->dentry = dget(mounted->mnt_root);
1087 return 1;
1088 }
1089 return 0;
1090 }
1091 EXPORT_SYMBOL(follow_down_one);
1092
1093 static inline bool managed_dentry_might_block(struct dentry *dentry)
1094 {
1095 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1096 dentry->d_op->d_manage(dentry, true) < 0);
1097 }
1098
1099 /*
1100 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1101 * we meet a managed dentry that would need blocking.
1102 */
1103 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1104 struct inode **inode)
1105 {
1106 for (;;) {
1107 struct mount *mounted;
1108 /*
1109 * Don't forget we might have a non-mountpoint managed dentry
1110 * that wants to block transit.
1111 */
1112 if (unlikely(managed_dentry_might_block(path->dentry)))
1113 return false;
1114
1115 if (!d_mountpoint(path->dentry))
1116 return true;
1117
1118 mounted = __lookup_mnt(path->mnt, path->dentry);
1119 if (!mounted)
1120 break;
1121 path->mnt = &mounted->mnt;
1122 path->dentry = mounted->mnt.mnt_root;
1123 nd->flags |= LOOKUP_JUMPED;
1124 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1125 /*
1126 * Update the inode too. We don't need to re-check the
1127 * dentry sequence number here after this d_inode read,
1128 * because a mount-point is always pinned.
1129 */
1130 *inode = path->dentry->d_inode;
1131 }
1132 return read_seqretry(&mount_lock, nd->m_seq);
1133 }
1134
1135 static int follow_dotdot_rcu(struct nameidata *nd)
1136 {
1137 set_root_rcu(nd);
1138
1139 while (1) {
1140 if (nd->path.dentry == nd->root.dentry &&
1141 nd->path.mnt == nd->root.mnt) {
1142 break;
1143 }
1144 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1145 struct dentry *old = nd->path.dentry;
1146 struct dentry *parent = old->d_parent;
1147 unsigned seq;
1148
1149 seq = read_seqcount_begin(&parent->d_seq);
1150 if (read_seqcount_retry(&old->d_seq, nd->seq))
1151 goto failed;
1152 nd->path.dentry = parent;
1153 nd->seq = seq;
1154 break;
1155 }
1156 if (!follow_up_rcu(&nd->path))
1157 break;
1158 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1159 }
1160 while (d_mountpoint(nd->path.dentry)) {
1161 struct mount *mounted;
1162 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1163 if (!mounted)
1164 break;
1165 nd->path.mnt = &mounted->mnt;
1166 nd->path.dentry = mounted->mnt.mnt_root;
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 if (!read_seqretry(&mount_lock, nd->m_seq))
1169 goto failed;
1170 }
1171 nd->inode = nd->path.dentry->d_inode;
1172 return 0;
1173
1174 failed:
1175 nd->flags &= ~LOOKUP_RCU;
1176 if (!(nd->flags & LOOKUP_ROOT))
1177 nd->root.mnt = NULL;
1178 rcu_read_unlock();
1179 return -ECHILD;
1180 }
1181
1182 /*
1183 * Follow down to the covering mount currently visible to userspace. At each
1184 * point, the filesystem owning that dentry may be queried as to whether the
1185 * caller is permitted to proceed or not.
1186 */
1187 int follow_down(struct path *path)
1188 {
1189 unsigned managed;
1190 int ret;
1191
1192 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1193 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1194 /* Allow the filesystem to manage the transit without i_mutex
1195 * being held.
1196 *
1197 * We indicate to the filesystem if someone is trying to mount
1198 * something here. This gives autofs the chance to deny anyone
1199 * other than its daemon the right to mount on its
1200 * superstructure.
1201 *
1202 * The filesystem may sleep at this point.
1203 */
1204 if (managed & DCACHE_MANAGE_TRANSIT) {
1205 BUG_ON(!path->dentry->d_op);
1206 BUG_ON(!path->dentry->d_op->d_manage);
1207 ret = path->dentry->d_op->d_manage(
1208 path->dentry, false);
1209 if (ret < 0)
1210 return ret == -EISDIR ? 0 : ret;
1211 }
1212
1213 /* Transit to a mounted filesystem. */
1214 if (managed & DCACHE_MOUNTED) {
1215 struct vfsmount *mounted = lookup_mnt(path);
1216 if (!mounted)
1217 break;
1218 dput(path->dentry);
1219 mntput(path->mnt);
1220 path->mnt = mounted;
1221 path->dentry = dget(mounted->mnt_root);
1222 continue;
1223 }
1224
1225 /* Don't handle automount points here */
1226 break;
1227 }
1228 return 0;
1229 }
1230 EXPORT_SYMBOL(follow_down);
1231
1232 /*
1233 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1234 */
1235 static void follow_mount(struct path *path)
1236 {
1237 while (d_mountpoint(path->dentry)) {
1238 struct vfsmount *mounted = lookup_mnt(path);
1239 if (!mounted)
1240 break;
1241 dput(path->dentry);
1242 mntput(path->mnt);
1243 path->mnt = mounted;
1244 path->dentry = dget(mounted->mnt_root);
1245 }
1246 }
1247
1248 static void follow_dotdot(struct nameidata *nd)
1249 {
1250 set_root(nd);
1251
1252 while(1) {
1253 struct dentry *old = nd->path.dentry;
1254
1255 if (nd->path.dentry == nd->root.dentry &&
1256 nd->path.mnt == nd->root.mnt) {
1257 break;
1258 }
1259 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1260 /* rare case of legitimate dget_parent()... */
1261 nd->path.dentry = dget_parent(nd->path.dentry);
1262 dput(old);
1263 break;
1264 }
1265 if (!follow_up(&nd->path))
1266 break;
1267 }
1268 follow_mount(&nd->path);
1269 nd->inode = nd->path.dentry->d_inode;
1270 }
1271
1272 /*
1273 * This looks up the name in dcache, possibly revalidates the old dentry and
1274 * allocates a new one if not found or not valid. In the need_lookup argument
1275 * returns whether i_op->lookup is necessary.
1276 *
1277 * dir->d_inode->i_mutex must be held
1278 */
1279 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1280 unsigned int flags, bool *need_lookup)
1281 {
1282 struct dentry *dentry;
1283 int error;
1284
1285 *need_lookup = false;
1286 dentry = d_lookup(dir, name);
1287 if (dentry) {
1288 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1289 error = d_revalidate(dentry, flags);
1290 if (unlikely(error <= 0)) {
1291 if (error < 0) {
1292 dput(dentry);
1293 return ERR_PTR(error);
1294 } else if (!d_invalidate(dentry)) {
1295 dput(dentry);
1296 dentry = NULL;
1297 }
1298 }
1299 }
1300 }
1301
1302 if (!dentry) {
1303 dentry = d_alloc(dir, name);
1304 if (unlikely(!dentry))
1305 return ERR_PTR(-ENOMEM);
1306
1307 *need_lookup = true;
1308 }
1309 return dentry;
1310 }
1311
1312 /*
1313 * Call i_op->lookup on the dentry. The dentry must be negative and
1314 * unhashed.
1315 *
1316 * dir->d_inode->i_mutex must be held
1317 */
1318 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1319 unsigned int flags)
1320 {
1321 struct dentry *old;
1322
1323 /* Don't create child dentry for a dead directory. */
1324 if (unlikely(IS_DEADDIR(dir))) {
1325 dput(dentry);
1326 return ERR_PTR(-ENOENT);
1327 }
1328
1329 old = dir->i_op->lookup(dir, dentry, flags);
1330 if (unlikely(old)) {
1331 dput(dentry);
1332 dentry = old;
1333 }
1334 return dentry;
1335 }
1336
1337 static struct dentry *__lookup_hash(struct qstr *name,
1338 struct dentry *base, unsigned int flags)
1339 {
1340 bool need_lookup;
1341 struct dentry *dentry;
1342
1343 dentry = lookup_dcache(name, base, flags, &need_lookup);
1344 if (!need_lookup)
1345 return dentry;
1346
1347 return lookup_real(base->d_inode, dentry, flags);
1348 }
1349
1350 /*
1351 * It's more convoluted than I'd like it to be, but... it's still fairly
1352 * small and for now I'd prefer to have fast path as straight as possible.
1353 * It _is_ time-critical.
1354 */
1355 static int lookup_fast(struct nameidata *nd,
1356 struct path *path, struct inode **inode)
1357 {
1358 struct vfsmount *mnt = nd->path.mnt;
1359 struct dentry *dentry, *parent = nd->path.dentry;
1360 int need_reval = 1;
1361 int status = 1;
1362 int err;
1363
1364 /*
1365 * Rename seqlock is not required here because in the off chance
1366 * of a false negative due to a concurrent rename, we're going to
1367 * do the non-racy lookup, below.
1368 */
1369 if (nd->flags & LOOKUP_RCU) {
1370 unsigned seq;
1371 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1372 if (!dentry)
1373 goto unlazy;
1374
1375 /*
1376 * This sequence count validates that the inode matches
1377 * the dentry name information from lookup.
1378 */
1379 *inode = dentry->d_inode;
1380 if (read_seqcount_retry(&dentry->d_seq, seq))
1381 return -ECHILD;
1382
1383 /*
1384 * This sequence count validates that the parent had no
1385 * changes while we did the lookup of the dentry above.
1386 *
1387 * The memory barrier in read_seqcount_begin of child is
1388 * enough, we can use __read_seqcount_retry here.
1389 */
1390 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1391 return -ECHILD;
1392 nd->seq = seq;
1393
1394 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1395 status = d_revalidate(dentry, nd->flags);
1396 if (unlikely(status <= 0)) {
1397 if (status != -ECHILD)
1398 need_reval = 0;
1399 goto unlazy;
1400 }
1401 }
1402 path->mnt = mnt;
1403 path->dentry = dentry;
1404 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1405 goto unlazy;
1406 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1407 goto unlazy;
1408 return 0;
1409 unlazy:
1410 if (unlazy_walk(nd, dentry))
1411 return -ECHILD;
1412 } else {
1413 dentry = __d_lookup(parent, &nd->last);
1414 }
1415
1416 if (unlikely(!dentry))
1417 goto need_lookup;
1418
1419 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1420 status = d_revalidate(dentry, nd->flags);
1421 if (unlikely(status <= 0)) {
1422 if (status < 0) {
1423 dput(dentry);
1424 return status;
1425 }
1426 if (!d_invalidate(dentry)) {
1427 dput(dentry);
1428 goto need_lookup;
1429 }
1430 }
1431
1432 path->mnt = mnt;
1433 path->dentry = dentry;
1434 err = follow_managed(path, nd->flags);
1435 if (unlikely(err < 0)) {
1436 path_put_conditional(path, nd);
1437 return err;
1438 }
1439 if (err)
1440 nd->flags |= LOOKUP_JUMPED;
1441 *inode = path->dentry->d_inode;
1442 return 0;
1443
1444 need_lookup:
1445 return 1;
1446 }
1447
1448 /* Fast lookup failed, do it the slow way */
1449 static int lookup_slow(struct nameidata *nd, struct path *path)
1450 {
1451 struct dentry *dentry, *parent;
1452 int err;
1453
1454 parent = nd->path.dentry;
1455 BUG_ON(nd->inode != parent->d_inode);
1456
1457 mutex_lock(&parent->d_inode->i_mutex);
1458 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1459 mutex_unlock(&parent->d_inode->i_mutex);
1460 if (IS_ERR(dentry))
1461 return PTR_ERR(dentry);
1462 path->mnt = nd->path.mnt;
1463 path->dentry = dentry;
1464 err = follow_managed(path, nd->flags);
1465 if (unlikely(err < 0)) {
1466 path_put_conditional(path, nd);
1467 return err;
1468 }
1469 if (err)
1470 nd->flags |= LOOKUP_JUMPED;
1471 return 0;
1472 }
1473
1474 static inline int may_lookup(struct nameidata *nd)
1475 {
1476 if (nd->flags & LOOKUP_RCU) {
1477 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 if (err != -ECHILD)
1479 return err;
1480 if (unlazy_walk(nd, NULL))
1481 return -ECHILD;
1482 }
1483 return inode_permission(nd->inode, MAY_EXEC);
1484 }
1485
1486 static inline int handle_dots(struct nameidata *nd, int type)
1487 {
1488 if (type == LAST_DOTDOT) {
1489 if (nd->flags & LOOKUP_RCU) {
1490 if (follow_dotdot_rcu(nd))
1491 return -ECHILD;
1492 } else
1493 follow_dotdot(nd);
1494 }
1495 return 0;
1496 }
1497
1498 static void terminate_walk(struct nameidata *nd)
1499 {
1500 if (!(nd->flags & LOOKUP_RCU)) {
1501 path_put(&nd->path);
1502 } else {
1503 nd->flags &= ~LOOKUP_RCU;
1504 if (!(nd->flags & LOOKUP_ROOT))
1505 nd->root.mnt = NULL;
1506 rcu_read_unlock();
1507 }
1508 }
1509
1510 /*
1511 * Do we need to follow links? We _really_ want to be able
1512 * to do this check without having to look at inode->i_op,
1513 * so we keep a cache of "no, this doesn't need follow_link"
1514 * for the common case.
1515 */
1516 static inline int should_follow_link(struct dentry *dentry, int follow)
1517 {
1518 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1519 }
1520
1521 static inline int walk_component(struct nameidata *nd, struct path *path,
1522 int follow)
1523 {
1524 struct inode *inode;
1525 int err;
1526 /*
1527 * "." and ".." are special - ".." especially so because it has
1528 * to be able to know about the current root directory and
1529 * parent relationships.
1530 */
1531 if (unlikely(nd->last_type != LAST_NORM))
1532 return handle_dots(nd, nd->last_type);
1533 err = lookup_fast(nd, path, &inode);
1534 if (unlikely(err)) {
1535 if (err < 0)
1536 goto out_err;
1537
1538 err = lookup_slow(nd, path);
1539 if (err < 0)
1540 goto out_err;
1541
1542 inode = path->dentry->d_inode;
1543 }
1544 err = -ENOENT;
1545 if (!inode)
1546 goto out_path_put;
1547
1548 if (should_follow_link(path->dentry, follow)) {
1549 if (nd->flags & LOOKUP_RCU) {
1550 if (unlikely(unlazy_walk(nd, path->dentry))) {
1551 err = -ECHILD;
1552 goto out_err;
1553 }
1554 }
1555 BUG_ON(inode != path->dentry->d_inode);
1556 return 1;
1557 }
1558 path_to_nameidata(path, nd);
1559 nd->inode = inode;
1560 return 0;
1561
1562 out_path_put:
1563 path_to_nameidata(path, nd);
1564 out_err:
1565 terminate_walk(nd);
1566 return err;
1567 }
1568
1569 /*
1570 * This limits recursive symlink follows to 8, while
1571 * limiting consecutive symlinks to 40.
1572 *
1573 * Without that kind of total limit, nasty chains of consecutive
1574 * symlinks can cause almost arbitrarily long lookups.
1575 */
1576 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1577 {
1578 int res;
1579
1580 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1581 path_put_conditional(path, nd);
1582 path_put(&nd->path);
1583 return -ELOOP;
1584 }
1585 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1586
1587 nd->depth++;
1588 current->link_count++;
1589
1590 do {
1591 struct path link = *path;
1592 void *cookie;
1593
1594 res = follow_link(&link, nd, &cookie);
1595 if (res)
1596 break;
1597 res = walk_component(nd, path, LOOKUP_FOLLOW);
1598 put_link(nd, &link, cookie);
1599 } while (res > 0);
1600
1601 current->link_count--;
1602 nd->depth--;
1603 return res;
1604 }
1605
1606 /*
1607 * We can do the critical dentry name comparison and hashing
1608 * operations one word at a time, but we are limited to:
1609 *
1610 * - Architectures with fast unaligned word accesses. We could
1611 * do a "get_unaligned()" if this helps and is sufficiently
1612 * fast.
1613 *
1614 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1615 * do not trap on the (extremely unlikely) case of a page
1616 * crossing operation.
1617 *
1618 * - Furthermore, we need an efficient 64-bit compile for the
1619 * 64-bit case in order to generate the "number of bytes in
1620 * the final mask". Again, that could be replaced with a
1621 * efficient population count instruction or similar.
1622 */
1623 #ifdef CONFIG_DCACHE_WORD_ACCESS
1624
1625 #include <asm/word-at-a-time.h>
1626
1627 #ifdef CONFIG_64BIT
1628
1629 static inline unsigned int fold_hash(unsigned long hash)
1630 {
1631 hash += hash >> (8*sizeof(int));
1632 return hash;
1633 }
1634
1635 #else /* 32-bit case */
1636
1637 #define fold_hash(x) (x)
1638
1639 #endif
1640
1641 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1642 {
1643 unsigned long a, mask;
1644 unsigned long hash = 0;
1645
1646 for (;;) {
1647 a = load_unaligned_zeropad(name);
1648 if (len < sizeof(unsigned long))
1649 break;
1650 hash += a;
1651 hash *= 9;
1652 name += sizeof(unsigned long);
1653 len -= sizeof(unsigned long);
1654 if (!len)
1655 goto done;
1656 }
1657 mask = bytemask_from_count(len);
1658 hash += mask & a;
1659 done:
1660 return fold_hash(hash);
1661 }
1662 EXPORT_SYMBOL(full_name_hash);
1663
1664 /*
1665 * Calculate the length and hash of the path component, and
1666 * return the length of the component;
1667 */
1668 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1669 {
1670 unsigned long a, b, adata, bdata, mask, hash, len;
1671 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1672
1673 hash = a = 0;
1674 len = -sizeof(unsigned long);
1675 do {
1676 hash = (hash + a) * 9;
1677 len += sizeof(unsigned long);
1678 a = load_unaligned_zeropad(name+len);
1679 b = a ^ REPEAT_BYTE('/');
1680 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1681
1682 adata = prep_zero_mask(a, adata, &constants);
1683 bdata = prep_zero_mask(b, bdata, &constants);
1684
1685 mask = create_zero_mask(adata | bdata);
1686
1687 hash += a & zero_bytemask(mask);
1688 *hashp = fold_hash(hash);
1689
1690 return len + find_zero(mask);
1691 }
1692
1693 #else
1694
1695 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1696 {
1697 unsigned long hash = init_name_hash();
1698 while (len--)
1699 hash = partial_name_hash(*name++, hash);
1700 return end_name_hash(hash);
1701 }
1702 EXPORT_SYMBOL(full_name_hash);
1703
1704 /*
1705 * We know there's a real path component here of at least
1706 * one character.
1707 */
1708 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1709 {
1710 unsigned long hash = init_name_hash();
1711 unsigned long len = 0, c;
1712
1713 c = (unsigned char)*name;
1714 do {
1715 len++;
1716 hash = partial_name_hash(c, hash);
1717 c = (unsigned char)name[len];
1718 } while (c && c != '/');
1719 *hashp = end_name_hash(hash);
1720 return len;
1721 }
1722
1723 #endif
1724
1725 /*
1726 * Name resolution.
1727 * This is the basic name resolution function, turning a pathname into
1728 * the final dentry. We expect 'base' to be positive and a directory.
1729 *
1730 * Returns 0 and nd will have valid dentry and mnt on success.
1731 * Returns error and drops reference to input namei data on failure.
1732 */
1733 static int link_path_walk(const char *name, struct nameidata *nd)
1734 {
1735 struct path next;
1736 int err;
1737
1738 while (*name=='/')
1739 name++;
1740 if (!*name)
1741 return 0;
1742
1743 /* At this point we know we have a real path component. */
1744 for(;;) {
1745 struct qstr this;
1746 long len;
1747 int type;
1748
1749 err = may_lookup(nd);
1750 if (err)
1751 break;
1752
1753 len = hash_name(name, &this.hash);
1754 this.name = name;
1755 this.len = len;
1756
1757 type = LAST_NORM;
1758 if (name[0] == '.') switch (len) {
1759 case 2:
1760 if (name[1] == '.') {
1761 type = LAST_DOTDOT;
1762 nd->flags |= LOOKUP_JUMPED;
1763 }
1764 break;
1765 case 1:
1766 type = LAST_DOT;
1767 }
1768 if (likely(type == LAST_NORM)) {
1769 struct dentry *parent = nd->path.dentry;
1770 nd->flags &= ~LOOKUP_JUMPED;
1771 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1772 err = parent->d_op->d_hash(parent, &this);
1773 if (err < 0)
1774 break;
1775 }
1776 }
1777
1778 nd->last = this;
1779 nd->last_type = type;
1780
1781 if (!name[len])
1782 return 0;
1783 /*
1784 * If it wasn't NUL, we know it was '/'. Skip that
1785 * slash, and continue until no more slashes.
1786 */
1787 do {
1788 len++;
1789 } while (unlikely(name[len] == '/'));
1790 if (!name[len])
1791 return 0;
1792
1793 name += len;
1794
1795 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1796 if (err < 0)
1797 return err;
1798
1799 if (err) {
1800 err = nested_symlink(&next, nd);
1801 if (err)
1802 return err;
1803 }
1804 if (!d_can_lookup(nd->path.dentry)) {
1805 err = -ENOTDIR;
1806 break;
1807 }
1808 }
1809 terminate_walk(nd);
1810 return err;
1811 }
1812
1813 static int path_init(int dfd, const char *name, unsigned int flags,
1814 struct nameidata *nd, struct file **fp)
1815 {
1816 int retval = 0;
1817
1818 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1819 nd->flags = flags | LOOKUP_JUMPED;
1820 nd->depth = 0;
1821 if (flags & LOOKUP_ROOT) {
1822 struct dentry *root = nd->root.dentry;
1823 struct inode *inode = root->d_inode;
1824 if (*name) {
1825 if (!d_can_lookup(root))
1826 return -ENOTDIR;
1827 retval = inode_permission(inode, MAY_EXEC);
1828 if (retval)
1829 return retval;
1830 }
1831 nd->path = nd->root;
1832 nd->inode = inode;
1833 if (flags & LOOKUP_RCU) {
1834 rcu_read_lock();
1835 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1836 nd->m_seq = read_seqbegin(&mount_lock);
1837 } else {
1838 path_get(&nd->path);
1839 }
1840 return 0;
1841 }
1842
1843 nd->root.mnt = NULL;
1844
1845 nd->m_seq = read_seqbegin(&mount_lock);
1846 if (*name=='/') {
1847 if (flags & LOOKUP_RCU) {
1848 rcu_read_lock();
1849 set_root_rcu(nd);
1850 } else {
1851 set_root(nd);
1852 path_get(&nd->root);
1853 }
1854 nd->path = nd->root;
1855 } else if (dfd == AT_FDCWD) {
1856 if (flags & LOOKUP_RCU) {
1857 struct fs_struct *fs = current->fs;
1858 unsigned seq;
1859
1860 rcu_read_lock();
1861
1862 do {
1863 seq = read_seqcount_begin(&fs->seq);
1864 nd->path = fs->pwd;
1865 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1866 } while (read_seqcount_retry(&fs->seq, seq));
1867 } else {
1868 get_fs_pwd(current->fs, &nd->path);
1869 }
1870 } else {
1871 /* Caller must check execute permissions on the starting path component */
1872 struct fd f = fdget_raw(dfd);
1873 struct dentry *dentry;
1874
1875 if (!f.file)
1876 return -EBADF;
1877
1878 dentry = f.file->f_path.dentry;
1879
1880 if (*name) {
1881 if (!d_can_lookup(dentry)) {
1882 fdput(f);
1883 return -ENOTDIR;
1884 }
1885 }
1886
1887 nd->path = f.file->f_path;
1888 if (flags & LOOKUP_RCU) {
1889 if (f.flags & FDPUT_FPUT)
1890 *fp = f.file;
1891 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1892 rcu_read_lock();
1893 } else {
1894 path_get(&nd->path);
1895 fdput(f);
1896 }
1897 }
1898
1899 nd->inode = nd->path.dentry->d_inode;
1900 return 0;
1901 }
1902
1903 static inline int lookup_last(struct nameidata *nd, struct path *path)
1904 {
1905 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1906 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1907
1908 nd->flags &= ~LOOKUP_PARENT;
1909 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1910 }
1911
1912 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1913 static int path_lookupat(int dfd, const char *name,
1914 unsigned int flags, struct nameidata *nd)
1915 {
1916 struct file *base = NULL;
1917 struct path path;
1918 int err;
1919
1920 /*
1921 * Path walking is largely split up into 2 different synchronisation
1922 * schemes, rcu-walk and ref-walk (explained in
1923 * Documentation/filesystems/path-lookup.txt). These share much of the
1924 * path walk code, but some things particularly setup, cleanup, and
1925 * following mounts are sufficiently divergent that functions are
1926 * duplicated. Typically there is a function foo(), and its RCU
1927 * analogue, foo_rcu().
1928 *
1929 * -ECHILD is the error number of choice (just to avoid clashes) that
1930 * is returned if some aspect of an rcu-walk fails. Such an error must
1931 * be handled by restarting a traditional ref-walk (which will always
1932 * be able to complete).
1933 */
1934 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1935
1936 if (unlikely(err))
1937 return err;
1938
1939 current->total_link_count = 0;
1940 err = link_path_walk(name, nd);
1941
1942 if (!err && !(flags & LOOKUP_PARENT)) {
1943 err = lookup_last(nd, &path);
1944 while (err > 0) {
1945 void *cookie;
1946 struct path link = path;
1947 err = may_follow_link(&link, nd);
1948 if (unlikely(err))
1949 break;
1950 nd->flags |= LOOKUP_PARENT;
1951 err = follow_link(&link, nd, &cookie);
1952 if (err)
1953 break;
1954 err = lookup_last(nd, &path);
1955 put_link(nd, &link, cookie);
1956 }
1957 }
1958
1959 if (!err)
1960 err = complete_walk(nd);
1961
1962 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1963 if (!d_can_lookup(nd->path.dentry)) {
1964 path_put(&nd->path);
1965 err = -ENOTDIR;
1966 }
1967 }
1968
1969 if (base)
1970 fput(base);
1971
1972 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1973 path_put(&nd->root);
1974 nd->root.mnt = NULL;
1975 }
1976 return err;
1977 }
1978
1979 static int filename_lookup(int dfd, struct filename *name,
1980 unsigned int flags, struct nameidata *nd)
1981 {
1982 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1983 if (unlikely(retval == -ECHILD))
1984 retval = path_lookupat(dfd, name->name, flags, nd);
1985 if (unlikely(retval == -ESTALE))
1986 retval = path_lookupat(dfd, name->name,
1987 flags | LOOKUP_REVAL, nd);
1988
1989 if (likely(!retval))
1990 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1991 return retval;
1992 }
1993
1994 static int do_path_lookup(int dfd, const char *name,
1995 unsigned int flags, struct nameidata *nd)
1996 {
1997 struct filename filename = { .name = name };
1998
1999 return filename_lookup(dfd, &filename, flags, nd);
2000 }
2001
2002 /* does lookup, returns the object with parent locked */
2003 struct dentry *kern_path_locked(const char *name, struct path *path)
2004 {
2005 struct nameidata nd;
2006 struct dentry *d;
2007 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2008 if (err)
2009 return ERR_PTR(err);
2010 if (nd.last_type != LAST_NORM) {
2011 path_put(&nd.path);
2012 return ERR_PTR(-EINVAL);
2013 }
2014 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2015 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2016 if (IS_ERR(d)) {
2017 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2018 path_put(&nd.path);
2019 return d;
2020 }
2021 *path = nd.path;
2022 return d;
2023 }
2024
2025 int kern_path(const char *name, unsigned int flags, struct path *path)
2026 {
2027 struct nameidata nd;
2028 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2029 if (!res)
2030 *path = nd.path;
2031 return res;
2032 }
2033 EXPORT_SYMBOL(kern_path);
2034
2035 /**
2036 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2037 * @dentry: pointer to dentry of the base directory
2038 * @mnt: pointer to vfs mount of the base directory
2039 * @name: pointer to file name
2040 * @flags: lookup flags
2041 * @path: pointer to struct path to fill
2042 */
2043 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2044 const char *name, unsigned int flags,
2045 struct path *path)
2046 {
2047 struct nameidata nd;
2048 int err;
2049 nd.root.dentry = dentry;
2050 nd.root.mnt = mnt;
2051 BUG_ON(flags & LOOKUP_PARENT);
2052 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2053 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2054 if (!err)
2055 *path = nd.path;
2056 return err;
2057 }
2058 EXPORT_SYMBOL(vfs_path_lookup);
2059
2060 /*
2061 * Restricted form of lookup. Doesn't follow links, single-component only,
2062 * needs parent already locked. Doesn't follow mounts.
2063 * SMP-safe.
2064 */
2065 static struct dentry *lookup_hash(struct nameidata *nd)
2066 {
2067 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2068 }
2069
2070 /**
2071 * lookup_one_len - filesystem helper to lookup single pathname component
2072 * @name: pathname component to lookup
2073 * @base: base directory to lookup from
2074 * @len: maximum length @len should be interpreted to
2075 *
2076 * Note that this routine is purely a helper for filesystem usage and should
2077 * not be called by generic code. Also note that by using this function the
2078 * nameidata argument is passed to the filesystem methods and a filesystem
2079 * using this helper needs to be prepared for that.
2080 */
2081 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2082 {
2083 struct qstr this;
2084 unsigned int c;
2085 int err;
2086
2087 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2088
2089 this.name = name;
2090 this.len = len;
2091 this.hash = full_name_hash(name, len);
2092 if (!len)
2093 return ERR_PTR(-EACCES);
2094
2095 if (unlikely(name[0] == '.')) {
2096 if (len < 2 || (len == 2 && name[1] == '.'))
2097 return ERR_PTR(-EACCES);
2098 }
2099
2100 while (len--) {
2101 c = *(const unsigned char *)name++;
2102 if (c == '/' || c == '\0')
2103 return ERR_PTR(-EACCES);
2104 }
2105 /*
2106 * See if the low-level filesystem might want
2107 * to use its own hash..
2108 */
2109 if (base->d_flags & DCACHE_OP_HASH) {
2110 int err = base->d_op->d_hash(base, &this);
2111 if (err < 0)
2112 return ERR_PTR(err);
2113 }
2114
2115 err = inode_permission(base->d_inode, MAY_EXEC);
2116 if (err)
2117 return ERR_PTR(err);
2118
2119 return __lookup_hash(&this, base, 0);
2120 }
2121 EXPORT_SYMBOL(lookup_one_len);
2122
2123 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2124 struct path *path, int *empty)
2125 {
2126 struct nameidata nd;
2127 struct filename *tmp = getname_flags(name, flags, empty);
2128 int err = PTR_ERR(tmp);
2129 if (!IS_ERR(tmp)) {
2130
2131 BUG_ON(flags & LOOKUP_PARENT);
2132
2133 err = filename_lookup(dfd, tmp, flags, &nd);
2134 putname(tmp);
2135 if (!err)
2136 *path = nd.path;
2137 }
2138 return err;
2139 }
2140
2141 int user_path_at(int dfd, const char __user *name, unsigned flags,
2142 struct path *path)
2143 {
2144 return user_path_at_empty(dfd, name, flags, path, NULL);
2145 }
2146 EXPORT_SYMBOL(user_path_at);
2147
2148 /*
2149 * NB: most callers don't do anything directly with the reference to the
2150 * to struct filename, but the nd->last pointer points into the name string
2151 * allocated by getname. So we must hold the reference to it until all
2152 * path-walking is complete.
2153 */
2154 static struct filename *
2155 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2156 unsigned int flags)
2157 {
2158 struct filename *s = getname(path);
2159 int error;
2160
2161 /* only LOOKUP_REVAL is allowed in extra flags */
2162 flags &= LOOKUP_REVAL;
2163
2164 if (IS_ERR(s))
2165 return s;
2166
2167 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2168 if (error) {
2169 putname(s);
2170 return ERR_PTR(error);
2171 }
2172
2173 return s;
2174 }
2175
2176 /**
2177 * mountpoint_last - look up last component for umount
2178 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2179 * @path: pointer to container for result
2180 *
2181 * This is a special lookup_last function just for umount. In this case, we
2182 * need to resolve the path without doing any revalidation.
2183 *
2184 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2185 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2186 * in almost all cases, this lookup will be served out of the dcache. The only
2187 * cases where it won't are if nd->last refers to a symlink or the path is
2188 * bogus and it doesn't exist.
2189 *
2190 * Returns:
2191 * -error: if there was an error during lookup. This includes -ENOENT if the
2192 * lookup found a negative dentry. The nd->path reference will also be
2193 * put in this case.
2194 *
2195 * 0: if we successfully resolved nd->path and found it to not to be a
2196 * symlink that needs to be followed. "path" will also be populated.
2197 * The nd->path reference will also be put.
2198 *
2199 * 1: if we successfully resolved nd->last and found it to be a symlink
2200 * that needs to be followed. "path" will be populated with the path
2201 * to the link, and nd->path will *not* be put.
2202 */
2203 static int
2204 mountpoint_last(struct nameidata *nd, struct path *path)
2205 {
2206 int error = 0;
2207 struct dentry *dentry;
2208 struct dentry *dir = nd->path.dentry;
2209
2210 /* If we're in rcuwalk, drop out of it to handle last component */
2211 if (nd->flags & LOOKUP_RCU) {
2212 if (unlazy_walk(nd, NULL)) {
2213 error = -ECHILD;
2214 goto out;
2215 }
2216 }
2217
2218 nd->flags &= ~LOOKUP_PARENT;
2219
2220 if (unlikely(nd->last_type != LAST_NORM)) {
2221 error = handle_dots(nd, nd->last_type);
2222 if (error)
2223 goto out;
2224 dentry = dget(nd->path.dentry);
2225 goto done;
2226 }
2227
2228 mutex_lock(&dir->d_inode->i_mutex);
2229 dentry = d_lookup(dir, &nd->last);
2230 if (!dentry) {
2231 /*
2232 * No cached dentry. Mounted dentries are pinned in the cache,
2233 * so that means that this dentry is probably a symlink or the
2234 * path doesn't actually point to a mounted dentry.
2235 */
2236 dentry = d_alloc(dir, &nd->last);
2237 if (!dentry) {
2238 error = -ENOMEM;
2239 mutex_unlock(&dir->d_inode->i_mutex);
2240 goto out;
2241 }
2242 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2243 error = PTR_ERR(dentry);
2244 if (IS_ERR(dentry)) {
2245 mutex_unlock(&dir->d_inode->i_mutex);
2246 goto out;
2247 }
2248 }
2249 mutex_unlock(&dir->d_inode->i_mutex);
2250
2251 done:
2252 if (!dentry->d_inode) {
2253 error = -ENOENT;
2254 dput(dentry);
2255 goto out;
2256 }
2257 path->dentry = dentry;
2258 path->mnt = mntget(nd->path.mnt);
2259 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2260 return 1;
2261 follow_mount(path);
2262 error = 0;
2263 out:
2264 terminate_walk(nd);
2265 return error;
2266 }
2267
2268 /**
2269 * path_mountpoint - look up a path to be umounted
2270 * @dfd: directory file descriptor to start walk from
2271 * @name: full pathname to walk
2272 * @path: pointer to container for result
2273 * @flags: lookup flags
2274 *
2275 * Look up the given name, but don't attempt to revalidate the last component.
2276 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2277 */
2278 static int
2279 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2280 {
2281 struct file *base = NULL;
2282 struct nameidata nd;
2283 int err;
2284
2285 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2286 if (unlikely(err))
2287 return err;
2288
2289 current->total_link_count = 0;
2290 err = link_path_walk(name, &nd);
2291 if (err)
2292 goto out;
2293
2294 err = mountpoint_last(&nd, path);
2295 while (err > 0) {
2296 void *cookie;
2297 struct path link = *path;
2298 err = may_follow_link(&link, &nd);
2299 if (unlikely(err))
2300 break;
2301 nd.flags |= LOOKUP_PARENT;
2302 err = follow_link(&link, &nd, &cookie);
2303 if (err)
2304 break;
2305 err = mountpoint_last(&nd, path);
2306 put_link(&nd, &link, cookie);
2307 }
2308 out:
2309 if (base)
2310 fput(base);
2311
2312 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2313 path_put(&nd.root);
2314
2315 return err;
2316 }
2317
2318 static int
2319 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2320 unsigned int flags)
2321 {
2322 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2323 if (unlikely(error == -ECHILD))
2324 error = path_mountpoint(dfd, s->name, path, flags);
2325 if (unlikely(error == -ESTALE))
2326 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2327 if (likely(!error))
2328 audit_inode(s, path->dentry, 0);
2329 return error;
2330 }
2331
2332 /**
2333 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2334 * @dfd: directory file descriptor
2335 * @name: pathname from userland
2336 * @flags: lookup flags
2337 * @path: pointer to container to hold result
2338 *
2339 * A umount is a special case for path walking. We're not actually interested
2340 * in the inode in this situation, and ESTALE errors can be a problem. We
2341 * simply want track down the dentry and vfsmount attached at the mountpoint
2342 * and avoid revalidating the last component.
2343 *
2344 * Returns 0 and populates "path" on success.
2345 */
2346 int
2347 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2348 struct path *path)
2349 {
2350 struct filename *s = getname(name);
2351 int error;
2352 if (IS_ERR(s))
2353 return PTR_ERR(s);
2354 error = filename_mountpoint(dfd, s, path, flags);
2355 putname(s);
2356 return error;
2357 }
2358
2359 int
2360 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2361 unsigned int flags)
2362 {
2363 struct filename s = {.name = name};
2364 return filename_mountpoint(dfd, &s, path, flags);
2365 }
2366 EXPORT_SYMBOL(kern_path_mountpoint);
2367
2368 /*
2369 * It's inline, so penalty for filesystems that don't use sticky bit is
2370 * minimal.
2371 */
2372 static inline int check_sticky(struct inode *dir, struct inode *inode)
2373 {
2374 kuid_t fsuid = current_fsuid();
2375
2376 if (!(dir->i_mode & S_ISVTX))
2377 return 0;
2378 if (uid_eq(inode->i_uid, fsuid))
2379 return 0;
2380 if (uid_eq(dir->i_uid, fsuid))
2381 return 0;
2382 return !inode_capable(inode, CAP_FOWNER);
2383 }
2384
2385 /*
2386 * Check whether we can remove a link victim from directory dir, check
2387 * whether the type of victim is right.
2388 * 1. We can't do it if dir is read-only (done in permission())
2389 * 2. We should have write and exec permissions on dir
2390 * 3. We can't remove anything from append-only dir
2391 * 4. We can't do anything with immutable dir (done in permission())
2392 * 5. If the sticky bit on dir is set we should either
2393 * a. be owner of dir, or
2394 * b. be owner of victim, or
2395 * c. have CAP_FOWNER capability
2396 * 6. If the victim is append-only or immutable we can't do antyhing with
2397 * links pointing to it.
2398 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2399 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2400 * 9. We can't remove a root or mountpoint.
2401 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2402 * nfs_async_unlink().
2403 */
2404 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2405 {
2406 struct inode *inode = victim->d_inode;
2407 int error;
2408
2409 if (d_is_negative(victim))
2410 return -ENOENT;
2411 BUG_ON(!inode);
2412
2413 BUG_ON(victim->d_parent->d_inode != dir);
2414 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2415
2416 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2417 if (error)
2418 return error;
2419 if (IS_APPEND(dir))
2420 return -EPERM;
2421
2422 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2423 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2424 return -EPERM;
2425 if (isdir) {
2426 if (!d_is_dir(victim))
2427 return -ENOTDIR;
2428 if (IS_ROOT(victim))
2429 return -EBUSY;
2430 } else if (d_is_dir(victim))
2431 return -EISDIR;
2432 if (IS_DEADDIR(dir))
2433 return -ENOENT;
2434 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2435 return -EBUSY;
2436 return 0;
2437 }
2438
2439 /* Check whether we can create an object with dentry child in directory
2440 * dir.
2441 * 1. We can't do it if child already exists (open has special treatment for
2442 * this case, but since we are inlined it's OK)
2443 * 2. We can't do it if dir is read-only (done in permission())
2444 * 3. We should have write and exec permissions on dir
2445 * 4. We can't do it if dir is immutable (done in permission())
2446 */
2447 static inline int may_create(struct inode *dir, struct dentry *child)
2448 {
2449 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2450 if (child->d_inode)
2451 return -EEXIST;
2452 if (IS_DEADDIR(dir))
2453 return -ENOENT;
2454 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2455 }
2456
2457 /*
2458 * p1 and p2 should be directories on the same fs.
2459 */
2460 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2461 {
2462 struct dentry *p;
2463
2464 if (p1 == p2) {
2465 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2466 return NULL;
2467 }
2468
2469 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2470
2471 p = d_ancestor(p2, p1);
2472 if (p) {
2473 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2474 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2475 return p;
2476 }
2477
2478 p = d_ancestor(p1, p2);
2479 if (p) {
2480 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2481 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2482 return p;
2483 }
2484
2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2487 return NULL;
2488 }
2489 EXPORT_SYMBOL(lock_rename);
2490
2491 void unlock_rename(struct dentry *p1, struct dentry *p2)
2492 {
2493 mutex_unlock(&p1->d_inode->i_mutex);
2494 if (p1 != p2) {
2495 mutex_unlock(&p2->d_inode->i_mutex);
2496 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2497 }
2498 }
2499 EXPORT_SYMBOL(unlock_rename);
2500
2501 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2502 bool want_excl)
2503 {
2504 int error = may_create(dir, dentry);
2505 if (error)
2506 return error;
2507
2508 if (!dir->i_op->create)
2509 return -EACCES; /* shouldn't it be ENOSYS? */
2510 mode &= S_IALLUGO;
2511 mode |= S_IFREG;
2512 error = security_inode_create(dir, dentry, mode);
2513 if (error)
2514 return error;
2515 error = dir->i_op->create(dir, dentry, mode, want_excl);
2516 if (!error)
2517 fsnotify_create(dir, dentry);
2518 return error;
2519 }
2520 EXPORT_SYMBOL(vfs_create);
2521
2522 static int may_open(struct path *path, int acc_mode, int flag)
2523 {
2524 struct dentry *dentry = path->dentry;
2525 struct inode *inode = dentry->d_inode;
2526 int error;
2527
2528 /* O_PATH? */
2529 if (!acc_mode)
2530 return 0;
2531
2532 if (!inode)
2533 return -ENOENT;
2534
2535 switch (inode->i_mode & S_IFMT) {
2536 case S_IFLNK:
2537 return -ELOOP;
2538 case S_IFDIR:
2539 if (acc_mode & MAY_WRITE)
2540 return -EISDIR;
2541 break;
2542 case S_IFBLK:
2543 case S_IFCHR:
2544 if (path->mnt->mnt_flags & MNT_NODEV)
2545 return -EACCES;
2546 /*FALLTHRU*/
2547 case S_IFIFO:
2548 case S_IFSOCK:
2549 flag &= ~O_TRUNC;
2550 break;
2551 }
2552
2553 error = inode_permission(inode, acc_mode);
2554 if (error)
2555 return error;
2556
2557 /*
2558 * An append-only file must be opened in append mode for writing.
2559 */
2560 if (IS_APPEND(inode)) {
2561 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2562 return -EPERM;
2563 if (flag & O_TRUNC)
2564 return -EPERM;
2565 }
2566
2567 /* O_NOATIME can only be set by the owner or superuser */
2568 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2569 return -EPERM;
2570
2571 return 0;
2572 }
2573
2574 static int handle_truncate(struct file *filp)
2575 {
2576 struct path *path = &filp->f_path;
2577 struct inode *inode = path->dentry->d_inode;
2578 int error = get_write_access(inode);
2579 if (error)
2580 return error;
2581 /*
2582 * Refuse to truncate files with mandatory locks held on them.
2583 */
2584 error = locks_verify_locked(filp);
2585 if (!error)
2586 error = security_path_truncate(path);
2587 if (!error) {
2588 error = do_truncate(path->dentry, 0,
2589 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2590 filp);
2591 }
2592 put_write_access(inode);
2593 return error;
2594 }
2595
2596 static inline int open_to_namei_flags(int flag)
2597 {
2598 if ((flag & O_ACCMODE) == 3)
2599 flag--;
2600 return flag;
2601 }
2602
2603 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2604 {
2605 int error = security_path_mknod(dir, dentry, mode, 0);
2606 if (error)
2607 return error;
2608
2609 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2610 if (error)
2611 return error;
2612
2613 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2614 }
2615
2616 /*
2617 * Attempt to atomically look up, create and open a file from a negative
2618 * dentry.
2619 *
2620 * Returns 0 if successful. The file will have been created and attached to
2621 * @file by the filesystem calling finish_open().
2622 *
2623 * Returns 1 if the file was looked up only or didn't need creating. The
2624 * caller will need to perform the open themselves. @path will have been
2625 * updated to point to the new dentry. This may be negative.
2626 *
2627 * Returns an error code otherwise.
2628 */
2629 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2630 struct path *path, struct file *file,
2631 const struct open_flags *op,
2632 bool got_write, bool need_lookup,
2633 int *opened)
2634 {
2635 struct inode *dir = nd->path.dentry->d_inode;
2636 unsigned open_flag = open_to_namei_flags(op->open_flag);
2637 umode_t mode;
2638 int error;
2639 int acc_mode;
2640 int create_error = 0;
2641 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2642 bool excl;
2643
2644 BUG_ON(dentry->d_inode);
2645
2646 /* Don't create child dentry for a dead directory. */
2647 if (unlikely(IS_DEADDIR(dir))) {
2648 error = -ENOENT;
2649 goto out;
2650 }
2651
2652 mode = op->mode;
2653 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2654 mode &= ~current_umask();
2655
2656 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2657 if (excl)
2658 open_flag &= ~O_TRUNC;
2659
2660 /*
2661 * Checking write permission is tricky, bacuse we don't know if we are
2662 * going to actually need it: O_CREAT opens should work as long as the
2663 * file exists. But checking existence breaks atomicity. The trick is
2664 * to check access and if not granted clear O_CREAT from the flags.
2665 *
2666 * Another problem is returing the "right" error value (e.g. for an
2667 * O_EXCL open we want to return EEXIST not EROFS).
2668 */
2669 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2670 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2671 if (!(open_flag & O_CREAT)) {
2672 /*
2673 * No O_CREATE -> atomicity not a requirement -> fall
2674 * back to lookup + open
2675 */
2676 goto no_open;
2677 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2678 /* Fall back and fail with the right error */
2679 create_error = -EROFS;
2680 goto no_open;
2681 } else {
2682 /* No side effects, safe to clear O_CREAT */
2683 create_error = -EROFS;
2684 open_flag &= ~O_CREAT;
2685 }
2686 }
2687
2688 if (open_flag & O_CREAT) {
2689 error = may_o_create(&nd->path, dentry, mode);
2690 if (error) {
2691 create_error = error;
2692 if (open_flag & O_EXCL)
2693 goto no_open;
2694 open_flag &= ~O_CREAT;
2695 }
2696 }
2697
2698 if (nd->flags & LOOKUP_DIRECTORY)
2699 open_flag |= O_DIRECTORY;
2700
2701 file->f_path.dentry = DENTRY_NOT_SET;
2702 file->f_path.mnt = nd->path.mnt;
2703 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2704 opened);
2705 if (error < 0) {
2706 if (create_error && error == -ENOENT)
2707 error = create_error;
2708 goto out;
2709 }
2710
2711 if (error) { /* returned 1, that is */
2712 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2713 error = -EIO;
2714 goto out;
2715 }
2716 if (file->f_path.dentry) {
2717 dput(dentry);
2718 dentry = file->f_path.dentry;
2719 }
2720 if (*opened & FILE_CREATED)
2721 fsnotify_create(dir, dentry);
2722 if (!dentry->d_inode) {
2723 WARN_ON(*opened & FILE_CREATED);
2724 if (create_error) {
2725 error = create_error;
2726 goto out;
2727 }
2728 } else {
2729 if (excl && !(*opened & FILE_CREATED)) {
2730 error = -EEXIST;
2731 goto out;
2732 }
2733 }
2734 goto looked_up;
2735 }
2736
2737 /*
2738 * We didn't have the inode before the open, so check open permission
2739 * here.
2740 */
2741 acc_mode = op->acc_mode;
2742 if (*opened & FILE_CREATED) {
2743 WARN_ON(!(open_flag & O_CREAT));
2744 fsnotify_create(dir, dentry);
2745 acc_mode = MAY_OPEN;
2746 }
2747 error = may_open(&file->f_path, acc_mode, open_flag);
2748 if (error)
2749 fput(file);
2750
2751 out:
2752 dput(dentry);
2753 return error;
2754
2755 no_open:
2756 if (need_lookup) {
2757 dentry = lookup_real(dir, dentry, nd->flags);
2758 if (IS_ERR(dentry))
2759 return PTR_ERR(dentry);
2760
2761 if (create_error) {
2762 int open_flag = op->open_flag;
2763
2764 error = create_error;
2765 if ((open_flag & O_EXCL)) {
2766 if (!dentry->d_inode)
2767 goto out;
2768 } else if (!dentry->d_inode) {
2769 goto out;
2770 } else if ((open_flag & O_TRUNC) &&
2771 S_ISREG(dentry->d_inode->i_mode)) {
2772 goto out;
2773 }
2774 /* will fail later, go on to get the right error */
2775 }
2776 }
2777 looked_up:
2778 path->dentry = dentry;
2779 path->mnt = nd->path.mnt;
2780 return 1;
2781 }
2782
2783 /*
2784 * Look up and maybe create and open the last component.
2785 *
2786 * Must be called with i_mutex held on parent.
2787 *
2788 * Returns 0 if the file was successfully atomically created (if necessary) and
2789 * opened. In this case the file will be returned attached to @file.
2790 *
2791 * Returns 1 if the file was not completely opened at this time, though lookups
2792 * and creations will have been performed and the dentry returned in @path will
2793 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2794 * specified then a negative dentry may be returned.
2795 *
2796 * An error code is returned otherwise.
2797 *
2798 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2799 * cleared otherwise prior to returning.
2800 */
2801 static int lookup_open(struct nameidata *nd, struct path *path,
2802 struct file *file,
2803 const struct open_flags *op,
2804 bool got_write, int *opened)
2805 {
2806 struct dentry *dir = nd->path.dentry;
2807 struct inode *dir_inode = dir->d_inode;
2808 struct dentry *dentry;
2809 int error;
2810 bool need_lookup;
2811
2812 *opened &= ~FILE_CREATED;
2813 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2814 if (IS_ERR(dentry))
2815 return PTR_ERR(dentry);
2816
2817 /* Cached positive dentry: will open in f_op->open */
2818 if (!need_lookup && dentry->d_inode)
2819 goto out_no_open;
2820
2821 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2822 return atomic_open(nd, dentry, path, file, op, got_write,
2823 need_lookup, opened);
2824 }
2825
2826 if (need_lookup) {
2827 BUG_ON(dentry->d_inode);
2828
2829 dentry = lookup_real(dir_inode, dentry, nd->flags);
2830 if (IS_ERR(dentry))
2831 return PTR_ERR(dentry);
2832 }
2833
2834 /* Negative dentry, just create the file */
2835 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2836 umode_t mode = op->mode;
2837 if (!IS_POSIXACL(dir->d_inode))
2838 mode &= ~current_umask();
2839 /*
2840 * This write is needed to ensure that a
2841 * rw->ro transition does not occur between
2842 * the time when the file is created and when
2843 * a permanent write count is taken through
2844 * the 'struct file' in finish_open().
2845 */
2846 if (!got_write) {
2847 error = -EROFS;
2848 goto out_dput;
2849 }
2850 *opened |= FILE_CREATED;
2851 error = security_path_mknod(&nd->path, dentry, mode, 0);
2852 if (error)
2853 goto out_dput;
2854 error = vfs_create(dir->d_inode, dentry, mode,
2855 nd->flags & LOOKUP_EXCL);
2856 if (error)
2857 goto out_dput;
2858 }
2859 out_no_open:
2860 path->dentry = dentry;
2861 path->mnt = nd->path.mnt;
2862 return 1;
2863
2864 out_dput:
2865 dput(dentry);
2866 return error;
2867 }
2868
2869 /*
2870 * Handle the last step of open()
2871 */
2872 static int do_last(struct nameidata *nd, struct path *path,
2873 struct file *file, const struct open_flags *op,
2874 int *opened, struct filename *name)
2875 {
2876 struct dentry *dir = nd->path.dentry;
2877 int open_flag = op->open_flag;
2878 bool will_truncate = (open_flag & O_TRUNC) != 0;
2879 bool got_write = false;
2880 int acc_mode = op->acc_mode;
2881 struct inode *inode;
2882 bool symlink_ok = false;
2883 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2884 bool retried = false;
2885 int error;
2886
2887 nd->flags &= ~LOOKUP_PARENT;
2888 nd->flags |= op->intent;
2889
2890 if (nd->last_type != LAST_NORM) {
2891 error = handle_dots(nd, nd->last_type);
2892 if (error)
2893 return error;
2894 goto finish_open;
2895 }
2896
2897 if (!(open_flag & O_CREAT)) {
2898 if (nd->last.name[nd->last.len])
2899 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2900 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2901 symlink_ok = true;
2902 /* we _can_ be in RCU mode here */
2903 error = lookup_fast(nd, path, &inode);
2904 if (likely(!error))
2905 goto finish_lookup;
2906
2907 if (error < 0)
2908 goto out;
2909
2910 BUG_ON(nd->inode != dir->d_inode);
2911 } else {
2912 /* create side of things */
2913 /*
2914 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2915 * has been cleared when we got to the last component we are
2916 * about to look up
2917 */
2918 error = complete_walk(nd);
2919 if (error)
2920 return error;
2921
2922 audit_inode(name, dir, LOOKUP_PARENT);
2923 error = -EISDIR;
2924 /* trailing slashes? */
2925 if (nd->last.name[nd->last.len])
2926 goto out;
2927 }
2928
2929 retry_lookup:
2930 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2931 error = mnt_want_write(nd->path.mnt);
2932 if (!error)
2933 got_write = true;
2934 /*
2935 * do _not_ fail yet - we might not need that or fail with
2936 * a different error; let lookup_open() decide; we'll be
2937 * dropping this one anyway.
2938 */
2939 }
2940 mutex_lock(&dir->d_inode->i_mutex);
2941 error = lookup_open(nd, path, file, op, got_write, opened);
2942 mutex_unlock(&dir->d_inode->i_mutex);
2943
2944 if (error <= 0) {
2945 if (error)
2946 goto out;
2947
2948 if ((*opened & FILE_CREATED) ||
2949 !S_ISREG(file_inode(file)->i_mode))
2950 will_truncate = false;
2951
2952 audit_inode(name, file->f_path.dentry, 0);
2953 goto opened;
2954 }
2955
2956 if (*opened & FILE_CREATED) {
2957 /* Don't check for write permission, don't truncate */
2958 open_flag &= ~O_TRUNC;
2959 will_truncate = false;
2960 acc_mode = MAY_OPEN;
2961 path_to_nameidata(path, nd);
2962 goto finish_open_created;
2963 }
2964
2965 /*
2966 * create/update audit record if it already exists.
2967 */
2968 if (d_is_positive(path->dentry))
2969 audit_inode(name, path->dentry, 0);
2970
2971 /*
2972 * If atomic_open() acquired write access it is dropped now due to
2973 * possible mount and symlink following (this might be optimized away if
2974 * necessary...)
2975 */
2976 if (got_write) {
2977 mnt_drop_write(nd->path.mnt);
2978 got_write = false;
2979 }
2980
2981 error = -EEXIST;
2982 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2983 goto exit_dput;
2984
2985 error = follow_managed(path, nd->flags);
2986 if (error < 0)
2987 goto exit_dput;
2988
2989 if (error)
2990 nd->flags |= LOOKUP_JUMPED;
2991
2992 BUG_ON(nd->flags & LOOKUP_RCU);
2993 inode = path->dentry->d_inode;
2994 finish_lookup:
2995 /* we _can_ be in RCU mode here */
2996 error = -ENOENT;
2997 if (d_is_negative(path->dentry)) {
2998 path_to_nameidata(path, nd);
2999 goto out;
3000 }
3001
3002 if (should_follow_link(path->dentry, !symlink_ok)) {
3003 if (nd->flags & LOOKUP_RCU) {
3004 if (unlikely(unlazy_walk(nd, path->dentry))) {
3005 error = -ECHILD;
3006 goto out;
3007 }
3008 }
3009 BUG_ON(inode != path->dentry->d_inode);
3010 return 1;
3011 }
3012
3013 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3014 path_to_nameidata(path, nd);
3015 } else {
3016 save_parent.dentry = nd->path.dentry;
3017 save_parent.mnt = mntget(path->mnt);
3018 nd->path.dentry = path->dentry;
3019
3020 }
3021 nd->inode = inode;
3022 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3023 finish_open:
3024 error = complete_walk(nd);
3025 if (error) {
3026 path_put(&save_parent);
3027 return error;
3028 }
3029 audit_inode(name, nd->path.dentry, 0);
3030 error = -EISDIR;
3031 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3032 goto out;
3033 error = -ENOTDIR;
3034 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3035 goto out;
3036 if (!S_ISREG(nd->inode->i_mode))
3037 will_truncate = false;
3038
3039 if (will_truncate) {
3040 error = mnt_want_write(nd->path.mnt);
3041 if (error)
3042 goto out;
3043 got_write = true;
3044 }
3045 finish_open_created:
3046 error = may_open(&nd->path, acc_mode, open_flag);
3047 if (error)
3048 goto out;
3049 file->f_path.mnt = nd->path.mnt;
3050 error = finish_open(file, nd->path.dentry, NULL, opened);
3051 if (error) {
3052 if (error == -EOPENSTALE)
3053 goto stale_open;
3054 goto out;
3055 }
3056 opened:
3057 error = open_check_o_direct(file);
3058 if (error)
3059 goto exit_fput;
3060 error = ima_file_check(file, op->acc_mode);
3061 if (error)
3062 goto exit_fput;
3063
3064 if (will_truncate) {
3065 error = handle_truncate(file);
3066 if (error)
3067 goto exit_fput;
3068 }
3069 out:
3070 if (got_write)
3071 mnt_drop_write(nd->path.mnt);
3072 path_put(&save_parent);
3073 terminate_walk(nd);
3074 return error;
3075
3076 exit_dput:
3077 path_put_conditional(path, nd);
3078 goto out;
3079 exit_fput:
3080 fput(file);
3081 goto out;
3082
3083 stale_open:
3084 /* If no saved parent or already retried then can't retry */
3085 if (!save_parent.dentry || retried)
3086 goto out;
3087
3088 BUG_ON(save_parent.dentry != dir);
3089 path_put(&nd->path);
3090 nd->path = save_parent;
3091 nd->inode = dir->d_inode;
3092 save_parent.mnt = NULL;
3093 save_parent.dentry = NULL;
3094 if (got_write) {
3095 mnt_drop_write(nd->path.mnt);
3096 got_write = false;
3097 }
3098 retried = true;
3099 goto retry_lookup;
3100 }
3101
3102 static int do_tmpfile(int dfd, struct filename *pathname,
3103 struct nameidata *nd, int flags,
3104 const struct open_flags *op,
3105 struct file *file, int *opened)
3106 {
3107 static const struct qstr name = QSTR_INIT("/", 1);
3108 struct dentry *dentry, *child;
3109 struct inode *dir;
3110 int error = path_lookupat(dfd, pathname->name,
3111 flags | LOOKUP_DIRECTORY, nd);
3112 if (unlikely(error))
3113 return error;
3114 error = mnt_want_write(nd->path.mnt);
3115 if (unlikely(error))
3116 goto out;
3117 /* we want directory to be writable */
3118 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3119 if (error)
3120 goto out2;
3121 dentry = nd->path.dentry;
3122 dir = dentry->d_inode;
3123 if (!dir->i_op->tmpfile) {
3124 error = -EOPNOTSUPP;
3125 goto out2;
3126 }
3127 child = d_alloc(dentry, &name);
3128 if (unlikely(!child)) {
3129 error = -ENOMEM;
3130 goto out2;
3131 }
3132 nd->flags &= ~LOOKUP_DIRECTORY;
3133 nd->flags |= op->intent;
3134 dput(nd->path.dentry);
3135 nd->path.dentry = child;
3136 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3137 if (error)
3138 goto out2;
3139 audit_inode(pathname, nd->path.dentry, 0);
3140 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3141 if (error)
3142 goto out2;
3143 file->f_path.mnt = nd->path.mnt;
3144 error = finish_open(file, nd->path.dentry, NULL, opened);
3145 if (error)
3146 goto out2;
3147 error = open_check_o_direct(file);
3148 if (error) {
3149 fput(file);
3150 } else if (!(op->open_flag & O_EXCL)) {
3151 struct inode *inode = file_inode(file);
3152 spin_lock(&inode->i_lock);
3153 inode->i_state |= I_LINKABLE;
3154 spin_unlock(&inode->i_lock);
3155 }
3156 out2:
3157 mnt_drop_write(nd->path.mnt);
3158 out:
3159 path_put(&nd->path);
3160 return error;
3161 }
3162
3163 static struct file *path_openat(int dfd, struct filename *pathname,
3164 struct nameidata *nd, const struct open_flags *op, int flags)
3165 {
3166 struct file *base = NULL;
3167 struct file *file;
3168 struct path path;
3169 int opened = 0;
3170 int error;
3171
3172 file = get_empty_filp();
3173 if (IS_ERR(file))
3174 return file;
3175
3176 file->f_flags = op->open_flag;
3177
3178 if (unlikely(file->f_flags & __O_TMPFILE)) {
3179 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3180 goto out;
3181 }
3182
3183 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3184 if (unlikely(error))
3185 goto out;
3186
3187 current->total_link_count = 0;
3188 error = link_path_walk(pathname->name, nd);
3189 if (unlikely(error))
3190 goto out;
3191
3192 error = do_last(nd, &path, file, op, &opened, pathname);
3193 while (unlikely(error > 0)) { /* trailing symlink */
3194 struct path link = path;
3195 void *cookie;
3196 if (!(nd->flags & LOOKUP_FOLLOW)) {
3197 path_put_conditional(&path, nd);
3198 path_put(&nd->path);
3199 error = -ELOOP;
3200 break;
3201 }
3202 error = may_follow_link(&link, nd);
3203 if (unlikely(error))
3204 break;
3205 nd->flags |= LOOKUP_PARENT;
3206 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3207 error = follow_link(&link, nd, &cookie);
3208 if (unlikely(error))
3209 break;
3210 error = do_last(nd, &path, file, op, &opened, pathname);
3211 put_link(nd, &link, cookie);
3212 }
3213 out:
3214 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3215 path_put(&nd->root);
3216 if (base)
3217 fput(base);
3218 if (!(opened & FILE_OPENED)) {
3219 BUG_ON(!error);
3220 put_filp(file);
3221 }
3222 if (unlikely(error)) {
3223 if (error == -EOPENSTALE) {
3224 if (flags & LOOKUP_RCU)
3225 error = -ECHILD;
3226 else
3227 error = -ESTALE;
3228 }
3229 file = ERR_PTR(error);
3230 }
3231 return file;
3232 }
3233
3234 struct file *do_filp_open(int dfd, struct filename *pathname,
3235 const struct open_flags *op)
3236 {
3237 struct nameidata nd;
3238 int flags = op->lookup_flags;
3239 struct file *filp;
3240
3241 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3242 if (unlikely(filp == ERR_PTR(-ECHILD)))
3243 filp = path_openat(dfd, pathname, &nd, op, flags);
3244 if (unlikely(filp == ERR_PTR(-ESTALE)))
3245 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3246 return filp;
3247 }
3248
3249 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3250 const char *name, const struct open_flags *op)
3251 {
3252 struct nameidata nd;
3253 struct file *file;
3254 struct filename filename = { .name = name };
3255 int flags = op->lookup_flags | LOOKUP_ROOT;
3256
3257 nd.root.mnt = mnt;
3258 nd.root.dentry = dentry;
3259
3260 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3261 return ERR_PTR(-ELOOP);
3262
3263 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3264 if (unlikely(file == ERR_PTR(-ECHILD)))
3265 file = path_openat(-1, &filename, &nd, op, flags);
3266 if (unlikely(file == ERR_PTR(-ESTALE)))
3267 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3268 return file;
3269 }
3270
3271 struct dentry *kern_path_create(int dfd, const char *pathname,
3272 struct path *path, unsigned int lookup_flags)
3273 {
3274 struct dentry *dentry = ERR_PTR(-EEXIST);
3275 struct nameidata nd;
3276 int err2;
3277 int error;
3278 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3279
3280 /*
3281 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3282 * other flags passed in are ignored!
3283 */
3284 lookup_flags &= LOOKUP_REVAL;
3285
3286 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3287 if (error)
3288 return ERR_PTR(error);
3289
3290 /*
3291 * Yucky last component or no last component at all?
3292 * (foo/., foo/.., /////)
3293 */
3294 if (nd.last_type != LAST_NORM)
3295 goto out;
3296 nd.flags &= ~LOOKUP_PARENT;
3297 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3298
3299 /* don't fail immediately if it's r/o, at least try to report other errors */
3300 err2 = mnt_want_write(nd.path.mnt);
3301 /*
3302 * Do the final lookup.
3303 */
3304 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3305 dentry = lookup_hash(&nd);
3306 if (IS_ERR(dentry))
3307 goto unlock;
3308
3309 error = -EEXIST;
3310 if (d_is_positive(dentry))
3311 goto fail;
3312
3313 /*
3314 * Special case - lookup gave negative, but... we had foo/bar/
3315 * From the vfs_mknod() POV we just have a negative dentry -
3316 * all is fine. Let's be bastards - you had / on the end, you've
3317 * been asking for (non-existent) directory. -ENOENT for you.
3318 */
3319 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3320 error = -ENOENT;
3321 goto fail;
3322 }
3323 if (unlikely(err2)) {
3324 error = err2;
3325 goto fail;
3326 }
3327 *path = nd.path;
3328 return dentry;
3329 fail:
3330 dput(dentry);
3331 dentry = ERR_PTR(error);
3332 unlock:
3333 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3334 if (!err2)
3335 mnt_drop_write(nd.path.mnt);
3336 out:
3337 path_put(&nd.path);
3338 return dentry;
3339 }
3340 EXPORT_SYMBOL(kern_path_create);
3341
3342 void done_path_create(struct path *path, struct dentry *dentry)
3343 {
3344 dput(dentry);
3345 mutex_unlock(&path->dentry->d_inode->i_mutex);
3346 mnt_drop_write(path->mnt);
3347 path_put(path);
3348 }
3349 EXPORT_SYMBOL(done_path_create);
3350
3351 struct dentry *user_path_create(int dfd, const char __user *pathname,
3352 struct path *path, unsigned int lookup_flags)
3353 {
3354 struct filename *tmp = getname(pathname);
3355 struct dentry *res;
3356 if (IS_ERR(tmp))
3357 return ERR_CAST(tmp);
3358 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3359 putname(tmp);
3360 return res;
3361 }
3362 EXPORT_SYMBOL(user_path_create);
3363
3364 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3365 {
3366 int error = may_create(dir, dentry);
3367
3368 if (error)
3369 return error;
3370
3371 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3372 return -EPERM;
3373
3374 if (!dir->i_op->mknod)
3375 return -EPERM;
3376
3377 error = devcgroup_inode_mknod(mode, dev);
3378 if (error)
3379 return error;
3380
3381 error = security_inode_mknod(dir, dentry, mode, dev);
3382 if (error)
3383 return error;
3384
3385 error = dir->i_op->mknod(dir, dentry, mode, dev);
3386 if (!error)
3387 fsnotify_create(dir, dentry);
3388 return error;
3389 }
3390 EXPORT_SYMBOL(vfs_mknod);
3391
3392 static int may_mknod(umode_t mode)
3393 {
3394 switch (mode & S_IFMT) {
3395 case S_IFREG:
3396 case S_IFCHR:
3397 case S_IFBLK:
3398 case S_IFIFO:
3399 case S_IFSOCK:
3400 case 0: /* zero mode translates to S_IFREG */
3401 return 0;
3402 case S_IFDIR:
3403 return -EPERM;
3404 default:
3405 return -EINVAL;
3406 }
3407 }
3408
3409 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3410 unsigned, dev)
3411 {
3412 struct dentry *dentry;
3413 struct path path;
3414 int error;
3415 unsigned int lookup_flags = 0;
3416
3417 error = may_mknod(mode);
3418 if (error)
3419 return error;
3420 retry:
3421 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3422 if (IS_ERR(dentry))
3423 return PTR_ERR(dentry);
3424
3425 if (!IS_POSIXACL(path.dentry->d_inode))
3426 mode &= ~current_umask();
3427 error = security_path_mknod(&path, dentry, mode, dev);
3428 if (error)
3429 goto out;
3430 switch (mode & S_IFMT) {
3431 case 0: case S_IFREG:
3432 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3433 break;
3434 case S_IFCHR: case S_IFBLK:
3435 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3436 new_decode_dev(dev));
3437 break;
3438 case S_IFIFO: case S_IFSOCK:
3439 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3440 break;
3441 }
3442 out:
3443 done_path_create(&path, dentry);
3444 if (retry_estale(error, lookup_flags)) {
3445 lookup_flags |= LOOKUP_REVAL;
3446 goto retry;
3447 }
3448 return error;
3449 }
3450
3451 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3452 {
3453 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3454 }
3455
3456 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3457 {
3458 int error = may_create(dir, dentry);
3459 unsigned max_links = dir->i_sb->s_max_links;
3460
3461 if (error)
3462 return error;
3463
3464 if (!dir->i_op->mkdir)
3465 return -EPERM;
3466
3467 mode &= (S_IRWXUGO|S_ISVTX);
3468 error = security_inode_mkdir(dir, dentry, mode);
3469 if (error)
3470 return error;
3471
3472 if (max_links && dir->i_nlink >= max_links)
3473 return -EMLINK;
3474
3475 error = dir->i_op->mkdir(dir, dentry, mode);
3476 if (!error)
3477 fsnotify_mkdir(dir, dentry);
3478 return error;
3479 }
3480 EXPORT_SYMBOL(vfs_mkdir);
3481
3482 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3483 {
3484 struct dentry *dentry;
3485 struct path path;
3486 int error;
3487 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3488
3489 retry:
3490 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3491 if (IS_ERR(dentry))
3492 return PTR_ERR(dentry);
3493
3494 if (!IS_POSIXACL(path.dentry->d_inode))
3495 mode &= ~current_umask();
3496 error = security_path_mkdir(&path, dentry, mode);
3497 if (!error)
3498 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3499 done_path_create(&path, dentry);
3500 if (retry_estale(error, lookup_flags)) {
3501 lookup_flags |= LOOKUP_REVAL;
3502 goto retry;
3503 }
3504 return error;
3505 }
3506
3507 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3508 {
3509 return sys_mkdirat(AT_FDCWD, pathname, mode);
3510 }
3511
3512 /*
3513 * The dentry_unhash() helper will try to drop the dentry early: we
3514 * should have a usage count of 1 if we're the only user of this
3515 * dentry, and if that is true (possibly after pruning the dcache),
3516 * then we drop the dentry now.
3517 *
3518 * A low-level filesystem can, if it choses, legally
3519 * do a
3520 *
3521 * if (!d_unhashed(dentry))
3522 * return -EBUSY;
3523 *
3524 * if it cannot handle the case of removing a directory
3525 * that is still in use by something else..
3526 */
3527 void dentry_unhash(struct dentry *dentry)
3528 {
3529 shrink_dcache_parent(dentry);
3530 spin_lock(&dentry->d_lock);
3531 if (dentry->d_lockref.count == 1)
3532 __d_drop(dentry);
3533 spin_unlock(&dentry->d_lock);
3534 }
3535 EXPORT_SYMBOL(dentry_unhash);
3536
3537 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3538 {
3539 int error = may_delete(dir, dentry, 1);
3540
3541 if (error)
3542 return error;
3543
3544 if (!dir->i_op->rmdir)
3545 return -EPERM;
3546
3547 dget(dentry);
3548 mutex_lock(&dentry->d_inode->i_mutex);
3549
3550 error = -EBUSY;
3551 if (d_mountpoint(dentry))
3552 goto out;
3553
3554 error = security_inode_rmdir(dir, dentry);
3555 if (error)
3556 goto out;
3557
3558 shrink_dcache_parent(dentry);
3559 error = dir->i_op->rmdir(dir, dentry);
3560 if (error)
3561 goto out;
3562
3563 dentry->d_inode->i_flags |= S_DEAD;
3564 dont_mount(dentry);
3565
3566 out:
3567 mutex_unlock(&dentry->d_inode->i_mutex);
3568 dput(dentry);
3569 if (!error)
3570 d_delete(dentry);
3571 return error;
3572 }
3573 EXPORT_SYMBOL(vfs_rmdir);
3574
3575 static long do_rmdir(int dfd, const char __user *pathname)
3576 {
3577 int error = 0;
3578 struct filename *name;
3579 struct dentry *dentry;
3580 struct nameidata nd;
3581 unsigned int lookup_flags = 0;
3582 retry:
3583 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3584 if (IS_ERR(name))
3585 return PTR_ERR(name);
3586
3587 switch(nd.last_type) {
3588 case LAST_DOTDOT:
3589 error = -ENOTEMPTY;
3590 goto exit1;
3591 case LAST_DOT:
3592 error = -EINVAL;
3593 goto exit1;
3594 case LAST_ROOT:
3595 error = -EBUSY;
3596 goto exit1;
3597 }
3598
3599 nd.flags &= ~LOOKUP_PARENT;
3600 error = mnt_want_write(nd.path.mnt);
3601 if (error)
3602 goto exit1;
3603
3604 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3605 dentry = lookup_hash(&nd);
3606 error = PTR_ERR(dentry);
3607 if (IS_ERR(dentry))
3608 goto exit2;
3609 if (!dentry->d_inode) {
3610 error = -ENOENT;
3611 goto exit3;
3612 }
3613 error = security_path_rmdir(&nd.path, dentry);
3614 if (error)
3615 goto exit3;
3616 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3617 exit3:
3618 dput(dentry);
3619 exit2:
3620 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3621 mnt_drop_write(nd.path.mnt);
3622 exit1:
3623 path_put(&nd.path);
3624 putname(name);
3625 if (retry_estale(error, lookup_flags)) {
3626 lookup_flags |= LOOKUP_REVAL;
3627 goto retry;
3628 }
3629 return error;
3630 }
3631
3632 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3633 {
3634 return do_rmdir(AT_FDCWD, pathname);
3635 }
3636
3637 /**
3638 * vfs_unlink - unlink a filesystem object
3639 * @dir: parent directory
3640 * @dentry: victim
3641 * @delegated_inode: returns victim inode, if the inode is delegated.
3642 *
3643 * The caller must hold dir->i_mutex.
3644 *
3645 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3646 * return a reference to the inode in delegated_inode. The caller
3647 * should then break the delegation on that inode and retry. Because
3648 * breaking a delegation may take a long time, the caller should drop
3649 * dir->i_mutex before doing so.
3650 *
3651 * Alternatively, a caller may pass NULL for delegated_inode. This may
3652 * be appropriate for callers that expect the underlying filesystem not
3653 * to be NFS exported.
3654 */
3655 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3656 {
3657 struct inode *target = dentry->d_inode;
3658 int error = may_delete(dir, dentry, 0);
3659
3660 if (error)
3661 return error;
3662
3663 if (!dir->i_op->unlink)
3664 return -EPERM;
3665
3666 mutex_lock(&target->i_mutex);
3667 if (d_mountpoint(dentry))
3668 error = -EBUSY;
3669 else {
3670 error = security_inode_unlink(dir, dentry);
3671 if (!error) {
3672 error = try_break_deleg(target, delegated_inode);
3673 if (error)
3674 goto out;
3675 error = dir->i_op->unlink(dir, dentry);
3676 if (!error)
3677 dont_mount(dentry);
3678 }
3679 }
3680 out:
3681 mutex_unlock(&target->i_mutex);
3682
3683 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3684 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3685 fsnotify_link_count(target);
3686 d_delete(dentry);
3687 }
3688
3689 return error;
3690 }
3691 EXPORT_SYMBOL(vfs_unlink);
3692
3693 /*
3694 * Make sure that the actual truncation of the file will occur outside its
3695 * directory's i_mutex. Truncate can take a long time if there is a lot of
3696 * writeout happening, and we don't want to prevent access to the directory
3697 * while waiting on the I/O.
3698 */
3699 static long do_unlinkat(int dfd, const char __user *pathname)
3700 {
3701 int error;
3702 struct filename *name;
3703 struct dentry *dentry;
3704 struct nameidata nd;
3705 struct inode *inode = NULL;
3706 struct inode *delegated_inode = NULL;
3707 unsigned int lookup_flags = 0;
3708 retry:
3709 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3710 if (IS_ERR(name))
3711 return PTR_ERR(name);
3712
3713 error = -EISDIR;
3714 if (nd.last_type != LAST_NORM)
3715 goto exit1;
3716
3717 nd.flags &= ~LOOKUP_PARENT;
3718 error = mnt_want_write(nd.path.mnt);
3719 if (error)
3720 goto exit1;
3721 retry_deleg:
3722 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3723 dentry = lookup_hash(&nd);
3724 error = PTR_ERR(dentry);
3725 if (!IS_ERR(dentry)) {
3726 /* Why not before? Because we want correct error value */
3727 if (nd.last.name[nd.last.len])
3728 goto slashes;
3729 inode = dentry->d_inode;
3730 if (d_is_negative(dentry))
3731 goto slashes;
3732 ihold(inode);
3733 error = security_path_unlink(&nd.path, dentry);
3734 if (error)
3735 goto exit2;
3736 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3737 exit2:
3738 dput(dentry);
3739 }
3740 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3741 if (inode)
3742 iput(inode); /* truncate the inode here */
3743 inode = NULL;
3744 if (delegated_inode) {
3745 error = break_deleg_wait(&delegated_inode);
3746 if (!error)
3747 goto retry_deleg;
3748 }
3749 mnt_drop_write(nd.path.mnt);
3750 exit1:
3751 path_put(&nd.path);
3752 putname(name);
3753 if (retry_estale(error, lookup_flags)) {
3754 lookup_flags |= LOOKUP_REVAL;
3755 inode = NULL;
3756 goto retry;
3757 }
3758 return error;
3759
3760 slashes:
3761 if (d_is_negative(dentry))
3762 error = -ENOENT;
3763 else if (d_is_dir(dentry))
3764 error = -EISDIR;
3765 else
3766 error = -ENOTDIR;
3767 goto exit2;
3768 }
3769
3770 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3771 {
3772 if ((flag & ~AT_REMOVEDIR) != 0)
3773 return -EINVAL;
3774
3775 if (flag & AT_REMOVEDIR)
3776 return do_rmdir(dfd, pathname);
3777
3778 return do_unlinkat(dfd, pathname);
3779 }
3780
3781 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3782 {
3783 return do_unlinkat(AT_FDCWD, pathname);
3784 }
3785
3786 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3787 {
3788 int error = may_create(dir, dentry);
3789
3790 if (error)
3791 return error;
3792
3793 if (!dir->i_op->symlink)
3794 return -EPERM;
3795
3796 error = security_inode_symlink(dir, dentry, oldname);
3797 if (error)
3798 return error;
3799
3800 error = dir->i_op->symlink(dir, dentry, oldname);
3801 if (!error)
3802 fsnotify_create(dir, dentry);
3803 return error;
3804 }
3805 EXPORT_SYMBOL(vfs_symlink);
3806
3807 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3808 int, newdfd, const char __user *, newname)
3809 {
3810 int error;
3811 struct filename *from;
3812 struct dentry *dentry;
3813 struct path path;
3814 unsigned int lookup_flags = 0;
3815
3816 from = getname(oldname);
3817 if (IS_ERR(from))
3818 return PTR_ERR(from);
3819 retry:
3820 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3821 error = PTR_ERR(dentry);
3822 if (IS_ERR(dentry))
3823 goto out_putname;
3824
3825 error = security_path_symlink(&path, dentry, from->name);
3826 if (!error)
3827 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3828 done_path_create(&path, dentry);
3829 if (retry_estale(error, lookup_flags)) {
3830 lookup_flags |= LOOKUP_REVAL;
3831 goto retry;
3832 }
3833 out_putname:
3834 putname(from);
3835 return error;
3836 }
3837
3838 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3839 {
3840 return sys_symlinkat(oldname, AT_FDCWD, newname);
3841 }
3842
3843 /**
3844 * vfs_link - create a new link
3845 * @old_dentry: object to be linked
3846 * @dir: new parent
3847 * @new_dentry: where to create the new link
3848 * @delegated_inode: returns inode needing a delegation break
3849 *
3850 * The caller must hold dir->i_mutex
3851 *
3852 * If vfs_link discovers a delegation on the to-be-linked file in need
3853 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3854 * inode in delegated_inode. The caller should then break the delegation
3855 * and retry. Because breaking a delegation may take a long time, the
3856 * caller should drop the i_mutex before doing so.
3857 *
3858 * Alternatively, a caller may pass NULL for delegated_inode. This may
3859 * be appropriate for callers that expect the underlying filesystem not
3860 * to be NFS exported.
3861 */
3862 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3863 {
3864 struct inode *inode = old_dentry->d_inode;
3865 unsigned max_links = dir->i_sb->s_max_links;
3866 int error;
3867
3868 if (!inode)
3869 return -ENOENT;
3870
3871 error = may_create(dir, new_dentry);
3872 if (error)
3873 return error;
3874
3875 if (dir->i_sb != inode->i_sb)
3876 return -EXDEV;
3877
3878 /*
3879 * A link to an append-only or immutable file cannot be created.
3880 */
3881 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3882 return -EPERM;
3883 if (!dir->i_op->link)
3884 return -EPERM;
3885 if (S_ISDIR(inode->i_mode))
3886 return -EPERM;
3887
3888 error = security_inode_link(old_dentry, dir, new_dentry);
3889 if (error)
3890 return error;
3891
3892 mutex_lock(&inode->i_mutex);
3893 /* Make sure we don't allow creating hardlink to an unlinked file */
3894 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3895 error = -ENOENT;
3896 else if (max_links && inode->i_nlink >= max_links)
3897 error = -EMLINK;
3898 else {
3899 error = try_break_deleg(inode, delegated_inode);
3900 if (!error)
3901 error = dir->i_op->link(old_dentry, dir, new_dentry);
3902 }
3903
3904 if (!error && (inode->i_state & I_LINKABLE)) {
3905 spin_lock(&inode->i_lock);
3906 inode->i_state &= ~I_LINKABLE;
3907 spin_unlock(&inode->i_lock);
3908 }
3909 mutex_unlock(&inode->i_mutex);
3910 if (!error)
3911 fsnotify_link(dir, inode, new_dentry);
3912 return error;
3913 }
3914 EXPORT_SYMBOL(vfs_link);
3915
3916 /*
3917 * Hardlinks are often used in delicate situations. We avoid
3918 * security-related surprises by not following symlinks on the
3919 * newname. --KAB
3920 *
3921 * We don't follow them on the oldname either to be compatible
3922 * with linux 2.0, and to avoid hard-linking to directories
3923 * and other special files. --ADM
3924 */
3925 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3926 int, newdfd, const char __user *, newname, int, flags)
3927 {
3928 struct dentry *new_dentry;
3929 struct path old_path, new_path;
3930 struct inode *delegated_inode = NULL;
3931 int how = 0;
3932 int error;
3933
3934 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3935 return -EINVAL;
3936 /*
3937 * To use null names we require CAP_DAC_READ_SEARCH
3938 * This ensures that not everyone will be able to create
3939 * handlink using the passed filedescriptor.
3940 */
3941 if (flags & AT_EMPTY_PATH) {
3942 if (!capable(CAP_DAC_READ_SEARCH))
3943 return -ENOENT;
3944 how = LOOKUP_EMPTY;
3945 }
3946
3947 if (flags & AT_SYMLINK_FOLLOW)
3948 how |= LOOKUP_FOLLOW;
3949 retry:
3950 error = user_path_at(olddfd, oldname, how, &old_path);
3951 if (error)
3952 return error;
3953
3954 new_dentry = user_path_create(newdfd, newname, &new_path,
3955 (how & LOOKUP_REVAL));
3956 error = PTR_ERR(new_dentry);
3957 if (IS_ERR(new_dentry))
3958 goto out;
3959
3960 error = -EXDEV;
3961 if (old_path.mnt != new_path.mnt)
3962 goto out_dput;
3963 error = may_linkat(&old_path);
3964 if (unlikely(error))
3965 goto out_dput;
3966 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3967 if (error)
3968 goto out_dput;
3969 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3970 out_dput:
3971 done_path_create(&new_path, new_dentry);
3972 if (delegated_inode) {
3973 error = break_deleg_wait(&delegated_inode);
3974 if (!error) {
3975 path_put(&old_path);
3976 goto retry;
3977 }
3978 }
3979 if (retry_estale(error, how)) {
3980 path_put(&old_path);
3981 how |= LOOKUP_REVAL;
3982 goto retry;
3983 }
3984 out:
3985 path_put(&old_path);
3986
3987 return error;
3988 }
3989
3990 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3991 {
3992 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3993 }
3994
3995 /**
3996 * vfs_rename - rename a filesystem object
3997 * @old_dir: parent of source
3998 * @old_dentry: source
3999 * @new_dir: parent of destination
4000 * @new_dentry: destination
4001 * @delegated_inode: returns an inode needing a delegation break
4002 * @flags: rename flags
4003 *
4004 * The caller must hold multiple mutexes--see lock_rename()).
4005 *
4006 * If vfs_rename discovers a delegation in need of breaking at either
4007 * the source or destination, it will return -EWOULDBLOCK and return a
4008 * reference to the inode in delegated_inode. The caller should then
4009 * break the delegation and retry. Because breaking a delegation may
4010 * take a long time, the caller should drop all locks before doing
4011 * so.
4012 *
4013 * Alternatively, a caller may pass NULL for delegated_inode. This may
4014 * be appropriate for callers that expect the underlying filesystem not
4015 * to be NFS exported.
4016 *
4017 * The worst of all namespace operations - renaming directory. "Perverted"
4018 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4019 * Problems:
4020 * a) we can get into loop creation. Check is done in is_subdir().
4021 * b) race potential - two innocent renames can create a loop together.
4022 * That's where 4.4 screws up. Current fix: serialization on
4023 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4024 * story.
4025 * c) we have to lock _four_ objects - parents and victim (if it exists),
4026 * and source (if it is not a directory).
4027 * And that - after we got ->i_mutex on parents (until then we don't know
4028 * whether the target exists). Solution: try to be smart with locking
4029 * order for inodes. We rely on the fact that tree topology may change
4030 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4031 * move will be locked. Thus we can rank directories by the tree
4032 * (ancestors first) and rank all non-directories after them.
4033 * That works since everybody except rename does "lock parent, lookup,
4034 * lock child" and rename is under ->s_vfs_rename_mutex.
4035 * HOWEVER, it relies on the assumption that any object with ->lookup()
4036 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4037 * we'd better make sure that there's no link(2) for them.
4038 * d) conversion from fhandle to dentry may come in the wrong moment - when
4039 * we are removing the target. Solution: we will have to grab ->i_mutex
4040 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4041 * ->i_mutex on parents, which works but leads to some truly excessive
4042 * locking].
4043 */
4044 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4045 struct inode *new_dir, struct dentry *new_dentry,
4046 struct inode **delegated_inode, unsigned int flags)
4047 {
4048 int error;
4049 bool is_dir = d_is_dir(old_dentry);
4050 const unsigned char *old_name;
4051 struct inode *source = old_dentry->d_inode;
4052 struct inode *target = new_dentry->d_inode;
4053 bool new_is_dir = false;
4054 unsigned max_links = new_dir->i_sb->s_max_links;
4055
4056 if (source == target)
4057 return 0;
4058
4059 error = may_delete(old_dir, old_dentry, is_dir);
4060 if (error)
4061 return error;
4062
4063 if (!target) {
4064 error = may_create(new_dir, new_dentry);
4065 } else {
4066 new_is_dir = d_is_dir(new_dentry);
4067
4068 if (!(flags & RENAME_EXCHANGE))
4069 error = may_delete(new_dir, new_dentry, is_dir);
4070 else
4071 error = may_delete(new_dir, new_dentry, new_is_dir);
4072 }
4073 if (error)
4074 return error;
4075
4076 if (!old_dir->i_op->rename)
4077 return -EPERM;
4078
4079 if (flags && !old_dir->i_op->rename2)
4080 return -EINVAL;
4081
4082 /*
4083 * If we are going to change the parent - check write permissions,
4084 * we'll need to flip '..'.
4085 */
4086 if (new_dir != old_dir) {
4087 if (is_dir) {
4088 error = inode_permission(source, MAY_WRITE);
4089 if (error)
4090 return error;
4091 }
4092 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4093 error = inode_permission(target, MAY_WRITE);
4094 if (error)
4095 return error;
4096 }
4097 }
4098
4099 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4100 flags);
4101 if (error)
4102 return error;
4103
4104 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4105 dget(new_dentry);
4106 if (!is_dir || (flags & RENAME_EXCHANGE))
4107 lock_two_nondirectories(source, target);
4108 else if (target)
4109 mutex_lock(&target->i_mutex);
4110
4111 error = -EBUSY;
4112 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4113 goto out;
4114
4115 if (max_links && new_dir != old_dir) {
4116 error = -EMLINK;
4117 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4118 goto out;
4119 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4120 old_dir->i_nlink >= max_links)
4121 goto out;
4122 }
4123 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4124 shrink_dcache_parent(new_dentry);
4125 if (!is_dir) {
4126 error = try_break_deleg(source, delegated_inode);
4127 if (error)
4128 goto out;
4129 }
4130 if (target && !new_is_dir) {
4131 error = try_break_deleg(target, delegated_inode);
4132 if (error)
4133 goto out;
4134 }
4135 if (!flags) {
4136 error = old_dir->i_op->rename(old_dir, old_dentry,
4137 new_dir, new_dentry);
4138 } else {
4139 error = old_dir->i_op->rename2(old_dir, old_dentry,
4140 new_dir, new_dentry, flags);
4141 }
4142 if (error)
4143 goto out;
4144
4145 if (!(flags & RENAME_EXCHANGE) && target) {
4146 if (is_dir)
4147 target->i_flags |= S_DEAD;
4148 dont_mount(new_dentry);
4149 }
4150 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4151 if (!(flags & RENAME_EXCHANGE))
4152 d_move(old_dentry, new_dentry);
4153 else
4154 d_exchange(old_dentry, new_dentry);
4155 }
4156 out:
4157 if (!is_dir || (flags & RENAME_EXCHANGE))
4158 unlock_two_nondirectories(source, target);
4159 else if (target)
4160 mutex_unlock(&target->i_mutex);
4161 dput(new_dentry);
4162 if (!error) {
4163 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4164 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4165 if (flags & RENAME_EXCHANGE) {
4166 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4167 new_is_dir, NULL, new_dentry);
4168 }
4169 }
4170 fsnotify_oldname_free(old_name);
4171
4172 return error;
4173 }
4174 EXPORT_SYMBOL(vfs_rename);
4175
4176 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4177 int, newdfd, const char __user *, newname, unsigned int, flags)
4178 {
4179 struct dentry *old_dir, *new_dir;
4180 struct dentry *old_dentry, *new_dentry;
4181 struct dentry *trap;
4182 struct nameidata oldnd, newnd;
4183 struct inode *delegated_inode = NULL;
4184 struct filename *from;
4185 struct filename *to;
4186 unsigned int lookup_flags = 0;
4187 bool should_retry = false;
4188 int error;
4189
4190 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4191 return -EINVAL;
4192
4193 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4194 return -EINVAL;
4195
4196 retry:
4197 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4198 if (IS_ERR(from)) {
4199 error = PTR_ERR(from);
4200 goto exit;
4201 }
4202
4203 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4204 if (IS_ERR(to)) {
4205 error = PTR_ERR(to);
4206 goto exit1;
4207 }
4208
4209 error = -EXDEV;
4210 if (oldnd.path.mnt != newnd.path.mnt)
4211 goto exit2;
4212
4213 old_dir = oldnd.path.dentry;
4214 error = -EBUSY;
4215 if (oldnd.last_type != LAST_NORM)
4216 goto exit2;
4217
4218 new_dir = newnd.path.dentry;
4219 if (flags & RENAME_NOREPLACE)
4220 error = -EEXIST;
4221 if (newnd.last_type != LAST_NORM)
4222 goto exit2;
4223
4224 error = mnt_want_write(oldnd.path.mnt);
4225 if (error)
4226 goto exit2;
4227
4228 oldnd.flags &= ~LOOKUP_PARENT;
4229 newnd.flags &= ~LOOKUP_PARENT;
4230 if (!(flags & RENAME_EXCHANGE))
4231 newnd.flags |= LOOKUP_RENAME_TARGET;
4232
4233 retry_deleg:
4234 trap = lock_rename(new_dir, old_dir);
4235
4236 old_dentry = lookup_hash(&oldnd);
4237 error = PTR_ERR(old_dentry);
4238 if (IS_ERR(old_dentry))
4239 goto exit3;
4240 /* source must exist */
4241 error = -ENOENT;
4242 if (d_is_negative(old_dentry))
4243 goto exit4;
4244 new_dentry = lookup_hash(&newnd);
4245 error = PTR_ERR(new_dentry);
4246 if (IS_ERR(new_dentry))
4247 goto exit4;
4248 error = -EEXIST;
4249 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4250 goto exit5;
4251 if (flags & RENAME_EXCHANGE) {
4252 error = -ENOENT;
4253 if (d_is_negative(new_dentry))
4254 goto exit5;
4255
4256 if (!d_is_dir(new_dentry)) {
4257 error = -ENOTDIR;
4258 if (newnd.last.name[newnd.last.len])
4259 goto exit5;
4260 }
4261 }
4262 /* unless the source is a directory trailing slashes give -ENOTDIR */
4263 if (!d_is_dir(old_dentry)) {
4264 error = -ENOTDIR;
4265 if (oldnd.last.name[oldnd.last.len])
4266 goto exit5;
4267 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4268 goto exit5;
4269 }
4270 /* source should not be ancestor of target */
4271 error = -EINVAL;
4272 if (old_dentry == trap)
4273 goto exit5;
4274 /* target should not be an ancestor of source */
4275 if (!(flags & RENAME_EXCHANGE))
4276 error = -ENOTEMPTY;
4277 if (new_dentry == trap)
4278 goto exit5;
4279
4280 error = security_path_rename(&oldnd.path, old_dentry,
4281 &newnd.path, new_dentry, flags);
4282 if (error)
4283 goto exit5;
4284 error = vfs_rename(old_dir->d_inode, old_dentry,
4285 new_dir->d_inode, new_dentry,
4286 &delegated_inode, flags);
4287 exit5:
4288 dput(new_dentry);
4289 exit4:
4290 dput(old_dentry);
4291 exit3:
4292 unlock_rename(new_dir, old_dir);
4293 if (delegated_inode) {
4294 error = break_deleg_wait(&delegated_inode);
4295 if (!error)
4296 goto retry_deleg;
4297 }
4298 mnt_drop_write(oldnd.path.mnt);
4299 exit2:
4300 if (retry_estale(error, lookup_flags))
4301 should_retry = true;
4302 path_put(&newnd.path);
4303 putname(to);
4304 exit1:
4305 path_put(&oldnd.path);
4306 putname(from);
4307 if (should_retry) {
4308 should_retry = false;
4309 lookup_flags |= LOOKUP_REVAL;
4310 goto retry;
4311 }
4312 exit:
4313 return error;
4314 }
4315
4316 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4317 int, newdfd, const char __user *, newname)
4318 {
4319 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4320 }
4321
4322 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4323 {
4324 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4325 }
4326
4327 int readlink_copy(char __user *buffer, int buflen, const char *link)
4328 {
4329 int len = PTR_ERR(link);
4330 if (IS_ERR(link))
4331 goto out;
4332
4333 len = strlen(link);
4334 if (len > (unsigned) buflen)
4335 len = buflen;
4336 if (copy_to_user(buffer, link, len))
4337 len = -EFAULT;
4338 out:
4339 return len;
4340 }
4341 EXPORT_SYMBOL(readlink_copy);
4342
4343 /*
4344 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4345 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4346 * using) it for any given inode is up to filesystem.
4347 */
4348 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4349 {
4350 struct nameidata nd;
4351 void *cookie;
4352 int res;
4353
4354 nd.depth = 0;
4355 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4356 if (IS_ERR(cookie))
4357 return PTR_ERR(cookie);
4358
4359 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4360 if (dentry->d_inode->i_op->put_link)
4361 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4362 return res;
4363 }
4364 EXPORT_SYMBOL(generic_readlink);
4365
4366 /* get the link contents into pagecache */
4367 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4368 {
4369 char *kaddr;
4370 struct page *page;
4371 struct address_space *mapping = dentry->d_inode->i_mapping;
4372 page = read_mapping_page(mapping, 0, NULL);
4373 if (IS_ERR(page))
4374 return (char*)page;
4375 *ppage = page;
4376 kaddr = kmap(page);
4377 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4378 return kaddr;
4379 }
4380
4381 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4382 {
4383 struct page *page = NULL;
4384 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4385 if (page) {
4386 kunmap(page);
4387 page_cache_release(page);
4388 }
4389 return res;
4390 }
4391 EXPORT_SYMBOL(page_readlink);
4392
4393 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4394 {
4395 struct page *page = NULL;
4396 nd_set_link(nd, page_getlink(dentry, &page));
4397 return page;
4398 }
4399 EXPORT_SYMBOL(page_follow_link_light);
4400
4401 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4402 {
4403 struct page *page = cookie;
4404
4405 if (page) {
4406 kunmap(page);
4407 page_cache_release(page);
4408 }
4409 }
4410 EXPORT_SYMBOL(page_put_link);
4411
4412 /*
4413 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4414 */
4415 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4416 {
4417 struct address_space *mapping = inode->i_mapping;
4418 struct page *page;
4419 void *fsdata;
4420 int err;
4421 char *kaddr;
4422 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4423 if (nofs)
4424 flags |= AOP_FLAG_NOFS;
4425
4426 retry:
4427 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4428 flags, &page, &fsdata);
4429 if (err)
4430 goto fail;
4431
4432 kaddr = kmap_atomic(page);
4433 memcpy(kaddr, symname, len-1);
4434 kunmap_atomic(kaddr);
4435
4436 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4437 page, fsdata);
4438 if (err < 0)
4439 goto fail;
4440 if (err < len-1)
4441 goto retry;
4442
4443 mark_inode_dirty(inode);
4444 return 0;
4445 fail:
4446 return err;
4447 }
4448 EXPORT_SYMBOL(__page_symlink);
4449
4450 int page_symlink(struct inode *inode, const char *symname, int len)
4451 {
4452 return __page_symlink(inode, symname, len,
4453 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4454 }
4455 EXPORT_SYMBOL(page_symlink);
4456
4457 const struct inode_operations page_symlink_inode_operations = {
4458 .readlink = generic_readlink,
4459 .follow_link = page_follow_link_light,
4460 .put_link = page_put_link,
4461 };
4462 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.120907 seconds and 5 git commands to generate.