Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 struct qstr last;
498 struct path root;
499 struct inode *inode; /* path.dentry.d_inode */
500 unsigned int flags;
501 unsigned seq, m_seq;
502 int last_type;
503 unsigned depth;
504 struct file *base;
505 char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507
508 /*
509 * Path walking has 2 modes, rcu-walk and ref-walk (see
510 * Documentation/filesystems/path-lookup.txt). In situations when we can't
511 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513 * mode. Refcounts are grabbed at the last known good point before rcu-walk
514 * got stuck, so ref-walk may continue from there. If this is not successful
515 * (eg. a seqcount has changed), then failure is returned and it's up to caller
516 * to restart the path walk from the beginning in ref-walk mode.
517 */
518
519 /**
520 * unlazy_walk - try to switch to ref-walk mode.
521 * @nd: nameidata pathwalk data
522 * @dentry: child of nd->path.dentry or NULL
523 * Returns: 0 on success, -ECHILD on failure
524 *
525 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
527 * @nd or NULL. Must be called from rcu-walk context.
528 */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 struct fs_struct *fs = current->fs;
532 struct dentry *parent = nd->path.dentry;
533
534 BUG_ON(!(nd->flags & LOOKUP_RCU));
535
536 /*
537 * After legitimizing the bastards, terminate_walk()
538 * will do the right thing for non-RCU mode, and all our
539 * subsequent exit cases should rcu_read_unlock()
540 * before returning. Do vfsmount first; if dentry
541 * can't be legitimized, just set nd->path.dentry to NULL
542 * and rely on dput(NULL) being a no-op.
543 */
544 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 return -ECHILD;
546 nd->flags &= ~LOOKUP_RCU;
547
548 if (!lockref_get_not_dead(&parent->d_lockref)) {
549 nd->path.dentry = NULL;
550 goto out;
551 }
552
553 /*
554 * For a negative lookup, the lookup sequence point is the parents
555 * sequence point, and it only needs to revalidate the parent dentry.
556 *
557 * For a positive lookup, we need to move both the parent and the
558 * dentry from the RCU domain to be properly refcounted. And the
559 * sequence number in the dentry validates *both* dentry counters,
560 * since we checked the sequence number of the parent after we got
561 * the child sequence number. So we know the parent must still
562 * be valid if the child sequence number is still valid.
563 */
564 if (!dentry) {
565 if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 goto out;
567 BUG_ON(nd->inode != parent->d_inode);
568 } else {
569 if (!lockref_get_not_dead(&dentry->d_lockref))
570 goto out;
571 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 goto drop_dentry;
573 }
574
575 /*
576 * Sequence counts matched. Now make sure that the root is
577 * still valid and get it if required.
578 */
579 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 spin_lock(&fs->lock);
581 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 goto unlock_and_drop_dentry;
583 path_get(&nd->root);
584 spin_unlock(&fs->lock);
585 }
586
587 rcu_read_unlock();
588 return 0;
589
590 unlock_and_drop_dentry:
591 spin_unlock(&fs->lock);
592 drop_dentry:
593 rcu_read_unlock();
594 dput(dentry);
595 goto drop_root_mnt;
596 out:
597 rcu_read_unlock();
598 drop_root_mnt:
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 return -ECHILD;
602 }
603
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 return dentry->d_op->d_revalidate(dentry, flags);
607 }
608
609 /**
610 * complete_walk - successful completion of path walk
611 * @nd: pointer nameidata
612 *
613 * If we had been in RCU mode, drop out of it and legitimize nd->path.
614 * Revalidate the final result, unless we'd already done that during
615 * the path walk or the filesystem doesn't ask for it. Return 0 on
616 * success, -error on failure. In case of failure caller does not
617 * need to drop nd->path.
618 */
619 static int complete_walk(struct nameidata *nd)
620 {
621 struct dentry *dentry = nd->path.dentry;
622 int status;
623
624 if (nd->flags & LOOKUP_RCU) {
625 nd->flags &= ~LOOKUP_RCU;
626 if (!(nd->flags & LOOKUP_ROOT))
627 nd->root.mnt = NULL;
628
629 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 rcu_read_unlock();
631 return -ECHILD;
632 }
633 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 rcu_read_unlock();
635 mntput(nd->path.mnt);
636 return -ECHILD;
637 }
638 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 rcu_read_unlock();
640 dput(dentry);
641 mntput(nd->path.mnt);
642 return -ECHILD;
643 }
644 rcu_read_unlock();
645 }
646
647 if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 return 0;
649
650 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 return 0;
652
653 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 if (status > 0)
655 return 0;
656
657 if (!status)
658 status = -ESTALE;
659
660 path_put(&nd->path);
661 return status;
662 }
663
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 get_fs_root(current->fs, &nd->root);
667 }
668
669 static int link_path_walk(const char *, struct nameidata *);
670
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
675
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
682 }
683
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
689 }
690
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
693 {
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
698 }
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
701 }
702
703 /*
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
706 */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 path_put(&nd->path);
710
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
714 }
715
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721
722 char *nd_get_link(struct nameidata *nd)
723 {
724 return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 struct inode *inode = link->dentry->d_inode;
731 if (inode->i_op->put_link)
732 inode->i_op->put_link(link->dentry, nd, cookie);
733 path_put(link);
734 }
735
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738
739 /**
740 * may_follow_link - Check symlink following for unsafe situations
741 * @link: The path of the symlink
742 * @nd: nameidata pathwalk data
743 *
744 * In the case of the sysctl_protected_symlinks sysctl being enabled,
745 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746 * in a sticky world-writable directory. This is to protect privileged
747 * processes from failing races against path names that may change out
748 * from under them by way of other users creating malicious symlinks.
749 * It will permit symlinks to be followed only when outside a sticky
750 * world-writable directory, or when the uid of the symlink and follower
751 * match, or when the directory owner matches the symlink's owner.
752 *
753 * Returns 0 if following the symlink is allowed, -ve on error.
754 */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 const struct inode *inode;
758 const struct inode *parent;
759
760 if (!sysctl_protected_symlinks)
761 return 0;
762
763 /* Allowed if owner and follower match. */
764 inode = link->dentry->d_inode;
765 if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 return 0;
767
768 /* Allowed if parent directory not sticky and world-writable. */
769 parent = nd->path.dentry->d_inode;
770 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 return 0;
772
773 /* Allowed if parent directory and link owner match. */
774 if (uid_eq(parent->i_uid, inode->i_uid))
775 return 0;
776
777 audit_log_link_denied("follow_link", link);
778 path_put_conditional(link, nd);
779 path_put(&nd->path);
780 return -EACCES;
781 }
782
783 /**
784 * safe_hardlink_source - Check for safe hardlink conditions
785 * @inode: the source inode to hardlink from
786 *
787 * Return false if at least one of the following conditions:
788 * - inode is not a regular file
789 * - inode is setuid
790 * - inode is setgid and group-exec
791 * - access failure for read and write
792 *
793 * Otherwise returns true.
794 */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 umode_t mode = inode->i_mode;
798
799 /* Special files should not get pinned to the filesystem. */
800 if (!S_ISREG(mode))
801 return false;
802
803 /* Setuid files should not get pinned to the filesystem. */
804 if (mode & S_ISUID)
805 return false;
806
807 /* Executable setgid files should not get pinned to the filesystem. */
808 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 return false;
810
811 /* Hardlinking to unreadable or unwritable sources is dangerous. */
812 if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 return false;
814
815 return true;
816 }
817
818 /**
819 * may_linkat - Check permissions for creating a hardlink
820 * @link: the source to hardlink from
821 *
822 * Block hardlink when all of:
823 * - sysctl_protected_hardlinks enabled
824 * - fsuid does not match inode
825 * - hardlink source is unsafe (see safe_hardlink_source() above)
826 * - not CAP_FOWNER
827 *
828 * Returns 0 if successful, -ve on error.
829 */
830 static int may_linkat(struct path *link)
831 {
832 const struct cred *cred;
833 struct inode *inode;
834
835 if (!sysctl_protected_hardlinks)
836 return 0;
837
838 cred = current_cred();
839 inode = link->dentry->d_inode;
840
841 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 * otherwise, it must be a safe source.
843 */
844 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 capable(CAP_FOWNER))
846 return 0;
847
848 audit_log_link_denied("linkat", link);
849 return -EPERM;
850 }
851
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 struct dentry *dentry = link->dentry;
856 int error;
857 char *s;
858
859 BUG_ON(nd->flags & LOOKUP_RCU);
860
861 if (link->mnt == nd->path.mnt)
862 mntget(link->mnt);
863
864 error = -ELOOP;
865 if (unlikely(current->total_link_count >= 40))
866 goto out_put_nd_path;
867
868 cond_resched();
869 current->total_link_count++;
870
871 touch_atime(link);
872 nd_set_link(nd, NULL);
873
874 error = security_inode_follow_link(link->dentry, nd);
875 if (error)
876 goto out_put_nd_path;
877
878 nd->last_type = LAST_BIND;
879 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 error = PTR_ERR(*p);
881 if (IS_ERR(*p))
882 goto out_put_nd_path;
883
884 error = 0;
885 s = nd_get_link(nd);
886 if (s) {
887 if (unlikely(IS_ERR(s))) {
888 path_put(&nd->path);
889 put_link(nd, link, *p);
890 return PTR_ERR(s);
891 }
892 if (*s == '/') {
893 if (!nd->root.mnt)
894 set_root(nd);
895 path_put(&nd->path);
896 nd->path = nd->root;
897 path_get(&nd->root);
898 nd->flags |= LOOKUP_JUMPED;
899 }
900 nd->inode = nd->path.dentry->d_inode;
901 error = link_path_walk(s, nd);
902 if (unlikely(error))
903 put_link(nd, link, *p);
904 }
905
906 return error;
907
908 out_put_nd_path:
909 *p = NULL;
910 path_put(&nd->path);
911 path_put(link);
912 return error;
913 }
914
915 static int follow_up_rcu(struct path *path)
916 {
917 struct mount *mnt = real_mount(path->mnt);
918 struct mount *parent;
919 struct dentry *mountpoint;
920
921 parent = mnt->mnt_parent;
922 if (&parent->mnt == path->mnt)
923 return 0;
924 mountpoint = mnt->mnt_mountpoint;
925 path->dentry = mountpoint;
926 path->mnt = &parent->mnt;
927 return 1;
928 }
929
930 /*
931 * follow_up - Find the mountpoint of path's vfsmount
932 *
933 * Given a path, find the mountpoint of its source file system.
934 * Replace @path with the path of the mountpoint in the parent mount.
935 * Up is towards /.
936 *
937 * Return 1 if we went up a level and 0 if we were already at the
938 * root.
939 */
940 int follow_up(struct path *path)
941 {
942 struct mount *mnt = real_mount(path->mnt);
943 struct mount *parent;
944 struct dentry *mountpoint;
945
946 read_seqlock_excl(&mount_lock);
947 parent = mnt->mnt_parent;
948 if (parent == mnt) {
949 read_sequnlock_excl(&mount_lock);
950 return 0;
951 }
952 mntget(&parent->mnt);
953 mountpoint = dget(mnt->mnt_mountpoint);
954 read_sequnlock_excl(&mount_lock);
955 dput(path->dentry);
956 path->dentry = mountpoint;
957 mntput(path->mnt);
958 path->mnt = &parent->mnt;
959 return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962
963 /*
964 * Perform an automount
965 * - return -EISDIR to tell follow_managed() to stop and return the path we
966 * were called with.
967 */
968 static int follow_automount(struct path *path, unsigned flags,
969 bool *need_mntput)
970 {
971 struct vfsmount *mnt;
972 int err;
973
974 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 return -EREMOTE;
976
977 /* We don't want to mount if someone's just doing a stat -
978 * unless they're stat'ing a directory and appended a '/' to
979 * the name.
980 *
981 * We do, however, want to mount if someone wants to open or
982 * create a file of any type under the mountpoint, wants to
983 * traverse through the mountpoint or wants to open the
984 * mounted directory. Also, autofs may mark negative dentries
985 * as being automount points. These will need the attentions
986 * of the daemon to instantiate them before they can be used.
987 */
988 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 path->dentry->d_inode)
991 return -EISDIR;
992
993 current->total_link_count++;
994 if (current->total_link_count >= 40)
995 return -ELOOP;
996
997 mnt = path->dentry->d_op->d_automount(path);
998 if (IS_ERR(mnt)) {
999 /*
1000 * The filesystem is allowed to return -EISDIR here to indicate
1001 * it doesn't want to automount. For instance, autofs would do
1002 * this so that its userspace daemon can mount on this dentry.
1003 *
1004 * However, we can only permit this if it's a terminal point in
1005 * the path being looked up; if it wasn't then the remainder of
1006 * the path is inaccessible and we should say so.
1007 */
1008 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 return -EREMOTE;
1010 return PTR_ERR(mnt);
1011 }
1012
1013 if (!mnt) /* mount collision */
1014 return 0;
1015
1016 if (!*need_mntput) {
1017 /* lock_mount() may release path->mnt on error */
1018 mntget(path->mnt);
1019 *need_mntput = true;
1020 }
1021 err = finish_automount(mnt, path);
1022
1023 switch (err) {
1024 case -EBUSY:
1025 /* Someone else made a mount here whilst we were busy */
1026 return 0;
1027 case 0:
1028 path_put(path);
1029 path->mnt = mnt;
1030 path->dentry = dget(mnt->mnt_root);
1031 return 0;
1032 default:
1033 return err;
1034 }
1035
1036 }
1037
1038 /*
1039 * Handle a dentry that is managed in some way.
1040 * - Flagged for transit management (autofs)
1041 * - Flagged as mountpoint
1042 * - Flagged as automount point
1043 *
1044 * This may only be called in refwalk mode.
1045 *
1046 * Serialization is taken care of in namespace.c
1047 */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 unsigned managed;
1052 bool need_mntput = false;
1053 int ret = 0;
1054
1055 /* Given that we're not holding a lock here, we retain the value in a
1056 * local variable for each dentry as we look at it so that we don't see
1057 * the components of that value change under us */
1058 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 managed &= DCACHE_MANAGED_DENTRY,
1060 unlikely(managed != 0)) {
1061 /* Allow the filesystem to manage the transit without i_mutex
1062 * being held. */
1063 if (managed & DCACHE_MANAGE_TRANSIT) {
1064 BUG_ON(!path->dentry->d_op);
1065 BUG_ON(!path->dentry->d_op->d_manage);
1066 ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 if (ret < 0)
1068 break;
1069 }
1070
1071 /* Transit to a mounted filesystem. */
1072 if (managed & DCACHE_MOUNTED) {
1073 struct vfsmount *mounted = lookup_mnt(path);
1074 if (mounted) {
1075 dput(path->dentry);
1076 if (need_mntput)
1077 mntput(path->mnt);
1078 path->mnt = mounted;
1079 path->dentry = dget(mounted->mnt_root);
1080 need_mntput = true;
1081 continue;
1082 }
1083
1084 /* Something is mounted on this dentry in another
1085 * namespace and/or whatever was mounted there in this
1086 * namespace got unmounted before lookup_mnt() could
1087 * get it */
1088 }
1089
1090 /* Handle an automount point */
1091 if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 ret = follow_automount(path, flags, &need_mntput);
1093 if (ret < 0)
1094 break;
1095 continue;
1096 }
1097
1098 /* We didn't change the current path point */
1099 break;
1100 }
1101
1102 if (need_mntput && path->mnt == mnt)
1103 mntput(path->mnt);
1104 if (ret == -EISDIR)
1105 ret = 0;
1106 return ret < 0 ? ret : need_mntput;
1107 }
1108
1109 int follow_down_one(struct path *path)
1110 {
1111 struct vfsmount *mounted;
1112
1113 mounted = lookup_mnt(path);
1114 if (mounted) {
1115 dput(path->dentry);
1116 mntput(path->mnt);
1117 path->mnt = mounted;
1118 path->dentry = dget(mounted->mnt_root);
1119 return 1;
1120 }
1121 return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130
1131 /*
1132 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1133 * we meet a managed dentry that would need blocking.
1134 */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 struct inode **inode)
1137 {
1138 for (;;) {
1139 struct mount *mounted;
1140 /*
1141 * Don't forget we might have a non-mountpoint managed dentry
1142 * that wants to block transit.
1143 */
1144 switch (managed_dentry_rcu(path->dentry)) {
1145 case -ECHILD:
1146 default:
1147 return false;
1148 case -EISDIR:
1149 return true;
1150 case 0:
1151 break;
1152 }
1153
1154 if (!d_mountpoint(path->dentry))
1155 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156
1157 mounted = __lookup_mnt(path->mnt, path->dentry);
1158 if (!mounted)
1159 break;
1160 path->mnt = &mounted->mnt;
1161 path->dentry = mounted->mnt.mnt_root;
1162 nd->flags |= LOOKUP_JUMPED;
1163 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 /*
1165 * Update the inode too. We don't need to re-check the
1166 * dentry sequence number here after this d_inode read,
1167 * because a mount-point is always pinned.
1168 */
1169 *inode = path->dentry->d_inode;
1170 }
1171 return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 struct inode *inode = nd->inode;
1178 if (!nd->root.mnt)
1179 set_root_rcu(nd);
1180
1181 while (1) {
1182 if (nd->path.dentry == nd->root.dentry &&
1183 nd->path.mnt == nd->root.mnt) {
1184 break;
1185 }
1186 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 struct dentry *old = nd->path.dentry;
1188 struct dentry *parent = old->d_parent;
1189 unsigned seq;
1190
1191 inode = parent->d_inode;
1192 seq = read_seqcount_begin(&parent->d_seq);
1193 if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 goto failed;
1195 nd->path.dentry = parent;
1196 nd->seq = seq;
1197 break;
1198 }
1199 if (!follow_up_rcu(&nd->path))
1200 break;
1201 inode = nd->path.dentry->d_inode;
1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 }
1204 while (d_mountpoint(nd->path.dentry)) {
1205 struct mount *mounted;
1206 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 if (!mounted)
1208 break;
1209 nd->path.mnt = &mounted->mnt;
1210 nd->path.dentry = mounted->mnt.mnt_root;
1211 inode = nd->path.dentry->d_inode;
1212 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 if (read_seqretry(&mount_lock, nd->m_seq))
1214 goto failed;
1215 }
1216 nd->inode = inode;
1217 return 0;
1218
1219 failed:
1220 nd->flags &= ~LOOKUP_RCU;
1221 if (!(nd->flags & LOOKUP_ROOT))
1222 nd->root.mnt = NULL;
1223 rcu_read_unlock();
1224 return -ECHILD;
1225 }
1226
1227 /*
1228 * Follow down to the covering mount currently visible to userspace. At each
1229 * point, the filesystem owning that dentry may be queried as to whether the
1230 * caller is permitted to proceed or not.
1231 */
1232 int follow_down(struct path *path)
1233 {
1234 unsigned managed;
1235 int ret;
1236
1237 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 /* Allow the filesystem to manage the transit without i_mutex
1240 * being held.
1241 *
1242 * We indicate to the filesystem if someone is trying to mount
1243 * something here. This gives autofs the chance to deny anyone
1244 * other than its daemon the right to mount on its
1245 * superstructure.
1246 *
1247 * The filesystem may sleep at this point.
1248 */
1249 if (managed & DCACHE_MANAGE_TRANSIT) {
1250 BUG_ON(!path->dentry->d_op);
1251 BUG_ON(!path->dentry->d_op->d_manage);
1252 ret = path->dentry->d_op->d_manage(
1253 path->dentry, false);
1254 if (ret < 0)
1255 return ret == -EISDIR ? 0 : ret;
1256 }
1257
1258 /* Transit to a mounted filesystem. */
1259 if (managed & DCACHE_MOUNTED) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 continue;
1268 }
1269
1270 /* Don't handle automount points here */
1271 break;
1272 }
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276
1277 /*
1278 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279 */
1280 static void follow_mount(struct path *path)
1281 {
1282 while (d_mountpoint(path->dentry)) {
1283 struct vfsmount *mounted = lookup_mnt(path);
1284 if (!mounted)
1285 break;
1286 dput(path->dentry);
1287 mntput(path->mnt);
1288 path->mnt = mounted;
1289 path->dentry = dget(mounted->mnt_root);
1290 }
1291 }
1292
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 if (!nd->root.mnt)
1296 set_root(nd);
1297
1298 while(1) {
1299 struct dentry *old = nd->path.dentry;
1300
1301 if (nd->path.dentry == nd->root.dentry &&
1302 nd->path.mnt == nd->root.mnt) {
1303 break;
1304 }
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 /* rare case of legitimate dget_parent()... */
1307 nd->path.dentry = dget_parent(nd->path.dentry);
1308 dput(old);
1309 break;
1310 }
1311 if (!follow_up(&nd->path))
1312 break;
1313 }
1314 follow_mount(&nd->path);
1315 nd->inode = nd->path.dentry->d_inode;
1316 }
1317
1318 /*
1319 * This looks up the name in dcache, possibly revalidates the old dentry and
1320 * allocates a new one if not found or not valid. In the need_lookup argument
1321 * returns whether i_op->lookup is necessary.
1322 *
1323 * dir->d_inode->i_mutex must be held
1324 */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 unsigned int flags, bool *need_lookup)
1327 {
1328 struct dentry *dentry;
1329 int error;
1330
1331 *need_lookup = false;
1332 dentry = d_lookup(dir, name);
1333 if (dentry) {
1334 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 error = d_revalidate(dentry, flags);
1336 if (unlikely(error <= 0)) {
1337 if (error < 0) {
1338 dput(dentry);
1339 return ERR_PTR(error);
1340 } else {
1341 d_invalidate(dentry);
1342 dput(dentry);
1343 dentry = NULL;
1344 }
1345 }
1346 }
1347 }
1348
1349 if (!dentry) {
1350 dentry = d_alloc(dir, name);
1351 if (unlikely(!dentry))
1352 return ERR_PTR(-ENOMEM);
1353
1354 *need_lookup = true;
1355 }
1356 return dentry;
1357 }
1358
1359 /*
1360 * Call i_op->lookup on the dentry. The dentry must be negative and
1361 * unhashed.
1362 *
1363 * dir->d_inode->i_mutex must be held
1364 */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 unsigned int flags)
1367 {
1368 struct dentry *old;
1369
1370 /* Don't create child dentry for a dead directory. */
1371 if (unlikely(IS_DEADDIR(dir))) {
1372 dput(dentry);
1373 return ERR_PTR(-ENOENT);
1374 }
1375
1376 old = dir->i_op->lookup(dir, dentry, flags);
1377 if (unlikely(old)) {
1378 dput(dentry);
1379 dentry = old;
1380 }
1381 return dentry;
1382 }
1383
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 struct dentry *base, unsigned int flags)
1386 {
1387 bool need_lookup;
1388 struct dentry *dentry;
1389
1390 dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 if (!need_lookup)
1392 return dentry;
1393
1394 return lookup_real(base->d_inode, dentry, flags);
1395 }
1396
1397 /*
1398 * It's more convoluted than I'd like it to be, but... it's still fairly
1399 * small and for now I'd prefer to have fast path as straight as possible.
1400 * It _is_ time-critical.
1401 */
1402 static int lookup_fast(struct nameidata *nd,
1403 struct path *path, struct inode **inode)
1404 {
1405 struct vfsmount *mnt = nd->path.mnt;
1406 struct dentry *dentry, *parent = nd->path.dentry;
1407 int need_reval = 1;
1408 int status = 1;
1409 int err;
1410
1411 /*
1412 * Rename seqlock is not required here because in the off chance
1413 * of a false negative due to a concurrent rename, we're going to
1414 * do the non-racy lookup, below.
1415 */
1416 if (nd->flags & LOOKUP_RCU) {
1417 unsigned seq;
1418 bool negative;
1419 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1420 if (!dentry)
1421 goto unlazy;
1422
1423 /*
1424 * This sequence count validates that the inode matches
1425 * the dentry name information from lookup.
1426 */
1427 *inode = dentry->d_inode;
1428 negative = d_is_negative(dentry);
1429 if (read_seqcount_retry(&dentry->d_seq, seq))
1430 return -ECHILD;
1431 if (negative)
1432 return -ENOENT;
1433
1434 /*
1435 * This sequence count validates that the parent had no
1436 * changes while we did the lookup of the dentry above.
1437 *
1438 * The memory barrier in read_seqcount_begin of child is
1439 * enough, we can use __read_seqcount_retry here.
1440 */
1441 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1442 return -ECHILD;
1443 nd->seq = seq;
1444
1445 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1446 status = d_revalidate(dentry, nd->flags);
1447 if (unlikely(status <= 0)) {
1448 if (status != -ECHILD)
1449 need_reval = 0;
1450 goto unlazy;
1451 }
1452 }
1453 path->mnt = mnt;
1454 path->dentry = dentry;
1455 if (likely(__follow_mount_rcu(nd, path, inode)))
1456 return 0;
1457 unlazy:
1458 if (unlazy_walk(nd, dentry))
1459 return -ECHILD;
1460 } else {
1461 dentry = __d_lookup(parent, &nd->last);
1462 }
1463
1464 if (unlikely(!dentry))
1465 goto need_lookup;
1466
1467 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1468 status = d_revalidate(dentry, nd->flags);
1469 if (unlikely(status <= 0)) {
1470 if (status < 0) {
1471 dput(dentry);
1472 return status;
1473 }
1474 d_invalidate(dentry);
1475 dput(dentry);
1476 goto need_lookup;
1477 }
1478
1479 if (unlikely(d_is_negative(dentry))) {
1480 dput(dentry);
1481 return -ENOENT;
1482 }
1483 path->mnt = mnt;
1484 path->dentry = dentry;
1485 err = follow_managed(path, nd->flags);
1486 if (unlikely(err < 0)) {
1487 path_put_conditional(path, nd);
1488 return err;
1489 }
1490 if (err)
1491 nd->flags |= LOOKUP_JUMPED;
1492 *inode = path->dentry->d_inode;
1493 return 0;
1494
1495 need_lookup:
1496 return 1;
1497 }
1498
1499 /* Fast lookup failed, do it the slow way */
1500 static int lookup_slow(struct nameidata *nd, struct path *path)
1501 {
1502 struct dentry *dentry, *parent;
1503 int err;
1504
1505 parent = nd->path.dentry;
1506 BUG_ON(nd->inode != parent->d_inode);
1507
1508 mutex_lock(&parent->d_inode->i_mutex);
1509 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1510 mutex_unlock(&parent->d_inode->i_mutex);
1511 if (IS_ERR(dentry))
1512 return PTR_ERR(dentry);
1513 path->mnt = nd->path.mnt;
1514 path->dentry = dentry;
1515 err = follow_managed(path, nd->flags);
1516 if (unlikely(err < 0)) {
1517 path_put_conditional(path, nd);
1518 return err;
1519 }
1520 if (err)
1521 nd->flags |= LOOKUP_JUMPED;
1522 return 0;
1523 }
1524
1525 static inline int may_lookup(struct nameidata *nd)
1526 {
1527 if (nd->flags & LOOKUP_RCU) {
1528 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1529 if (err != -ECHILD)
1530 return err;
1531 if (unlazy_walk(nd, NULL))
1532 return -ECHILD;
1533 }
1534 return inode_permission(nd->inode, MAY_EXEC);
1535 }
1536
1537 static inline int handle_dots(struct nameidata *nd, int type)
1538 {
1539 if (type == LAST_DOTDOT) {
1540 if (nd->flags & LOOKUP_RCU) {
1541 if (follow_dotdot_rcu(nd))
1542 return -ECHILD;
1543 } else
1544 follow_dotdot(nd);
1545 }
1546 return 0;
1547 }
1548
1549 static void terminate_walk(struct nameidata *nd)
1550 {
1551 if (!(nd->flags & LOOKUP_RCU)) {
1552 path_put(&nd->path);
1553 } else {
1554 nd->flags &= ~LOOKUP_RCU;
1555 if (!(nd->flags & LOOKUP_ROOT))
1556 nd->root.mnt = NULL;
1557 rcu_read_unlock();
1558 }
1559 }
1560
1561 /*
1562 * Do we need to follow links? We _really_ want to be able
1563 * to do this check without having to look at inode->i_op,
1564 * so we keep a cache of "no, this doesn't need follow_link"
1565 * for the common case.
1566 */
1567 static inline int should_follow_link(struct dentry *dentry, int follow)
1568 {
1569 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1570 }
1571
1572 static inline int walk_component(struct nameidata *nd, struct path *path,
1573 int follow)
1574 {
1575 struct inode *inode;
1576 int err;
1577 /*
1578 * "." and ".." are special - ".." especially so because it has
1579 * to be able to know about the current root directory and
1580 * parent relationships.
1581 */
1582 if (unlikely(nd->last_type != LAST_NORM))
1583 return handle_dots(nd, nd->last_type);
1584 err = lookup_fast(nd, path, &inode);
1585 if (unlikely(err)) {
1586 if (err < 0)
1587 goto out_err;
1588
1589 err = lookup_slow(nd, path);
1590 if (err < 0)
1591 goto out_err;
1592
1593 inode = path->dentry->d_inode;
1594 err = -ENOENT;
1595 if (d_is_negative(path->dentry))
1596 goto out_path_put;
1597 }
1598
1599 if (should_follow_link(path->dentry, follow)) {
1600 if (nd->flags & LOOKUP_RCU) {
1601 if (unlikely(nd->path.mnt != path->mnt ||
1602 unlazy_walk(nd, path->dentry))) {
1603 err = -ECHILD;
1604 goto out_err;
1605 }
1606 }
1607 BUG_ON(inode != path->dentry->d_inode);
1608 return 1;
1609 }
1610 path_to_nameidata(path, nd);
1611 nd->inode = inode;
1612 return 0;
1613
1614 out_path_put:
1615 path_to_nameidata(path, nd);
1616 out_err:
1617 terminate_walk(nd);
1618 return err;
1619 }
1620
1621 /*
1622 * This limits recursive symlink follows to 8, while
1623 * limiting consecutive symlinks to 40.
1624 *
1625 * Without that kind of total limit, nasty chains of consecutive
1626 * symlinks can cause almost arbitrarily long lookups.
1627 */
1628 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1629 {
1630 int res;
1631
1632 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1633 path_put_conditional(path, nd);
1634 path_put(&nd->path);
1635 return -ELOOP;
1636 }
1637 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1638
1639 nd->depth++;
1640 current->link_count++;
1641
1642 do {
1643 struct path link = *path;
1644 void *cookie;
1645
1646 res = follow_link(&link, nd, &cookie);
1647 if (res)
1648 break;
1649 res = walk_component(nd, path, LOOKUP_FOLLOW);
1650 put_link(nd, &link, cookie);
1651 } while (res > 0);
1652
1653 current->link_count--;
1654 nd->depth--;
1655 return res;
1656 }
1657
1658 /*
1659 * We can do the critical dentry name comparison and hashing
1660 * operations one word at a time, but we are limited to:
1661 *
1662 * - Architectures with fast unaligned word accesses. We could
1663 * do a "get_unaligned()" if this helps and is sufficiently
1664 * fast.
1665 *
1666 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1667 * do not trap on the (extremely unlikely) case of a page
1668 * crossing operation.
1669 *
1670 * - Furthermore, we need an efficient 64-bit compile for the
1671 * 64-bit case in order to generate the "number of bytes in
1672 * the final mask". Again, that could be replaced with a
1673 * efficient population count instruction or similar.
1674 */
1675 #ifdef CONFIG_DCACHE_WORD_ACCESS
1676
1677 #include <asm/word-at-a-time.h>
1678
1679 #ifdef CONFIG_64BIT
1680
1681 static inline unsigned int fold_hash(unsigned long hash)
1682 {
1683 return hash_64(hash, 32);
1684 }
1685
1686 #else /* 32-bit case */
1687
1688 #define fold_hash(x) (x)
1689
1690 #endif
1691
1692 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1693 {
1694 unsigned long a, mask;
1695 unsigned long hash = 0;
1696
1697 for (;;) {
1698 a = load_unaligned_zeropad(name);
1699 if (len < sizeof(unsigned long))
1700 break;
1701 hash += a;
1702 hash *= 9;
1703 name += sizeof(unsigned long);
1704 len -= sizeof(unsigned long);
1705 if (!len)
1706 goto done;
1707 }
1708 mask = bytemask_from_count(len);
1709 hash += mask & a;
1710 done:
1711 return fold_hash(hash);
1712 }
1713 EXPORT_SYMBOL(full_name_hash);
1714
1715 /*
1716 * Calculate the length and hash of the path component, and
1717 * return the "hash_len" as the result.
1718 */
1719 static inline u64 hash_name(const char *name)
1720 {
1721 unsigned long a, b, adata, bdata, mask, hash, len;
1722 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1723
1724 hash = a = 0;
1725 len = -sizeof(unsigned long);
1726 do {
1727 hash = (hash + a) * 9;
1728 len += sizeof(unsigned long);
1729 a = load_unaligned_zeropad(name+len);
1730 b = a ^ REPEAT_BYTE('/');
1731 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1732
1733 adata = prep_zero_mask(a, adata, &constants);
1734 bdata = prep_zero_mask(b, bdata, &constants);
1735
1736 mask = create_zero_mask(adata | bdata);
1737
1738 hash += a & zero_bytemask(mask);
1739 len += find_zero(mask);
1740 return hashlen_create(fold_hash(hash), len);
1741 }
1742
1743 #else
1744
1745 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1746 {
1747 unsigned long hash = init_name_hash();
1748 while (len--)
1749 hash = partial_name_hash(*name++, hash);
1750 return end_name_hash(hash);
1751 }
1752 EXPORT_SYMBOL(full_name_hash);
1753
1754 /*
1755 * We know there's a real path component here of at least
1756 * one character.
1757 */
1758 static inline u64 hash_name(const char *name)
1759 {
1760 unsigned long hash = init_name_hash();
1761 unsigned long len = 0, c;
1762
1763 c = (unsigned char)*name;
1764 do {
1765 len++;
1766 hash = partial_name_hash(c, hash);
1767 c = (unsigned char)name[len];
1768 } while (c && c != '/');
1769 return hashlen_create(end_name_hash(hash), len);
1770 }
1771
1772 #endif
1773
1774 /*
1775 * Name resolution.
1776 * This is the basic name resolution function, turning a pathname into
1777 * the final dentry. We expect 'base' to be positive and a directory.
1778 *
1779 * Returns 0 and nd will have valid dentry and mnt on success.
1780 * Returns error and drops reference to input namei data on failure.
1781 */
1782 static int link_path_walk(const char *name, struct nameidata *nd)
1783 {
1784 struct path next;
1785 int err;
1786
1787 while (*name=='/')
1788 name++;
1789 if (!*name)
1790 return 0;
1791
1792 /* At this point we know we have a real path component. */
1793 for(;;) {
1794 u64 hash_len;
1795 int type;
1796
1797 err = may_lookup(nd);
1798 if (err)
1799 break;
1800
1801 hash_len = hash_name(name);
1802
1803 type = LAST_NORM;
1804 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1805 case 2:
1806 if (name[1] == '.') {
1807 type = LAST_DOTDOT;
1808 nd->flags |= LOOKUP_JUMPED;
1809 }
1810 break;
1811 case 1:
1812 type = LAST_DOT;
1813 }
1814 if (likely(type == LAST_NORM)) {
1815 struct dentry *parent = nd->path.dentry;
1816 nd->flags &= ~LOOKUP_JUMPED;
1817 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1818 struct qstr this = { { .hash_len = hash_len }, .name = name };
1819 err = parent->d_op->d_hash(parent, &this);
1820 if (err < 0)
1821 break;
1822 hash_len = this.hash_len;
1823 name = this.name;
1824 }
1825 }
1826
1827 nd->last.hash_len = hash_len;
1828 nd->last.name = name;
1829 nd->last_type = type;
1830
1831 name += hashlen_len(hash_len);
1832 if (!*name)
1833 return 0;
1834 /*
1835 * If it wasn't NUL, we know it was '/'. Skip that
1836 * slash, and continue until no more slashes.
1837 */
1838 do {
1839 name++;
1840 } while (unlikely(*name == '/'));
1841 if (!*name)
1842 return 0;
1843
1844 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1845 if (err < 0)
1846 return err;
1847
1848 if (err) {
1849 err = nested_symlink(&next, nd);
1850 if (err)
1851 return err;
1852 }
1853 if (!d_can_lookup(nd->path.dentry)) {
1854 err = -ENOTDIR;
1855 break;
1856 }
1857 }
1858 terminate_walk(nd);
1859 return err;
1860 }
1861
1862 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1863 struct nameidata *nd)
1864 {
1865 int retval = 0;
1866 const char *s = name->name;
1867
1868 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1869 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1870 nd->depth = 0;
1871 nd->base = NULL;
1872 if (flags & LOOKUP_ROOT) {
1873 struct dentry *root = nd->root.dentry;
1874 struct inode *inode = root->d_inode;
1875 if (*s) {
1876 if (!d_can_lookup(root))
1877 return -ENOTDIR;
1878 retval = inode_permission(inode, MAY_EXEC);
1879 if (retval)
1880 return retval;
1881 }
1882 nd->path = nd->root;
1883 nd->inode = inode;
1884 if (flags & LOOKUP_RCU) {
1885 rcu_read_lock();
1886 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1887 nd->m_seq = read_seqbegin(&mount_lock);
1888 } else {
1889 path_get(&nd->path);
1890 }
1891 goto done;
1892 }
1893
1894 nd->root.mnt = NULL;
1895
1896 nd->m_seq = read_seqbegin(&mount_lock);
1897 if (*s == '/') {
1898 if (flags & LOOKUP_RCU) {
1899 rcu_read_lock();
1900 nd->seq = set_root_rcu(nd);
1901 } else {
1902 set_root(nd);
1903 path_get(&nd->root);
1904 }
1905 nd->path = nd->root;
1906 } else if (dfd == AT_FDCWD) {
1907 if (flags & LOOKUP_RCU) {
1908 struct fs_struct *fs = current->fs;
1909 unsigned seq;
1910
1911 rcu_read_lock();
1912
1913 do {
1914 seq = read_seqcount_begin(&fs->seq);
1915 nd->path = fs->pwd;
1916 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1917 } while (read_seqcount_retry(&fs->seq, seq));
1918 } else {
1919 get_fs_pwd(current->fs, &nd->path);
1920 }
1921 } else {
1922 /* Caller must check execute permissions on the starting path component */
1923 struct fd f = fdget_raw(dfd);
1924 struct dentry *dentry;
1925
1926 if (!f.file)
1927 return -EBADF;
1928
1929 dentry = f.file->f_path.dentry;
1930
1931 if (*s) {
1932 if (!d_can_lookup(dentry)) {
1933 fdput(f);
1934 return -ENOTDIR;
1935 }
1936 }
1937
1938 nd->path = f.file->f_path;
1939 if (flags & LOOKUP_RCU) {
1940 if (f.flags & FDPUT_FPUT)
1941 nd->base = f.file;
1942 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1943 rcu_read_lock();
1944 } else {
1945 path_get(&nd->path);
1946 fdput(f);
1947 }
1948 }
1949
1950 nd->inode = nd->path.dentry->d_inode;
1951 if (!(flags & LOOKUP_RCU))
1952 goto done;
1953 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1954 goto done;
1955 if (!(nd->flags & LOOKUP_ROOT))
1956 nd->root.mnt = NULL;
1957 rcu_read_unlock();
1958 return -ECHILD;
1959 done:
1960 current->total_link_count = 0;
1961 return link_path_walk(s, nd);
1962 }
1963
1964 static void path_cleanup(struct nameidata *nd)
1965 {
1966 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1967 path_put(&nd->root);
1968 nd->root.mnt = NULL;
1969 }
1970 if (unlikely(nd->base))
1971 fput(nd->base);
1972 }
1973
1974 static inline int lookup_last(struct nameidata *nd, struct path *path)
1975 {
1976 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1977 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1978
1979 nd->flags &= ~LOOKUP_PARENT;
1980 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1981 }
1982
1983 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1984 static int path_lookupat(int dfd, const struct filename *name,
1985 unsigned int flags, struct nameidata *nd)
1986 {
1987 struct path path;
1988 int err;
1989
1990 /*
1991 * Path walking is largely split up into 2 different synchronisation
1992 * schemes, rcu-walk and ref-walk (explained in
1993 * Documentation/filesystems/path-lookup.txt). These share much of the
1994 * path walk code, but some things particularly setup, cleanup, and
1995 * following mounts are sufficiently divergent that functions are
1996 * duplicated. Typically there is a function foo(), and its RCU
1997 * analogue, foo_rcu().
1998 *
1999 * -ECHILD is the error number of choice (just to avoid clashes) that
2000 * is returned if some aspect of an rcu-walk fails. Such an error must
2001 * be handled by restarting a traditional ref-walk (which will always
2002 * be able to complete).
2003 */
2004 err = path_init(dfd, name, flags, nd);
2005 if (!err && !(flags & LOOKUP_PARENT)) {
2006 err = lookup_last(nd, &path);
2007 while (err > 0) {
2008 void *cookie;
2009 struct path link = path;
2010 err = may_follow_link(&link, nd);
2011 if (unlikely(err))
2012 break;
2013 nd->flags |= LOOKUP_PARENT;
2014 err = follow_link(&link, nd, &cookie);
2015 if (err)
2016 break;
2017 err = lookup_last(nd, &path);
2018 put_link(nd, &link, cookie);
2019 }
2020 }
2021
2022 if (!err)
2023 err = complete_walk(nd);
2024
2025 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2026 if (!d_can_lookup(nd->path.dentry)) {
2027 path_put(&nd->path);
2028 err = -ENOTDIR;
2029 }
2030 }
2031
2032 path_cleanup(nd);
2033 return err;
2034 }
2035
2036 static int filename_lookup(int dfd, struct filename *name,
2037 unsigned int flags, struct nameidata *nd)
2038 {
2039 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2040 if (unlikely(retval == -ECHILD))
2041 retval = path_lookupat(dfd, name, flags, nd);
2042 if (unlikely(retval == -ESTALE))
2043 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2044
2045 if (likely(!retval))
2046 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2047 return retval;
2048 }
2049
2050 /* does lookup, returns the object with parent locked */
2051 struct dentry *kern_path_locked(const char *name, struct path *path)
2052 {
2053 struct filename *filename = getname_kernel(name);
2054 struct nameidata nd;
2055 struct dentry *d;
2056 int err;
2057
2058 if (IS_ERR(filename))
2059 return ERR_CAST(filename);
2060
2061 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2062 if (err) {
2063 d = ERR_PTR(err);
2064 goto out;
2065 }
2066 if (nd.last_type != LAST_NORM) {
2067 path_put(&nd.path);
2068 d = ERR_PTR(-EINVAL);
2069 goto out;
2070 }
2071 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2072 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2073 if (IS_ERR(d)) {
2074 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2075 path_put(&nd.path);
2076 goto out;
2077 }
2078 *path = nd.path;
2079 out:
2080 putname(filename);
2081 return d;
2082 }
2083
2084 int kern_path(const char *name, unsigned int flags, struct path *path)
2085 {
2086 struct nameidata nd;
2087 struct filename *filename = getname_kernel(name);
2088 int res = PTR_ERR(filename);
2089
2090 if (!IS_ERR(filename)) {
2091 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2092 putname(filename);
2093 if (!res)
2094 *path = nd.path;
2095 }
2096 return res;
2097 }
2098 EXPORT_SYMBOL(kern_path);
2099
2100 /**
2101 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2102 * @dentry: pointer to dentry of the base directory
2103 * @mnt: pointer to vfs mount of the base directory
2104 * @name: pointer to file name
2105 * @flags: lookup flags
2106 * @path: pointer to struct path to fill
2107 */
2108 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2109 const char *name, unsigned int flags,
2110 struct path *path)
2111 {
2112 struct filename *filename = getname_kernel(name);
2113 int err = PTR_ERR(filename);
2114
2115 BUG_ON(flags & LOOKUP_PARENT);
2116
2117 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2118 if (!IS_ERR(filename)) {
2119 struct nameidata nd;
2120 nd.root.dentry = dentry;
2121 nd.root.mnt = mnt;
2122 err = filename_lookup(AT_FDCWD, filename,
2123 flags | LOOKUP_ROOT, &nd);
2124 if (!err)
2125 *path = nd.path;
2126 putname(filename);
2127 }
2128 return err;
2129 }
2130 EXPORT_SYMBOL(vfs_path_lookup);
2131
2132 /*
2133 * Restricted form of lookup. Doesn't follow links, single-component only,
2134 * needs parent already locked. Doesn't follow mounts.
2135 * SMP-safe.
2136 */
2137 static struct dentry *lookup_hash(struct nameidata *nd)
2138 {
2139 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2140 }
2141
2142 /**
2143 * lookup_one_len - filesystem helper to lookup single pathname component
2144 * @name: pathname component to lookup
2145 * @base: base directory to lookup from
2146 * @len: maximum length @len should be interpreted to
2147 *
2148 * Note that this routine is purely a helper for filesystem usage and should
2149 * not be called by generic code.
2150 */
2151 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2152 {
2153 struct qstr this;
2154 unsigned int c;
2155 int err;
2156
2157 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2158
2159 this.name = name;
2160 this.len = len;
2161 this.hash = full_name_hash(name, len);
2162 if (!len)
2163 return ERR_PTR(-EACCES);
2164
2165 if (unlikely(name[0] == '.')) {
2166 if (len < 2 || (len == 2 && name[1] == '.'))
2167 return ERR_PTR(-EACCES);
2168 }
2169
2170 while (len--) {
2171 c = *(const unsigned char *)name++;
2172 if (c == '/' || c == '\0')
2173 return ERR_PTR(-EACCES);
2174 }
2175 /*
2176 * See if the low-level filesystem might want
2177 * to use its own hash..
2178 */
2179 if (base->d_flags & DCACHE_OP_HASH) {
2180 int err = base->d_op->d_hash(base, &this);
2181 if (err < 0)
2182 return ERR_PTR(err);
2183 }
2184
2185 err = inode_permission(base->d_inode, MAY_EXEC);
2186 if (err)
2187 return ERR_PTR(err);
2188
2189 return __lookup_hash(&this, base, 0);
2190 }
2191 EXPORT_SYMBOL(lookup_one_len);
2192
2193 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2194 struct path *path, int *empty)
2195 {
2196 struct nameidata nd;
2197 struct filename *tmp = getname_flags(name, flags, empty);
2198 int err = PTR_ERR(tmp);
2199 if (!IS_ERR(tmp)) {
2200
2201 BUG_ON(flags & LOOKUP_PARENT);
2202
2203 err = filename_lookup(dfd, tmp, flags, &nd);
2204 putname(tmp);
2205 if (!err)
2206 *path = nd.path;
2207 }
2208 return err;
2209 }
2210
2211 int user_path_at(int dfd, const char __user *name, unsigned flags,
2212 struct path *path)
2213 {
2214 return user_path_at_empty(dfd, name, flags, path, NULL);
2215 }
2216 EXPORT_SYMBOL(user_path_at);
2217
2218 /*
2219 * NB: most callers don't do anything directly with the reference to the
2220 * to struct filename, but the nd->last pointer points into the name string
2221 * allocated by getname. So we must hold the reference to it until all
2222 * path-walking is complete.
2223 */
2224 static struct filename *
2225 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2226 unsigned int flags)
2227 {
2228 struct filename *s = getname(path);
2229 int error;
2230
2231 /* only LOOKUP_REVAL is allowed in extra flags */
2232 flags &= LOOKUP_REVAL;
2233
2234 if (IS_ERR(s))
2235 return s;
2236
2237 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2238 if (error) {
2239 putname(s);
2240 return ERR_PTR(error);
2241 }
2242
2243 return s;
2244 }
2245
2246 /**
2247 * mountpoint_last - look up last component for umount
2248 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2249 * @path: pointer to container for result
2250 *
2251 * This is a special lookup_last function just for umount. In this case, we
2252 * need to resolve the path without doing any revalidation.
2253 *
2254 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2255 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2256 * in almost all cases, this lookup will be served out of the dcache. The only
2257 * cases where it won't are if nd->last refers to a symlink or the path is
2258 * bogus and it doesn't exist.
2259 *
2260 * Returns:
2261 * -error: if there was an error during lookup. This includes -ENOENT if the
2262 * lookup found a negative dentry. The nd->path reference will also be
2263 * put in this case.
2264 *
2265 * 0: if we successfully resolved nd->path and found it to not to be a
2266 * symlink that needs to be followed. "path" will also be populated.
2267 * The nd->path reference will also be put.
2268 *
2269 * 1: if we successfully resolved nd->last and found it to be a symlink
2270 * that needs to be followed. "path" will be populated with the path
2271 * to the link, and nd->path will *not* be put.
2272 */
2273 static int
2274 mountpoint_last(struct nameidata *nd, struct path *path)
2275 {
2276 int error = 0;
2277 struct dentry *dentry;
2278 struct dentry *dir = nd->path.dentry;
2279
2280 /* If we're in rcuwalk, drop out of it to handle last component */
2281 if (nd->flags & LOOKUP_RCU) {
2282 if (unlazy_walk(nd, NULL)) {
2283 error = -ECHILD;
2284 goto out;
2285 }
2286 }
2287
2288 nd->flags &= ~LOOKUP_PARENT;
2289
2290 if (unlikely(nd->last_type != LAST_NORM)) {
2291 error = handle_dots(nd, nd->last_type);
2292 if (error)
2293 goto out;
2294 dentry = dget(nd->path.dentry);
2295 goto done;
2296 }
2297
2298 mutex_lock(&dir->d_inode->i_mutex);
2299 dentry = d_lookup(dir, &nd->last);
2300 if (!dentry) {
2301 /*
2302 * No cached dentry. Mounted dentries are pinned in the cache,
2303 * so that means that this dentry is probably a symlink or the
2304 * path doesn't actually point to a mounted dentry.
2305 */
2306 dentry = d_alloc(dir, &nd->last);
2307 if (!dentry) {
2308 error = -ENOMEM;
2309 mutex_unlock(&dir->d_inode->i_mutex);
2310 goto out;
2311 }
2312 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2313 error = PTR_ERR(dentry);
2314 if (IS_ERR(dentry)) {
2315 mutex_unlock(&dir->d_inode->i_mutex);
2316 goto out;
2317 }
2318 }
2319 mutex_unlock(&dir->d_inode->i_mutex);
2320
2321 done:
2322 if (d_is_negative(dentry)) {
2323 error = -ENOENT;
2324 dput(dentry);
2325 goto out;
2326 }
2327 path->dentry = dentry;
2328 path->mnt = nd->path.mnt;
2329 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2330 return 1;
2331 mntget(path->mnt);
2332 follow_mount(path);
2333 error = 0;
2334 out:
2335 terminate_walk(nd);
2336 return error;
2337 }
2338
2339 /**
2340 * path_mountpoint - look up a path to be umounted
2341 * @dfd: directory file descriptor to start walk from
2342 * @name: full pathname to walk
2343 * @path: pointer to container for result
2344 * @flags: lookup flags
2345 *
2346 * Look up the given name, but don't attempt to revalidate the last component.
2347 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2348 */
2349 static int
2350 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2351 unsigned int flags)
2352 {
2353 struct nameidata nd;
2354 int err;
2355
2356 err = path_init(dfd, name, flags, &nd);
2357 if (unlikely(err))
2358 goto out;
2359
2360 err = mountpoint_last(&nd, path);
2361 while (err > 0) {
2362 void *cookie;
2363 struct path link = *path;
2364 err = may_follow_link(&link, &nd);
2365 if (unlikely(err))
2366 break;
2367 nd.flags |= LOOKUP_PARENT;
2368 err = follow_link(&link, &nd, &cookie);
2369 if (err)
2370 break;
2371 err = mountpoint_last(&nd, path);
2372 put_link(&nd, &link, cookie);
2373 }
2374 out:
2375 path_cleanup(&nd);
2376 return err;
2377 }
2378
2379 static int
2380 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2381 unsigned int flags)
2382 {
2383 int error;
2384 if (IS_ERR(name))
2385 return PTR_ERR(name);
2386 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2387 if (unlikely(error == -ECHILD))
2388 error = path_mountpoint(dfd, name, path, flags);
2389 if (unlikely(error == -ESTALE))
2390 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2391 if (likely(!error))
2392 audit_inode(name, path->dentry, 0);
2393 putname(name);
2394 return error;
2395 }
2396
2397 /**
2398 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2399 * @dfd: directory file descriptor
2400 * @name: pathname from userland
2401 * @flags: lookup flags
2402 * @path: pointer to container to hold result
2403 *
2404 * A umount is a special case for path walking. We're not actually interested
2405 * in the inode in this situation, and ESTALE errors can be a problem. We
2406 * simply want track down the dentry and vfsmount attached at the mountpoint
2407 * and avoid revalidating the last component.
2408 *
2409 * Returns 0 and populates "path" on success.
2410 */
2411 int
2412 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2413 struct path *path)
2414 {
2415 return filename_mountpoint(dfd, getname(name), path, flags);
2416 }
2417
2418 int
2419 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2420 unsigned int flags)
2421 {
2422 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2423 }
2424 EXPORT_SYMBOL(kern_path_mountpoint);
2425
2426 int __check_sticky(struct inode *dir, struct inode *inode)
2427 {
2428 kuid_t fsuid = current_fsuid();
2429
2430 if (uid_eq(inode->i_uid, fsuid))
2431 return 0;
2432 if (uid_eq(dir->i_uid, fsuid))
2433 return 0;
2434 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2435 }
2436 EXPORT_SYMBOL(__check_sticky);
2437
2438 /*
2439 * Check whether we can remove a link victim from directory dir, check
2440 * whether the type of victim is right.
2441 * 1. We can't do it if dir is read-only (done in permission())
2442 * 2. We should have write and exec permissions on dir
2443 * 3. We can't remove anything from append-only dir
2444 * 4. We can't do anything with immutable dir (done in permission())
2445 * 5. If the sticky bit on dir is set we should either
2446 * a. be owner of dir, or
2447 * b. be owner of victim, or
2448 * c. have CAP_FOWNER capability
2449 * 6. If the victim is append-only or immutable we can't do antyhing with
2450 * links pointing to it.
2451 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2452 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2453 * 9. We can't remove a root or mountpoint.
2454 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2455 * nfs_async_unlink().
2456 */
2457 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2458 {
2459 struct inode *inode = victim->d_inode;
2460 int error;
2461
2462 if (d_is_negative(victim))
2463 return -ENOENT;
2464 BUG_ON(!inode);
2465
2466 BUG_ON(victim->d_parent->d_inode != dir);
2467 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2468
2469 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2470 if (error)
2471 return error;
2472 if (IS_APPEND(dir))
2473 return -EPERM;
2474
2475 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2476 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2477 return -EPERM;
2478 if (isdir) {
2479 if (!d_is_dir(victim))
2480 return -ENOTDIR;
2481 if (IS_ROOT(victim))
2482 return -EBUSY;
2483 } else if (d_is_dir(victim))
2484 return -EISDIR;
2485 if (IS_DEADDIR(dir))
2486 return -ENOENT;
2487 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2488 return -EBUSY;
2489 return 0;
2490 }
2491
2492 /* Check whether we can create an object with dentry child in directory
2493 * dir.
2494 * 1. We can't do it if child already exists (open has special treatment for
2495 * this case, but since we are inlined it's OK)
2496 * 2. We can't do it if dir is read-only (done in permission())
2497 * 3. We should have write and exec permissions on dir
2498 * 4. We can't do it if dir is immutable (done in permission())
2499 */
2500 static inline int may_create(struct inode *dir, struct dentry *child)
2501 {
2502 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2503 if (child->d_inode)
2504 return -EEXIST;
2505 if (IS_DEADDIR(dir))
2506 return -ENOENT;
2507 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2508 }
2509
2510 /*
2511 * p1 and p2 should be directories on the same fs.
2512 */
2513 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2514 {
2515 struct dentry *p;
2516
2517 if (p1 == p2) {
2518 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2519 return NULL;
2520 }
2521
2522 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2523
2524 p = d_ancestor(p2, p1);
2525 if (p) {
2526 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2527 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2528 return p;
2529 }
2530
2531 p = d_ancestor(p1, p2);
2532 if (p) {
2533 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2534 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2535 return p;
2536 }
2537
2538 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2539 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2540 return NULL;
2541 }
2542 EXPORT_SYMBOL(lock_rename);
2543
2544 void unlock_rename(struct dentry *p1, struct dentry *p2)
2545 {
2546 mutex_unlock(&p1->d_inode->i_mutex);
2547 if (p1 != p2) {
2548 mutex_unlock(&p2->d_inode->i_mutex);
2549 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2550 }
2551 }
2552 EXPORT_SYMBOL(unlock_rename);
2553
2554 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2555 bool want_excl)
2556 {
2557 int error = may_create(dir, dentry);
2558 if (error)
2559 return error;
2560
2561 if (!dir->i_op->create)
2562 return -EACCES; /* shouldn't it be ENOSYS? */
2563 mode &= S_IALLUGO;
2564 mode |= S_IFREG;
2565 error = security_inode_create(dir, dentry, mode);
2566 if (error)
2567 return error;
2568 error = dir->i_op->create(dir, dentry, mode, want_excl);
2569 if (!error)
2570 fsnotify_create(dir, dentry);
2571 return error;
2572 }
2573 EXPORT_SYMBOL(vfs_create);
2574
2575 static int may_open(struct path *path, int acc_mode, int flag)
2576 {
2577 struct dentry *dentry = path->dentry;
2578 struct inode *inode = dentry->d_inode;
2579 int error;
2580
2581 /* O_PATH? */
2582 if (!acc_mode)
2583 return 0;
2584
2585 if (!inode)
2586 return -ENOENT;
2587
2588 switch (inode->i_mode & S_IFMT) {
2589 case S_IFLNK:
2590 return -ELOOP;
2591 case S_IFDIR:
2592 if (acc_mode & MAY_WRITE)
2593 return -EISDIR;
2594 break;
2595 case S_IFBLK:
2596 case S_IFCHR:
2597 if (path->mnt->mnt_flags & MNT_NODEV)
2598 return -EACCES;
2599 /*FALLTHRU*/
2600 case S_IFIFO:
2601 case S_IFSOCK:
2602 flag &= ~O_TRUNC;
2603 break;
2604 }
2605
2606 error = inode_permission(inode, acc_mode);
2607 if (error)
2608 return error;
2609
2610 /*
2611 * An append-only file must be opened in append mode for writing.
2612 */
2613 if (IS_APPEND(inode)) {
2614 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2615 return -EPERM;
2616 if (flag & O_TRUNC)
2617 return -EPERM;
2618 }
2619
2620 /* O_NOATIME can only be set by the owner or superuser */
2621 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2622 return -EPERM;
2623
2624 return 0;
2625 }
2626
2627 static int handle_truncate(struct file *filp)
2628 {
2629 struct path *path = &filp->f_path;
2630 struct inode *inode = path->dentry->d_inode;
2631 int error = get_write_access(inode);
2632 if (error)
2633 return error;
2634 /*
2635 * Refuse to truncate files with mandatory locks held on them.
2636 */
2637 error = locks_verify_locked(filp);
2638 if (!error)
2639 error = security_path_truncate(path);
2640 if (!error) {
2641 error = do_truncate(path->dentry, 0,
2642 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2643 filp);
2644 }
2645 put_write_access(inode);
2646 return error;
2647 }
2648
2649 static inline int open_to_namei_flags(int flag)
2650 {
2651 if ((flag & O_ACCMODE) == 3)
2652 flag--;
2653 return flag;
2654 }
2655
2656 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2657 {
2658 int error = security_path_mknod(dir, dentry, mode, 0);
2659 if (error)
2660 return error;
2661
2662 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2663 if (error)
2664 return error;
2665
2666 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2667 }
2668
2669 /*
2670 * Attempt to atomically look up, create and open a file from a negative
2671 * dentry.
2672 *
2673 * Returns 0 if successful. The file will have been created and attached to
2674 * @file by the filesystem calling finish_open().
2675 *
2676 * Returns 1 if the file was looked up only or didn't need creating. The
2677 * caller will need to perform the open themselves. @path will have been
2678 * updated to point to the new dentry. This may be negative.
2679 *
2680 * Returns an error code otherwise.
2681 */
2682 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2683 struct path *path, struct file *file,
2684 const struct open_flags *op,
2685 bool got_write, bool need_lookup,
2686 int *opened)
2687 {
2688 struct inode *dir = nd->path.dentry->d_inode;
2689 unsigned open_flag = open_to_namei_flags(op->open_flag);
2690 umode_t mode;
2691 int error;
2692 int acc_mode;
2693 int create_error = 0;
2694 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2695 bool excl;
2696
2697 BUG_ON(dentry->d_inode);
2698
2699 /* Don't create child dentry for a dead directory. */
2700 if (unlikely(IS_DEADDIR(dir))) {
2701 error = -ENOENT;
2702 goto out;
2703 }
2704
2705 mode = op->mode;
2706 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2707 mode &= ~current_umask();
2708
2709 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2710 if (excl)
2711 open_flag &= ~O_TRUNC;
2712
2713 /*
2714 * Checking write permission is tricky, bacuse we don't know if we are
2715 * going to actually need it: O_CREAT opens should work as long as the
2716 * file exists. But checking existence breaks atomicity. The trick is
2717 * to check access and if not granted clear O_CREAT from the flags.
2718 *
2719 * Another problem is returing the "right" error value (e.g. for an
2720 * O_EXCL open we want to return EEXIST not EROFS).
2721 */
2722 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2723 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2724 if (!(open_flag & O_CREAT)) {
2725 /*
2726 * No O_CREATE -> atomicity not a requirement -> fall
2727 * back to lookup + open
2728 */
2729 goto no_open;
2730 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2731 /* Fall back and fail with the right error */
2732 create_error = -EROFS;
2733 goto no_open;
2734 } else {
2735 /* No side effects, safe to clear O_CREAT */
2736 create_error = -EROFS;
2737 open_flag &= ~O_CREAT;
2738 }
2739 }
2740
2741 if (open_flag & O_CREAT) {
2742 error = may_o_create(&nd->path, dentry, mode);
2743 if (error) {
2744 create_error = error;
2745 if (open_flag & O_EXCL)
2746 goto no_open;
2747 open_flag &= ~O_CREAT;
2748 }
2749 }
2750
2751 if (nd->flags & LOOKUP_DIRECTORY)
2752 open_flag |= O_DIRECTORY;
2753
2754 file->f_path.dentry = DENTRY_NOT_SET;
2755 file->f_path.mnt = nd->path.mnt;
2756 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2757 opened);
2758 if (error < 0) {
2759 if (create_error && error == -ENOENT)
2760 error = create_error;
2761 goto out;
2762 }
2763
2764 if (error) { /* returned 1, that is */
2765 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2766 error = -EIO;
2767 goto out;
2768 }
2769 if (file->f_path.dentry) {
2770 dput(dentry);
2771 dentry = file->f_path.dentry;
2772 }
2773 if (*opened & FILE_CREATED)
2774 fsnotify_create(dir, dentry);
2775 if (!dentry->d_inode) {
2776 WARN_ON(*opened & FILE_CREATED);
2777 if (create_error) {
2778 error = create_error;
2779 goto out;
2780 }
2781 } else {
2782 if (excl && !(*opened & FILE_CREATED)) {
2783 error = -EEXIST;
2784 goto out;
2785 }
2786 }
2787 goto looked_up;
2788 }
2789
2790 /*
2791 * We didn't have the inode before the open, so check open permission
2792 * here.
2793 */
2794 acc_mode = op->acc_mode;
2795 if (*opened & FILE_CREATED) {
2796 WARN_ON(!(open_flag & O_CREAT));
2797 fsnotify_create(dir, dentry);
2798 acc_mode = MAY_OPEN;
2799 }
2800 error = may_open(&file->f_path, acc_mode, open_flag);
2801 if (error)
2802 fput(file);
2803
2804 out:
2805 dput(dentry);
2806 return error;
2807
2808 no_open:
2809 if (need_lookup) {
2810 dentry = lookup_real(dir, dentry, nd->flags);
2811 if (IS_ERR(dentry))
2812 return PTR_ERR(dentry);
2813
2814 if (create_error) {
2815 int open_flag = op->open_flag;
2816
2817 error = create_error;
2818 if ((open_flag & O_EXCL)) {
2819 if (!dentry->d_inode)
2820 goto out;
2821 } else if (!dentry->d_inode) {
2822 goto out;
2823 } else if ((open_flag & O_TRUNC) &&
2824 d_is_reg(dentry)) {
2825 goto out;
2826 }
2827 /* will fail later, go on to get the right error */
2828 }
2829 }
2830 looked_up:
2831 path->dentry = dentry;
2832 path->mnt = nd->path.mnt;
2833 return 1;
2834 }
2835
2836 /*
2837 * Look up and maybe create and open the last component.
2838 *
2839 * Must be called with i_mutex held on parent.
2840 *
2841 * Returns 0 if the file was successfully atomically created (if necessary) and
2842 * opened. In this case the file will be returned attached to @file.
2843 *
2844 * Returns 1 if the file was not completely opened at this time, though lookups
2845 * and creations will have been performed and the dentry returned in @path will
2846 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2847 * specified then a negative dentry may be returned.
2848 *
2849 * An error code is returned otherwise.
2850 *
2851 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2852 * cleared otherwise prior to returning.
2853 */
2854 static int lookup_open(struct nameidata *nd, struct path *path,
2855 struct file *file,
2856 const struct open_flags *op,
2857 bool got_write, int *opened)
2858 {
2859 struct dentry *dir = nd->path.dentry;
2860 struct inode *dir_inode = dir->d_inode;
2861 struct dentry *dentry;
2862 int error;
2863 bool need_lookup;
2864
2865 *opened &= ~FILE_CREATED;
2866 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2867 if (IS_ERR(dentry))
2868 return PTR_ERR(dentry);
2869
2870 /* Cached positive dentry: will open in f_op->open */
2871 if (!need_lookup && dentry->d_inode)
2872 goto out_no_open;
2873
2874 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2875 return atomic_open(nd, dentry, path, file, op, got_write,
2876 need_lookup, opened);
2877 }
2878
2879 if (need_lookup) {
2880 BUG_ON(dentry->d_inode);
2881
2882 dentry = lookup_real(dir_inode, dentry, nd->flags);
2883 if (IS_ERR(dentry))
2884 return PTR_ERR(dentry);
2885 }
2886
2887 /* Negative dentry, just create the file */
2888 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2889 umode_t mode = op->mode;
2890 if (!IS_POSIXACL(dir->d_inode))
2891 mode &= ~current_umask();
2892 /*
2893 * This write is needed to ensure that a
2894 * rw->ro transition does not occur between
2895 * the time when the file is created and when
2896 * a permanent write count is taken through
2897 * the 'struct file' in finish_open().
2898 */
2899 if (!got_write) {
2900 error = -EROFS;
2901 goto out_dput;
2902 }
2903 *opened |= FILE_CREATED;
2904 error = security_path_mknod(&nd->path, dentry, mode, 0);
2905 if (error)
2906 goto out_dput;
2907 error = vfs_create(dir->d_inode, dentry, mode,
2908 nd->flags & LOOKUP_EXCL);
2909 if (error)
2910 goto out_dput;
2911 }
2912 out_no_open:
2913 path->dentry = dentry;
2914 path->mnt = nd->path.mnt;
2915 return 1;
2916
2917 out_dput:
2918 dput(dentry);
2919 return error;
2920 }
2921
2922 /*
2923 * Handle the last step of open()
2924 */
2925 static int do_last(struct nameidata *nd, struct path *path,
2926 struct file *file, const struct open_flags *op,
2927 int *opened, struct filename *name)
2928 {
2929 struct dentry *dir = nd->path.dentry;
2930 int open_flag = op->open_flag;
2931 bool will_truncate = (open_flag & O_TRUNC) != 0;
2932 bool got_write = false;
2933 int acc_mode = op->acc_mode;
2934 struct inode *inode;
2935 bool symlink_ok = false;
2936 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2937 bool retried = false;
2938 int error;
2939
2940 nd->flags &= ~LOOKUP_PARENT;
2941 nd->flags |= op->intent;
2942
2943 if (nd->last_type != LAST_NORM) {
2944 error = handle_dots(nd, nd->last_type);
2945 if (error)
2946 return error;
2947 goto finish_open;
2948 }
2949
2950 if (!(open_flag & O_CREAT)) {
2951 if (nd->last.name[nd->last.len])
2952 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2953 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2954 symlink_ok = true;
2955 /* we _can_ be in RCU mode here */
2956 error = lookup_fast(nd, path, &inode);
2957 if (likely(!error))
2958 goto finish_lookup;
2959
2960 if (error < 0)
2961 goto out;
2962
2963 BUG_ON(nd->inode != dir->d_inode);
2964 } else {
2965 /* create side of things */
2966 /*
2967 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2968 * has been cleared when we got to the last component we are
2969 * about to look up
2970 */
2971 error = complete_walk(nd);
2972 if (error)
2973 return error;
2974
2975 audit_inode(name, dir, LOOKUP_PARENT);
2976 error = -EISDIR;
2977 /* trailing slashes? */
2978 if (nd->last.name[nd->last.len])
2979 goto out;
2980 }
2981
2982 retry_lookup:
2983 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2984 error = mnt_want_write(nd->path.mnt);
2985 if (!error)
2986 got_write = true;
2987 /*
2988 * do _not_ fail yet - we might not need that or fail with
2989 * a different error; let lookup_open() decide; we'll be
2990 * dropping this one anyway.
2991 */
2992 }
2993 mutex_lock(&dir->d_inode->i_mutex);
2994 error = lookup_open(nd, path, file, op, got_write, opened);
2995 mutex_unlock(&dir->d_inode->i_mutex);
2996
2997 if (error <= 0) {
2998 if (error)
2999 goto out;
3000
3001 if ((*opened & FILE_CREATED) ||
3002 !S_ISREG(file_inode(file)->i_mode))
3003 will_truncate = false;
3004
3005 audit_inode(name, file->f_path.dentry, 0);
3006 goto opened;
3007 }
3008
3009 if (*opened & FILE_CREATED) {
3010 /* Don't check for write permission, don't truncate */
3011 open_flag &= ~O_TRUNC;
3012 will_truncate = false;
3013 acc_mode = MAY_OPEN;
3014 path_to_nameidata(path, nd);
3015 goto finish_open_created;
3016 }
3017
3018 /*
3019 * create/update audit record if it already exists.
3020 */
3021 if (d_is_positive(path->dentry))
3022 audit_inode(name, path->dentry, 0);
3023
3024 /*
3025 * If atomic_open() acquired write access it is dropped now due to
3026 * possible mount and symlink following (this might be optimized away if
3027 * necessary...)
3028 */
3029 if (got_write) {
3030 mnt_drop_write(nd->path.mnt);
3031 got_write = false;
3032 }
3033
3034 error = -EEXIST;
3035 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3036 goto exit_dput;
3037
3038 error = follow_managed(path, nd->flags);
3039 if (error < 0)
3040 goto exit_dput;
3041
3042 if (error)
3043 nd->flags |= LOOKUP_JUMPED;
3044
3045 BUG_ON(nd->flags & LOOKUP_RCU);
3046 inode = path->dentry->d_inode;
3047 error = -ENOENT;
3048 if (d_is_negative(path->dentry)) {
3049 path_to_nameidata(path, nd);
3050 goto out;
3051 }
3052 finish_lookup:
3053 /* we _can_ be in RCU mode here */
3054 if (should_follow_link(path->dentry, !symlink_ok)) {
3055 if (nd->flags & LOOKUP_RCU) {
3056 if (unlikely(nd->path.mnt != path->mnt ||
3057 unlazy_walk(nd, path->dentry))) {
3058 error = -ECHILD;
3059 goto out;
3060 }
3061 }
3062 BUG_ON(inode != path->dentry->d_inode);
3063 return 1;
3064 }
3065
3066 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3067 path_to_nameidata(path, nd);
3068 } else {
3069 save_parent.dentry = nd->path.dentry;
3070 save_parent.mnt = mntget(path->mnt);
3071 nd->path.dentry = path->dentry;
3072
3073 }
3074 nd->inode = inode;
3075 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3076 finish_open:
3077 error = complete_walk(nd);
3078 if (error) {
3079 path_put(&save_parent);
3080 return error;
3081 }
3082 audit_inode(name, nd->path.dentry, 0);
3083 error = -EISDIR;
3084 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3085 goto out;
3086 error = -ENOTDIR;
3087 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3088 goto out;
3089 if (!d_is_reg(nd->path.dentry))
3090 will_truncate = false;
3091
3092 if (will_truncate) {
3093 error = mnt_want_write(nd->path.mnt);
3094 if (error)
3095 goto out;
3096 got_write = true;
3097 }
3098 finish_open_created:
3099 error = may_open(&nd->path, acc_mode, open_flag);
3100 if (error)
3101 goto out;
3102
3103 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3104 error = vfs_open(&nd->path, file, current_cred());
3105 if (!error) {
3106 *opened |= FILE_OPENED;
3107 } else {
3108 if (error == -EOPENSTALE)
3109 goto stale_open;
3110 goto out;
3111 }
3112 opened:
3113 error = open_check_o_direct(file);
3114 if (error)
3115 goto exit_fput;
3116 error = ima_file_check(file, op->acc_mode, *opened);
3117 if (error)
3118 goto exit_fput;
3119
3120 if (will_truncate) {
3121 error = handle_truncate(file);
3122 if (error)
3123 goto exit_fput;
3124 }
3125 out:
3126 if (got_write)
3127 mnt_drop_write(nd->path.mnt);
3128 path_put(&save_parent);
3129 terminate_walk(nd);
3130 return error;
3131
3132 exit_dput:
3133 path_put_conditional(path, nd);
3134 goto out;
3135 exit_fput:
3136 fput(file);
3137 goto out;
3138
3139 stale_open:
3140 /* If no saved parent or already retried then can't retry */
3141 if (!save_parent.dentry || retried)
3142 goto out;
3143
3144 BUG_ON(save_parent.dentry != dir);
3145 path_put(&nd->path);
3146 nd->path = save_parent;
3147 nd->inode = dir->d_inode;
3148 save_parent.mnt = NULL;
3149 save_parent.dentry = NULL;
3150 if (got_write) {
3151 mnt_drop_write(nd->path.mnt);
3152 got_write = false;
3153 }
3154 retried = true;
3155 goto retry_lookup;
3156 }
3157
3158 static int do_tmpfile(int dfd, struct filename *pathname,
3159 struct nameidata *nd, int flags,
3160 const struct open_flags *op,
3161 struct file *file, int *opened)
3162 {
3163 static const struct qstr name = QSTR_INIT("/", 1);
3164 struct dentry *dentry, *child;
3165 struct inode *dir;
3166 int error = path_lookupat(dfd, pathname,
3167 flags | LOOKUP_DIRECTORY, nd);
3168 if (unlikely(error))
3169 return error;
3170 error = mnt_want_write(nd->path.mnt);
3171 if (unlikely(error))
3172 goto out;
3173 /* we want directory to be writable */
3174 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3175 if (error)
3176 goto out2;
3177 dentry = nd->path.dentry;
3178 dir = dentry->d_inode;
3179 if (!dir->i_op->tmpfile) {
3180 error = -EOPNOTSUPP;
3181 goto out2;
3182 }
3183 child = d_alloc(dentry, &name);
3184 if (unlikely(!child)) {
3185 error = -ENOMEM;
3186 goto out2;
3187 }
3188 nd->flags &= ~LOOKUP_DIRECTORY;
3189 nd->flags |= op->intent;
3190 dput(nd->path.dentry);
3191 nd->path.dentry = child;
3192 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3193 if (error)
3194 goto out2;
3195 audit_inode(pathname, nd->path.dentry, 0);
3196 /* Don't check for other permissions, the inode was just created */
3197 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3198 if (error)
3199 goto out2;
3200 file->f_path.mnt = nd->path.mnt;
3201 error = finish_open(file, nd->path.dentry, NULL, opened);
3202 if (error)
3203 goto out2;
3204 error = open_check_o_direct(file);
3205 if (error) {
3206 fput(file);
3207 } else if (!(op->open_flag & O_EXCL)) {
3208 struct inode *inode = file_inode(file);
3209 spin_lock(&inode->i_lock);
3210 inode->i_state |= I_LINKABLE;
3211 spin_unlock(&inode->i_lock);
3212 }
3213 out2:
3214 mnt_drop_write(nd->path.mnt);
3215 out:
3216 path_put(&nd->path);
3217 return error;
3218 }
3219
3220 static struct file *path_openat(int dfd, struct filename *pathname,
3221 struct nameidata *nd, const struct open_flags *op, int flags)
3222 {
3223 struct file *file;
3224 struct path path;
3225 int opened = 0;
3226 int error;
3227
3228 file = get_empty_filp();
3229 if (IS_ERR(file))
3230 return file;
3231
3232 file->f_flags = op->open_flag;
3233
3234 if (unlikely(file->f_flags & __O_TMPFILE)) {
3235 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3236 goto out2;
3237 }
3238
3239 error = path_init(dfd, pathname, flags, nd);
3240 if (unlikely(error))
3241 goto out;
3242
3243 error = do_last(nd, &path, file, op, &opened, pathname);
3244 while (unlikely(error > 0)) { /* trailing symlink */
3245 struct path link = path;
3246 void *cookie;
3247 if (!(nd->flags & LOOKUP_FOLLOW)) {
3248 path_put_conditional(&path, nd);
3249 path_put(&nd->path);
3250 error = -ELOOP;
3251 break;
3252 }
3253 error = may_follow_link(&link, nd);
3254 if (unlikely(error))
3255 break;
3256 nd->flags |= LOOKUP_PARENT;
3257 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3258 error = follow_link(&link, nd, &cookie);
3259 if (unlikely(error))
3260 break;
3261 error = do_last(nd, &path, file, op, &opened, pathname);
3262 put_link(nd, &link, cookie);
3263 }
3264 out:
3265 path_cleanup(nd);
3266 out2:
3267 if (!(opened & FILE_OPENED)) {
3268 BUG_ON(!error);
3269 put_filp(file);
3270 }
3271 if (unlikely(error)) {
3272 if (error == -EOPENSTALE) {
3273 if (flags & LOOKUP_RCU)
3274 error = -ECHILD;
3275 else
3276 error = -ESTALE;
3277 }
3278 file = ERR_PTR(error);
3279 }
3280 return file;
3281 }
3282
3283 struct file *do_filp_open(int dfd, struct filename *pathname,
3284 const struct open_flags *op)
3285 {
3286 struct nameidata nd;
3287 int flags = op->lookup_flags;
3288 struct file *filp;
3289
3290 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3291 if (unlikely(filp == ERR_PTR(-ECHILD)))
3292 filp = path_openat(dfd, pathname, &nd, op, flags);
3293 if (unlikely(filp == ERR_PTR(-ESTALE)))
3294 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3295 return filp;
3296 }
3297
3298 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3299 const char *name, const struct open_flags *op)
3300 {
3301 struct nameidata nd;
3302 struct file *file;
3303 struct filename *filename;
3304 int flags = op->lookup_flags | LOOKUP_ROOT;
3305
3306 nd.root.mnt = mnt;
3307 nd.root.dentry = dentry;
3308
3309 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3310 return ERR_PTR(-ELOOP);
3311
3312 filename = getname_kernel(name);
3313 if (unlikely(IS_ERR(filename)))
3314 return ERR_CAST(filename);
3315
3316 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3317 if (unlikely(file == ERR_PTR(-ECHILD)))
3318 file = path_openat(-1, filename, &nd, op, flags);
3319 if (unlikely(file == ERR_PTR(-ESTALE)))
3320 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3321 putname(filename);
3322 return file;
3323 }
3324
3325 static struct dentry *filename_create(int dfd, struct filename *name,
3326 struct path *path, unsigned int lookup_flags)
3327 {
3328 struct dentry *dentry = ERR_PTR(-EEXIST);
3329 struct nameidata nd;
3330 int err2;
3331 int error;
3332 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3333
3334 /*
3335 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3336 * other flags passed in are ignored!
3337 */
3338 lookup_flags &= LOOKUP_REVAL;
3339
3340 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3341 if (error)
3342 return ERR_PTR(error);
3343
3344 /*
3345 * Yucky last component or no last component at all?
3346 * (foo/., foo/.., /////)
3347 */
3348 if (nd.last_type != LAST_NORM)
3349 goto out;
3350 nd.flags &= ~LOOKUP_PARENT;
3351 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3352
3353 /* don't fail immediately if it's r/o, at least try to report other errors */
3354 err2 = mnt_want_write(nd.path.mnt);
3355 /*
3356 * Do the final lookup.
3357 */
3358 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3359 dentry = lookup_hash(&nd);
3360 if (IS_ERR(dentry))
3361 goto unlock;
3362
3363 error = -EEXIST;
3364 if (d_is_positive(dentry))
3365 goto fail;
3366
3367 /*
3368 * Special case - lookup gave negative, but... we had foo/bar/
3369 * From the vfs_mknod() POV we just have a negative dentry -
3370 * all is fine. Let's be bastards - you had / on the end, you've
3371 * been asking for (non-existent) directory. -ENOENT for you.
3372 */
3373 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3374 error = -ENOENT;
3375 goto fail;
3376 }
3377 if (unlikely(err2)) {
3378 error = err2;
3379 goto fail;
3380 }
3381 *path = nd.path;
3382 return dentry;
3383 fail:
3384 dput(dentry);
3385 dentry = ERR_PTR(error);
3386 unlock:
3387 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3388 if (!err2)
3389 mnt_drop_write(nd.path.mnt);
3390 out:
3391 path_put(&nd.path);
3392 return dentry;
3393 }
3394
3395 struct dentry *kern_path_create(int dfd, const char *pathname,
3396 struct path *path, unsigned int lookup_flags)
3397 {
3398 struct filename *filename = getname_kernel(pathname);
3399 struct dentry *res;
3400
3401 if (IS_ERR(filename))
3402 return ERR_CAST(filename);
3403 res = filename_create(dfd, filename, path, lookup_flags);
3404 putname(filename);
3405 return res;
3406 }
3407 EXPORT_SYMBOL(kern_path_create);
3408
3409 void done_path_create(struct path *path, struct dentry *dentry)
3410 {
3411 dput(dentry);
3412 mutex_unlock(&path->dentry->d_inode->i_mutex);
3413 mnt_drop_write(path->mnt);
3414 path_put(path);
3415 }
3416 EXPORT_SYMBOL(done_path_create);
3417
3418 struct dentry *user_path_create(int dfd, const char __user *pathname,
3419 struct path *path, unsigned int lookup_flags)
3420 {
3421 struct filename *tmp = getname(pathname);
3422 struct dentry *res;
3423 if (IS_ERR(tmp))
3424 return ERR_CAST(tmp);
3425 res = filename_create(dfd, tmp, path, lookup_flags);
3426 putname(tmp);
3427 return res;
3428 }
3429 EXPORT_SYMBOL(user_path_create);
3430
3431 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3432 {
3433 int error = may_create(dir, dentry);
3434
3435 if (error)
3436 return error;
3437
3438 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3439 return -EPERM;
3440
3441 if (!dir->i_op->mknod)
3442 return -EPERM;
3443
3444 error = devcgroup_inode_mknod(mode, dev);
3445 if (error)
3446 return error;
3447
3448 error = security_inode_mknod(dir, dentry, mode, dev);
3449 if (error)
3450 return error;
3451
3452 error = dir->i_op->mknod(dir, dentry, mode, dev);
3453 if (!error)
3454 fsnotify_create(dir, dentry);
3455 return error;
3456 }
3457 EXPORT_SYMBOL(vfs_mknod);
3458
3459 static int may_mknod(umode_t mode)
3460 {
3461 switch (mode & S_IFMT) {
3462 case S_IFREG:
3463 case S_IFCHR:
3464 case S_IFBLK:
3465 case S_IFIFO:
3466 case S_IFSOCK:
3467 case 0: /* zero mode translates to S_IFREG */
3468 return 0;
3469 case S_IFDIR:
3470 return -EPERM;
3471 default:
3472 return -EINVAL;
3473 }
3474 }
3475
3476 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3477 unsigned, dev)
3478 {
3479 struct dentry *dentry;
3480 struct path path;
3481 int error;
3482 unsigned int lookup_flags = 0;
3483
3484 error = may_mknod(mode);
3485 if (error)
3486 return error;
3487 retry:
3488 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3489 if (IS_ERR(dentry))
3490 return PTR_ERR(dentry);
3491
3492 if (!IS_POSIXACL(path.dentry->d_inode))
3493 mode &= ~current_umask();
3494 error = security_path_mknod(&path, dentry, mode, dev);
3495 if (error)
3496 goto out;
3497 switch (mode & S_IFMT) {
3498 case 0: case S_IFREG:
3499 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3500 break;
3501 case S_IFCHR: case S_IFBLK:
3502 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3503 new_decode_dev(dev));
3504 break;
3505 case S_IFIFO: case S_IFSOCK:
3506 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3507 break;
3508 }
3509 out:
3510 done_path_create(&path, dentry);
3511 if (retry_estale(error, lookup_flags)) {
3512 lookup_flags |= LOOKUP_REVAL;
3513 goto retry;
3514 }
3515 return error;
3516 }
3517
3518 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3519 {
3520 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3521 }
3522
3523 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3524 {
3525 int error = may_create(dir, dentry);
3526 unsigned max_links = dir->i_sb->s_max_links;
3527
3528 if (error)
3529 return error;
3530
3531 if (!dir->i_op->mkdir)
3532 return -EPERM;
3533
3534 mode &= (S_IRWXUGO|S_ISVTX);
3535 error = security_inode_mkdir(dir, dentry, mode);
3536 if (error)
3537 return error;
3538
3539 if (max_links && dir->i_nlink >= max_links)
3540 return -EMLINK;
3541
3542 error = dir->i_op->mkdir(dir, dentry, mode);
3543 if (!error)
3544 fsnotify_mkdir(dir, dentry);
3545 return error;
3546 }
3547 EXPORT_SYMBOL(vfs_mkdir);
3548
3549 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3550 {
3551 struct dentry *dentry;
3552 struct path path;
3553 int error;
3554 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3555
3556 retry:
3557 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3558 if (IS_ERR(dentry))
3559 return PTR_ERR(dentry);
3560
3561 if (!IS_POSIXACL(path.dentry->d_inode))
3562 mode &= ~current_umask();
3563 error = security_path_mkdir(&path, dentry, mode);
3564 if (!error)
3565 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3566 done_path_create(&path, dentry);
3567 if (retry_estale(error, lookup_flags)) {
3568 lookup_flags |= LOOKUP_REVAL;
3569 goto retry;
3570 }
3571 return error;
3572 }
3573
3574 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3575 {
3576 return sys_mkdirat(AT_FDCWD, pathname, mode);
3577 }
3578
3579 /*
3580 * The dentry_unhash() helper will try to drop the dentry early: we
3581 * should have a usage count of 1 if we're the only user of this
3582 * dentry, and if that is true (possibly after pruning the dcache),
3583 * then we drop the dentry now.
3584 *
3585 * A low-level filesystem can, if it choses, legally
3586 * do a
3587 *
3588 * if (!d_unhashed(dentry))
3589 * return -EBUSY;
3590 *
3591 * if it cannot handle the case of removing a directory
3592 * that is still in use by something else..
3593 */
3594 void dentry_unhash(struct dentry *dentry)
3595 {
3596 shrink_dcache_parent(dentry);
3597 spin_lock(&dentry->d_lock);
3598 if (dentry->d_lockref.count == 1)
3599 __d_drop(dentry);
3600 spin_unlock(&dentry->d_lock);
3601 }
3602 EXPORT_SYMBOL(dentry_unhash);
3603
3604 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3605 {
3606 int error = may_delete(dir, dentry, 1);
3607
3608 if (error)
3609 return error;
3610
3611 if (!dir->i_op->rmdir)
3612 return -EPERM;
3613
3614 dget(dentry);
3615 mutex_lock(&dentry->d_inode->i_mutex);
3616
3617 error = -EBUSY;
3618 if (is_local_mountpoint(dentry))
3619 goto out;
3620
3621 error = security_inode_rmdir(dir, dentry);
3622 if (error)
3623 goto out;
3624
3625 shrink_dcache_parent(dentry);
3626 error = dir->i_op->rmdir(dir, dentry);
3627 if (error)
3628 goto out;
3629
3630 dentry->d_inode->i_flags |= S_DEAD;
3631 dont_mount(dentry);
3632 detach_mounts(dentry);
3633
3634 out:
3635 mutex_unlock(&dentry->d_inode->i_mutex);
3636 dput(dentry);
3637 if (!error)
3638 d_delete(dentry);
3639 return error;
3640 }
3641 EXPORT_SYMBOL(vfs_rmdir);
3642
3643 static long do_rmdir(int dfd, const char __user *pathname)
3644 {
3645 int error = 0;
3646 struct filename *name;
3647 struct dentry *dentry;
3648 struct nameidata nd;
3649 unsigned int lookup_flags = 0;
3650 retry:
3651 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3652 if (IS_ERR(name))
3653 return PTR_ERR(name);
3654
3655 switch(nd.last_type) {
3656 case LAST_DOTDOT:
3657 error = -ENOTEMPTY;
3658 goto exit1;
3659 case LAST_DOT:
3660 error = -EINVAL;
3661 goto exit1;
3662 case LAST_ROOT:
3663 error = -EBUSY;
3664 goto exit1;
3665 }
3666
3667 nd.flags &= ~LOOKUP_PARENT;
3668 error = mnt_want_write(nd.path.mnt);
3669 if (error)
3670 goto exit1;
3671
3672 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3673 dentry = lookup_hash(&nd);
3674 error = PTR_ERR(dentry);
3675 if (IS_ERR(dentry))
3676 goto exit2;
3677 if (!dentry->d_inode) {
3678 error = -ENOENT;
3679 goto exit3;
3680 }
3681 error = security_path_rmdir(&nd.path, dentry);
3682 if (error)
3683 goto exit3;
3684 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3685 exit3:
3686 dput(dentry);
3687 exit2:
3688 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3689 mnt_drop_write(nd.path.mnt);
3690 exit1:
3691 path_put(&nd.path);
3692 putname(name);
3693 if (retry_estale(error, lookup_flags)) {
3694 lookup_flags |= LOOKUP_REVAL;
3695 goto retry;
3696 }
3697 return error;
3698 }
3699
3700 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3701 {
3702 return do_rmdir(AT_FDCWD, pathname);
3703 }
3704
3705 /**
3706 * vfs_unlink - unlink a filesystem object
3707 * @dir: parent directory
3708 * @dentry: victim
3709 * @delegated_inode: returns victim inode, if the inode is delegated.
3710 *
3711 * The caller must hold dir->i_mutex.
3712 *
3713 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3714 * return a reference to the inode in delegated_inode. The caller
3715 * should then break the delegation on that inode and retry. Because
3716 * breaking a delegation may take a long time, the caller should drop
3717 * dir->i_mutex before doing so.
3718 *
3719 * Alternatively, a caller may pass NULL for delegated_inode. This may
3720 * be appropriate for callers that expect the underlying filesystem not
3721 * to be NFS exported.
3722 */
3723 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3724 {
3725 struct inode *target = dentry->d_inode;
3726 int error = may_delete(dir, dentry, 0);
3727
3728 if (error)
3729 return error;
3730
3731 if (!dir->i_op->unlink)
3732 return -EPERM;
3733
3734 mutex_lock(&target->i_mutex);
3735 if (is_local_mountpoint(dentry))
3736 error = -EBUSY;
3737 else {
3738 error = security_inode_unlink(dir, dentry);
3739 if (!error) {
3740 error = try_break_deleg(target, delegated_inode);
3741 if (error)
3742 goto out;
3743 error = dir->i_op->unlink(dir, dentry);
3744 if (!error) {
3745 dont_mount(dentry);
3746 detach_mounts(dentry);
3747 }
3748 }
3749 }
3750 out:
3751 mutex_unlock(&target->i_mutex);
3752
3753 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3754 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3755 fsnotify_link_count(target);
3756 d_delete(dentry);
3757 }
3758
3759 return error;
3760 }
3761 EXPORT_SYMBOL(vfs_unlink);
3762
3763 /*
3764 * Make sure that the actual truncation of the file will occur outside its
3765 * directory's i_mutex. Truncate can take a long time if there is a lot of
3766 * writeout happening, and we don't want to prevent access to the directory
3767 * while waiting on the I/O.
3768 */
3769 static long do_unlinkat(int dfd, const char __user *pathname)
3770 {
3771 int error;
3772 struct filename *name;
3773 struct dentry *dentry;
3774 struct nameidata nd;
3775 struct inode *inode = NULL;
3776 struct inode *delegated_inode = NULL;
3777 unsigned int lookup_flags = 0;
3778 retry:
3779 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3780 if (IS_ERR(name))
3781 return PTR_ERR(name);
3782
3783 error = -EISDIR;
3784 if (nd.last_type != LAST_NORM)
3785 goto exit1;
3786
3787 nd.flags &= ~LOOKUP_PARENT;
3788 error = mnt_want_write(nd.path.mnt);
3789 if (error)
3790 goto exit1;
3791 retry_deleg:
3792 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3793 dentry = lookup_hash(&nd);
3794 error = PTR_ERR(dentry);
3795 if (!IS_ERR(dentry)) {
3796 /* Why not before? Because we want correct error value */
3797 if (nd.last.name[nd.last.len])
3798 goto slashes;
3799 inode = dentry->d_inode;
3800 if (d_is_negative(dentry))
3801 goto slashes;
3802 ihold(inode);
3803 error = security_path_unlink(&nd.path, dentry);
3804 if (error)
3805 goto exit2;
3806 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3807 exit2:
3808 dput(dentry);
3809 }
3810 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3811 if (inode)
3812 iput(inode); /* truncate the inode here */
3813 inode = NULL;
3814 if (delegated_inode) {
3815 error = break_deleg_wait(&delegated_inode);
3816 if (!error)
3817 goto retry_deleg;
3818 }
3819 mnt_drop_write(nd.path.mnt);
3820 exit1:
3821 path_put(&nd.path);
3822 putname(name);
3823 if (retry_estale(error, lookup_flags)) {
3824 lookup_flags |= LOOKUP_REVAL;
3825 inode = NULL;
3826 goto retry;
3827 }
3828 return error;
3829
3830 slashes:
3831 if (d_is_negative(dentry))
3832 error = -ENOENT;
3833 else if (d_is_dir(dentry))
3834 error = -EISDIR;
3835 else
3836 error = -ENOTDIR;
3837 goto exit2;
3838 }
3839
3840 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3841 {
3842 if ((flag & ~AT_REMOVEDIR) != 0)
3843 return -EINVAL;
3844
3845 if (flag & AT_REMOVEDIR)
3846 return do_rmdir(dfd, pathname);
3847
3848 return do_unlinkat(dfd, pathname);
3849 }
3850
3851 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3852 {
3853 return do_unlinkat(AT_FDCWD, pathname);
3854 }
3855
3856 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3857 {
3858 int error = may_create(dir, dentry);
3859
3860 if (error)
3861 return error;
3862
3863 if (!dir->i_op->symlink)
3864 return -EPERM;
3865
3866 error = security_inode_symlink(dir, dentry, oldname);
3867 if (error)
3868 return error;
3869
3870 error = dir->i_op->symlink(dir, dentry, oldname);
3871 if (!error)
3872 fsnotify_create(dir, dentry);
3873 return error;
3874 }
3875 EXPORT_SYMBOL(vfs_symlink);
3876
3877 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3878 int, newdfd, const char __user *, newname)
3879 {
3880 int error;
3881 struct filename *from;
3882 struct dentry *dentry;
3883 struct path path;
3884 unsigned int lookup_flags = 0;
3885
3886 from = getname(oldname);
3887 if (IS_ERR(from))
3888 return PTR_ERR(from);
3889 retry:
3890 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3891 error = PTR_ERR(dentry);
3892 if (IS_ERR(dentry))
3893 goto out_putname;
3894
3895 error = security_path_symlink(&path, dentry, from->name);
3896 if (!error)
3897 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3898 done_path_create(&path, dentry);
3899 if (retry_estale(error, lookup_flags)) {
3900 lookup_flags |= LOOKUP_REVAL;
3901 goto retry;
3902 }
3903 out_putname:
3904 putname(from);
3905 return error;
3906 }
3907
3908 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3909 {
3910 return sys_symlinkat(oldname, AT_FDCWD, newname);
3911 }
3912
3913 /**
3914 * vfs_link - create a new link
3915 * @old_dentry: object to be linked
3916 * @dir: new parent
3917 * @new_dentry: where to create the new link
3918 * @delegated_inode: returns inode needing a delegation break
3919 *
3920 * The caller must hold dir->i_mutex
3921 *
3922 * If vfs_link discovers a delegation on the to-be-linked file in need
3923 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3924 * inode in delegated_inode. The caller should then break the delegation
3925 * and retry. Because breaking a delegation may take a long time, the
3926 * caller should drop the i_mutex before doing so.
3927 *
3928 * Alternatively, a caller may pass NULL for delegated_inode. This may
3929 * be appropriate for callers that expect the underlying filesystem not
3930 * to be NFS exported.
3931 */
3932 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3933 {
3934 struct inode *inode = old_dentry->d_inode;
3935 unsigned max_links = dir->i_sb->s_max_links;
3936 int error;
3937
3938 if (!inode)
3939 return -ENOENT;
3940
3941 error = may_create(dir, new_dentry);
3942 if (error)
3943 return error;
3944
3945 if (dir->i_sb != inode->i_sb)
3946 return -EXDEV;
3947
3948 /*
3949 * A link to an append-only or immutable file cannot be created.
3950 */
3951 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3952 return -EPERM;
3953 if (!dir->i_op->link)
3954 return -EPERM;
3955 if (S_ISDIR(inode->i_mode))
3956 return -EPERM;
3957
3958 error = security_inode_link(old_dentry, dir, new_dentry);
3959 if (error)
3960 return error;
3961
3962 mutex_lock(&inode->i_mutex);
3963 /* Make sure we don't allow creating hardlink to an unlinked file */
3964 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3965 error = -ENOENT;
3966 else if (max_links && inode->i_nlink >= max_links)
3967 error = -EMLINK;
3968 else {
3969 error = try_break_deleg(inode, delegated_inode);
3970 if (!error)
3971 error = dir->i_op->link(old_dentry, dir, new_dentry);
3972 }
3973
3974 if (!error && (inode->i_state & I_LINKABLE)) {
3975 spin_lock(&inode->i_lock);
3976 inode->i_state &= ~I_LINKABLE;
3977 spin_unlock(&inode->i_lock);
3978 }
3979 mutex_unlock(&inode->i_mutex);
3980 if (!error)
3981 fsnotify_link(dir, inode, new_dentry);
3982 return error;
3983 }
3984 EXPORT_SYMBOL(vfs_link);
3985
3986 /*
3987 * Hardlinks are often used in delicate situations. We avoid
3988 * security-related surprises by not following symlinks on the
3989 * newname. --KAB
3990 *
3991 * We don't follow them on the oldname either to be compatible
3992 * with linux 2.0, and to avoid hard-linking to directories
3993 * and other special files. --ADM
3994 */
3995 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3996 int, newdfd, const char __user *, newname, int, flags)
3997 {
3998 struct dentry *new_dentry;
3999 struct path old_path, new_path;
4000 struct inode *delegated_inode = NULL;
4001 int how = 0;
4002 int error;
4003
4004 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4005 return -EINVAL;
4006 /*
4007 * To use null names we require CAP_DAC_READ_SEARCH
4008 * This ensures that not everyone will be able to create
4009 * handlink using the passed filedescriptor.
4010 */
4011 if (flags & AT_EMPTY_PATH) {
4012 if (!capable(CAP_DAC_READ_SEARCH))
4013 return -ENOENT;
4014 how = LOOKUP_EMPTY;
4015 }
4016
4017 if (flags & AT_SYMLINK_FOLLOW)
4018 how |= LOOKUP_FOLLOW;
4019 retry:
4020 error = user_path_at(olddfd, oldname, how, &old_path);
4021 if (error)
4022 return error;
4023
4024 new_dentry = user_path_create(newdfd, newname, &new_path,
4025 (how & LOOKUP_REVAL));
4026 error = PTR_ERR(new_dentry);
4027 if (IS_ERR(new_dentry))
4028 goto out;
4029
4030 error = -EXDEV;
4031 if (old_path.mnt != new_path.mnt)
4032 goto out_dput;
4033 error = may_linkat(&old_path);
4034 if (unlikely(error))
4035 goto out_dput;
4036 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4037 if (error)
4038 goto out_dput;
4039 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4040 out_dput:
4041 done_path_create(&new_path, new_dentry);
4042 if (delegated_inode) {
4043 error = break_deleg_wait(&delegated_inode);
4044 if (!error) {
4045 path_put(&old_path);
4046 goto retry;
4047 }
4048 }
4049 if (retry_estale(error, how)) {
4050 path_put(&old_path);
4051 how |= LOOKUP_REVAL;
4052 goto retry;
4053 }
4054 out:
4055 path_put(&old_path);
4056
4057 return error;
4058 }
4059
4060 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4061 {
4062 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4063 }
4064
4065 /**
4066 * vfs_rename - rename a filesystem object
4067 * @old_dir: parent of source
4068 * @old_dentry: source
4069 * @new_dir: parent of destination
4070 * @new_dentry: destination
4071 * @delegated_inode: returns an inode needing a delegation break
4072 * @flags: rename flags
4073 *
4074 * The caller must hold multiple mutexes--see lock_rename()).
4075 *
4076 * If vfs_rename discovers a delegation in need of breaking at either
4077 * the source or destination, it will return -EWOULDBLOCK and return a
4078 * reference to the inode in delegated_inode. The caller should then
4079 * break the delegation and retry. Because breaking a delegation may
4080 * take a long time, the caller should drop all locks before doing
4081 * so.
4082 *
4083 * Alternatively, a caller may pass NULL for delegated_inode. This may
4084 * be appropriate for callers that expect the underlying filesystem not
4085 * to be NFS exported.
4086 *
4087 * The worst of all namespace operations - renaming directory. "Perverted"
4088 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4089 * Problems:
4090 * a) we can get into loop creation.
4091 * b) race potential - two innocent renames can create a loop together.
4092 * That's where 4.4 screws up. Current fix: serialization on
4093 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4094 * story.
4095 * c) we have to lock _four_ objects - parents and victim (if it exists),
4096 * and source (if it is not a directory).
4097 * And that - after we got ->i_mutex on parents (until then we don't know
4098 * whether the target exists). Solution: try to be smart with locking
4099 * order for inodes. We rely on the fact that tree topology may change
4100 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4101 * move will be locked. Thus we can rank directories by the tree
4102 * (ancestors first) and rank all non-directories after them.
4103 * That works since everybody except rename does "lock parent, lookup,
4104 * lock child" and rename is under ->s_vfs_rename_mutex.
4105 * HOWEVER, it relies on the assumption that any object with ->lookup()
4106 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4107 * we'd better make sure that there's no link(2) for them.
4108 * d) conversion from fhandle to dentry may come in the wrong moment - when
4109 * we are removing the target. Solution: we will have to grab ->i_mutex
4110 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4111 * ->i_mutex on parents, which works but leads to some truly excessive
4112 * locking].
4113 */
4114 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4115 struct inode *new_dir, struct dentry *new_dentry,
4116 struct inode **delegated_inode, unsigned int flags)
4117 {
4118 int error;
4119 bool is_dir = d_is_dir(old_dentry);
4120 const unsigned char *old_name;
4121 struct inode *source = old_dentry->d_inode;
4122 struct inode *target = new_dentry->d_inode;
4123 bool new_is_dir = false;
4124 unsigned max_links = new_dir->i_sb->s_max_links;
4125
4126 if (source == target)
4127 return 0;
4128
4129 error = may_delete(old_dir, old_dentry, is_dir);
4130 if (error)
4131 return error;
4132
4133 if (!target) {
4134 error = may_create(new_dir, new_dentry);
4135 } else {
4136 new_is_dir = d_is_dir(new_dentry);
4137
4138 if (!(flags & RENAME_EXCHANGE))
4139 error = may_delete(new_dir, new_dentry, is_dir);
4140 else
4141 error = may_delete(new_dir, new_dentry, new_is_dir);
4142 }
4143 if (error)
4144 return error;
4145
4146 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4147 return -EPERM;
4148
4149 if (flags && !old_dir->i_op->rename2)
4150 return -EINVAL;
4151
4152 /*
4153 * If we are going to change the parent - check write permissions,
4154 * we'll need to flip '..'.
4155 */
4156 if (new_dir != old_dir) {
4157 if (is_dir) {
4158 error = inode_permission(source, MAY_WRITE);
4159 if (error)
4160 return error;
4161 }
4162 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4163 error = inode_permission(target, MAY_WRITE);
4164 if (error)
4165 return error;
4166 }
4167 }
4168
4169 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4170 flags);
4171 if (error)
4172 return error;
4173
4174 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4175 dget(new_dentry);
4176 if (!is_dir || (flags & RENAME_EXCHANGE))
4177 lock_two_nondirectories(source, target);
4178 else if (target)
4179 mutex_lock(&target->i_mutex);
4180
4181 error = -EBUSY;
4182 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4183 goto out;
4184
4185 if (max_links && new_dir != old_dir) {
4186 error = -EMLINK;
4187 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4188 goto out;
4189 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4190 old_dir->i_nlink >= max_links)
4191 goto out;
4192 }
4193 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4194 shrink_dcache_parent(new_dentry);
4195 if (!is_dir) {
4196 error = try_break_deleg(source, delegated_inode);
4197 if (error)
4198 goto out;
4199 }
4200 if (target && !new_is_dir) {
4201 error = try_break_deleg(target, delegated_inode);
4202 if (error)
4203 goto out;
4204 }
4205 if (!old_dir->i_op->rename2) {
4206 error = old_dir->i_op->rename(old_dir, old_dentry,
4207 new_dir, new_dentry);
4208 } else {
4209 WARN_ON(old_dir->i_op->rename != NULL);
4210 error = old_dir->i_op->rename2(old_dir, old_dentry,
4211 new_dir, new_dentry, flags);
4212 }
4213 if (error)
4214 goto out;
4215
4216 if (!(flags & RENAME_EXCHANGE) && target) {
4217 if (is_dir)
4218 target->i_flags |= S_DEAD;
4219 dont_mount(new_dentry);
4220 detach_mounts(new_dentry);
4221 }
4222 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4223 if (!(flags & RENAME_EXCHANGE))
4224 d_move(old_dentry, new_dentry);
4225 else
4226 d_exchange(old_dentry, new_dentry);
4227 }
4228 out:
4229 if (!is_dir || (flags & RENAME_EXCHANGE))
4230 unlock_two_nondirectories(source, target);
4231 else if (target)
4232 mutex_unlock(&target->i_mutex);
4233 dput(new_dentry);
4234 if (!error) {
4235 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4236 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4237 if (flags & RENAME_EXCHANGE) {
4238 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4239 new_is_dir, NULL, new_dentry);
4240 }
4241 }
4242 fsnotify_oldname_free(old_name);
4243
4244 return error;
4245 }
4246 EXPORT_SYMBOL(vfs_rename);
4247
4248 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4249 int, newdfd, const char __user *, newname, unsigned int, flags)
4250 {
4251 struct dentry *old_dir, *new_dir;
4252 struct dentry *old_dentry, *new_dentry;
4253 struct dentry *trap;
4254 struct nameidata oldnd, newnd;
4255 struct inode *delegated_inode = NULL;
4256 struct filename *from;
4257 struct filename *to;
4258 unsigned int lookup_flags = 0;
4259 bool should_retry = false;
4260 int error;
4261
4262 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4263 return -EINVAL;
4264
4265 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4266 (flags & RENAME_EXCHANGE))
4267 return -EINVAL;
4268
4269 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4270 return -EPERM;
4271
4272 retry:
4273 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4274 if (IS_ERR(from)) {
4275 error = PTR_ERR(from);
4276 goto exit;
4277 }
4278
4279 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4280 if (IS_ERR(to)) {
4281 error = PTR_ERR(to);
4282 goto exit1;
4283 }
4284
4285 error = -EXDEV;
4286 if (oldnd.path.mnt != newnd.path.mnt)
4287 goto exit2;
4288
4289 old_dir = oldnd.path.dentry;
4290 error = -EBUSY;
4291 if (oldnd.last_type != LAST_NORM)
4292 goto exit2;
4293
4294 new_dir = newnd.path.dentry;
4295 if (flags & RENAME_NOREPLACE)
4296 error = -EEXIST;
4297 if (newnd.last_type != LAST_NORM)
4298 goto exit2;
4299
4300 error = mnt_want_write(oldnd.path.mnt);
4301 if (error)
4302 goto exit2;
4303
4304 oldnd.flags &= ~LOOKUP_PARENT;
4305 newnd.flags &= ~LOOKUP_PARENT;
4306 if (!(flags & RENAME_EXCHANGE))
4307 newnd.flags |= LOOKUP_RENAME_TARGET;
4308
4309 retry_deleg:
4310 trap = lock_rename(new_dir, old_dir);
4311
4312 old_dentry = lookup_hash(&oldnd);
4313 error = PTR_ERR(old_dentry);
4314 if (IS_ERR(old_dentry))
4315 goto exit3;
4316 /* source must exist */
4317 error = -ENOENT;
4318 if (d_is_negative(old_dentry))
4319 goto exit4;
4320 new_dentry = lookup_hash(&newnd);
4321 error = PTR_ERR(new_dentry);
4322 if (IS_ERR(new_dentry))
4323 goto exit4;
4324 error = -EEXIST;
4325 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4326 goto exit5;
4327 if (flags & RENAME_EXCHANGE) {
4328 error = -ENOENT;
4329 if (d_is_negative(new_dentry))
4330 goto exit5;
4331
4332 if (!d_is_dir(new_dentry)) {
4333 error = -ENOTDIR;
4334 if (newnd.last.name[newnd.last.len])
4335 goto exit5;
4336 }
4337 }
4338 /* unless the source is a directory trailing slashes give -ENOTDIR */
4339 if (!d_is_dir(old_dentry)) {
4340 error = -ENOTDIR;
4341 if (oldnd.last.name[oldnd.last.len])
4342 goto exit5;
4343 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4344 goto exit5;
4345 }
4346 /* source should not be ancestor of target */
4347 error = -EINVAL;
4348 if (old_dentry == trap)
4349 goto exit5;
4350 /* target should not be an ancestor of source */
4351 if (!(flags & RENAME_EXCHANGE))
4352 error = -ENOTEMPTY;
4353 if (new_dentry == trap)
4354 goto exit5;
4355
4356 error = security_path_rename(&oldnd.path, old_dentry,
4357 &newnd.path, new_dentry, flags);
4358 if (error)
4359 goto exit5;
4360 error = vfs_rename(old_dir->d_inode, old_dentry,
4361 new_dir->d_inode, new_dentry,
4362 &delegated_inode, flags);
4363 exit5:
4364 dput(new_dentry);
4365 exit4:
4366 dput(old_dentry);
4367 exit3:
4368 unlock_rename(new_dir, old_dir);
4369 if (delegated_inode) {
4370 error = break_deleg_wait(&delegated_inode);
4371 if (!error)
4372 goto retry_deleg;
4373 }
4374 mnt_drop_write(oldnd.path.mnt);
4375 exit2:
4376 if (retry_estale(error, lookup_flags))
4377 should_retry = true;
4378 path_put(&newnd.path);
4379 putname(to);
4380 exit1:
4381 path_put(&oldnd.path);
4382 putname(from);
4383 if (should_retry) {
4384 should_retry = false;
4385 lookup_flags |= LOOKUP_REVAL;
4386 goto retry;
4387 }
4388 exit:
4389 return error;
4390 }
4391
4392 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4393 int, newdfd, const char __user *, newname)
4394 {
4395 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4396 }
4397
4398 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4399 {
4400 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4401 }
4402
4403 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4404 {
4405 int error = may_create(dir, dentry);
4406 if (error)
4407 return error;
4408
4409 if (!dir->i_op->mknod)
4410 return -EPERM;
4411
4412 return dir->i_op->mknod(dir, dentry,
4413 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4414 }
4415 EXPORT_SYMBOL(vfs_whiteout);
4416
4417 int readlink_copy(char __user *buffer, int buflen, const char *link)
4418 {
4419 int len = PTR_ERR(link);
4420 if (IS_ERR(link))
4421 goto out;
4422
4423 len = strlen(link);
4424 if (len > (unsigned) buflen)
4425 len = buflen;
4426 if (copy_to_user(buffer, link, len))
4427 len = -EFAULT;
4428 out:
4429 return len;
4430 }
4431 EXPORT_SYMBOL(readlink_copy);
4432
4433 /*
4434 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4435 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4436 * using) it for any given inode is up to filesystem.
4437 */
4438 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4439 {
4440 struct nameidata nd;
4441 void *cookie;
4442 int res;
4443
4444 nd.depth = 0;
4445 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4446 if (IS_ERR(cookie))
4447 return PTR_ERR(cookie);
4448
4449 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4450 if (dentry->d_inode->i_op->put_link)
4451 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4452 return res;
4453 }
4454 EXPORT_SYMBOL(generic_readlink);
4455
4456 /* get the link contents into pagecache */
4457 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4458 {
4459 char *kaddr;
4460 struct page *page;
4461 struct address_space *mapping = dentry->d_inode->i_mapping;
4462 page = read_mapping_page(mapping, 0, NULL);
4463 if (IS_ERR(page))
4464 return (char*)page;
4465 *ppage = page;
4466 kaddr = kmap(page);
4467 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4468 return kaddr;
4469 }
4470
4471 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4472 {
4473 struct page *page = NULL;
4474 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4475 if (page) {
4476 kunmap(page);
4477 page_cache_release(page);
4478 }
4479 return res;
4480 }
4481 EXPORT_SYMBOL(page_readlink);
4482
4483 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4484 {
4485 struct page *page = NULL;
4486 nd_set_link(nd, page_getlink(dentry, &page));
4487 return page;
4488 }
4489 EXPORT_SYMBOL(page_follow_link_light);
4490
4491 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4492 {
4493 struct page *page = cookie;
4494
4495 if (page) {
4496 kunmap(page);
4497 page_cache_release(page);
4498 }
4499 }
4500 EXPORT_SYMBOL(page_put_link);
4501
4502 /*
4503 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4504 */
4505 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4506 {
4507 struct address_space *mapping = inode->i_mapping;
4508 struct page *page;
4509 void *fsdata;
4510 int err;
4511 char *kaddr;
4512 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4513 if (nofs)
4514 flags |= AOP_FLAG_NOFS;
4515
4516 retry:
4517 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4518 flags, &page, &fsdata);
4519 if (err)
4520 goto fail;
4521
4522 kaddr = kmap_atomic(page);
4523 memcpy(kaddr, symname, len-1);
4524 kunmap_atomic(kaddr);
4525
4526 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4527 page, fsdata);
4528 if (err < 0)
4529 goto fail;
4530 if (err < len-1)
4531 goto retry;
4532
4533 mark_inode_dirty(inode);
4534 return 0;
4535 fail:
4536 return err;
4537 }
4538 EXPORT_SYMBOL(__page_symlink);
4539
4540 int page_symlink(struct inode *inode, const char *symname, int len)
4541 {
4542 return __page_symlink(inode, symname, len,
4543 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4544 }
4545 EXPORT_SYMBOL(page_symlink);
4546
4547 const struct inode_operations page_symlink_inode_operations = {
4548 .readlink = generic_readlink,
4549 .follow_link = page_follow_link_light,
4550 .put_link = page_put_link,
4551 };
4552 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.118396 seconds and 6 git commands to generate.