Merge branch 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328 */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
335
336 /*
337 * Nobody gets write access to a read-only fs.
338 */
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
342
343 /*
344 * Nobody gets write access to an immutable file.
345 */
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
348 }
349
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
353
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
357
358 return security_inode_permission(inode, mask);
359 }
360
361 /**
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
364 *
365 * Given a path increment the reference count to the dentry and the vfsmount.
366 */
367 void path_get(struct path *path)
368 {
369 mntget(path->mnt);
370 dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373
374 /**
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
377 *
378 * Given a path decrement the reference count to the dentry and the vfsmount.
379 */
380 void path_put(struct path *path)
381 {
382 dput(path->dentry);
383 mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386
387 /*
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
396 */
397
398 /**
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
403 *
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
407 */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
413
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
421 }
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
433 /*
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
438 */
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
443 }
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
448 }
449 mntget(nd->path.mnt);
450
451 rcu_read_unlock();
452 br_read_unlock(vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
455
456 err_child:
457 spin_unlock(&dentry->d_lock);
458 err_parent:
459 spin_unlock(&parent->d_lock);
460 err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
464 }
465
466 /**
467 * release_open_intent - free up open intent resources
468 * @nd: pointer to nameidata
469 */
470 void release_open_intent(struct nameidata *nd)
471 {
472 struct file *file = nd->intent.open.file;
473
474 if (file && !IS_ERR(file)) {
475 if (file->f_path.dentry == NULL)
476 put_filp(file);
477 else
478 fput(file);
479 }
480 }
481
482 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
483 {
484 return dentry->d_op->d_revalidate(dentry, nd);
485 }
486
487 /**
488 * complete_walk - successful completion of path walk
489 * @nd: pointer nameidata
490 *
491 * If we had been in RCU mode, drop out of it and legitimize nd->path.
492 * Revalidate the final result, unless we'd already done that during
493 * the path walk or the filesystem doesn't ask for it. Return 0 on
494 * success, -error on failure. In case of failure caller does not
495 * need to drop nd->path.
496 */
497 static int complete_walk(struct nameidata *nd)
498 {
499 struct dentry *dentry = nd->path.dentry;
500 int status;
501
502 if (nd->flags & LOOKUP_RCU) {
503 nd->flags &= ~LOOKUP_RCU;
504 if (!(nd->flags & LOOKUP_ROOT))
505 nd->root.mnt = NULL;
506 spin_lock(&dentry->d_lock);
507 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
508 spin_unlock(&dentry->d_lock);
509 rcu_read_unlock();
510 br_read_unlock(vfsmount_lock);
511 return -ECHILD;
512 }
513 BUG_ON(nd->inode != dentry->d_inode);
514 spin_unlock(&dentry->d_lock);
515 mntget(nd->path.mnt);
516 rcu_read_unlock();
517 br_read_unlock(vfsmount_lock);
518 }
519
520 if (likely(!(nd->flags & LOOKUP_JUMPED)))
521 return 0;
522
523 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
524 return 0;
525
526 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
527 return 0;
528
529 /* Note: we do not d_invalidate() */
530 status = d_revalidate(dentry, nd);
531 if (status > 0)
532 return 0;
533
534 if (!status)
535 status = -ESTALE;
536
537 path_put(&nd->path);
538 return status;
539 }
540
541 static __always_inline void set_root(struct nameidata *nd)
542 {
543 if (!nd->root.mnt)
544 get_fs_root(current->fs, &nd->root);
545 }
546
547 static int link_path_walk(const char *, struct nameidata *);
548
549 static __always_inline void set_root_rcu(struct nameidata *nd)
550 {
551 if (!nd->root.mnt) {
552 struct fs_struct *fs = current->fs;
553 unsigned seq;
554
555 do {
556 seq = read_seqcount_begin(&fs->seq);
557 nd->root = fs->root;
558 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
559 } while (read_seqcount_retry(&fs->seq, seq));
560 }
561 }
562
563 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
564 {
565 int ret;
566
567 if (IS_ERR(link))
568 goto fail;
569
570 if (*link == '/') {
571 set_root(nd);
572 path_put(&nd->path);
573 nd->path = nd->root;
574 path_get(&nd->root);
575 nd->flags |= LOOKUP_JUMPED;
576 }
577 nd->inode = nd->path.dentry->d_inode;
578
579 ret = link_path_walk(link, nd);
580 return ret;
581 fail:
582 path_put(&nd->path);
583 return PTR_ERR(link);
584 }
585
586 static void path_put_conditional(struct path *path, struct nameidata *nd)
587 {
588 dput(path->dentry);
589 if (path->mnt != nd->path.mnt)
590 mntput(path->mnt);
591 }
592
593 static inline void path_to_nameidata(const struct path *path,
594 struct nameidata *nd)
595 {
596 if (!(nd->flags & LOOKUP_RCU)) {
597 dput(nd->path.dentry);
598 if (nd->path.mnt != path->mnt)
599 mntput(nd->path.mnt);
600 }
601 nd->path.mnt = path->mnt;
602 nd->path.dentry = path->dentry;
603 }
604
605 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
606 {
607 struct inode *inode = link->dentry->d_inode;
608 if (!IS_ERR(cookie) && inode->i_op->put_link)
609 inode->i_op->put_link(link->dentry, nd, cookie);
610 path_put(link);
611 }
612
613 static __always_inline int
614 follow_link(struct path *link, struct nameidata *nd, void **p)
615 {
616 int error;
617 struct dentry *dentry = link->dentry;
618
619 BUG_ON(nd->flags & LOOKUP_RCU);
620
621 if (link->mnt == nd->path.mnt)
622 mntget(link->mnt);
623
624 if (unlikely(current->total_link_count >= 40)) {
625 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
626 path_put(&nd->path);
627 return -ELOOP;
628 }
629 cond_resched();
630 current->total_link_count++;
631
632 touch_atime(link);
633 nd_set_link(nd, NULL);
634
635 error = security_inode_follow_link(link->dentry, nd);
636 if (error) {
637 *p = ERR_PTR(error); /* no ->put_link(), please */
638 path_put(&nd->path);
639 return error;
640 }
641
642 nd->last_type = LAST_BIND;
643 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
644 error = PTR_ERR(*p);
645 if (!IS_ERR(*p)) {
646 char *s = nd_get_link(nd);
647 error = 0;
648 if (s)
649 error = __vfs_follow_link(nd, s);
650 else if (nd->last_type == LAST_BIND) {
651 nd->flags |= LOOKUP_JUMPED;
652 nd->inode = nd->path.dentry->d_inode;
653 if (nd->inode->i_op->follow_link) {
654 /* stepped on a _really_ weird one */
655 path_put(&nd->path);
656 error = -ELOOP;
657 }
658 }
659 }
660 return error;
661 }
662
663 static int follow_up_rcu(struct path *path)
664 {
665 struct mount *mnt = real_mount(path->mnt);
666 struct mount *parent;
667 struct dentry *mountpoint;
668
669 parent = mnt->mnt_parent;
670 if (&parent->mnt == path->mnt)
671 return 0;
672 mountpoint = mnt->mnt_mountpoint;
673 path->dentry = mountpoint;
674 path->mnt = &parent->mnt;
675 return 1;
676 }
677
678 int follow_up(struct path *path)
679 {
680 struct mount *mnt = real_mount(path->mnt);
681 struct mount *parent;
682 struct dentry *mountpoint;
683
684 br_read_lock(vfsmount_lock);
685 parent = mnt->mnt_parent;
686 if (&parent->mnt == path->mnt) {
687 br_read_unlock(vfsmount_lock);
688 return 0;
689 }
690 mntget(&parent->mnt);
691 mountpoint = dget(mnt->mnt_mountpoint);
692 br_read_unlock(vfsmount_lock);
693 dput(path->dentry);
694 path->dentry = mountpoint;
695 mntput(path->mnt);
696 path->mnt = &parent->mnt;
697 return 1;
698 }
699
700 /*
701 * Perform an automount
702 * - return -EISDIR to tell follow_managed() to stop and return the path we
703 * were called with.
704 */
705 static int follow_automount(struct path *path, unsigned flags,
706 bool *need_mntput)
707 {
708 struct vfsmount *mnt;
709 int err;
710
711 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
712 return -EREMOTE;
713
714 /* We don't want to mount if someone's just doing a stat -
715 * unless they're stat'ing a directory and appended a '/' to
716 * the name.
717 *
718 * We do, however, want to mount if someone wants to open or
719 * create a file of any type under the mountpoint, wants to
720 * traverse through the mountpoint or wants to open the
721 * mounted directory. Also, autofs may mark negative dentries
722 * as being automount points. These will need the attentions
723 * of the daemon to instantiate them before they can be used.
724 */
725 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
726 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
727 path->dentry->d_inode)
728 return -EISDIR;
729
730 current->total_link_count++;
731 if (current->total_link_count >= 40)
732 return -ELOOP;
733
734 mnt = path->dentry->d_op->d_automount(path);
735 if (IS_ERR(mnt)) {
736 /*
737 * The filesystem is allowed to return -EISDIR here to indicate
738 * it doesn't want to automount. For instance, autofs would do
739 * this so that its userspace daemon can mount on this dentry.
740 *
741 * However, we can only permit this if it's a terminal point in
742 * the path being looked up; if it wasn't then the remainder of
743 * the path is inaccessible and we should say so.
744 */
745 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
746 return -EREMOTE;
747 return PTR_ERR(mnt);
748 }
749
750 if (!mnt) /* mount collision */
751 return 0;
752
753 if (!*need_mntput) {
754 /* lock_mount() may release path->mnt on error */
755 mntget(path->mnt);
756 *need_mntput = true;
757 }
758 err = finish_automount(mnt, path);
759
760 switch (err) {
761 case -EBUSY:
762 /* Someone else made a mount here whilst we were busy */
763 return 0;
764 case 0:
765 path_put(path);
766 path->mnt = mnt;
767 path->dentry = dget(mnt->mnt_root);
768 return 0;
769 default:
770 return err;
771 }
772
773 }
774
775 /*
776 * Handle a dentry that is managed in some way.
777 * - Flagged for transit management (autofs)
778 * - Flagged as mountpoint
779 * - Flagged as automount point
780 *
781 * This may only be called in refwalk mode.
782 *
783 * Serialization is taken care of in namespace.c
784 */
785 static int follow_managed(struct path *path, unsigned flags)
786 {
787 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
788 unsigned managed;
789 bool need_mntput = false;
790 int ret = 0;
791
792 /* Given that we're not holding a lock here, we retain the value in a
793 * local variable for each dentry as we look at it so that we don't see
794 * the components of that value change under us */
795 while (managed = ACCESS_ONCE(path->dentry->d_flags),
796 managed &= DCACHE_MANAGED_DENTRY,
797 unlikely(managed != 0)) {
798 /* Allow the filesystem to manage the transit without i_mutex
799 * being held. */
800 if (managed & DCACHE_MANAGE_TRANSIT) {
801 BUG_ON(!path->dentry->d_op);
802 BUG_ON(!path->dentry->d_op->d_manage);
803 ret = path->dentry->d_op->d_manage(path->dentry, false);
804 if (ret < 0)
805 break;
806 }
807
808 /* Transit to a mounted filesystem. */
809 if (managed & DCACHE_MOUNTED) {
810 struct vfsmount *mounted = lookup_mnt(path);
811 if (mounted) {
812 dput(path->dentry);
813 if (need_mntput)
814 mntput(path->mnt);
815 path->mnt = mounted;
816 path->dentry = dget(mounted->mnt_root);
817 need_mntput = true;
818 continue;
819 }
820
821 /* Something is mounted on this dentry in another
822 * namespace and/or whatever was mounted there in this
823 * namespace got unmounted before we managed to get the
824 * vfsmount_lock */
825 }
826
827 /* Handle an automount point */
828 if (managed & DCACHE_NEED_AUTOMOUNT) {
829 ret = follow_automount(path, flags, &need_mntput);
830 if (ret < 0)
831 break;
832 continue;
833 }
834
835 /* We didn't change the current path point */
836 break;
837 }
838
839 if (need_mntput && path->mnt == mnt)
840 mntput(path->mnt);
841 if (ret == -EISDIR)
842 ret = 0;
843 return ret < 0 ? ret : need_mntput;
844 }
845
846 int follow_down_one(struct path *path)
847 {
848 struct vfsmount *mounted;
849
850 mounted = lookup_mnt(path);
851 if (mounted) {
852 dput(path->dentry);
853 mntput(path->mnt);
854 path->mnt = mounted;
855 path->dentry = dget(mounted->mnt_root);
856 return 1;
857 }
858 return 0;
859 }
860
861 static inline bool managed_dentry_might_block(struct dentry *dentry)
862 {
863 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
864 dentry->d_op->d_manage(dentry, true) < 0);
865 }
866
867 /*
868 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
869 * we meet a managed dentry that would need blocking.
870 */
871 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
872 struct inode **inode)
873 {
874 for (;;) {
875 struct mount *mounted;
876 /*
877 * Don't forget we might have a non-mountpoint managed dentry
878 * that wants to block transit.
879 */
880 if (unlikely(managed_dentry_might_block(path->dentry)))
881 return false;
882
883 if (!d_mountpoint(path->dentry))
884 break;
885
886 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
887 if (!mounted)
888 break;
889 path->mnt = &mounted->mnt;
890 path->dentry = mounted->mnt.mnt_root;
891 nd->flags |= LOOKUP_JUMPED;
892 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
893 /*
894 * Update the inode too. We don't need to re-check the
895 * dentry sequence number here after this d_inode read,
896 * because a mount-point is always pinned.
897 */
898 *inode = path->dentry->d_inode;
899 }
900 return true;
901 }
902
903 static void follow_mount_rcu(struct nameidata *nd)
904 {
905 while (d_mountpoint(nd->path.dentry)) {
906 struct mount *mounted;
907 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
908 if (!mounted)
909 break;
910 nd->path.mnt = &mounted->mnt;
911 nd->path.dentry = mounted->mnt.mnt_root;
912 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
913 }
914 }
915
916 static int follow_dotdot_rcu(struct nameidata *nd)
917 {
918 set_root_rcu(nd);
919
920 while (1) {
921 if (nd->path.dentry == nd->root.dentry &&
922 nd->path.mnt == nd->root.mnt) {
923 break;
924 }
925 if (nd->path.dentry != nd->path.mnt->mnt_root) {
926 struct dentry *old = nd->path.dentry;
927 struct dentry *parent = old->d_parent;
928 unsigned seq;
929
930 seq = read_seqcount_begin(&parent->d_seq);
931 if (read_seqcount_retry(&old->d_seq, nd->seq))
932 goto failed;
933 nd->path.dentry = parent;
934 nd->seq = seq;
935 break;
936 }
937 if (!follow_up_rcu(&nd->path))
938 break;
939 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
940 }
941 follow_mount_rcu(nd);
942 nd->inode = nd->path.dentry->d_inode;
943 return 0;
944
945 failed:
946 nd->flags &= ~LOOKUP_RCU;
947 if (!(nd->flags & LOOKUP_ROOT))
948 nd->root.mnt = NULL;
949 rcu_read_unlock();
950 br_read_unlock(vfsmount_lock);
951 return -ECHILD;
952 }
953
954 /*
955 * Follow down to the covering mount currently visible to userspace. At each
956 * point, the filesystem owning that dentry may be queried as to whether the
957 * caller is permitted to proceed or not.
958 */
959 int follow_down(struct path *path)
960 {
961 unsigned managed;
962 int ret;
963
964 while (managed = ACCESS_ONCE(path->dentry->d_flags),
965 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
966 /* Allow the filesystem to manage the transit without i_mutex
967 * being held.
968 *
969 * We indicate to the filesystem if someone is trying to mount
970 * something here. This gives autofs the chance to deny anyone
971 * other than its daemon the right to mount on its
972 * superstructure.
973 *
974 * The filesystem may sleep at this point.
975 */
976 if (managed & DCACHE_MANAGE_TRANSIT) {
977 BUG_ON(!path->dentry->d_op);
978 BUG_ON(!path->dentry->d_op->d_manage);
979 ret = path->dentry->d_op->d_manage(
980 path->dentry, false);
981 if (ret < 0)
982 return ret == -EISDIR ? 0 : ret;
983 }
984
985 /* Transit to a mounted filesystem. */
986 if (managed & DCACHE_MOUNTED) {
987 struct vfsmount *mounted = lookup_mnt(path);
988 if (!mounted)
989 break;
990 dput(path->dentry);
991 mntput(path->mnt);
992 path->mnt = mounted;
993 path->dentry = dget(mounted->mnt_root);
994 continue;
995 }
996
997 /* Don't handle automount points here */
998 break;
999 }
1000 return 0;
1001 }
1002
1003 /*
1004 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1005 */
1006 static void follow_mount(struct path *path)
1007 {
1008 while (d_mountpoint(path->dentry)) {
1009 struct vfsmount *mounted = lookup_mnt(path);
1010 if (!mounted)
1011 break;
1012 dput(path->dentry);
1013 mntput(path->mnt);
1014 path->mnt = mounted;
1015 path->dentry = dget(mounted->mnt_root);
1016 }
1017 }
1018
1019 static void follow_dotdot(struct nameidata *nd)
1020 {
1021 set_root(nd);
1022
1023 while(1) {
1024 struct dentry *old = nd->path.dentry;
1025
1026 if (nd->path.dentry == nd->root.dentry &&
1027 nd->path.mnt == nd->root.mnt) {
1028 break;
1029 }
1030 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1031 /* rare case of legitimate dget_parent()... */
1032 nd->path.dentry = dget_parent(nd->path.dentry);
1033 dput(old);
1034 break;
1035 }
1036 if (!follow_up(&nd->path))
1037 break;
1038 }
1039 follow_mount(&nd->path);
1040 nd->inode = nd->path.dentry->d_inode;
1041 }
1042
1043 /*
1044 * This looks up the name in dcache, possibly revalidates the old dentry and
1045 * allocates a new one if not found or not valid. In the need_lookup argument
1046 * returns whether i_op->lookup is necessary.
1047 *
1048 * dir->d_inode->i_mutex must be held
1049 */
1050 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1051 struct nameidata *nd, bool *need_lookup)
1052 {
1053 struct dentry *dentry;
1054 int error;
1055
1056 *need_lookup = false;
1057 dentry = d_lookup(dir, name);
1058 if (dentry) {
1059 if (d_need_lookup(dentry)) {
1060 *need_lookup = true;
1061 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1062 error = d_revalidate(dentry, nd);
1063 if (unlikely(error <= 0)) {
1064 if (error < 0) {
1065 dput(dentry);
1066 return ERR_PTR(error);
1067 } else if (!d_invalidate(dentry)) {
1068 dput(dentry);
1069 dentry = NULL;
1070 }
1071 }
1072 }
1073 }
1074
1075 if (!dentry) {
1076 dentry = d_alloc(dir, name);
1077 if (unlikely(!dentry))
1078 return ERR_PTR(-ENOMEM);
1079
1080 *need_lookup = true;
1081 }
1082 return dentry;
1083 }
1084
1085 /*
1086 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1087 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1088 *
1089 * dir->d_inode->i_mutex must be held
1090 */
1091 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1092 struct nameidata *nd)
1093 {
1094 struct dentry *old;
1095
1096 /* Don't create child dentry for a dead directory. */
1097 if (unlikely(IS_DEADDIR(dir))) {
1098 dput(dentry);
1099 return ERR_PTR(-ENOENT);
1100 }
1101
1102 old = dir->i_op->lookup(dir, dentry, nd);
1103 if (unlikely(old)) {
1104 dput(dentry);
1105 dentry = old;
1106 }
1107 return dentry;
1108 }
1109
1110 static struct dentry *__lookup_hash(struct qstr *name,
1111 struct dentry *base, struct nameidata *nd)
1112 {
1113 bool need_lookup;
1114 struct dentry *dentry;
1115
1116 dentry = lookup_dcache(name, base, nd, &need_lookup);
1117 if (!need_lookup)
1118 return dentry;
1119
1120 return lookup_real(base->d_inode, dentry, nd);
1121 }
1122
1123 /*
1124 * It's more convoluted than I'd like it to be, but... it's still fairly
1125 * small and for now I'd prefer to have fast path as straight as possible.
1126 * It _is_ time-critical.
1127 */
1128 static int do_lookup(struct nameidata *nd, struct qstr *name,
1129 struct path *path, struct inode **inode)
1130 {
1131 struct vfsmount *mnt = nd->path.mnt;
1132 struct dentry *dentry, *parent = nd->path.dentry;
1133 int need_reval = 1;
1134 int status = 1;
1135 int err;
1136
1137 /*
1138 * Rename seqlock is not required here because in the off chance
1139 * of a false negative due to a concurrent rename, we're going to
1140 * do the non-racy lookup, below.
1141 */
1142 if (nd->flags & LOOKUP_RCU) {
1143 unsigned seq;
1144 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1145 if (!dentry)
1146 goto unlazy;
1147
1148 /*
1149 * This sequence count validates that the inode matches
1150 * the dentry name information from lookup.
1151 */
1152 *inode = dentry->d_inode;
1153 if (read_seqcount_retry(&dentry->d_seq, seq))
1154 return -ECHILD;
1155
1156 /*
1157 * This sequence count validates that the parent had no
1158 * changes while we did the lookup of the dentry above.
1159 *
1160 * The memory barrier in read_seqcount_begin of child is
1161 * enough, we can use __read_seqcount_retry here.
1162 */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 return -ECHILD;
1165 nd->seq = seq;
1166
1167 if (unlikely(d_need_lookup(dentry)))
1168 goto unlazy;
1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 status = d_revalidate(dentry, nd);
1171 if (unlikely(status <= 0)) {
1172 if (status != -ECHILD)
1173 need_reval = 0;
1174 goto unlazy;
1175 }
1176 }
1177 path->mnt = mnt;
1178 path->dentry = dentry;
1179 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 goto unlazy;
1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 goto unlazy;
1183 return 0;
1184 unlazy:
1185 if (unlazy_walk(nd, dentry))
1186 return -ECHILD;
1187 } else {
1188 dentry = __d_lookup(parent, name);
1189 }
1190
1191 if (unlikely(!dentry))
1192 goto need_lookup;
1193
1194 if (unlikely(d_need_lookup(dentry))) {
1195 dput(dentry);
1196 goto need_lookup;
1197 }
1198
1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 status = d_revalidate(dentry, nd);
1201 if (unlikely(status <= 0)) {
1202 if (status < 0) {
1203 dput(dentry);
1204 return status;
1205 }
1206 if (!d_invalidate(dentry)) {
1207 dput(dentry);
1208 goto need_lookup;
1209 }
1210 }
1211 done:
1212 path->mnt = mnt;
1213 path->dentry = dentry;
1214 err = follow_managed(path, nd->flags);
1215 if (unlikely(err < 0)) {
1216 path_put_conditional(path, nd);
1217 return err;
1218 }
1219 if (err)
1220 nd->flags |= LOOKUP_JUMPED;
1221 *inode = path->dentry->d_inode;
1222 return 0;
1223
1224 need_lookup:
1225 BUG_ON(nd->inode != parent->d_inode);
1226
1227 mutex_lock(&parent->d_inode->i_mutex);
1228 dentry = __lookup_hash(name, parent, nd);
1229 mutex_unlock(&parent->d_inode->i_mutex);
1230 if (IS_ERR(dentry))
1231 return PTR_ERR(dentry);
1232 goto done;
1233 }
1234
1235 static inline int may_lookup(struct nameidata *nd)
1236 {
1237 if (nd->flags & LOOKUP_RCU) {
1238 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1239 if (err != -ECHILD)
1240 return err;
1241 if (unlazy_walk(nd, NULL))
1242 return -ECHILD;
1243 }
1244 return inode_permission(nd->inode, MAY_EXEC);
1245 }
1246
1247 static inline int handle_dots(struct nameidata *nd, int type)
1248 {
1249 if (type == LAST_DOTDOT) {
1250 if (nd->flags & LOOKUP_RCU) {
1251 if (follow_dotdot_rcu(nd))
1252 return -ECHILD;
1253 } else
1254 follow_dotdot(nd);
1255 }
1256 return 0;
1257 }
1258
1259 static void terminate_walk(struct nameidata *nd)
1260 {
1261 if (!(nd->flags & LOOKUP_RCU)) {
1262 path_put(&nd->path);
1263 } else {
1264 nd->flags &= ~LOOKUP_RCU;
1265 if (!(nd->flags & LOOKUP_ROOT))
1266 nd->root.mnt = NULL;
1267 rcu_read_unlock();
1268 br_read_unlock(vfsmount_lock);
1269 }
1270 }
1271
1272 /*
1273 * Do we need to follow links? We _really_ want to be able
1274 * to do this check without having to look at inode->i_op,
1275 * so we keep a cache of "no, this doesn't need follow_link"
1276 * for the common case.
1277 */
1278 static inline int should_follow_link(struct inode *inode, int follow)
1279 {
1280 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 if (likely(inode->i_op->follow_link))
1282 return follow;
1283
1284 /* This gets set once for the inode lifetime */
1285 spin_lock(&inode->i_lock);
1286 inode->i_opflags |= IOP_NOFOLLOW;
1287 spin_unlock(&inode->i_lock);
1288 }
1289 return 0;
1290 }
1291
1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 struct qstr *name, int type, int follow)
1294 {
1295 struct inode *inode;
1296 int err;
1297 /*
1298 * "." and ".." are special - ".." especially so because it has
1299 * to be able to know about the current root directory and
1300 * parent relationships.
1301 */
1302 if (unlikely(type != LAST_NORM))
1303 return handle_dots(nd, type);
1304 err = do_lookup(nd, name, path, &inode);
1305 if (unlikely(err)) {
1306 terminate_walk(nd);
1307 return err;
1308 }
1309 if (!inode) {
1310 path_to_nameidata(path, nd);
1311 terminate_walk(nd);
1312 return -ENOENT;
1313 }
1314 if (should_follow_link(inode, follow)) {
1315 if (nd->flags & LOOKUP_RCU) {
1316 if (unlikely(unlazy_walk(nd, path->dentry))) {
1317 terminate_walk(nd);
1318 return -ECHILD;
1319 }
1320 }
1321 BUG_ON(inode != path->dentry->d_inode);
1322 return 1;
1323 }
1324 path_to_nameidata(path, nd);
1325 nd->inode = inode;
1326 return 0;
1327 }
1328
1329 /*
1330 * This limits recursive symlink follows to 8, while
1331 * limiting consecutive symlinks to 40.
1332 *
1333 * Without that kind of total limit, nasty chains of consecutive
1334 * symlinks can cause almost arbitrarily long lookups.
1335 */
1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1337 {
1338 int res;
1339
1340 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 path_put_conditional(path, nd);
1342 path_put(&nd->path);
1343 return -ELOOP;
1344 }
1345 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1346
1347 nd->depth++;
1348 current->link_count++;
1349
1350 do {
1351 struct path link = *path;
1352 void *cookie;
1353
1354 res = follow_link(&link, nd, &cookie);
1355 if (!res)
1356 res = walk_component(nd, path, &nd->last,
1357 nd->last_type, LOOKUP_FOLLOW);
1358 put_link(nd, &link, cookie);
1359 } while (res > 0);
1360
1361 current->link_count--;
1362 nd->depth--;
1363 return res;
1364 }
1365
1366 /*
1367 * We really don't want to look at inode->i_op->lookup
1368 * when we don't have to. So we keep a cache bit in
1369 * the inode ->i_opflags field that says "yes, we can
1370 * do lookup on this inode".
1371 */
1372 static inline int can_lookup(struct inode *inode)
1373 {
1374 if (likely(inode->i_opflags & IOP_LOOKUP))
1375 return 1;
1376 if (likely(!inode->i_op->lookup))
1377 return 0;
1378
1379 /* We do this once for the lifetime of the inode */
1380 spin_lock(&inode->i_lock);
1381 inode->i_opflags |= IOP_LOOKUP;
1382 spin_unlock(&inode->i_lock);
1383 return 1;
1384 }
1385
1386 /*
1387 * We can do the critical dentry name comparison and hashing
1388 * operations one word at a time, but we are limited to:
1389 *
1390 * - Architectures with fast unaligned word accesses. We could
1391 * do a "get_unaligned()" if this helps and is sufficiently
1392 * fast.
1393 *
1394 * - Little-endian machines (so that we can generate the mask
1395 * of low bytes efficiently). Again, we *could* do a byte
1396 * swapping load on big-endian architectures if that is not
1397 * expensive enough to make the optimization worthless.
1398 *
1399 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400 * do not trap on the (extremely unlikely) case of a page
1401 * crossing operation.
1402 *
1403 * - Furthermore, we need an efficient 64-bit compile for the
1404 * 64-bit case in order to generate the "number of bytes in
1405 * the final mask". Again, that could be replaced with a
1406 * efficient population count instruction or similar.
1407 */
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1409
1410 #include <asm/word-at-a-time.h>
1411
1412 #ifdef CONFIG_64BIT
1413
1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 hash += hash >> (8*sizeof(int));
1417 return hash;
1418 }
1419
1420 #else /* 32-bit case */
1421
1422 #define fold_hash(x) (x)
1423
1424 #endif
1425
1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1427 {
1428 unsigned long a, mask;
1429 unsigned long hash = 0;
1430
1431 for (;;) {
1432 a = load_unaligned_zeropad(name);
1433 if (len < sizeof(unsigned long))
1434 break;
1435 hash += a;
1436 hash *= 9;
1437 name += sizeof(unsigned long);
1438 len -= sizeof(unsigned long);
1439 if (!len)
1440 goto done;
1441 }
1442 mask = ~(~0ul << len*8);
1443 hash += mask & a;
1444 done:
1445 return fold_hash(hash);
1446 }
1447 EXPORT_SYMBOL(full_name_hash);
1448
1449 /*
1450 * Calculate the length and hash of the path component, and
1451 * return the length of the component;
1452 */
1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1454 {
1455 unsigned long a, mask, hash, len;
1456
1457 hash = a = 0;
1458 len = -sizeof(unsigned long);
1459 do {
1460 hash = (hash + a) * 9;
1461 len += sizeof(unsigned long);
1462 a = load_unaligned_zeropad(name+len);
1463 /* Do we have any NUL or '/' bytes in this word? */
1464 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1465 } while (!mask);
1466
1467 /* The mask *below* the first high bit set */
1468 mask = (mask - 1) & ~mask;
1469 mask >>= 7;
1470 hash += a & mask;
1471 *hashp = fold_hash(hash);
1472
1473 return len + count_masked_bytes(mask);
1474 }
1475
1476 #else
1477
1478 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1479 {
1480 unsigned long hash = init_name_hash();
1481 while (len--)
1482 hash = partial_name_hash(*name++, hash);
1483 return end_name_hash(hash);
1484 }
1485 EXPORT_SYMBOL(full_name_hash);
1486
1487 /*
1488 * We know there's a real path component here of at least
1489 * one character.
1490 */
1491 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1492 {
1493 unsigned long hash = init_name_hash();
1494 unsigned long len = 0, c;
1495
1496 c = (unsigned char)*name;
1497 do {
1498 len++;
1499 hash = partial_name_hash(c, hash);
1500 c = (unsigned char)name[len];
1501 } while (c && c != '/');
1502 *hashp = end_name_hash(hash);
1503 return len;
1504 }
1505
1506 #endif
1507
1508 /*
1509 * Name resolution.
1510 * This is the basic name resolution function, turning a pathname into
1511 * the final dentry. We expect 'base' to be positive and a directory.
1512 *
1513 * Returns 0 and nd will have valid dentry and mnt on success.
1514 * Returns error and drops reference to input namei data on failure.
1515 */
1516 static int link_path_walk(const char *name, struct nameidata *nd)
1517 {
1518 struct path next;
1519 int err;
1520
1521 while (*name=='/')
1522 name++;
1523 if (!*name)
1524 return 0;
1525
1526 /* At this point we know we have a real path component. */
1527 for(;;) {
1528 struct qstr this;
1529 long len;
1530 int type;
1531
1532 err = may_lookup(nd);
1533 if (err)
1534 break;
1535
1536 len = hash_name(name, &this.hash);
1537 this.name = name;
1538 this.len = len;
1539
1540 type = LAST_NORM;
1541 if (name[0] == '.') switch (len) {
1542 case 2:
1543 if (name[1] == '.') {
1544 type = LAST_DOTDOT;
1545 nd->flags |= LOOKUP_JUMPED;
1546 }
1547 break;
1548 case 1:
1549 type = LAST_DOT;
1550 }
1551 if (likely(type == LAST_NORM)) {
1552 struct dentry *parent = nd->path.dentry;
1553 nd->flags &= ~LOOKUP_JUMPED;
1554 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1555 err = parent->d_op->d_hash(parent, nd->inode,
1556 &this);
1557 if (err < 0)
1558 break;
1559 }
1560 }
1561
1562 if (!name[len])
1563 goto last_component;
1564 /*
1565 * If it wasn't NUL, we know it was '/'. Skip that
1566 * slash, and continue until no more slashes.
1567 */
1568 do {
1569 len++;
1570 } while (unlikely(name[len] == '/'));
1571 if (!name[len])
1572 goto last_component;
1573 name += len;
1574
1575 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1576 if (err < 0)
1577 return err;
1578
1579 if (err) {
1580 err = nested_symlink(&next, nd);
1581 if (err)
1582 return err;
1583 }
1584 if (can_lookup(nd->inode))
1585 continue;
1586 err = -ENOTDIR;
1587 break;
1588 /* here ends the main loop */
1589
1590 last_component:
1591 nd->last = this;
1592 nd->last_type = type;
1593 return 0;
1594 }
1595 terminate_walk(nd);
1596 return err;
1597 }
1598
1599 static int path_init(int dfd, const char *name, unsigned int flags,
1600 struct nameidata *nd, struct file **fp)
1601 {
1602 int retval = 0;
1603 int fput_needed;
1604 struct file *file;
1605
1606 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1607 nd->flags = flags | LOOKUP_JUMPED;
1608 nd->depth = 0;
1609 if (flags & LOOKUP_ROOT) {
1610 struct inode *inode = nd->root.dentry->d_inode;
1611 if (*name) {
1612 if (!inode->i_op->lookup)
1613 return -ENOTDIR;
1614 retval = inode_permission(inode, MAY_EXEC);
1615 if (retval)
1616 return retval;
1617 }
1618 nd->path = nd->root;
1619 nd->inode = inode;
1620 if (flags & LOOKUP_RCU) {
1621 br_read_lock(vfsmount_lock);
1622 rcu_read_lock();
1623 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1624 } else {
1625 path_get(&nd->path);
1626 }
1627 return 0;
1628 }
1629
1630 nd->root.mnt = NULL;
1631
1632 if (*name=='/') {
1633 if (flags & LOOKUP_RCU) {
1634 br_read_lock(vfsmount_lock);
1635 rcu_read_lock();
1636 set_root_rcu(nd);
1637 } else {
1638 set_root(nd);
1639 path_get(&nd->root);
1640 }
1641 nd->path = nd->root;
1642 } else if (dfd == AT_FDCWD) {
1643 if (flags & LOOKUP_RCU) {
1644 struct fs_struct *fs = current->fs;
1645 unsigned seq;
1646
1647 br_read_lock(vfsmount_lock);
1648 rcu_read_lock();
1649
1650 do {
1651 seq = read_seqcount_begin(&fs->seq);
1652 nd->path = fs->pwd;
1653 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1654 } while (read_seqcount_retry(&fs->seq, seq));
1655 } else {
1656 get_fs_pwd(current->fs, &nd->path);
1657 }
1658 } else {
1659 struct dentry *dentry;
1660
1661 file = fget_raw_light(dfd, &fput_needed);
1662 retval = -EBADF;
1663 if (!file)
1664 goto out_fail;
1665
1666 dentry = file->f_path.dentry;
1667
1668 if (*name) {
1669 retval = -ENOTDIR;
1670 if (!S_ISDIR(dentry->d_inode->i_mode))
1671 goto fput_fail;
1672
1673 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1674 if (retval)
1675 goto fput_fail;
1676 }
1677
1678 nd->path = file->f_path;
1679 if (flags & LOOKUP_RCU) {
1680 if (fput_needed)
1681 *fp = file;
1682 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1683 br_read_lock(vfsmount_lock);
1684 rcu_read_lock();
1685 } else {
1686 path_get(&file->f_path);
1687 fput_light(file, fput_needed);
1688 }
1689 }
1690
1691 nd->inode = nd->path.dentry->d_inode;
1692 return 0;
1693
1694 fput_fail:
1695 fput_light(file, fput_needed);
1696 out_fail:
1697 return retval;
1698 }
1699
1700 static inline int lookup_last(struct nameidata *nd, struct path *path)
1701 {
1702 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1703 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1704
1705 nd->flags &= ~LOOKUP_PARENT;
1706 return walk_component(nd, path, &nd->last, nd->last_type,
1707 nd->flags & LOOKUP_FOLLOW);
1708 }
1709
1710 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1711 static int path_lookupat(int dfd, const char *name,
1712 unsigned int flags, struct nameidata *nd)
1713 {
1714 struct file *base = NULL;
1715 struct path path;
1716 int err;
1717
1718 /*
1719 * Path walking is largely split up into 2 different synchronisation
1720 * schemes, rcu-walk and ref-walk (explained in
1721 * Documentation/filesystems/path-lookup.txt). These share much of the
1722 * path walk code, but some things particularly setup, cleanup, and
1723 * following mounts are sufficiently divergent that functions are
1724 * duplicated. Typically there is a function foo(), and its RCU
1725 * analogue, foo_rcu().
1726 *
1727 * -ECHILD is the error number of choice (just to avoid clashes) that
1728 * is returned if some aspect of an rcu-walk fails. Such an error must
1729 * be handled by restarting a traditional ref-walk (which will always
1730 * be able to complete).
1731 */
1732 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1733
1734 if (unlikely(err))
1735 return err;
1736
1737 current->total_link_count = 0;
1738 err = link_path_walk(name, nd);
1739
1740 if (!err && !(flags & LOOKUP_PARENT)) {
1741 err = lookup_last(nd, &path);
1742 while (err > 0) {
1743 void *cookie;
1744 struct path link = path;
1745 nd->flags |= LOOKUP_PARENT;
1746 err = follow_link(&link, nd, &cookie);
1747 if (!err)
1748 err = lookup_last(nd, &path);
1749 put_link(nd, &link, cookie);
1750 }
1751 }
1752
1753 if (!err)
1754 err = complete_walk(nd);
1755
1756 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1757 if (!nd->inode->i_op->lookup) {
1758 path_put(&nd->path);
1759 err = -ENOTDIR;
1760 }
1761 }
1762
1763 if (base)
1764 fput(base);
1765
1766 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1767 path_put(&nd->root);
1768 nd->root.mnt = NULL;
1769 }
1770 return err;
1771 }
1772
1773 static int do_path_lookup(int dfd, const char *name,
1774 unsigned int flags, struct nameidata *nd)
1775 {
1776 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1777 if (unlikely(retval == -ECHILD))
1778 retval = path_lookupat(dfd, name, flags, nd);
1779 if (unlikely(retval == -ESTALE))
1780 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1781
1782 if (likely(!retval)) {
1783 if (unlikely(!audit_dummy_context())) {
1784 if (nd->path.dentry && nd->inode)
1785 audit_inode(name, nd->path.dentry);
1786 }
1787 }
1788 return retval;
1789 }
1790
1791 int kern_path_parent(const char *name, struct nameidata *nd)
1792 {
1793 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1794 }
1795
1796 int kern_path(const char *name, unsigned int flags, struct path *path)
1797 {
1798 struct nameidata nd;
1799 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1800 if (!res)
1801 *path = nd.path;
1802 return res;
1803 }
1804
1805 /**
1806 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1807 * @dentry: pointer to dentry of the base directory
1808 * @mnt: pointer to vfs mount of the base directory
1809 * @name: pointer to file name
1810 * @flags: lookup flags
1811 * @path: pointer to struct path to fill
1812 */
1813 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1814 const char *name, unsigned int flags,
1815 struct path *path)
1816 {
1817 struct nameidata nd;
1818 int err;
1819 nd.root.dentry = dentry;
1820 nd.root.mnt = mnt;
1821 BUG_ON(flags & LOOKUP_PARENT);
1822 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1823 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1824 if (!err)
1825 *path = nd.path;
1826 return err;
1827 }
1828
1829 /*
1830 * Restricted form of lookup. Doesn't follow links, single-component only,
1831 * needs parent already locked. Doesn't follow mounts.
1832 * SMP-safe.
1833 */
1834 static struct dentry *lookup_hash(struct nameidata *nd)
1835 {
1836 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1837 }
1838
1839 /**
1840 * lookup_one_len - filesystem helper to lookup single pathname component
1841 * @name: pathname component to lookup
1842 * @base: base directory to lookup from
1843 * @len: maximum length @len should be interpreted to
1844 *
1845 * Note that this routine is purely a helper for filesystem usage and should
1846 * not be called by generic code. Also note that by using this function the
1847 * nameidata argument is passed to the filesystem methods and a filesystem
1848 * using this helper needs to be prepared for that.
1849 */
1850 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1851 {
1852 struct qstr this;
1853 unsigned int c;
1854 int err;
1855
1856 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1857
1858 this.name = name;
1859 this.len = len;
1860 this.hash = full_name_hash(name, len);
1861 if (!len)
1862 return ERR_PTR(-EACCES);
1863
1864 while (len--) {
1865 c = *(const unsigned char *)name++;
1866 if (c == '/' || c == '\0')
1867 return ERR_PTR(-EACCES);
1868 }
1869 /*
1870 * See if the low-level filesystem might want
1871 * to use its own hash..
1872 */
1873 if (base->d_flags & DCACHE_OP_HASH) {
1874 int err = base->d_op->d_hash(base, base->d_inode, &this);
1875 if (err < 0)
1876 return ERR_PTR(err);
1877 }
1878
1879 err = inode_permission(base->d_inode, MAY_EXEC);
1880 if (err)
1881 return ERR_PTR(err);
1882
1883 return __lookup_hash(&this, base, NULL);
1884 }
1885
1886 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1887 struct path *path, int *empty)
1888 {
1889 struct nameidata nd;
1890 char *tmp = getname_flags(name, flags, empty);
1891 int err = PTR_ERR(tmp);
1892 if (!IS_ERR(tmp)) {
1893
1894 BUG_ON(flags & LOOKUP_PARENT);
1895
1896 err = do_path_lookup(dfd, tmp, flags, &nd);
1897 putname(tmp);
1898 if (!err)
1899 *path = nd.path;
1900 }
1901 return err;
1902 }
1903
1904 int user_path_at(int dfd, const char __user *name, unsigned flags,
1905 struct path *path)
1906 {
1907 return user_path_at_empty(dfd, name, flags, path, NULL);
1908 }
1909
1910 static int user_path_parent(int dfd, const char __user *path,
1911 struct nameidata *nd, char **name)
1912 {
1913 char *s = getname(path);
1914 int error;
1915
1916 if (IS_ERR(s))
1917 return PTR_ERR(s);
1918
1919 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1920 if (error)
1921 putname(s);
1922 else
1923 *name = s;
1924
1925 return error;
1926 }
1927
1928 /*
1929 * It's inline, so penalty for filesystems that don't use sticky bit is
1930 * minimal.
1931 */
1932 static inline int check_sticky(struct inode *dir, struct inode *inode)
1933 {
1934 kuid_t fsuid = current_fsuid();
1935
1936 if (!(dir->i_mode & S_ISVTX))
1937 return 0;
1938 if (uid_eq(inode->i_uid, fsuid))
1939 return 0;
1940 if (uid_eq(dir->i_uid, fsuid))
1941 return 0;
1942 return !inode_capable(inode, CAP_FOWNER);
1943 }
1944
1945 /*
1946 * Check whether we can remove a link victim from directory dir, check
1947 * whether the type of victim is right.
1948 * 1. We can't do it if dir is read-only (done in permission())
1949 * 2. We should have write and exec permissions on dir
1950 * 3. We can't remove anything from append-only dir
1951 * 4. We can't do anything with immutable dir (done in permission())
1952 * 5. If the sticky bit on dir is set we should either
1953 * a. be owner of dir, or
1954 * b. be owner of victim, or
1955 * c. have CAP_FOWNER capability
1956 * 6. If the victim is append-only or immutable we can't do antyhing with
1957 * links pointing to it.
1958 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1959 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1960 * 9. We can't remove a root or mountpoint.
1961 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1962 * nfs_async_unlink().
1963 */
1964 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1965 {
1966 int error;
1967
1968 if (!victim->d_inode)
1969 return -ENOENT;
1970
1971 BUG_ON(victim->d_parent->d_inode != dir);
1972 audit_inode_child(victim, dir);
1973
1974 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1975 if (error)
1976 return error;
1977 if (IS_APPEND(dir))
1978 return -EPERM;
1979 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1980 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1981 return -EPERM;
1982 if (isdir) {
1983 if (!S_ISDIR(victim->d_inode->i_mode))
1984 return -ENOTDIR;
1985 if (IS_ROOT(victim))
1986 return -EBUSY;
1987 } else if (S_ISDIR(victim->d_inode->i_mode))
1988 return -EISDIR;
1989 if (IS_DEADDIR(dir))
1990 return -ENOENT;
1991 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1992 return -EBUSY;
1993 return 0;
1994 }
1995
1996 /* Check whether we can create an object with dentry child in directory
1997 * dir.
1998 * 1. We can't do it if child already exists (open has special treatment for
1999 * this case, but since we are inlined it's OK)
2000 * 2. We can't do it if dir is read-only (done in permission())
2001 * 3. We should have write and exec permissions on dir
2002 * 4. We can't do it if dir is immutable (done in permission())
2003 */
2004 static inline int may_create(struct inode *dir, struct dentry *child)
2005 {
2006 if (child->d_inode)
2007 return -EEXIST;
2008 if (IS_DEADDIR(dir))
2009 return -ENOENT;
2010 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2011 }
2012
2013 /*
2014 * p1 and p2 should be directories on the same fs.
2015 */
2016 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2017 {
2018 struct dentry *p;
2019
2020 if (p1 == p2) {
2021 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2022 return NULL;
2023 }
2024
2025 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2026
2027 p = d_ancestor(p2, p1);
2028 if (p) {
2029 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2030 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2031 return p;
2032 }
2033
2034 p = d_ancestor(p1, p2);
2035 if (p) {
2036 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2037 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2038 return p;
2039 }
2040
2041 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2042 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2043 return NULL;
2044 }
2045
2046 void unlock_rename(struct dentry *p1, struct dentry *p2)
2047 {
2048 mutex_unlock(&p1->d_inode->i_mutex);
2049 if (p1 != p2) {
2050 mutex_unlock(&p2->d_inode->i_mutex);
2051 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2052 }
2053 }
2054
2055 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2056 struct nameidata *nd)
2057 {
2058 int error = may_create(dir, dentry);
2059
2060 if (error)
2061 return error;
2062
2063 if (!dir->i_op->create)
2064 return -EACCES; /* shouldn't it be ENOSYS? */
2065 mode &= S_IALLUGO;
2066 mode |= S_IFREG;
2067 error = security_inode_create(dir, dentry, mode);
2068 if (error)
2069 return error;
2070 error = dir->i_op->create(dir, dentry, mode, nd);
2071 if (!error)
2072 fsnotify_create(dir, dentry);
2073 return error;
2074 }
2075
2076 static int may_open(struct path *path, int acc_mode, int flag)
2077 {
2078 struct dentry *dentry = path->dentry;
2079 struct inode *inode = dentry->d_inode;
2080 int error;
2081
2082 /* O_PATH? */
2083 if (!acc_mode)
2084 return 0;
2085
2086 if (!inode)
2087 return -ENOENT;
2088
2089 switch (inode->i_mode & S_IFMT) {
2090 case S_IFLNK:
2091 return -ELOOP;
2092 case S_IFDIR:
2093 if (acc_mode & MAY_WRITE)
2094 return -EISDIR;
2095 break;
2096 case S_IFBLK:
2097 case S_IFCHR:
2098 if (path->mnt->mnt_flags & MNT_NODEV)
2099 return -EACCES;
2100 /*FALLTHRU*/
2101 case S_IFIFO:
2102 case S_IFSOCK:
2103 flag &= ~O_TRUNC;
2104 break;
2105 }
2106
2107 error = inode_permission(inode, acc_mode);
2108 if (error)
2109 return error;
2110
2111 /*
2112 * An append-only file must be opened in append mode for writing.
2113 */
2114 if (IS_APPEND(inode)) {
2115 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2116 return -EPERM;
2117 if (flag & O_TRUNC)
2118 return -EPERM;
2119 }
2120
2121 /* O_NOATIME can only be set by the owner or superuser */
2122 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2123 return -EPERM;
2124
2125 return 0;
2126 }
2127
2128 static int handle_truncate(struct file *filp)
2129 {
2130 struct path *path = &filp->f_path;
2131 struct inode *inode = path->dentry->d_inode;
2132 int error = get_write_access(inode);
2133 if (error)
2134 return error;
2135 /*
2136 * Refuse to truncate files with mandatory locks held on them.
2137 */
2138 error = locks_verify_locked(inode);
2139 if (!error)
2140 error = security_path_truncate(path);
2141 if (!error) {
2142 error = do_truncate(path->dentry, 0,
2143 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2144 filp);
2145 }
2146 put_write_access(inode);
2147 return error;
2148 }
2149
2150 static inline int open_to_namei_flags(int flag)
2151 {
2152 if ((flag & O_ACCMODE) == 3)
2153 flag--;
2154 return flag;
2155 }
2156
2157 /*
2158 * Handle the last step of open()
2159 */
2160 static struct file *do_last(struct nameidata *nd, struct path *path,
2161 const struct open_flags *op, const char *pathname)
2162 {
2163 struct dentry *dir = nd->path.dentry;
2164 struct dentry *dentry;
2165 int open_flag = op->open_flag;
2166 int will_truncate = open_flag & O_TRUNC;
2167 int want_write = 0;
2168 int acc_mode = op->acc_mode;
2169 struct file *filp;
2170 int error;
2171
2172 nd->flags &= ~LOOKUP_PARENT;
2173 nd->flags |= op->intent;
2174
2175 switch (nd->last_type) {
2176 case LAST_DOTDOT:
2177 case LAST_DOT:
2178 error = handle_dots(nd, nd->last_type);
2179 if (error)
2180 return ERR_PTR(error);
2181 /* fallthrough */
2182 case LAST_ROOT:
2183 error = complete_walk(nd);
2184 if (error)
2185 return ERR_PTR(error);
2186 audit_inode(pathname, nd->path.dentry);
2187 if (open_flag & O_CREAT) {
2188 error = -EISDIR;
2189 goto exit;
2190 }
2191 goto ok;
2192 case LAST_BIND:
2193 error = complete_walk(nd);
2194 if (error)
2195 return ERR_PTR(error);
2196 audit_inode(pathname, dir);
2197 goto ok;
2198 }
2199
2200 if (!(open_flag & O_CREAT)) {
2201 int symlink_ok = 0;
2202 if (nd->last.name[nd->last.len])
2203 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2204 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2205 symlink_ok = 1;
2206 /* we _can_ be in RCU mode here */
2207 error = walk_component(nd, path, &nd->last, LAST_NORM,
2208 !symlink_ok);
2209 if (error < 0)
2210 return ERR_PTR(error);
2211 if (error) /* symlink */
2212 return NULL;
2213 /* sayonara */
2214 error = complete_walk(nd);
2215 if (error)
2216 return ERR_PTR(error);
2217
2218 error = -ENOTDIR;
2219 if (nd->flags & LOOKUP_DIRECTORY) {
2220 if (!nd->inode->i_op->lookup)
2221 goto exit;
2222 }
2223 audit_inode(pathname, nd->path.dentry);
2224 goto ok;
2225 }
2226
2227 /* create side of things */
2228 /*
2229 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2230 * cleared when we got to the last component we are about to look up
2231 */
2232 error = complete_walk(nd);
2233 if (error)
2234 return ERR_PTR(error);
2235
2236 audit_inode(pathname, dir);
2237 error = -EISDIR;
2238 /* trailing slashes? */
2239 if (nd->last.name[nd->last.len])
2240 goto exit;
2241
2242 mutex_lock(&dir->d_inode->i_mutex);
2243
2244 dentry = lookup_hash(nd);
2245 error = PTR_ERR(dentry);
2246 if (IS_ERR(dentry)) {
2247 mutex_unlock(&dir->d_inode->i_mutex);
2248 goto exit;
2249 }
2250
2251 path->dentry = dentry;
2252 path->mnt = nd->path.mnt;
2253
2254 /* Negative dentry, just create the file */
2255 if (!dentry->d_inode) {
2256 umode_t mode = op->mode;
2257 if (!IS_POSIXACL(dir->d_inode))
2258 mode &= ~current_umask();
2259 /*
2260 * This write is needed to ensure that a
2261 * rw->ro transition does not occur between
2262 * the time when the file is created and when
2263 * a permanent write count is taken through
2264 * the 'struct file' in nameidata_to_filp().
2265 */
2266 error = mnt_want_write(nd->path.mnt);
2267 if (error)
2268 goto exit_mutex_unlock;
2269 want_write = 1;
2270 /* Don't check for write permission, don't truncate */
2271 open_flag &= ~O_TRUNC;
2272 will_truncate = 0;
2273 acc_mode = MAY_OPEN;
2274 error = security_path_mknod(&nd->path, dentry, mode, 0);
2275 if (error)
2276 goto exit_mutex_unlock;
2277 error = vfs_create(dir->d_inode, dentry, mode, nd);
2278 if (error)
2279 goto exit_mutex_unlock;
2280 mutex_unlock(&dir->d_inode->i_mutex);
2281 dput(nd->path.dentry);
2282 nd->path.dentry = dentry;
2283 goto common;
2284 }
2285
2286 /*
2287 * It already exists.
2288 */
2289 mutex_unlock(&dir->d_inode->i_mutex);
2290 audit_inode(pathname, path->dentry);
2291
2292 error = -EEXIST;
2293 if (open_flag & O_EXCL)
2294 goto exit_dput;
2295
2296 error = follow_managed(path, nd->flags);
2297 if (error < 0)
2298 goto exit_dput;
2299
2300 if (error)
2301 nd->flags |= LOOKUP_JUMPED;
2302
2303 error = -ENOENT;
2304 if (!path->dentry->d_inode)
2305 goto exit_dput;
2306
2307 if (path->dentry->d_inode->i_op->follow_link)
2308 return NULL;
2309
2310 path_to_nameidata(path, nd);
2311 nd->inode = path->dentry->d_inode;
2312 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2313 error = complete_walk(nd);
2314 if (error)
2315 return ERR_PTR(error);
2316 error = -EISDIR;
2317 if (S_ISDIR(nd->inode->i_mode))
2318 goto exit;
2319 ok:
2320 if (!S_ISREG(nd->inode->i_mode))
2321 will_truncate = 0;
2322
2323 if (will_truncate) {
2324 error = mnt_want_write(nd->path.mnt);
2325 if (error)
2326 goto exit;
2327 want_write = 1;
2328 }
2329 common:
2330 error = may_open(&nd->path, acc_mode, open_flag);
2331 if (error)
2332 goto exit;
2333 filp = nameidata_to_filp(nd);
2334 if (!IS_ERR(filp)) {
2335 error = ima_file_check(filp, op->acc_mode);
2336 if (error) {
2337 fput(filp);
2338 filp = ERR_PTR(error);
2339 }
2340 }
2341 if (!IS_ERR(filp)) {
2342 if (will_truncate) {
2343 error = handle_truncate(filp);
2344 if (error) {
2345 fput(filp);
2346 filp = ERR_PTR(error);
2347 }
2348 }
2349 }
2350 out:
2351 if (want_write)
2352 mnt_drop_write(nd->path.mnt);
2353 path_put(&nd->path);
2354 return filp;
2355
2356 exit_mutex_unlock:
2357 mutex_unlock(&dir->d_inode->i_mutex);
2358 exit_dput:
2359 path_put_conditional(path, nd);
2360 exit:
2361 filp = ERR_PTR(error);
2362 goto out;
2363 }
2364
2365 static struct file *path_openat(int dfd, const char *pathname,
2366 struct nameidata *nd, const struct open_flags *op, int flags)
2367 {
2368 struct file *base = NULL;
2369 struct file *filp;
2370 struct path path;
2371 int error;
2372
2373 filp = get_empty_filp();
2374 if (!filp)
2375 return ERR_PTR(-ENFILE);
2376
2377 filp->f_flags = op->open_flag;
2378 nd->intent.open.file = filp;
2379 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2380 nd->intent.open.create_mode = op->mode;
2381
2382 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2383 if (unlikely(error))
2384 goto out_filp;
2385
2386 current->total_link_count = 0;
2387 error = link_path_walk(pathname, nd);
2388 if (unlikely(error))
2389 goto out_filp;
2390
2391 filp = do_last(nd, &path, op, pathname);
2392 while (unlikely(!filp)) { /* trailing symlink */
2393 struct path link = path;
2394 void *cookie;
2395 if (!(nd->flags & LOOKUP_FOLLOW)) {
2396 path_put_conditional(&path, nd);
2397 path_put(&nd->path);
2398 filp = ERR_PTR(-ELOOP);
2399 break;
2400 }
2401 nd->flags |= LOOKUP_PARENT;
2402 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2403 error = follow_link(&link, nd, &cookie);
2404 if (unlikely(error))
2405 filp = ERR_PTR(error);
2406 else
2407 filp = do_last(nd, &path, op, pathname);
2408 put_link(nd, &link, cookie);
2409 }
2410 out:
2411 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2412 path_put(&nd->root);
2413 if (base)
2414 fput(base);
2415 release_open_intent(nd);
2416 return filp;
2417
2418 out_filp:
2419 filp = ERR_PTR(error);
2420 goto out;
2421 }
2422
2423 struct file *do_filp_open(int dfd, const char *pathname,
2424 const struct open_flags *op, int flags)
2425 {
2426 struct nameidata nd;
2427 struct file *filp;
2428
2429 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2430 if (unlikely(filp == ERR_PTR(-ECHILD)))
2431 filp = path_openat(dfd, pathname, &nd, op, flags);
2432 if (unlikely(filp == ERR_PTR(-ESTALE)))
2433 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2434 return filp;
2435 }
2436
2437 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2438 const char *name, const struct open_flags *op, int flags)
2439 {
2440 struct nameidata nd;
2441 struct file *file;
2442
2443 nd.root.mnt = mnt;
2444 nd.root.dentry = dentry;
2445
2446 flags |= LOOKUP_ROOT;
2447
2448 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2449 return ERR_PTR(-ELOOP);
2450
2451 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2452 if (unlikely(file == ERR_PTR(-ECHILD)))
2453 file = path_openat(-1, name, &nd, op, flags);
2454 if (unlikely(file == ERR_PTR(-ESTALE)))
2455 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2456 return file;
2457 }
2458
2459 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2460 {
2461 struct dentry *dentry = ERR_PTR(-EEXIST);
2462 struct nameidata nd;
2463 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2464 if (error)
2465 return ERR_PTR(error);
2466
2467 /*
2468 * Yucky last component or no last component at all?
2469 * (foo/., foo/.., /////)
2470 */
2471 if (nd.last_type != LAST_NORM)
2472 goto out;
2473 nd.flags &= ~LOOKUP_PARENT;
2474 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2475 nd.intent.open.flags = O_EXCL;
2476
2477 /*
2478 * Do the final lookup.
2479 */
2480 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2481 dentry = lookup_hash(&nd);
2482 if (IS_ERR(dentry))
2483 goto fail;
2484
2485 if (dentry->d_inode)
2486 goto eexist;
2487 /*
2488 * Special case - lookup gave negative, but... we had foo/bar/
2489 * From the vfs_mknod() POV we just have a negative dentry -
2490 * all is fine. Let's be bastards - you had / on the end, you've
2491 * been asking for (non-existent) directory. -ENOENT for you.
2492 */
2493 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2494 dput(dentry);
2495 dentry = ERR_PTR(-ENOENT);
2496 goto fail;
2497 }
2498 *path = nd.path;
2499 return dentry;
2500 eexist:
2501 dput(dentry);
2502 dentry = ERR_PTR(-EEXIST);
2503 fail:
2504 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2505 out:
2506 path_put(&nd.path);
2507 return dentry;
2508 }
2509 EXPORT_SYMBOL(kern_path_create);
2510
2511 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2512 {
2513 char *tmp = getname(pathname);
2514 struct dentry *res;
2515 if (IS_ERR(tmp))
2516 return ERR_CAST(tmp);
2517 res = kern_path_create(dfd, tmp, path, is_dir);
2518 putname(tmp);
2519 return res;
2520 }
2521 EXPORT_SYMBOL(user_path_create);
2522
2523 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2524 {
2525 int error = may_create(dir, dentry);
2526
2527 if (error)
2528 return error;
2529
2530 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2531 return -EPERM;
2532
2533 if (!dir->i_op->mknod)
2534 return -EPERM;
2535
2536 error = devcgroup_inode_mknod(mode, dev);
2537 if (error)
2538 return error;
2539
2540 error = security_inode_mknod(dir, dentry, mode, dev);
2541 if (error)
2542 return error;
2543
2544 error = dir->i_op->mknod(dir, dentry, mode, dev);
2545 if (!error)
2546 fsnotify_create(dir, dentry);
2547 return error;
2548 }
2549
2550 static int may_mknod(umode_t mode)
2551 {
2552 switch (mode & S_IFMT) {
2553 case S_IFREG:
2554 case S_IFCHR:
2555 case S_IFBLK:
2556 case S_IFIFO:
2557 case S_IFSOCK:
2558 case 0: /* zero mode translates to S_IFREG */
2559 return 0;
2560 case S_IFDIR:
2561 return -EPERM;
2562 default:
2563 return -EINVAL;
2564 }
2565 }
2566
2567 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2568 unsigned, dev)
2569 {
2570 struct dentry *dentry;
2571 struct path path;
2572 int error;
2573
2574 if (S_ISDIR(mode))
2575 return -EPERM;
2576
2577 dentry = user_path_create(dfd, filename, &path, 0);
2578 if (IS_ERR(dentry))
2579 return PTR_ERR(dentry);
2580
2581 if (!IS_POSIXACL(path.dentry->d_inode))
2582 mode &= ~current_umask();
2583 error = may_mknod(mode);
2584 if (error)
2585 goto out_dput;
2586 error = mnt_want_write(path.mnt);
2587 if (error)
2588 goto out_dput;
2589 error = security_path_mknod(&path, dentry, mode, dev);
2590 if (error)
2591 goto out_drop_write;
2592 switch (mode & S_IFMT) {
2593 case 0: case S_IFREG:
2594 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2595 break;
2596 case S_IFCHR: case S_IFBLK:
2597 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2598 new_decode_dev(dev));
2599 break;
2600 case S_IFIFO: case S_IFSOCK:
2601 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2602 break;
2603 }
2604 out_drop_write:
2605 mnt_drop_write(path.mnt);
2606 out_dput:
2607 dput(dentry);
2608 mutex_unlock(&path.dentry->d_inode->i_mutex);
2609 path_put(&path);
2610
2611 return error;
2612 }
2613
2614 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2615 {
2616 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2617 }
2618
2619 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2620 {
2621 int error = may_create(dir, dentry);
2622 unsigned max_links = dir->i_sb->s_max_links;
2623
2624 if (error)
2625 return error;
2626
2627 if (!dir->i_op->mkdir)
2628 return -EPERM;
2629
2630 mode &= (S_IRWXUGO|S_ISVTX);
2631 error = security_inode_mkdir(dir, dentry, mode);
2632 if (error)
2633 return error;
2634
2635 if (max_links && dir->i_nlink >= max_links)
2636 return -EMLINK;
2637
2638 error = dir->i_op->mkdir(dir, dentry, mode);
2639 if (!error)
2640 fsnotify_mkdir(dir, dentry);
2641 return error;
2642 }
2643
2644 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2645 {
2646 struct dentry *dentry;
2647 struct path path;
2648 int error;
2649
2650 dentry = user_path_create(dfd, pathname, &path, 1);
2651 if (IS_ERR(dentry))
2652 return PTR_ERR(dentry);
2653
2654 if (!IS_POSIXACL(path.dentry->d_inode))
2655 mode &= ~current_umask();
2656 error = mnt_want_write(path.mnt);
2657 if (error)
2658 goto out_dput;
2659 error = security_path_mkdir(&path, dentry, mode);
2660 if (error)
2661 goto out_drop_write;
2662 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2663 out_drop_write:
2664 mnt_drop_write(path.mnt);
2665 out_dput:
2666 dput(dentry);
2667 mutex_unlock(&path.dentry->d_inode->i_mutex);
2668 path_put(&path);
2669 return error;
2670 }
2671
2672 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2673 {
2674 return sys_mkdirat(AT_FDCWD, pathname, mode);
2675 }
2676
2677 /*
2678 * The dentry_unhash() helper will try to drop the dentry early: we
2679 * should have a usage count of 1 if we're the only user of this
2680 * dentry, and if that is true (possibly after pruning the dcache),
2681 * then we drop the dentry now.
2682 *
2683 * A low-level filesystem can, if it choses, legally
2684 * do a
2685 *
2686 * if (!d_unhashed(dentry))
2687 * return -EBUSY;
2688 *
2689 * if it cannot handle the case of removing a directory
2690 * that is still in use by something else..
2691 */
2692 void dentry_unhash(struct dentry *dentry)
2693 {
2694 shrink_dcache_parent(dentry);
2695 spin_lock(&dentry->d_lock);
2696 if (dentry->d_count == 1)
2697 __d_drop(dentry);
2698 spin_unlock(&dentry->d_lock);
2699 }
2700
2701 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2702 {
2703 int error = may_delete(dir, dentry, 1);
2704
2705 if (error)
2706 return error;
2707
2708 if (!dir->i_op->rmdir)
2709 return -EPERM;
2710
2711 dget(dentry);
2712 mutex_lock(&dentry->d_inode->i_mutex);
2713
2714 error = -EBUSY;
2715 if (d_mountpoint(dentry))
2716 goto out;
2717
2718 error = security_inode_rmdir(dir, dentry);
2719 if (error)
2720 goto out;
2721
2722 shrink_dcache_parent(dentry);
2723 error = dir->i_op->rmdir(dir, dentry);
2724 if (error)
2725 goto out;
2726
2727 dentry->d_inode->i_flags |= S_DEAD;
2728 dont_mount(dentry);
2729
2730 out:
2731 mutex_unlock(&dentry->d_inode->i_mutex);
2732 dput(dentry);
2733 if (!error)
2734 d_delete(dentry);
2735 return error;
2736 }
2737
2738 static long do_rmdir(int dfd, const char __user *pathname)
2739 {
2740 int error = 0;
2741 char * name;
2742 struct dentry *dentry;
2743 struct nameidata nd;
2744
2745 error = user_path_parent(dfd, pathname, &nd, &name);
2746 if (error)
2747 return error;
2748
2749 switch(nd.last_type) {
2750 case LAST_DOTDOT:
2751 error = -ENOTEMPTY;
2752 goto exit1;
2753 case LAST_DOT:
2754 error = -EINVAL;
2755 goto exit1;
2756 case LAST_ROOT:
2757 error = -EBUSY;
2758 goto exit1;
2759 }
2760
2761 nd.flags &= ~LOOKUP_PARENT;
2762
2763 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2764 dentry = lookup_hash(&nd);
2765 error = PTR_ERR(dentry);
2766 if (IS_ERR(dentry))
2767 goto exit2;
2768 if (!dentry->d_inode) {
2769 error = -ENOENT;
2770 goto exit3;
2771 }
2772 error = mnt_want_write(nd.path.mnt);
2773 if (error)
2774 goto exit3;
2775 error = security_path_rmdir(&nd.path, dentry);
2776 if (error)
2777 goto exit4;
2778 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2779 exit4:
2780 mnt_drop_write(nd.path.mnt);
2781 exit3:
2782 dput(dentry);
2783 exit2:
2784 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2785 exit1:
2786 path_put(&nd.path);
2787 putname(name);
2788 return error;
2789 }
2790
2791 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2792 {
2793 return do_rmdir(AT_FDCWD, pathname);
2794 }
2795
2796 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2797 {
2798 int error = may_delete(dir, dentry, 0);
2799
2800 if (error)
2801 return error;
2802
2803 if (!dir->i_op->unlink)
2804 return -EPERM;
2805
2806 mutex_lock(&dentry->d_inode->i_mutex);
2807 if (d_mountpoint(dentry))
2808 error = -EBUSY;
2809 else {
2810 error = security_inode_unlink(dir, dentry);
2811 if (!error) {
2812 error = dir->i_op->unlink(dir, dentry);
2813 if (!error)
2814 dont_mount(dentry);
2815 }
2816 }
2817 mutex_unlock(&dentry->d_inode->i_mutex);
2818
2819 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2820 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2821 fsnotify_link_count(dentry->d_inode);
2822 d_delete(dentry);
2823 }
2824
2825 return error;
2826 }
2827
2828 /*
2829 * Make sure that the actual truncation of the file will occur outside its
2830 * directory's i_mutex. Truncate can take a long time if there is a lot of
2831 * writeout happening, and we don't want to prevent access to the directory
2832 * while waiting on the I/O.
2833 */
2834 static long do_unlinkat(int dfd, const char __user *pathname)
2835 {
2836 int error;
2837 char *name;
2838 struct dentry *dentry;
2839 struct nameidata nd;
2840 struct inode *inode = NULL;
2841
2842 error = user_path_parent(dfd, pathname, &nd, &name);
2843 if (error)
2844 return error;
2845
2846 error = -EISDIR;
2847 if (nd.last_type != LAST_NORM)
2848 goto exit1;
2849
2850 nd.flags &= ~LOOKUP_PARENT;
2851
2852 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2853 dentry = lookup_hash(&nd);
2854 error = PTR_ERR(dentry);
2855 if (!IS_ERR(dentry)) {
2856 /* Why not before? Because we want correct error value */
2857 if (nd.last.name[nd.last.len])
2858 goto slashes;
2859 inode = dentry->d_inode;
2860 if (!inode)
2861 goto slashes;
2862 ihold(inode);
2863 error = mnt_want_write(nd.path.mnt);
2864 if (error)
2865 goto exit2;
2866 error = security_path_unlink(&nd.path, dentry);
2867 if (error)
2868 goto exit3;
2869 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2870 exit3:
2871 mnt_drop_write(nd.path.mnt);
2872 exit2:
2873 dput(dentry);
2874 }
2875 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2876 if (inode)
2877 iput(inode); /* truncate the inode here */
2878 exit1:
2879 path_put(&nd.path);
2880 putname(name);
2881 return error;
2882
2883 slashes:
2884 error = !dentry->d_inode ? -ENOENT :
2885 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2886 goto exit2;
2887 }
2888
2889 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2890 {
2891 if ((flag & ~AT_REMOVEDIR) != 0)
2892 return -EINVAL;
2893
2894 if (flag & AT_REMOVEDIR)
2895 return do_rmdir(dfd, pathname);
2896
2897 return do_unlinkat(dfd, pathname);
2898 }
2899
2900 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2901 {
2902 return do_unlinkat(AT_FDCWD, pathname);
2903 }
2904
2905 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2906 {
2907 int error = may_create(dir, dentry);
2908
2909 if (error)
2910 return error;
2911
2912 if (!dir->i_op->symlink)
2913 return -EPERM;
2914
2915 error = security_inode_symlink(dir, dentry, oldname);
2916 if (error)
2917 return error;
2918
2919 error = dir->i_op->symlink(dir, dentry, oldname);
2920 if (!error)
2921 fsnotify_create(dir, dentry);
2922 return error;
2923 }
2924
2925 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2926 int, newdfd, const char __user *, newname)
2927 {
2928 int error;
2929 char *from;
2930 struct dentry *dentry;
2931 struct path path;
2932
2933 from = getname(oldname);
2934 if (IS_ERR(from))
2935 return PTR_ERR(from);
2936
2937 dentry = user_path_create(newdfd, newname, &path, 0);
2938 error = PTR_ERR(dentry);
2939 if (IS_ERR(dentry))
2940 goto out_putname;
2941
2942 error = mnt_want_write(path.mnt);
2943 if (error)
2944 goto out_dput;
2945 error = security_path_symlink(&path, dentry, from);
2946 if (error)
2947 goto out_drop_write;
2948 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2949 out_drop_write:
2950 mnt_drop_write(path.mnt);
2951 out_dput:
2952 dput(dentry);
2953 mutex_unlock(&path.dentry->d_inode->i_mutex);
2954 path_put(&path);
2955 out_putname:
2956 putname(from);
2957 return error;
2958 }
2959
2960 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2961 {
2962 return sys_symlinkat(oldname, AT_FDCWD, newname);
2963 }
2964
2965 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2966 {
2967 struct inode *inode = old_dentry->d_inode;
2968 unsigned max_links = dir->i_sb->s_max_links;
2969 int error;
2970
2971 if (!inode)
2972 return -ENOENT;
2973
2974 error = may_create(dir, new_dentry);
2975 if (error)
2976 return error;
2977
2978 if (dir->i_sb != inode->i_sb)
2979 return -EXDEV;
2980
2981 /*
2982 * A link to an append-only or immutable file cannot be created.
2983 */
2984 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2985 return -EPERM;
2986 if (!dir->i_op->link)
2987 return -EPERM;
2988 if (S_ISDIR(inode->i_mode))
2989 return -EPERM;
2990
2991 error = security_inode_link(old_dentry, dir, new_dentry);
2992 if (error)
2993 return error;
2994
2995 mutex_lock(&inode->i_mutex);
2996 /* Make sure we don't allow creating hardlink to an unlinked file */
2997 if (inode->i_nlink == 0)
2998 error = -ENOENT;
2999 else if (max_links && inode->i_nlink >= max_links)
3000 error = -EMLINK;
3001 else
3002 error = dir->i_op->link(old_dentry, dir, new_dentry);
3003 mutex_unlock(&inode->i_mutex);
3004 if (!error)
3005 fsnotify_link(dir, inode, new_dentry);
3006 return error;
3007 }
3008
3009 /*
3010 * Hardlinks are often used in delicate situations. We avoid
3011 * security-related surprises by not following symlinks on the
3012 * newname. --KAB
3013 *
3014 * We don't follow them on the oldname either to be compatible
3015 * with linux 2.0, and to avoid hard-linking to directories
3016 * and other special files. --ADM
3017 */
3018 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3019 int, newdfd, const char __user *, newname, int, flags)
3020 {
3021 struct dentry *new_dentry;
3022 struct path old_path, new_path;
3023 int how = 0;
3024 int error;
3025
3026 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3027 return -EINVAL;
3028 /*
3029 * To use null names we require CAP_DAC_READ_SEARCH
3030 * This ensures that not everyone will be able to create
3031 * handlink using the passed filedescriptor.
3032 */
3033 if (flags & AT_EMPTY_PATH) {
3034 if (!capable(CAP_DAC_READ_SEARCH))
3035 return -ENOENT;
3036 how = LOOKUP_EMPTY;
3037 }
3038
3039 if (flags & AT_SYMLINK_FOLLOW)
3040 how |= LOOKUP_FOLLOW;
3041
3042 error = user_path_at(olddfd, oldname, how, &old_path);
3043 if (error)
3044 return error;
3045
3046 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3047 error = PTR_ERR(new_dentry);
3048 if (IS_ERR(new_dentry))
3049 goto out;
3050
3051 error = -EXDEV;
3052 if (old_path.mnt != new_path.mnt)
3053 goto out_dput;
3054 error = mnt_want_write(new_path.mnt);
3055 if (error)
3056 goto out_dput;
3057 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3058 if (error)
3059 goto out_drop_write;
3060 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3061 out_drop_write:
3062 mnt_drop_write(new_path.mnt);
3063 out_dput:
3064 dput(new_dentry);
3065 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3066 path_put(&new_path);
3067 out:
3068 path_put(&old_path);
3069
3070 return error;
3071 }
3072
3073 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3074 {
3075 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3076 }
3077
3078 /*
3079 * The worst of all namespace operations - renaming directory. "Perverted"
3080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3081 * Problems:
3082 * a) we can get into loop creation. Check is done in is_subdir().
3083 * b) race potential - two innocent renames can create a loop together.
3084 * That's where 4.4 screws up. Current fix: serialization on
3085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3086 * story.
3087 * c) we have to lock _three_ objects - parents and victim (if it exists).
3088 * And that - after we got ->i_mutex on parents (until then we don't know
3089 * whether the target exists). Solution: try to be smart with locking
3090 * order for inodes. We rely on the fact that tree topology may change
3091 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3092 * move will be locked. Thus we can rank directories by the tree
3093 * (ancestors first) and rank all non-directories after them.
3094 * That works since everybody except rename does "lock parent, lookup,
3095 * lock child" and rename is under ->s_vfs_rename_mutex.
3096 * HOWEVER, it relies on the assumption that any object with ->lookup()
3097 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3098 * we'd better make sure that there's no link(2) for them.
3099 * d) conversion from fhandle to dentry may come in the wrong moment - when
3100 * we are removing the target. Solution: we will have to grab ->i_mutex
3101 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3102 * ->i_mutex on parents, which works but leads to some truly excessive
3103 * locking].
3104 */
3105 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3106 struct inode *new_dir, struct dentry *new_dentry)
3107 {
3108 int error = 0;
3109 struct inode *target = new_dentry->d_inode;
3110 unsigned max_links = new_dir->i_sb->s_max_links;
3111
3112 /*
3113 * If we are going to change the parent - check write permissions,
3114 * we'll need to flip '..'.
3115 */
3116 if (new_dir != old_dir) {
3117 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3118 if (error)
3119 return error;
3120 }
3121
3122 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3123 if (error)
3124 return error;
3125
3126 dget(new_dentry);
3127 if (target)
3128 mutex_lock(&target->i_mutex);
3129
3130 error = -EBUSY;
3131 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3132 goto out;
3133
3134 error = -EMLINK;
3135 if (max_links && !target && new_dir != old_dir &&
3136 new_dir->i_nlink >= max_links)
3137 goto out;
3138
3139 if (target)
3140 shrink_dcache_parent(new_dentry);
3141 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3142 if (error)
3143 goto out;
3144
3145 if (target) {
3146 target->i_flags |= S_DEAD;
3147 dont_mount(new_dentry);
3148 }
3149 out:
3150 if (target)
3151 mutex_unlock(&target->i_mutex);
3152 dput(new_dentry);
3153 if (!error)
3154 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3155 d_move(old_dentry,new_dentry);
3156 return error;
3157 }
3158
3159 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3160 struct inode *new_dir, struct dentry *new_dentry)
3161 {
3162 struct inode *target = new_dentry->d_inode;
3163 int error;
3164
3165 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3166 if (error)
3167 return error;
3168
3169 dget(new_dentry);
3170 if (target)
3171 mutex_lock(&target->i_mutex);
3172
3173 error = -EBUSY;
3174 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3175 goto out;
3176
3177 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3178 if (error)
3179 goto out;
3180
3181 if (target)
3182 dont_mount(new_dentry);
3183 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3184 d_move(old_dentry, new_dentry);
3185 out:
3186 if (target)
3187 mutex_unlock(&target->i_mutex);
3188 dput(new_dentry);
3189 return error;
3190 }
3191
3192 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3193 struct inode *new_dir, struct dentry *new_dentry)
3194 {
3195 int error;
3196 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3197 const unsigned char *old_name;
3198
3199 if (old_dentry->d_inode == new_dentry->d_inode)
3200 return 0;
3201
3202 error = may_delete(old_dir, old_dentry, is_dir);
3203 if (error)
3204 return error;
3205
3206 if (!new_dentry->d_inode)
3207 error = may_create(new_dir, new_dentry);
3208 else
3209 error = may_delete(new_dir, new_dentry, is_dir);
3210 if (error)
3211 return error;
3212
3213 if (!old_dir->i_op->rename)
3214 return -EPERM;
3215
3216 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3217
3218 if (is_dir)
3219 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3220 else
3221 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3222 if (!error)
3223 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3224 new_dentry->d_inode, old_dentry);
3225 fsnotify_oldname_free(old_name);
3226
3227 return error;
3228 }
3229
3230 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3231 int, newdfd, const char __user *, newname)
3232 {
3233 struct dentry *old_dir, *new_dir;
3234 struct dentry *old_dentry, *new_dentry;
3235 struct dentry *trap;
3236 struct nameidata oldnd, newnd;
3237 char *from;
3238 char *to;
3239 int error;
3240
3241 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3242 if (error)
3243 goto exit;
3244
3245 error = user_path_parent(newdfd, newname, &newnd, &to);
3246 if (error)
3247 goto exit1;
3248
3249 error = -EXDEV;
3250 if (oldnd.path.mnt != newnd.path.mnt)
3251 goto exit2;
3252
3253 old_dir = oldnd.path.dentry;
3254 error = -EBUSY;
3255 if (oldnd.last_type != LAST_NORM)
3256 goto exit2;
3257
3258 new_dir = newnd.path.dentry;
3259 if (newnd.last_type != LAST_NORM)
3260 goto exit2;
3261
3262 oldnd.flags &= ~LOOKUP_PARENT;
3263 newnd.flags &= ~LOOKUP_PARENT;
3264 newnd.flags |= LOOKUP_RENAME_TARGET;
3265
3266 trap = lock_rename(new_dir, old_dir);
3267
3268 old_dentry = lookup_hash(&oldnd);
3269 error = PTR_ERR(old_dentry);
3270 if (IS_ERR(old_dentry))
3271 goto exit3;
3272 /* source must exist */
3273 error = -ENOENT;
3274 if (!old_dentry->d_inode)
3275 goto exit4;
3276 /* unless the source is a directory trailing slashes give -ENOTDIR */
3277 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3278 error = -ENOTDIR;
3279 if (oldnd.last.name[oldnd.last.len])
3280 goto exit4;
3281 if (newnd.last.name[newnd.last.len])
3282 goto exit4;
3283 }
3284 /* source should not be ancestor of target */
3285 error = -EINVAL;
3286 if (old_dentry == trap)
3287 goto exit4;
3288 new_dentry = lookup_hash(&newnd);
3289 error = PTR_ERR(new_dentry);
3290 if (IS_ERR(new_dentry))
3291 goto exit4;
3292 /* target should not be an ancestor of source */
3293 error = -ENOTEMPTY;
3294 if (new_dentry == trap)
3295 goto exit5;
3296
3297 error = mnt_want_write(oldnd.path.mnt);
3298 if (error)
3299 goto exit5;
3300 error = security_path_rename(&oldnd.path, old_dentry,
3301 &newnd.path, new_dentry);
3302 if (error)
3303 goto exit6;
3304 error = vfs_rename(old_dir->d_inode, old_dentry,
3305 new_dir->d_inode, new_dentry);
3306 exit6:
3307 mnt_drop_write(oldnd.path.mnt);
3308 exit5:
3309 dput(new_dentry);
3310 exit4:
3311 dput(old_dentry);
3312 exit3:
3313 unlock_rename(new_dir, old_dir);
3314 exit2:
3315 path_put(&newnd.path);
3316 putname(to);
3317 exit1:
3318 path_put(&oldnd.path);
3319 putname(from);
3320 exit:
3321 return error;
3322 }
3323
3324 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3325 {
3326 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3327 }
3328
3329 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3330 {
3331 int len;
3332
3333 len = PTR_ERR(link);
3334 if (IS_ERR(link))
3335 goto out;
3336
3337 len = strlen(link);
3338 if (len > (unsigned) buflen)
3339 len = buflen;
3340 if (copy_to_user(buffer, link, len))
3341 len = -EFAULT;
3342 out:
3343 return len;
3344 }
3345
3346 /*
3347 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3348 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3349 * using) it for any given inode is up to filesystem.
3350 */
3351 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3352 {
3353 struct nameidata nd;
3354 void *cookie;
3355 int res;
3356
3357 nd.depth = 0;
3358 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3359 if (IS_ERR(cookie))
3360 return PTR_ERR(cookie);
3361
3362 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3363 if (dentry->d_inode->i_op->put_link)
3364 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3365 return res;
3366 }
3367
3368 int vfs_follow_link(struct nameidata *nd, const char *link)
3369 {
3370 return __vfs_follow_link(nd, link);
3371 }
3372
3373 /* get the link contents into pagecache */
3374 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3375 {
3376 char *kaddr;
3377 struct page *page;
3378 struct address_space *mapping = dentry->d_inode->i_mapping;
3379 page = read_mapping_page(mapping, 0, NULL);
3380 if (IS_ERR(page))
3381 return (char*)page;
3382 *ppage = page;
3383 kaddr = kmap(page);
3384 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3385 return kaddr;
3386 }
3387
3388 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3389 {
3390 struct page *page = NULL;
3391 char *s = page_getlink(dentry, &page);
3392 int res = vfs_readlink(dentry,buffer,buflen,s);
3393 if (page) {
3394 kunmap(page);
3395 page_cache_release(page);
3396 }
3397 return res;
3398 }
3399
3400 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3401 {
3402 struct page *page = NULL;
3403 nd_set_link(nd, page_getlink(dentry, &page));
3404 return page;
3405 }
3406
3407 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3408 {
3409 struct page *page = cookie;
3410
3411 if (page) {
3412 kunmap(page);
3413 page_cache_release(page);
3414 }
3415 }
3416
3417 /*
3418 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3419 */
3420 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3421 {
3422 struct address_space *mapping = inode->i_mapping;
3423 struct page *page;
3424 void *fsdata;
3425 int err;
3426 char *kaddr;
3427 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3428 if (nofs)
3429 flags |= AOP_FLAG_NOFS;
3430
3431 retry:
3432 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3433 flags, &page, &fsdata);
3434 if (err)
3435 goto fail;
3436
3437 kaddr = kmap_atomic(page);
3438 memcpy(kaddr, symname, len-1);
3439 kunmap_atomic(kaddr);
3440
3441 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3442 page, fsdata);
3443 if (err < 0)
3444 goto fail;
3445 if (err < len-1)
3446 goto retry;
3447
3448 mark_inode_dirty(inode);
3449 return 0;
3450 fail:
3451 return err;
3452 }
3453
3454 int page_symlink(struct inode *inode, const char *symname, int len)
3455 {
3456 return __page_symlink(inode, symname, len,
3457 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3458 }
3459
3460 const struct inode_operations page_symlink_inode_operations = {
3461 .readlink = generic_readlink,
3462 .follow_link = page_follow_link_light,
3463 .put_link = page_put_link,
3464 };
3465
3466 EXPORT_SYMBOL(user_path_at);
3467 EXPORT_SYMBOL(follow_down_one);
3468 EXPORT_SYMBOL(follow_down);
3469 EXPORT_SYMBOL(follow_up);
3470 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3471 EXPORT_SYMBOL(getname);
3472 EXPORT_SYMBOL(lock_rename);
3473 EXPORT_SYMBOL(lookup_one_len);
3474 EXPORT_SYMBOL(page_follow_link_light);
3475 EXPORT_SYMBOL(page_put_link);
3476 EXPORT_SYMBOL(page_readlink);
3477 EXPORT_SYMBOL(__page_symlink);
3478 EXPORT_SYMBOL(page_symlink);
3479 EXPORT_SYMBOL(page_symlink_inode_operations);
3480 EXPORT_SYMBOL(kern_path);
3481 EXPORT_SYMBOL(vfs_path_lookup);
3482 EXPORT_SYMBOL(inode_permission);
3483 EXPORT_SYMBOL(unlock_rename);
3484 EXPORT_SYMBOL(vfs_create);
3485 EXPORT_SYMBOL(vfs_follow_link);
3486 EXPORT_SYMBOL(vfs_link);
3487 EXPORT_SYMBOL(vfs_mkdir);
3488 EXPORT_SYMBOL(vfs_mknod);
3489 EXPORT_SYMBOL(generic_permission);
3490 EXPORT_SYMBOL(vfs_readlink);
3491 EXPORT_SYMBOL(vfs_rename);
3492 EXPORT_SYMBOL(vfs_rmdir);
3493 EXPORT_SYMBOL(vfs_symlink);
3494 EXPORT_SYMBOL(vfs_unlink);
3495 EXPORT_SYMBOL(dentry_unhash);
3496 EXPORT_SYMBOL(generic_readlink);
This page took 0.227426 seconds and 6 git commands to generate.