fix execute checking in permission()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <asm/namei.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int fastcall link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 if (current->fsuid == inode->i_uid)
188 mode >>= 6;
189 else {
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 /*
203 * If the DACs are ok we don't need any capability check.
204 */
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 return 0;
207
208 check_capabilities:
209 /*
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
212 */
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
216 return 0;
217
218 /*
219 * Searching includes executable on directories, else just read.
220 */
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
223 return 0;
224
225 return -EACCES;
226 }
227
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 int retval, submask;
231
232 if (mask & MAY_WRITE) {
233 umode_t mode = inode->i_mode;
234
235 /*
236 * Nobody gets write access to a read-only fs.
237 */
238 if (IS_RDONLY(inode) &&
239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 return -EROFS;
241
242 /*
243 * Nobody gets write access to an immutable file.
244 */
245 if (IS_IMMUTABLE(inode))
246 return -EACCES;
247 }
248
249 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
250 /*
251 * MAY_EXEC on regular files is denied if the fs is mounted
252 * with the "noexec" flag.
253 */
254 if (nd && nd->mnt && (nd->mnt->mnt_flags & MNT_NOEXEC))
255 return -EACCES;
256 }
257
258 /* Ordinary permission routines do not understand MAY_APPEND. */
259 submask = mask & ~MAY_APPEND;
260 if (inode->i_op && inode->i_op->permission) {
261 retval = inode->i_op->permission(inode, submask, nd);
262 if (!retval) {
263 /*
264 * Exec permission on a regular file is denied if none
265 * of the execute bits are set.
266 *
267 * This check should be done by the ->permission()
268 * method.
269 */
270 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
271 !(inode->i_mode & S_IXUGO))
272 return -EACCES;
273 }
274 } else {
275 retval = generic_permission(inode, submask, NULL);
276 }
277 if (retval)
278 return retval;
279
280 return security_inode_permission(inode, mask, nd);
281 }
282
283 /**
284 * vfs_permission - check for access rights to a given path
285 * @nd: lookup result that describes the path
286 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
287 *
288 * Used to check for read/write/execute permissions on a path.
289 * We use "fsuid" for this, letting us set arbitrary permissions
290 * for filesystem access without changing the "normal" uids which
291 * are used for other things.
292 */
293 int vfs_permission(struct nameidata *nd, int mask)
294 {
295 return permission(nd->dentry->d_inode, mask, nd);
296 }
297
298 /**
299 * file_permission - check for additional access rights to a given file
300 * @file: file to check access rights for
301 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
302 *
303 * Used to check for read/write/execute permissions on an already opened
304 * file.
305 *
306 * Note:
307 * Do not use this function in new code. All access checks should
308 * be done using vfs_permission().
309 */
310 int file_permission(struct file *file, int mask)
311 {
312 return permission(file->f_path.dentry->d_inode, mask, NULL);
313 }
314
315 /*
316 * get_write_access() gets write permission for a file.
317 * put_write_access() releases this write permission.
318 * This is used for regular files.
319 * We cannot support write (and maybe mmap read-write shared) accesses and
320 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
321 * can have the following values:
322 * 0: no writers, no VM_DENYWRITE mappings
323 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
324 * > 0: (i_writecount) users are writing to the file.
325 *
326 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
327 * except for the cases where we don't hold i_writecount yet. Then we need to
328 * use {get,deny}_write_access() - these functions check the sign and refuse
329 * to do the change if sign is wrong. Exclusion between them is provided by
330 * the inode->i_lock spinlock.
331 */
332
333 int get_write_access(struct inode * inode)
334 {
335 spin_lock(&inode->i_lock);
336 if (atomic_read(&inode->i_writecount) < 0) {
337 spin_unlock(&inode->i_lock);
338 return -ETXTBSY;
339 }
340 atomic_inc(&inode->i_writecount);
341 spin_unlock(&inode->i_lock);
342
343 return 0;
344 }
345
346 int deny_write_access(struct file * file)
347 {
348 struct inode *inode = file->f_path.dentry->d_inode;
349
350 spin_lock(&inode->i_lock);
351 if (atomic_read(&inode->i_writecount) > 0) {
352 spin_unlock(&inode->i_lock);
353 return -ETXTBSY;
354 }
355 atomic_dec(&inode->i_writecount);
356 spin_unlock(&inode->i_lock);
357
358 return 0;
359 }
360
361 void path_release(struct nameidata *nd)
362 {
363 dput(nd->dentry);
364 mntput(nd->mnt);
365 }
366
367 /*
368 * umount() mustn't call path_release()/mntput() as that would clear
369 * mnt_expiry_mark
370 */
371 void path_release_on_umount(struct nameidata *nd)
372 {
373 dput(nd->dentry);
374 mntput_no_expire(nd->mnt);
375 }
376
377 /**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381 void release_open_intent(struct nameidata *nd)
382 {
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387 }
388
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411 }
412
413 /*
414 * Internal lookup() using the new generic dcache.
415 * SMP-safe
416 */
417 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
418 {
419 struct dentry * dentry = __d_lookup(parent, name);
420
421 /* lockess __d_lookup may fail due to concurrent d_move()
422 * in some unrelated directory, so try with d_lookup
423 */
424 if (!dentry)
425 dentry = d_lookup(parent, name);
426
427 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
428 dentry = do_revalidate(dentry, nd);
429
430 return dentry;
431 }
432
433 /*
434 * Short-cut version of permission(), for calling by
435 * path_walk(), when dcache lock is held. Combines parts
436 * of permission() and generic_permission(), and tests ONLY for
437 * MAY_EXEC permission.
438 *
439 * If appropriate, check DAC only. If not appropriate, or
440 * short-cut DAC fails, then call permission() to do more
441 * complete permission check.
442 */
443 static int exec_permission_lite(struct inode *inode,
444 struct nameidata *nd)
445 {
446 umode_t mode = inode->i_mode;
447
448 if (inode->i_op && inode->i_op->permission)
449 return -EAGAIN;
450
451 if (current->fsuid == inode->i_uid)
452 mode >>= 6;
453 else if (in_group_p(inode->i_gid))
454 mode >>= 3;
455
456 if (mode & MAY_EXEC)
457 goto ok;
458
459 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
460 goto ok;
461
462 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
463 goto ok;
464
465 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
466 goto ok;
467
468 return -EACCES;
469 ok:
470 return security_inode_permission(inode, MAY_EXEC, nd);
471 }
472
473 /*
474 * This is called when everything else fails, and we actually have
475 * to go to the low-level filesystem to find out what we should do..
476 *
477 * We get the directory semaphore, and after getting that we also
478 * make sure that nobody added the entry to the dcache in the meantime..
479 * SMP-safe
480 */
481 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
482 {
483 struct dentry * result;
484 struct inode *dir = parent->d_inode;
485
486 mutex_lock(&dir->i_mutex);
487 /*
488 * First re-do the cached lookup just in case it was created
489 * while we waited for the directory semaphore..
490 *
491 * FIXME! This could use version numbering or similar to
492 * avoid unnecessary cache lookups.
493 *
494 * The "dcache_lock" is purely to protect the RCU list walker
495 * from concurrent renames at this point (we mustn't get false
496 * negatives from the RCU list walk here, unlike the optimistic
497 * fast walk).
498 *
499 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
500 */
501 result = d_lookup(parent, name);
502 if (!result) {
503 struct dentry * dentry = d_alloc(parent, name);
504 result = ERR_PTR(-ENOMEM);
505 if (dentry) {
506 result = dir->i_op->lookup(dir, dentry, nd);
507 if (result)
508 dput(dentry);
509 else
510 result = dentry;
511 }
512 mutex_unlock(&dir->i_mutex);
513 return result;
514 }
515
516 /*
517 * Uhhuh! Nasty case: the cache was re-populated while
518 * we waited on the semaphore. Need to revalidate.
519 */
520 mutex_unlock(&dir->i_mutex);
521 if (result->d_op && result->d_op->d_revalidate) {
522 result = do_revalidate(result, nd);
523 if (!result)
524 result = ERR_PTR(-ENOENT);
525 }
526 return result;
527 }
528
529 static int __emul_lookup_dentry(const char *, struct nameidata *);
530
531 /* SMP-safe */
532 static __always_inline int
533 walk_init_root(const char *name, struct nameidata *nd)
534 {
535 struct fs_struct *fs = current->fs;
536
537 read_lock(&fs->lock);
538 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
539 nd->mnt = mntget(fs->altrootmnt);
540 nd->dentry = dget(fs->altroot);
541 read_unlock(&fs->lock);
542 if (__emul_lookup_dentry(name,nd))
543 return 0;
544 read_lock(&fs->lock);
545 }
546 nd->mnt = mntget(fs->rootmnt);
547 nd->dentry = dget(fs->root);
548 read_unlock(&fs->lock);
549 return 1;
550 }
551
552 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
553 {
554 int res = 0;
555 char *name;
556 if (IS_ERR(link))
557 goto fail;
558
559 if (*link == '/') {
560 path_release(nd);
561 if (!walk_init_root(link, nd))
562 /* weird __emul_prefix() stuff did it */
563 goto out;
564 }
565 res = link_path_walk(link, nd);
566 out:
567 if (nd->depth || res || nd->last_type!=LAST_NORM)
568 return res;
569 /*
570 * If it is an iterative symlinks resolution in open_namei() we
571 * have to copy the last component. And all that crap because of
572 * bloody create() on broken symlinks. Furrfu...
573 */
574 name = __getname();
575 if (unlikely(!name)) {
576 path_release(nd);
577 return -ENOMEM;
578 }
579 strcpy(name, nd->last.name);
580 nd->last.name = name;
581 return 0;
582 fail:
583 path_release(nd);
584 return PTR_ERR(link);
585 }
586
587 static inline void dput_path(struct path *path, struct nameidata *nd)
588 {
589 dput(path->dentry);
590 if (path->mnt != nd->mnt)
591 mntput(path->mnt);
592 }
593
594 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
595 {
596 dput(nd->dentry);
597 if (nd->mnt != path->mnt)
598 mntput(nd->mnt);
599 nd->mnt = path->mnt;
600 nd->dentry = path->dentry;
601 }
602
603 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
604 {
605 int error;
606 void *cookie;
607 struct dentry *dentry = path->dentry;
608
609 touch_atime(path->mnt, dentry);
610 nd_set_link(nd, NULL);
611
612 if (path->mnt != nd->mnt) {
613 path_to_nameidata(path, nd);
614 dget(dentry);
615 }
616 mntget(path->mnt);
617 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
618 error = PTR_ERR(cookie);
619 if (!IS_ERR(cookie)) {
620 char *s = nd_get_link(nd);
621 error = 0;
622 if (s)
623 error = __vfs_follow_link(nd, s);
624 if (dentry->d_inode->i_op->put_link)
625 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
626 }
627 dput(dentry);
628 mntput(path->mnt);
629
630 return error;
631 }
632
633 /*
634 * This limits recursive symlink follows to 8, while
635 * limiting consecutive symlinks to 40.
636 *
637 * Without that kind of total limit, nasty chains of consecutive
638 * symlinks can cause almost arbitrarily long lookups.
639 */
640 static inline int do_follow_link(struct path *path, struct nameidata *nd)
641 {
642 int err = -ELOOP;
643 if (current->link_count >= MAX_NESTED_LINKS)
644 goto loop;
645 if (current->total_link_count >= 40)
646 goto loop;
647 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
648 cond_resched();
649 err = security_inode_follow_link(path->dentry, nd);
650 if (err)
651 goto loop;
652 current->link_count++;
653 current->total_link_count++;
654 nd->depth++;
655 err = __do_follow_link(path, nd);
656 current->link_count--;
657 nd->depth--;
658 return err;
659 loop:
660 dput_path(path, nd);
661 path_release(nd);
662 return err;
663 }
664
665 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
666 {
667 struct vfsmount *parent;
668 struct dentry *mountpoint;
669 spin_lock(&vfsmount_lock);
670 parent=(*mnt)->mnt_parent;
671 if (parent == *mnt) {
672 spin_unlock(&vfsmount_lock);
673 return 0;
674 }
675 mntget(parent);
676 mountpoint=dget((*mnt)->mnt_mountpoint);
677 spin_unlock(&vfsmount_lock);
678 dput(*dentry);
679 *dentry = mountpoint;
680 mntput(*mnt);
681 *mnt = parent;
682 return 1;
683 }
684
685 /* no need for dcache_lock, as serialization is taken care in
686 * namespace.c
687 */
688 static int __follow_mount(struct path *path)
689 {
690 int res = 0;
691 while (d_mountpoint(path->dentry)) {
692 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
693 if (!mounted)
694 break;
695 dput(path->dentry);
696 if (res)
697 mntput(path->mnt);
698 path->mnt = mounted;
699 path->dentry = dget(mounted->mnt_root);
700 res = 1;
701 }
702 return res;
703 }
704
705 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
706 {
707 while (d_mountpoint(*dentry)) {
708 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
709 if (!mounted)
710 break;
711 dput(*dentry);
712 mntput(*mnt);
713 *mnt = mounted;
714 *dentry = dget(mounted->mnt_root);
715 }
716 }
717
718 /* no need for dcache_lock, as serialization is taken care in
719 * namespace.c
720 */
721 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
722 {
723 struct vfsmount *mounted;
724
725 mounted = lookup_mnt(*mnt, *dentry);
726 if (mounted) {
727 dput(*dentry);
728 mntput(*mnt);
729 *mnt = mounted;
730 *dentry = dget(mounted->mnt_root);
731 return 1;
732 }
733 return 0;
734 }
735
736 static __always_inline void follow_dotdot(struct nameidata *nd)
737 {
738 struct fs_struct *fs = current->fs;
739
740 while(1) {
741 struct vfsmount *parent;
742 struct dentry *old = nd->dentry;
743
744 read_lock(&fs->lock);
745 if (nd->dentry == fs->root &&
746 nd->mnt == fs->rootmnt) {
747 read_unlock(&fs->lock);
748 break;
749 }
750 read_unlock(&fs->lock);
751 spin_lock(&dcache_lock);
752 if (nd->dentry != nd->mnt->mnt_root) {
753 nd->dentry = dget(nd->dentry->d_parent);
754 spin_unlock(&dcache_lock);
755 dput(old);
756 break;
757 }
758 spin_unlock(&dcache_lock);
759 spin_lock(&vfsmount_lock);
760 parent = nd->mnt->mnt_parent;
761 if (parent == nd->mnt) {
762 spin_unlock(&vfsmount_lock);
763 break;
764 }
765 mntget(parent);
766 nd->dentry = dget(nd->mnt->mnt_mountpoint);
767 spin_unlock(&vfsmount_lock);
768 dput(old);
769 mntput(nd->mnt);
770 nd->mnt = parent;
771 }
772 follow_mount(&nd->mnt, &nd->dentry);
773 }
774
775 /*
776 * It's more convoluted than I'd like it to be, but... it's still fairly
777 * small and for now I'd prefer to have fast path as straight as possible.
778 * It _is_ time-critical.
779 */
780 static int do_lookup(struct nameidata *nd, struct qstr *name,
781 struct path *path)
782 {
783 struct vfsmount *mnt = nd->mnt;
784 struct dentry *dentry = __d_lookup(nd->dentry, name);
785
786 if (!dentry)
787 goto need_lookup;
788 if (dentry->d_op && dentry->d_op->d_revalidate)
789 goto need_revalidate;
790 done:
791 path->mnt = mnt;
792 path->dentry = dentry;
793 __follow_mount(path);
794 return 0;
795
796 need_lookup:
797 dentry = real_lookup(nd->dentry, name, nd);
798 if (IS_ERR(dentry))
799 goto fail;
800 goto done;
801
802 need_revalidate:
803 dentry = do_revalidate(dentry, nd);
804 if (!dentry)
805 goto need_lookup;
806 if (IS_ERR(dentry))
807 goto fail;
808 goto done;
809
810 fail:
811 return PTR_ERR(dentry);
812 }
813
814 /*
815 * Name resolution.
816 * This is the basic name resolution function, turning a pathname into
817 * the final dentry. We expect 'base' to be positive and a directory.
818 *
819 * Returns 0 and nd will have valid dentry and mnt on success.
820 * Returns error and drops reference to input namei data on failure.
821 */
822 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
823 {
824 struct path next;
825 struct inode *inode;
826 int err;
827 unsigned int lookup_flags = nd->flags;
828
829 while (*name=='/')
830 name++;
831 if (!*name)
832 goto return_reval;
833
834 inode = nd->dentry->d_inode;
835 if (nd->depth)
836 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
837
838 /* At this point we know we have a real path component. */
839 for(;;) {
840 unsigned long hash;
841 struct qstr this;
842 unsigned int c;
843
844 nd->flags |= LOOKUP_CONTINUE;
845 err = exec_permission_lite(inode, nd);
846 if (err == -EAGAIN)
847 err = vfs_permission(nd, MAY_EXEC);
848 if (err)
849 break;
850
851 this.name = name;
852 c = *(const unsigned char *)name;
853
854 hash = init_name_hash();
855 do {
856 name++;
857 hash = partial_name_hash(c, hash);
858 c = *(const unsigned char *)name;
859 } while (c && (c != '/'));
860 this.len = name - (const char *) this.name;
861 this.hash = end_name_hash(hash);
862
863 /* remove trailing slashes? */
864 if (!c)
865 goto last_component;
866 while (*++name == '/');
867 if (!*name)
868 goto last_with_slashes;
869
870 /*
871 * "." and ".." are special - ".." especially so because it has
872 * to be able to know about the current root directory and
873 * parent relationships.
874 */
875 if (this.name[0] == '.') switch (this.len) {
876 default:
877 break;
878 case 2:
879 if (this.name[1] != '.')
880 break;
881 follow_dotdot(nd);
882 inode = nd->dentry->d_inode;
883 /* fallthrough */
884 case 1:
885 continue;
886 }
887 /*
888 * See if the low-level filesystem might want
889 * to use its own hash..
890 */
891 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
892 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
893 if (err < 0)
894 break;
895 }
896 /* This does the actual lookups.. */
897 err = do_lookup(nd, &this, &next);
898 if (err)
899 break;
900
901 err = -ENOENT;
902 inode = next.dentry->d_inode;
903 if (!inode)
904 goto out_dput;
905 err = -ENOTDIR;
906 if (!inode->i_op)
907 goto out_dput;
908
909 if (inode->i_op->follow_link) {
910 err = do_follow_link(&next, nd);
911 if (err)
912 goto return_err;
913 err = -ENOENT;
914 inode = nd->dentry->d_inode;
915 if (!inode)
916 break;
917 err = -ENOTDIR;
918 if (!inode->i_op)
919 break;
920 } else
921 path_to_nameidata(&next, nd);
922 err = -ENOTDIR;
923 if (!inode->i_op->lookup)
924 break;
925 continue;
926 /* here ends the main loop */
927
928 last_with_slashes:
929 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
930 last_component:
931 /* Clear LOOKUP_CONTINUE iff it was previously unset */
932 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
933 if (lookup_flags & LOOKUP_PARENT)
934 goto lookup_parent;
935 if (this.name[0] == '.') switch (this.len) {
936 default:
937 break;
938 case 2:
939 if (this.name[1] != '.')
940 break;
941 follow_dotdot(nd);
942 inode = nd->dentry->d_inode;
943 /* fallthrough */
944 case 1:
945 goto return_reval;
946 }
947 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
948 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
949 if (err < 0)
950 break;
951 }
952 err = do_lookup(nd, &this, &next);
953 if (err)
954 break;
955 inode = next.dentry->d_inode;
956 if ((lookup_flags & LOOKUP_FOLLOW)
957 && inode && inode->i_op && inode->i_op->follow_link) {
958 err = do_follow_link(&next, nd);
959 if (err)
960 goto return_err;
961 inode = nd->dentry->d_inode;
962 } else
963 path_to_nameidata(&next, nd);
964 err = -ENOENT;
965 if (!inode)
966 break;
967 if (lookup_flags & LOOKUP_DIRECTORY) {
968 err = -ENOTDIR;
969 if (!inode->i_op || !inode->i_op->lookup)
970 break;
971 }
972 goto return_base;
973 lookup_parent:
974 nd->last = this;
975 nd->last_type = LAST_NORM;
976 if (this.name[0] != '.')
977 goto return_base;
978 if (this.len == 1)
979 nd->last_type = LAST_DOT;
980 else if (this.len == 2 && this.name[1] == '.')
981 nd->last_type = LAST_DOTDOT;
982 else
983 goto return_base;
984 return_reval:
985 /*
986 * We bypassed the ordinary revalidation routines.
987 * We may need to check the cached dentry for staleness.
988 */
989 if (nd->dentry && nd->dentry->d_sb &&
990 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
991 err = -ESTALE;
992 /* Note: we do not d_invalidate() */
993 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
994 break;
995 }
996 return_base:
997 return 0;
998 out_dput:
999 dput_path(&next, nd);
1000 break;
1001 }
1002 path_release(nd);
1003 return_err:
1004 return err;
1005 }
1006
1007 /*
1008 * Wrapper to retry pathname resolution whenever the underlying
1009 * file system returns an ESTALE.
1010 *
1011 * Retry the whole path once, forcing real lookup requests
1012 * instead of relying on the dcache.
1013 */
1014 static int fastcall link_path_walk(const char *name, struct nameidata *nd)
1015 {
1016 struct nameidata save = *nd;
1017 int result;
1018
1019 /* make sure the stuff we saved doesn't go away */
1020 dget(save.dentry);
1021 mntget(save.mnt);
1022
1023 result = __link_path_walk(name, nd);
1024 if (result == -ESTALE) {
1025 *nd = save;
1026 dget(nd->dentry);
1027 mntget(nd->mnt);
1028 nd->flags |= LOOKUP_REVAL;
1029 result = __link_path_walk(name, nd);
1030 }
1031
1032 dput(save.dentry);
1033 mntput(save.mnt);
1034
1035 return result;
1036 }
1037
1038 static int fastcall path_walk(const char * name, struct nameidata *nd)
1039 {
1040 current->total_link_count = 0;
1041 return link_path_walk(name, nd);
1042 }
1043
1044 /*
1045 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1046 * everything is done. Returns 0 and drops input nd, if lookup failed;
1047 */
1048 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1049 {
1050 if (path_walk(name, nd))
1051 return 0; /* something went wrong... */
1052
1053 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1054 struct dentry *old_dentry = nd->dentry;
1055 struct vfsmount *old_mnt = nd->mnt;
1056 struct qstr last = nd->last;
1057 int last_type = nd->last_type;
1058 struct fs_struct *fs = current->fs;
1059
1060 /*
1061 * NAME was not found in alternate root or it's a directory.
1062 * Try to find it in the normal root:
1063 */
1064 nd->last_type = LAST_ROOT;
1065 read_lock(&fs->lock);
1066 nd->mnt = mntget(fs->rootmnt);
1067 nd->dentry = dget(fs->root);
1068 read_unlock(&fs->lock);
1069 if (path_walk(name, nd) == 0) {
1070 if (nd->dentry->d_inode) {
1071 dput(old_dentry);
1072 mntput(old_mnt);
1073 return 1;
1074 }
1075 path_release(nd);
1076 }
1077 nd->dentry = old_dentry;
1078 nd->mnt = old_mnt;
1079 nd->last = last;
1080 nd->last_type = last_type;
1081 }
1082 return 1;
1083 }
1084
1085 void set_fs_altroot(void)
1086 {
1087 char *emul = __emul_prefix();
1088 struct nameidata nd;
1089 struct vfsmount *mnt = NULL, *oldmnt;
1090 struct dentry *dentry = NULL, *olddentry;
1091 int err;
1092 struct fs_struct *fs = current->fs;
1093
1094 if (!emul)
1095 goto set_it;
1096 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1097 if (!err) {
1098 mnt = nd.mnt;
1099 dentry = nd.dentry;
1100 }
1101 set_it:
1102 write_lock(&fs->lock);
1103 oldmnt = fs->altrootmnt;
1104 olddentry = fs->altroot;
1105 fs->altrootmnt = mnt;
1106 fs->altroot = dentry;
1107 write_unlock(&fs->lock);
1108 if (olddentry) {
1109 dput(olddentry);
1110 mntput(oldmnt);
1111 }
1112 }
1113
1114 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1115 static int fastcall do_path_lookup(int dfd, const char *name,
1116 unsigned int flags, struct nameidata *nd)
1117 {
1118 int retval = 0;
1119 int fput_needed;
1120 struct file *file;
1121 struct fs_struct *fs = current->fs;
1122
1123 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1124 nd->flags = flags;
1125 nd->depth = 0;
1126
1127 if (*name=='/') {
1128 read_lock(&fs->lock);
1129 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1130 nd->mnt = mntget(fs->altrootmnt);
1131 nd->dentry = dget(fs->altroot);
1132 read_unlock(&fs->lock);
1133 if (__emul_lookup_dentry(name,nd))
1134 goto out; /* found in altroot */
1135 read_lock(&fs->lock);
1136 }
1137 nd->mnt = mntget(fs->rootmnt);
1138 nd->dentry = dget(fs->root);
1139 read_unlock(&fs->lock);
1140 } else if (dfd == AT_FDCWD) {
1141 read_lock(&fs->lock);
1142 nd->mnt = mntget(fs->pwdmnt);
1143 nd->dentry = dget(fs->pwd);
1144 read_unlock(&fs->lock);
1145 } else {
1146 struct dentry *dentry;
1147
1148 file = fget_light(dfd, &fput_needed);
1149 retval = -EBADF;
1150 if (!file)
1151 goto out_fail;
1152
1153 dentry = file->f_path.dentry;
1154
1155 retval = -ENOTDIR;
1156 if (!S_ISDIR(dentry->d_inode->i_mode))
1157 goto fput_fail;
1158
1159 retval = file_permission(file, MAY_EXEC);
1160 if (retval)
1161 goto fput_fail;
1162
1163 nd->mnt = mntget(file->f_path.mnt);
1164 nd->dentry = dget(dentry);
1165
1166 fput_light(file, fput_needed);
1167 }
1168
1169 retval = path_walk(name, nd);
1170 out:
1171 if (unlikely(!retval && !audit_dummy_context() && nd->dentry &&
1172 nd->dentry->d_inode))
1173 audit_inode(name, nd->dentry->d_inode);
1174 out_fail:
1175 return retval;
1176
1177 fput_fail:
1178 fput_light(file, fput_needed);
1179 goto out_fail;
1180 }
1181
1182 int fastcall path_lookup(const char *name, unsigned int flags,
1183 struct nameidata *nd)
1184 {
1185 return do_path_lookup(AT_FDCWD, name, flags, nd);
1186 }
1187
1188 /**
1189 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1190 * @dentry: pointer to dentry of the base directory
1191 * @mnt: pointer to vfs mount of the base directory
1192 * @name: pointer to file name
1193 * @flags: lookup flags
1194 * @nd: pointer to nameidata
1195 */
1196 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1197 const char *name, unsigned int flags,
1198 struct nameidata *nd)
1199 {
1200 int retval;
1201
1202 /* same as do_path_lookup */
1203 nd->last_type = LAST_ROOT;
1204 nd->flags = flags;
1205 nd->depth = 0;
1206
1207 nd->mnt = mntget(mnt);
1208 nd->dentry = dget(dentry);
1209
1210 retval = path_walk(name, nd);
1211 if (unlikely(!retval && !audit_dummy_context() && nd->dentry &&
1212 nd->dentry->d_inode))
1213 audit_inode(name, nd->dentry->d_inode);
1214
1215 return retval;
1216
1217 }
1218
1219 static int __path_lookup_intent_open(int dfd, const char *name,
1220 unsigned int lookup_flags, struct nameidata *nd,
1221 int open_flags, int create_mode)
1222 {
1223 struct file *filp = get_empty_filp();
1224 int err;
1225
1226 if (filp == NULL)
1227 return -ENFILE;
1228 nd->intent.open.file = filp;
1229 nd->intent.open.flags = open_flags;
1230 nd->intent.open.create_mode = create_mode;
1231 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1232 if (IS_ERR(nd->intent.open.file)) {
1233 if (err == 0) {
1234 err = PTR_ERR(nd->intent.open.file);
1235 path_release(nd);
1236 }
1237 } else if (err != 0)
1238 release_open_intent(nd);
1239 return err;
1240 }
1241
1242 /**
1243 * path_lookup_open - lookup a file path with open intent
1244 * @dfd: the directory to use as base, or AT_FDCWD
1245 * @name: pointer to file name
1246 * @lookup_flags: lookup intent flags
1247 * @nd: pointer to nameidata
1248 * @open_flags: open intent flags
1249 */
1250 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1251 struct nameidata *nd, int open_flags)
1252 {
1253 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1254 open_flags, 0);
1255 }
1256
1257 /**
1258 * path_lookup_create - lookup a file path with open + create intent
1259 * @dfd: the directory to use as base, or AT_FDCWD
1260 * @name: pointer to file name
1261 * @lookup_flags: lookup intent flags
1262 * @nd: pointer to nameidata
1263 * @open_flags: open intent flags
1264 * @create_mode: create intent flags
1265 */
1266 static int path_lookup_create(int dfd, const char *name,
1267 unsigned int lookup_flags, struct nameidata *nd,
1268 int open_flags, int create_mode)
1269 {
1270 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1271 nd, open_flags, create_mode);
1272 }
1273
1274 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1275 struct nameidata *nd, int open_flags)
1276 {
1277 char *tmp = getname(name);
1278 int err = PTR_ERR(tmp);
1279
1280 if (!IS_ERR(tmp)) {
1281 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1282 putname(tmp);
1283 }
1284 return err;
1285 }
1286
1287 static struct dentry *__lookup_hash(struct qstr *name,
1288 struct dentry *base, struct nameidata *nd)
1289 {
1290 struct dentry *dentry;
1291 struct inode *inode;
1292 int err;
1293
1294 inode = base->d_inode;
1295
1296 /*
1297 * See if the low-level filesystem might want
1298 * to use its own hash..
1299 */
1300 if (base->d_op && base->d_op->d_hash) {
1301 err = base->d_op->d_hash(base, name);
1302 dentry = ERR_PTR(err);
1303 if (err < 0)
1304 goto out;
1305 }
1306
1307 dentry = cached_lookup(base, name, nd);
1308 if (!dentry) {
1309 struct dentry *new = d_alloc(base, name);
1310 dentry = ERR_PTR(-ENOMEM);
1311 if (!new)
1312 goto out;
1313 dentry = inode->i_op->lookup(inode, new, nd);
1314 if (!dentry)
1315 dentry = new;
1316 else
1317 dput(new);
1318 }
1319 out:
1320 return dentry;
1321 }
1322
1323 /*
1324 * Restricted form of lookup. Doesn't follow links, single-component only,
1325 * needs parent already locked. Doesn't follow mounts.
1326 * SMP-safe.
1327 */
1328 static struct dentry *lookup_hash(struct nameidata *nd)
1329 {
1330 int err;
1331
1332 err = permission(nd->dentry->d_inode, MAY_EXEC, nd);
1333 if (err)
1334 return ERR_PTR(err);
1335 return __lookup_hash(&nd->last, nd->dentry, nd);
1336 }
1337
1338 static int __lookup_one_len(const char *name, struct qstr *this,
1339 struct dentry *base, int len)
1340 {
1341 unsigned long hash;
1342 unsigned int c;
1343
1344 this->name = name;
1345 this->len = len;
1346 if (!len)
1347 return -EACCES;
1348
1349 hash = init_name_hash();
1350 while (len--) {
1351 c = *(const unsigned char *)name++;
1352 if (c == '/' || c == '\0')
1353 return -EACCES;
1354 hash = partial_name_hash(c, hash);
1355 }
1356 this->hash = end_name_hash(hash);
1357 return 0;
1358 }
1359
1360 /**
1361 * lookup_one_len: filesystem helper to lookup single pathname component
1362 * @name: pathname component to lookup
1363 * @base: base directory to lookup from
1364 * @len: maximum length @len should be interpreted to
1365 *
1366 * Note that this routine is purely a helper for filesystem useage and should
1367 * not be called by generic code. Also note that by using this function to
1368 * nameidata argument is passed to the filesystem methods and a filesystem
1369 * using this helper needs to be prepared for that.
1370 */
1371 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1372 {
1373 int err;
1374 struct qstr this;
1375
1376 err = __lookup_one_len(name, &this, base, len);
1377 if (err)
1378 return ERR_PTR(err);
1379
1380 err = permission(base->d_inode, MAY_EXEC, NULL);
1381 if (err)
1382 return ERR_PTR(err);
1383 return __lookup_hash(&this, base, NULL);
1384 }
1385
1386 /**
1387 * lookup_one_noperm - bad hack for sysfs
1388 * @name: pathname component to lookup
1389 * @base: base directory to lookup from
1390 *
1391 * This is a variant of lookup_one_len that doesn't perform any permission
1392 * checks. It's a horrible hack to work around the braindead sysfs
1393 * architecture and should not be used anywhere else.
1394 *
1395 * DON'T USE THIS FUNCTION EVER, thanks.
1396 */
1397 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1398 {
1399 int err;
1400 struct qstr this;
1401
1402 err = __lookup_one_len(name, &this, base, strlen(name));
1403 if (err)
1404 return ERR_PTR(err);
1405 return __lookup_hash(&this, base, NULL);
1406 }
1407
1408 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1409 struct nameidata *nd)
1410 {
1411 char *tmp = getname(name);
1412 int err = PTR_ERR(tmp);
1413
1414 if (!IS_ERR(tmp)) {
1415 err = do_path_lookup(dfd, tmp, flags, nd);
1416 putname(tmp);
1417 }
1418 return err;
1419 }
1420
1421 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1422 {
1423 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1424 }
1425
1426 /*
1427 * It's inline, so penalty for filesystems that don't use sticky bit is
1428 * minimal.
1429 */
1430 static inline int check_sticky(struct inode *dir, struct inode *inode)
1431 {
1432 if (!(dir->i_mode & S_ISVTX))
1433 return 0;
1434 if (inode->i_uid == current->fsuid)
1435 return 0;
1436 if (dir->i_uid == current->fsuid)
1437 return 0;
1438 return !capable(CAP_FOWNER);
1439 }
1440
1441 /*
1442 * Check whether we can remove a link victim from directory dir, check
1443 * whether the type of victim is right.
1444 * 1. We can't do it if dir is read-only (done in permission())
1445 * 2. We should have write and exec permissions on dir
1446 * 3. We can't remove anything from append-only dir
1447 * 4. We can't do anything with immutable dir (done in permission())
1448 * 5. If the sticky bit on dir is set we should either
1449 * a. be owner of dir, or
1450 * b. be owner of victim, or
1451 * c. have CAP_FOWNER capability
1452 * 6. If the victim is append-only or immutable we can't do antyhing with
1453 * links pointing to it.
1454 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1455 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1456 * 9. We can't remove a root or mountpoint.
1457 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1458 * nfs_async_unlink().
1459 */
1460 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1461 {
1462 int error;
1463
1464 if (!victim->d_inode)
1465 return -ENOENT;
1466
1467 BUG_ON(victim->d_parent->d_inode != dir);
1468 audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1469
1470 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1471 if (error)
1472 return error;
1473 if (IS_APPEND(dir))
1474 return -EPERM;
1475 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1476 IS_IMMUTABLE(victim->d_inode))
1477 return -EPERM;
1478 if (isdir) {
1479 if (!S_ISDIR(victim->d_inode->i_mode))
1480 return -ENOTDIR;
1481 if (IS_ROOT(victim))
1482 return -EBUSY;
1483 } else if (S_ISDIR(victim->d_inode->i_mode))
1484 return -EISDIR;
1485 if (IS_DEADDIR(dir))
1486 return -ENOENT;
1487 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1488 return -EBUSY;
1489 return 0;
1490 }
1491
1492 /* Check whether we can create an object with dentry child in directory
1493 * dir.
1494 * 1. We can't do it if child already exists (open has special treatment for
1495 * this case, but since we are inlined it's OK)
1496 * 2. We can't do it if dir is read-only (done in permission())
1497 * 3. We should have write and exec permissions on dir
1498 * 4. We can't do it if dir is immutable (done in permission())
1499 */
1500 static inline int may_create(struct inode *dir, struct dentry *child,
1501 struct nameidata *nd)
1502 {
1503 if (child->d_inode)
1504 return -EEXIST;
1505 if (IS_DEADDIR(dir))
1506 return -ENOENT;
1507 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1508 }
1509
1510 /*
1511 * O_DIRECTORY translates into forcing a directory lookup.
1512 */
1513 static inline int lookup_flags(unsigned int f)
1514 {
1515 unsigned long retval = LOOKUP_FOLLOW;
1516
1517 if (f & O_NOFOLLOW)
1518 retval &= ~LOOKUP_FOLLOW;
1519
1520 if (f & O_DIRECTORY)
1521 retval |= LOOKUP_DIRECTORY;
1522
1523 return retval;
1524 }
1525
1526 /*
1527 * p1 and p2 should be directories on the same fs.
1528 */
1529 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1530 {
1531 struct dentry *p;
1532
1533 if (p1 == p2) {
1534 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1535 return NULL;
1536 }
1537
1538 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1539
1540 for (p = p1; p->d_parent != p; p = p->d_parent) {
1541 if (p->d_parent == p2) {
1542 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1543 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1544 return p;
1545 }
1546 }
1547
1548 for (p = p2; p->d_parent != p; p = p->d_parent) {
1549 if (p->d_parent == p1) {
1550 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1551 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1552 return p;
1553 }
1554 }
1555
1556 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1557 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1558 return NULL;
1559 }
1560
1561 void unlock_rename(struct dentry *p1, struct dentry *p2)
1562 {
1563 mutex_unlock(&p1->d_inode->i_mutex);
1564 if (p1 != p2) {
1565 mutex_unlock(&p2->d_inode->i_mutex);
1566 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1567 }
1568 }
1569
1570 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1571 struct nameidata *nd)
1572 {
1573 int error = may_create(dir, dentry, nd);
1574
1575 if (error)
1576 return error;
1577
1578 if (!dir->i_op || !dir->i_op->create)
1579 return -EACCES; /* shouldn't it be ENOSYS? */
1580 mode &= S_IALLUGO;
1581 mode |= S_IFREG;
1582 error = security_inode_create(dir, dentry, mode);
1583 if (error)
1584 return error;
1585 DQUOT_INIT(dir);
1586 error = dir->i_op->create(dir, dentry, mode, nd);
1587 if (!error)
1588 fsnotify_create(dir, dentry);
1589 return error;
1590 }
1591
1592 int may_open(struct nameidata *nd, int acc_mode, int flag)
1593 {
1594 struct dentry *dentry = nd->dentry;
1595 struct inode *inode = dentry->d_inode;
1596 int error;
1597
1598 if (!inode)
1599 return -ENOENT;
1600
1601 if (S_ISLNK(inode->i_mode))
1602 return -ELOOP;
1603
1604 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1605 return -EISDIR;
1606
1607 error = vfs_permission(nd, acc_mode);
1608 if (error)
1609 return error;
1610
1611 /*
1612 * FIFO's, sockets and device files are special: they don't
1613 * actually live on the filesystem itself, and as such you
1614 * can write to them even if the filesystem is read-only.
1615 */
1616 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1617 flag &= ~O_TRUNC;
1618 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1619 if (nd->mnt->mnt_flags & MNT_NODEV)
1620 return -EACCES;
1621
1622 flag &= ~O_TRUNC;
1623 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1624 return -EROFS;
1625 /*
1626 * An append-only file must be opened in append mode for writing.
1627 */
1628 if (IS_APPEND(inode)) {
1629 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1630 return -EPERM;
1631 if (flag & O_TRUNC)
1632 return -EPERM;
1633 }
1634
1635 /* O_NOATIME can only be set by the owner or superuser */
1636 if (flag & O_NOATIME)
1637 if (!is_owner_or_cap(inode))
1638 return -EPERM;
1639
1640 /*
1641 * Ensure there are no outstanding leases on the file.
1642 */
1643 error = break_lease(inode, flag);
1644 if (error)
1645 return error;
1646
1647 if (flag & O_TRUNC) {
1648 error = get_write_access(inode);
1649 if (error)
1650 return error;
1651
1652 /*
1653 * Refuse to truncate files with mandatory locks held on them.
1654 */
1655 error = locks_verify_locked(inode);
1656 if (!error) {
1657 DQUOT_INIT(inode);
1658
1659 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1660 }
1661 put_write_access(inode);
1662 if (error)
1663 return error;
1664 } else
1665 if (flag & FMODE_WRITE)
1666 DQUOT_INIT(inode);
1667
1668 return 0;
1669 }
1670
1671 static int open_namei_create(struct nameidata *nd, struct path *path,
1672 int flag, int mode)
1673 {
1674 int error;
1675 struct dentry *dir = nd->dentry;
1676
1677 if (!IS_POSIXACL(dir->d_inode))
1678 mode &= ~current->fs->umask;
1679 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1680 mutex_unlock(&dir->d_inode->i_mutex);
1681 dput(nd->dentry);
1682 nd->dentry = path->dentry;
1683 if (error)
1684 return error;
1685 /* Don't check for write permission, don't truncate */
1686 return may_open(nd, 0, flag & ~O_TRUNC);
1687 }
1688
1689 /*
1690 * open_namei()
1691 *
1692 * namei for open - this is in fact almost the whole open-routine.
1693 *
1694 * Note that the low bits of "flag" aren't the same as in the open
1695 * system call - they are 00 - no permissions needed
1696 * 01 - read permission needed
1697 * 10 - write permission needed
1698 * 11 - read/write permissions needed
1699 * which is a lot more logical, and also allows the "no perm" needed
1700 * for symlinks (where the permissions are checked later).
1701 * SMP-safe
1702 */
1703 int open_namei(int dfd, const char *pathname, int flag,
1704 int mode, struct nameidata *nd)
1705 {
1706 int acc_mode, error;
1707 struct path path;
1708 struct dentry *dir;
1709 int count = 0;
1710
1711 acc_mode = ACC_MODE(flag);
1712
1713 /* O_TRUNC implies we need access checks for write permissions */
1714 if (flag & O_TRUNC)
1715 acc_mode |= MAY_WRITE;
1716
1717 /* Allow the LSM permission hook to distinguish append
1718 access from general write access. */
1719 if (flag & O_APPEND)
1720 acc_mode |= MAY_APPEND;
1721
1722 /*
1723 * The simplest case - just a plain lookup.
1724 */
1725 if (!(flag & O_CREAT)) {
1726 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1727 nd, flag);
1728 if (error)
1729 return error;
1730 goto ok;
1731 }
1732
1733 /*
1734 * Create - we need to know the parent.
1735 */
1736 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1737 if (error)
1738 return error;
1739
1740 /*
1741 * We have the parent and last component. First of all, check
1742 * that we are not asked to creat(2) an obvious directory - that
1743 * will not do.
1744 */
1745 error = -EISDIR;
1746 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1747 goto exit;
1748
1749 dir = nd->dentry;
1750 nd->flags &= ~LOOKUP_PARENT;
1751 mutex_lock(&dir->d_inode->i_mutex);
1752 path.dentry = lookup_hash(nd);
1753 path.mnt = nd->mnt;
1754
1755 do_last:
1756 error = PTR_ERR(path.dentry);
1757 if (IS_ERR(path.dentry)) {
1758 mutex_unlock(&dir->d_inode->i_mutex);
1759 goto exit;
1760 }
1761
1762 if (IS_ERR(nd->intent.open.file)) {
1763 mutex_unlock(&dir->d_inode->i_mutex);
1764 error = PTR_ERR(nd->intent.open.file);
1765 goto exit_dput;
1766 }
1767
1768 /* Negative dentry, just create the file */
1769 if (!path.dentry->d_inode) {
1770 error = open_namei_create(nd, &path, flag, mode);
1771 if (error)
1772 goto exit;
1773 return 0;
1774 }
1775
1776 /*
1777 * It already exists.
1778 */
1779 mutex_unlock(&dir->d_inode->i_mutex);
1780 audit_inode(pathname, path.dentry->d_inode);
1781
1782 error = -EEXIST;
1783 if (flag & O_EXCL)
1784 goto exit_dput;
1785
1786 if (__follow_mount(&path)) {
1787 error = -ELOOP;
1788 if (flag & O_NOFOLLOW)
1789 goto exit_dput;
1790 }
1791
1792 error = -ENOENT;
1793 if (!path.dentry->d_inode)
1794 goto exit_dput;
1795 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1796 goto do_link;
1797
1798 path_to_nameidata(&path, nd);
1799 error = -EISDIR;
1800 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1801 goto exit;
1802 ok:
1803 error = may_open(nd, acc_mode, flag);
1804 if (error)
1805 goto exit;
1806 return 0;
1807
1808 exit_dput:
1809 dput_path(&path, nd);
1810 exit:
1811 if (!IS_ERR(nd->intent.open.file))
1812 release_open_intent(nd);
1813 path_release(nd);
1814 return error;
1815
1816 do_link:
1817 error = -ELOOP;
1818 if (flag & O_NOFOLLOW)
1819 goto exit_dput;
1820 /*
1821 * This is subtle. Instead of calling do_follow_link() we do the
1822 * thing by hands. The reason is that this way we have zero link_count
1823 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1824 * After that we have the parent and last component, i.e.
1825 * we are in the same situation as after the first path_walk().
1826 * Well, almost - if the last component is normal we get its copy
1827 * stored in nd->last.name and we will have to putname() it when we
1828 * are done. Procfs-like symlinks just set LAST_BIND.
1829 */
1830 nd->flags |= LOOKUP_PARENT;
1831 error = security_inode_follow_link(path.dentry, nd);
1832 if (error)
1833 goto exit_dput;
1834 error = __do_follow_link(&path, nd);
1835 if (error) {
1836 /* Does someone understand code flow here? Or it is only
1837 * me so stupid? Anathema to whoever designed this non-sense
1838 * with "intent.open".
1839 */
1840 release_open_intent(nd);
1841 return error;
1842 }
1843 nd->flags &= ~LOOKUP_PARENT;
1844 if (nd->last_type == LAST_BIND)
1845 goto ok;
1846 error = -EISDIR;
1847 if (nd->last_type != LAST_NORM)
1848 goto exit;
1849 if (nd->last.name[nd->last.len]) {
1850 __putname(nd->last.name);
1851 goto exit;
1852 }
1853 error = -ELOOP;
1854 if (count++==32) {
1855 __putname(nd->last.name);
1856 goto exit;
1857 }
1858 dir = nd->dentry;
1859 mutex_lock(&dir->d_inode->i_mutex);
1860 path.dentry = lookup_hash(nd);
1861 path.mnt = nd->mnt;
1862 __putname(nd->last.name);
1863 goto do_last;
1864 }
1865
1866 /**
1867 * lookup_create - lookup a dentry, creating it if it doesn't exist
1868 * @nd: nameidata info
1869 * @is_dir: directory flag
1870 *
1871 * Simple function to lookup and return a dentry and create it
1872 * if it doesn't exist. Is SMP-safe.
1873 *
1874 * Returns with nd->dentry->d_inode->i_mutex locked.
1875 */
1876 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1877 {
1878 struct dentry *dentry = ERR_PTR(-EEXIST);
1879
1880 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1881 /*
1882 * Yucky last component or no last component at all?
1883 * (foo/., foo/.., /////)
1884 */
1885 if (nd->last_type != LAST_NORM)
1886 goto fail;
1887 nd->flags &= ~LOOKUP_PARENT;
1888 nd->flags |= LOOKUP_CREATE;
1889 nd->intent.open.flags = O_EXCL;
1890
1891 /*
1892 * Do the final lookup.
1893 */
1894 dentry = lookup_hash(nd);
1895 if (IS_ERR(dentry))
1896 goto fail;
1897
1898 /*
1899 * Special case - lookup gave negative, but... we had foo/bar/
1900 * From the vfs_mknod() POV we just have a negative dentry -
1901 * all is fine. Let's be bastards - you had / on the end, you've
1902 * been asking for (non-existent) directory. -ENOENT for you.
1903 */
1904 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1905 goto enoent;
1906 return dentry;
1907 enoent:
1908 dput(dentry);
1909 dentry = ERR_PTR(-ENOENT);
1910 fail:
1911 return dentry;
1912 }
1913 EXPORT_SYMBOL_GPL(lookup_create);
1914
1915 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1916 {
1917 int error = may_create(dir, dentry, NULL);
1918
1919 if (error)
1920 return error;
1921
1922 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1923 return -EPERM;
1924
1925 if (!dir->i_op || !dir->i_op->mknod)
1926 return -EPERM;
1927
1928 error = security_inode_mknod(dir, dentry, mode, dev);
1929 if (error)
1930 return error;
1931
1932 DQUOT_INIT(dir);
1933 error = dir->i_op->mknod(dir, dentry, mode, dev);
1934 if (!error)
1935 fsnotify_create(dir, dentry);
1936 return error;
1937 }
1938
1939 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1940 unsigned dev)
1941 {
1942 int error = 0;
1943 char * tmp;
1944 struct dentry * dentry;
1945 struct nameidata nd;
1946
1947 if (S_ISDIR(mode))
1948 return -EPERM;
1949 tmp = getname(filename);
1950 if (IS_ERR(tmp))
1951 return PTR_ERR(tmp);
1952
1953 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1954 if (error)
1955 goto out;
1956 dentry = lookup_create(&nd, 0);
1957 error = PTR_ERR(dentry);
1958
1959 if (!IS_POSIXACL(nd.dentry->d_inode))
1960 mode &= ~current->fs->umask;
1961 if (!IS_ERR(dentry)) {
1962 switch (mode & S_IFMT) {
1963 case 0: case S_IFREG:
1964 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1965 break;
1966 case S_IFCHR: case S_IFBLK:
1967 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1968 new_decode_dev(dev));
1969 break;
1970 case S_IFIFO: case S_IFSOCK:
1971 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1972 break;
1973 case S_IFDIR:
1974 error = -EPERM;
1975 break;
1976 default:
1977 error = -EINVAL;
1978 }
1979 dput(dentry);
1980 }
1981 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1982 path_release(&nd);
1983 out:
1984 putname(tmp);
1985
1986 return error;
1987 }
1988
1989 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1990 {
1991 return sys_mknodat(AT_FDCWD, filename, mode, dev);
1992 }
1993
1994 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1995 {
1996 int error = may_create(dir, dentry, NULL);
1997
1998 if (error)
1999 return error;
2000
2001 if (!dir->i_op || !dir->i_op->mkdir)
2002 return -EPERM;
2003
2004 mode &= (S_IRWXUGO|S_ISVTX);
2005 error = security_inode_mkdir(dir, dentry, mode);
2006 if (error)
2007 return error;
2008
2009 DQUOT_INIT(dir);
2010 error = dir->i_op->mkdir(dir, dentry, mode);
2011 if (!error)
2012 fsnotify_mkdir(dir, dentry);
2013 return error;
2014 }
2015
2016 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2017 {
2018 int error = 0;
2019 char * tmp;
2020 struct dentry *dentry;
2021 struct nameidata nd;
2022
2023 tmp = getname(pathname);
2024 error = PTR_ERR(tmp);
2025 if (IS_ERR(tmp))
2026 goto out_err;
2027
2028 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2029 if (error)
2030 goto out;
2031 dentry = lookup_create(&nd, 1);
2032 error = PTR_ERR(dentry);
2033 if (IS_ERR(dentry))
2034 goto out_unlock;
2035
2036 if (!IS_POSIXACL(nd.dentry->d_inode))
2037 mode &= ~current->fs->umask;
2038 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
2039 dput(dentry);
2040 out_unlock:
2041 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2042 path_release(&nd);
2043 out:
2044 putname(tmp);
2045 out_err:
2046 return error;
2047 }
2048
2049 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2050 {
2051 return sys_mkdirat(AT_FDCWD, pathname, mode);
2052 }
2053
2054 /*
2055 * We try to drop the dentry early: we should have
2056 * a usage count of 2 if we're the only user of this
2057 * dentry, and if that is true (possibly after pruning
2058 * the dcache), then we drop the dentry now.
2059 *
2060 * A low-level filesystem can, if it choses, legally
2061 * do a
2062 *
2063 * if (!d_unhashed(dentry))
2064 * return -EBUSY;
2065 *
2066 * if it cannot handle the case of removing a directory
2067 * that is still in use by something else..
2068 */
2069 void dentry_unhash(struct dentry *dentry)
2070 {
2071 dget(dentry);
2072 shrink_dcache_parent(dentry);
2073 spin_lock(&dcache_lock);
2074 spin_lock(&dentry->d_lock);
2075 if (atomic_read(&dentry->d_count) == 2)
2076 __d_drop(dentry);
2077 spin_unlock(&dentry->d_lock);
2078 spin_unlock(&dcache_lock);
2079 }
2080
2081 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2082 {
2083 int error = may_delete(dir, dentry, 1);
2084
2085 if (error)
2086 return error;
2087
2088 if (!dir->i_op || !dir->i_op->rmdir)
2089 return -EPERM;
2090
2091 DQUOT_INIT(dir);
2092
2093 mutex_lock(&dentry->d_inode->i_mutex);
2094 dentry_unhash(dentry);
2095 if (d_mountpoint(dentry))
2096 error = -EBUSY;
2097 else {
2098 error = security_inode_rmdir(dir, dentry);
2099 if (!error) {
2100 error = dir->i_op->rmdir(dir, dentry);
2101 if (!error)
2102 dentry->d_inode->i_flags |= S_DEAD;
2103 }
2104 }
2105 mutex_unlock(&dentry->d_inode->i_mutex);
2106 if (!error) {
2107 d_delete(dentry);
2108 }
2109 dput(dentry);
2110
2111 return error;
2112 }
2113
2114 static long do_rmdir(int dfd, const char __user *pathname)
2115 {
2116 int error = 0;
2117 char * name;
2118 struct dentry *dentry;
2119 struct nameidata nd;
2120
2121 name = getname(pathname);
2122 if(IS_ERR(name))
2123 return PTR_ERR(name);
2124
2125 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2126 if (error)
2127 goto exit;
2128
2129 switch(nd.last_type) {
2130 case LAST_DOTDOT:
2131 error = -ENOTEMPTY;
2132 goto exit1;
2133 case LAST_DOT:
2134 error = -EINVAL;
2135 goto exit1;
2136 case LAST_ROOT:
2137 error = -EBUSY;
2138 goto exit1;
2139 }
2140 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2141 dentry = lookup_hash(&nd);
2142 error = PTR_ERR(dentry);
2143 if (IS_ERR(dentry))
2144 goto exit2;
2145 error = vfs_rmdir(nd.dentry->d_inode, dentry);
2146 dput(dentry);
2147 exit2:
2148 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2149 exit1:
2150 path_release(&nd);
2151 exit:
2152 putname(name);
2153 return error;
2154 }
2155
2156 asmlinkage long sys_rmdir(const char __user *pathname)
2157 {
2158 return do_rmdir(AT_FDCWD, pathname);
2159 }
2160
2161 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2162 {
2163 int error = may_delete(dir, dentry, 0);
2164
2165 if (error)
2166 return error;
2167
2168 if (!dir->i_op || !dir->i_op->unlink)
2169 return -EPERM;
2170
2171 DQUOT_INIT(dir);
2172
2173 mutex_lock(&dentry->d_inode->i_mutex);
2174 if (d_mountpoint(dentry))
2175 error = -EBUSY;
2176 else {
2177 error = security_inode_unlink(dir, dentry);
2178 if (!error)
2179 error = dir->i_op->unlink(dir, dentry);
2180 }
2181 mutex_unlock(&dentry->d_inode->i_mutex);
2182
2183 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2184 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2185 d_delete(dentry);
2186 }
2187
2188 return error;
2189 }
2190
2191 /*
2192 * Make sure that the actual truncation of the file will occur outside its
2193 * directory's i_mutex. Truncate can take a long time if there is a lot of
2194 * writeout happening, and we don't want to prevent access to the directory
2195 * while waiting on the I/O.
2196 */
2197 static long do_unlinkat(int dfd, const char __user *pathname)
2198 {
2199 int error = 0;
2200 char * name;
2201 struct dentry *dentry;
2202 struct nameidata nd;
2203 struct inode *inode = NULL;
2204
2205 name = getname(pathname);
2206 if(IS_ERR(name))
2207 return PTR_ERR(name);
2208
2209 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2210 if (error)
2211 goto exit;
2212 error = -EISDIR;
2213 if (nd.last_type != LAST_NORM)
2214 goto exit1;
2215 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2216 dentry = lookup_hash(&nd);
2217 error = PTR_ERR(dentry);
2218 if (!IS_ERR(dentry)) {
2219 /* Why not before? Because we want correct error value */
2220 if (nd.last.name[nd.last.len])
2221 goto slashes;
2222 inode = dentry->d_inode;
2223 if (inode)
2224 atomic_inc(&inode->i_count);
2225 error = vfs_unlink(nd.dentry->d_inode, dentry);
2226 exit2:
2227 dput(dentry);
2228 }
2229 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2230 if (inode)
2231 iput(inode); /* truncate the inode here */
2232 exit1:
2233 path_release(&nd);
2234 exit:
2235 putname(name);
2236 return error;
2237
2238 slashes:
2239 error = !dentry->d_inode ? -ENOENT :
2240 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2241 goto exit2;
2242 }
2243
2244 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2245 {
2246 if ((flag & ~AT_REMOVEDIR) != 0)
2247 return -EINVAL;
2248
2249 if (flag & AT_REMOVEDIR)
2250 return do_rmdir(dfd, pathname);
2251
2252 return do_unlinkat(dfd, pathname);
2253 }
2254
2255 asmlinkage long sys_unlink(const char __user *pathname)
2256 {
2257 return do_unlinkat(AT_FDCWD, pathname);
2258 }
2259
2260 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2261 {
2262 int error = may_create(dir, dentry, NULL);
2263
2264 if (error)
2265 return error;
2266
2267 if (!dir->i_op || !dir->i_op->symlink)
2268 return -EPERM;
2269
2270 error = security_inode_symlink(dir, dentry, oldname);
2271 if (error)
2272 return error;
2273
2274 DQUOT_INIT(dir);
2275 error = dir->i_op->symlink(dir, dentry, oldname);
2276 if (!error)
2277 fsnotify_create(dir, dentry);
2278 return error;
2279 }
2280
2281 asmlinkage long sys_symlinkat(const char __user *oldname,
2282 int newdfd, const char __user *newname)
2283 {
2284 int error = 0;
2285 char * from;
2286 char * to;
2287 struct dentry *dentry;
2288 struct nameidata nd;
2289
2290 from = getname(oldname);
2291 if(IS_ERR(from))
2292 return PTR_ERR(from);
2293 to = getname(newname);
2294 error = PTR_ERR(to);
2295 if (IS_ERR(to))
2296 goto out_putname;
2297
2298 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2299 if (error)
2300 goto out;
2301 dentry = lookup_create(&nd, 0);
2302 error = PTR_ERR(dentry);
2303 if (IS_ERR(dentry))
2304 goto out_unlock;
2305
2306 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2307 dput(dentry);
2308 out_unlock:
2309 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2310 path_release(&nd);
2311 out:
2312 putname(to);
2313 out_putname:
2314 putname(from);
2315 return error;
2316 }
2317
2318 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2319 {
2320 return sys_symlinkat(oldname, AT_FDCWD, newname);
2321 }
2322
2323 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2324 {
2325 struct inode *inode = old_dentry->d_inode;
2326 int error;
2327
2328 if (!inode)
2329 return -ENOENT;
2330
2331 error = may_create(dir, new_dentry, NULL);
2332 if (error)
2333 return error;
2334
2335 if (dir->i_sb != inode->i_sb)
2336 return -EXDEV;
2337
2338 /*
2339 * A link to an append-only or immutable file cannot be created.
2340 */
2341 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2342 return -EPERM;
2343 if (!dir->i_op || !dir->i_op->link)
2344 return -EPERM;
2345 if (S_ISDIR(old_dentry->d_inode->i_mode))
2346 return -EPERM;
2347
2348 error = security_inode_link(old_dentry, dir, new_dentry);
2349 if (error)
2350 return error;
2351
2352 mutex_lock(&old_dentry->d_inode->i_mutex);
2353 DQUOT_INIT(dir);
2354 error = dir->i_op->link(old_dentry, dir, new_dentry);
2355 mutex_unlock(&old_dentry->d_inode->i_mutex);
2356 if (!error)
2357 fsnotify_create(dir, new_dentry);
2358 return error;
2359 }
2360
2361 /*
2362 * Hardlinks are often used in delicate situations. We avoid
2363 * security-related surprises by not following symlinks on the
2364 * newname. --KAB
2365 *
2366 * We don't follow them on the oldname either to be compatible
2367 * with linux 2.0, and to avoid hard-linking to directories
2368 * and other special files. --ADM
2369 */
2370 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2371 int newdfd, const char __user *newname,
2372 int flags)
2373 {
2374 struct dentry *new_dentry;
2375 struct nameidata nd, old_nd;
2376 int error;
2377 char * to;
2378
2379 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2380 return -EINVAL;
2381
2382 to = getname(newname);
2383 if (IS_ERR(to))
2384 return PTR_ERR(to);
2385
2386 error = __user_walk_fd(olddfd, oldname,
2387 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2388 &old_nd);
2389 if (error)
2390 goto exit;
2391 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2392 if (error)
2393 goto out;
2394 error = -EXDEV;
2395 if (old_nd.mnt != nd.mnt)
2396 goto out_release;
2397 new_dentry = lookup_create(&nd, 0);
2398 error = PTR_ERR(new_dentry);
2399 if (IS_ERR(new_dentry))
2400 goto out_unlock;
2401 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2402 dput(new_dentry);
2403 out_unlock:
2404 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2405 out_release:
2406 path_release(&nd);
2407 out:
2408 path_release(&old_nd);
2409 exit:
2410 putname(to);
2411
2412 return error;
2413 }
2414
2415 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2416 {
2417 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2418 }
2419
2420 /*
2421 * The worst of all namespace operations - renaming directory. "Perverted"
2422 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2423 * Problems:
2424 * a) we can get into loop creation. Check is done in is_subdir().
2425 * b) race potential - two innocent renames can create a loop together.
2426 * That's where 4.4 screws up. Current fix: serialization on
2427 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2428 * story.
2429 * c) we have to lock _three_ objects - parents and victim (if it exists).
2430 * And that - after we got ->i_mutex on parents (until then we don't know
2431 * whether the target exists). Solution: try to be smart with locking
2432 * order for inodes. We rely on the fact that tree topology may change
2433 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2434 * move will be locked. Thus we can rank directories by the tree
2435 * (ancestors first) and rank all non-directories after them.
2436 * That works since everybody except rename does "lock parent, lookup,
2437 * lock child" and rename is under ->s_vfs_rename_mutex.
2438 * HOWEVER, it relies on the assumption that any object with ->lookup()
2439 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2440 * we'd better make sure that there's no link(2) for them.
2441 * d) some filesystems don't support opened-but-unlinked directories,
2442 * either because of layout or because they are not ready to deal with
2443 * all cases correctly. The latter will be fixed (taking this sort of
2444 * stuff into VFS), but the former is not going away. Solution: the same
2445 * trick as in rmdir().
2446 * e) conversion from fhandle to dentry may come in the wrong moment - when
2447 * we are removing the target. Solution: we will have to grab ->i_mutex
2448 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2449 * ->i_mutex on parents, which works but leads to some truely excessive
2450 * locking].
2451 */
2452 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2453 struct inode *new_dir, struct dentry *new_dentry)
2454 {
2455 int error = 0;
2456 struct inode *target;
2457
2458 /*
2459 * If we are going to change the parent - check write permissions,
2460 * we'll need to flip '..'.
2461 */
2462 if (new_dir != old_dir) {
2463 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2464 if (error)
2465 return error;
2466 }
2467
2468 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2469 if (error)
2470 return error;
2471
2472 target = new_dentry->d_inode;
2473 if (target) {
2474 mutex_lock(&target->i_mutex);
2475 dentry_unhash(new_dentry);
2476 }
2477 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2478 error = -EBUSY;
2479 else
2480 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2481 if (target) {
2482 if (!error)
2483 target->i_flags |= S_DEAD;
2484 mutex_unlock(&target->i_mutex);
2485 if (d_unhashed(new_dentry))
2486 d_rehash(new_dentry);
2487 dput(new_dentry);
2488 }
2489 if (!error)
2490 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2491 d_move(old_dentry,new_dentry);
2492 return error;
2493 }
2494
2495 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2496 struct inode *new_dir, struct dentry *new_dentry)
2497 {
2498 struct inode *target;
2499 int error;
2500
2501 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2502 if (error)
2503 return error;
2504
2505 dget(new_dentry);
2506 target = new_dentry->d_inode;
2507 if (target)
2508 mutex_lock(&target->i_mutex);
2509 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2510 error = -EBUSY;
2511 else
2512 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2513 if (!error) {
2514 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2515 d_move(old_dentry, new_dentry);
2516 }
2517 if (target)
2518 mutex_unlock(&target->i_mutex);
2519 dput(new_dentry);
2520 return error;
2521 }
2522
2523 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2524 struct inode *new_dir, struct dentry *new_dentry)
2525 {
2526 int error;
2527 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2528 const char *old_name;
2529
2530 if (old_dentry->d_inode == new_dentry->d_inode)
2531 return 0;
2532
2533 error = may_delete(old_dir, old_dentry, is_dir);
2534 if (error)
2535 return error;
2536
2537 if (!new_dentry->d_inode)
2538 error = may_create(new_dir, new_dentry, NULL);
2539 else
2540 error = may_delete(new_dir, new_dentry, is_dir);
2541 if (error)
2542 return error;
2543
2544 if (!old_dir->i_op || !old_dir->i_op->rename)
2545 return -EPERM;
2546
2547 DQUOT_INIT(old_dir);
2548 DQUOT_INIT(new_dir);
2549
2550 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2551
2552 if (is_dir)
2553 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2554 else
2555 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2556 if (!error) {
2557 const char *new_name = old_dentry->d_name.name;
2558 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2559 new_dentry->d_inode, old_dentry->d_inode);
2560 }
2561 fsnotify_oldname_free(old_name);
2562
2563 return error;
2564 }
2565
2566 static int do_rename(int olddfd, const char *oldname,
2567 int newdfd, const char *newname)
2568 {
2569 int error = 0;
2570 struct dentry * old_dir, * new_dir;
2571 struct dentry * old_dentry, *new_dentry;
2572 struct dentry * trap;
2573 struct nameidata oldnd, newnd;
2574
2575 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2576 if (error)
2577 goto exit;
2578
2579 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2580 if (error)
2581 goto exit1;
2582
2583 error = -EXDEV;
2584 if (oldnd.mnt != newnd.mnt)
2585 goto exit2;
2586
2587 old_dir = oldnd.dentry;
2588 error = -EBUSY;
2589 if (oldnd.last_type != LAST_NORM)
2590 goto exit2;
2591
2592 new_dir = newnd.dentry;
2593 if (newnd.last_type != LAST_NORM)
2594 goto exit2;
2595
2596 trap = lock_rename(new_dir, old_dir);
2597
2598 old_dentry = lookup_hash(&oldnd);
2599 error = PTR_ERR(old_dentry);
2600 if (IS_ERR(old_dentry))
2601 goto exit3;
2602 /* source must exist */
2603 error = -ENOENT;
2604 if (!old_dentry->d_inode)
2605 goto exit4;
2606 /* unless the source is a directory trailing slashes give -ENOTDIR */
2607 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2608 error = -ENOTDIR;
2609 if (oldnd.last.name[oldnd.last.len])
2610 goto exit4;
2611 if (newnd.last.name[newnd.last.len])
2612 goto exit4;
2613 }
2614 /* source should not be ancestor of target */
2615 error = -EINVAL;
2616 if (old_dentry == trap)
2617 goto exit4;
2618 new_dentry = lookup_hash(&newnd);
2619 error = PTR_ERR(new_dentry);
2620 if (IS_ERR(new_dentry))
2621 goto exit4;
2622 /* target should not be an ancestor of source */
2623 error = -ENOTEMPTY;
2624 if (new_dentry == trap)
2625 goto exit5;
2626
2627 error = vfs_rename(old_dir->d_inode, old_dentry,
2628 new_dir->d_inode, new_dentry);
2629 exit5:
2630 dput(new_dentry);
2631 exit4:
2632 dput(old_dentry);
2633 exit3:
2634 unlock_rename(new_dir, old_dir);
2635 exit2:
2636 path_release(&newnd);
2637 exit1:
2638 path_release(&oldnd);
2639 exit:
2640 return error;
2641 }
2642
2643 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2644 int newdfd, const char __user *newname)
2645 {
2646 int error;
2647 char * from;
2648 char * to;
2649
2650 from = getname(oldname);
2651 if(IS_ERR(from))
2652 return PTR_ERR(from);
2653 to = getname(newname);
2654 error = PTR_ERR(to);
2655 if (!IS_ERR(to)) {
2656 error = do_rename(olddfd, from, newdfd, to);
2657 putname(to);
2658 }
2659 putname(from);
2660 return error;
2661 }
2662
2663 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2664 {
2665 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2666 }
2667
2668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2669 {
2670 int len;
2671
2672 len = PTR_ERR(link);
2673 if (IS_ERR(link))
2674 goto out;
2675
2676 len = strlen(link);
2677 if (len > (unsigned) buflen)
2678 len = buflen;
2679 if (copy_to_user(buffer, link, len))
2680 len = -EFAULT;
2681 out:
2682 return len;
2683 }
2684
2685 /*
2686 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2687 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2688 * using) it for any given inode is up to filesystem.
2689 */
2690 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2691 {
2692 struct nameidata nd;
2693 void *cookie;
2694
2695 nd.depth = 0;
2696 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2697 if (!IS_ERR(cookie)) {
2698 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2699 if (dentry->d_inode->i_op->put_link)
2700 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2701 cookie = ERR_PTR(res);
2702 }
2703 return PTR_ERR(cookie);
2704 }
2705
2706 int vfs_follow_link(struct nameidata *nd, const char *link)
2707 {
2708 return __vfs_follow_link(nd, link);
2709 }
2710
2711 /* get the link contents into pagecache */
2712 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2713 {
2714 struct page * page;
2715 struct address_space *mapping = dentry->d_inode->i_mapping;
2716 page = read_mapping_page(mapping, 0, NULL);
2717 if (IS_ERR(page))
2718 return (char*)page;
2719 *ppage = page;
2720 return kmap(page);
2721 }
2722
2723 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2724 {
2725 struct page *page = NULL;
2726 char *s = page_getlink(dentry, &page);
2727 int res = vfs_readlink(dentry,buffer,buflen,s);
2728 if (page) {
2729 kunmap(page);
2730 page_cache_release(page);
2731 }
2732 return res;
2733 }
2734
2735 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2736 {
2737 struct page *page = NULL;
2738 nd_set_link(nd, page_getlink(dentry, &page));
2739 return page;
2740 }
2741
2742 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2743 {
2744 struct page *page = cookie;
2745
2746 if (page) {
2747 kunmap(page);
2748 page_cache_release(page);
2749 }
2750 }
2751
2752 int __page_symlink(struct inode *inode, const char *symname, int len,
2753 gfp_t gfp_mask)
2754 {
2755 struct address_space *mapping = inode->i_mapping;
2756 struct page *page;
2757 void *fsdata;
2758 int err;
2759 char *kaddr;
2760
2761 retry:
2762 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2763 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2764 if (err)
2765 goto fail;
2766
2767 kaddr = kmap_atomic(page, KM_USER0);
2768 memcpy(kaddr, symname, len-1);
2769 kunmap_atomic(kaddr, KM_USER0);
2770
2771 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2772 page, fsdata);
2773 if (err < 0)
2774 goto fail;
2775 if (err < len-1)
2776 goto retry;
2777
2778 mark_inode_dirty(inode);
2779 return 0;
2780 fail:
2781 return err;
2782 }
2783
2784 int page_symlink(struct inode *inode, const char *symname, int len)
2785 {
2786 return __page_symlink(inode, symname, len,
2787 mapping_gfp_mask(inode->i_mapping));
2788 }
2789
2790 const struct inode_operations page_symlink_inode_operations = {
2791 .readlink = generic_readlink,
2792 .follow_link = page_follow_link_light,
2793 .put_link = page_put_link,
2794 };
2795
2796 EXPORT_SYMBOL(__user_walk);
2797 EXPORT_SYMBOL(__user_walk_fd);
2798 EXPORT_SYMBOL(follow_down);
2799 EXPORT_SYMBOL(follow_up);
2800 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2801 EXPORT_SYMBOL(getname);
2802 EXPORT_SYMBOL(lock_rename);
2803 EXPORT_SYMBOL(lookup_one_len);
2804 EXPORT_SYMBOL(page_follow_link_light);
2805 EXPORT_SYMBOL(page_put_link);
2806 EXPORT_SYMBOL(page_readlink);
2807 EXPORT_SYMBOL(__page_symlink);
2808 EXPORT_SYMBOL(page_symlink);
2809 EXPORT_SYMBOL(page_symlink_inode_operations);
2810 EXPORT_SYMBOL(path_lookup);
2811 EXPORT_SYMBOL(vfs_path_lookup);
2812 EXPORT_SYMBOL(path_release);
2813 EXPORT_SYMBOL(permission);
2814 EXPORT_SYMBOL(vfs_permission);
2815 EXPORT_SYMBOL(file_permission);
2816 EXPORT_SYMBOL(unlock_rename);
2817 EXPORT_SYMBOL(vfs_create);
2818 EXPORT_SYMBOL(vfs_follow_link);
2819 EXPORT_SYMBOL(vfs_link);
2820 EXPORT_SYMBOL(vfs_mkdir);
2821 EXPORT_SYMBOL(vfs_mknod);
2822 EXPORT_SYMBOL(generic_permission);
2823 EXPORT_SYMBOL(vfs_readlink);
2824 EXPORT_SYMBOL(vfs_rename);
2825 EXPORT_SYMBOL(vfs_rmdir);
2826 EXPORT_SYMBOL(vfs_symlink);
2827 EXPORT_SYMBOL(vfs_unlink);
2828 EXPORT_SYMBOL(dentry_unhash);
2829 EXPORT_SYMBOL(generic_readlink);
This page took 0.090683 seconds and 6 git commands to generate.