Cache root in nameidata
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 static int __link_path_walk(const char *name, struct nameidata *nd);
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static int do_getname(const char __user *filename, char *page)
121 {
122 int retval;
123 unsigned long len = PATH_MAX;
124
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
130 }
131
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
140 }
141
142 char * getname(const char __user * filename)
143 {
144 char *tmp, *result;
145
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
150
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
155 }
156 }
157 audit_getname(result);
158 return result;
159 }
160
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
163 {
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
168 }
169 EXPORT_SYMBOL(putname);
170 #endif
171
172
173 /**
174 * generic_permission - check for access rights on a Posix-like filesystem
175 * @inode: inode to check access rights for
176 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177 * @check_acl: optional callback to check for Posix ACLs
178 *
179 * Used to check for read/write/execute permissions on a file.
180 * We use "fsuid" for this, letting us set arbitrary permissions
181 * for filesystem access without changing the "normal" uids which
182 * are used for other things..
183 */
184 int generic_permission(struct inode *inode, int mask,
185 int (*check_acl)(struct inode *inode, int mask))
186 {
187 umode_t mode = inode->i_mode;
188
189 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
190
191 if (current_fsuid() == inode->i_uid)
192 mode >>= 6;
193 else {
194 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 int error = check_acl(inode, mask);
196 if (error == -EACCES)
197 goto check_capabilities;
198 else if (error != -EAGAIN)
199 return error;
200 }
201
202 if (in_group_p(inode->i_gid))
203 mode >>= 3;
204 }
205
206 /*
207 * If the DACs are ok we don't need any capability check.
208 */
209 if ((mask & ~mode) == 0)
210 return 0;
211
212 check_capabilities:
213 /*
214 * Read/write DACs are always overridable.
215 * Executable DACs are overridable if at least one exec bit is set.
216 */
217 if (!(mask & MAY_EXEC) || execute_ok(inode))
218 if (capable(CAP_DAC_OVERRIDE))
219 return 0;
220
221 /*
222 * Searching includes executable on directories, else just read.
223 */
224 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 if (capable(CAP_DAC_READ_SEARCH))
226 return 0;
227
228 return -EACCES;
229 }
230
231 /**
232 * inode_permission - check for access rights to a given inode
233 * @inode: inode to check permission on
234 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
235 *
236 * Used to check for read/write/execute permissions on an inode.
237 * We use "fsuid" for this, letting us set arbitrary permissions
238 * for filesystem access without changing the "normal" uids which
239 * are used for other things.
240 */
241 int inode_permission(struct inode *inode, int mask)
242 {
243 int retval;
244
245 if (mask & MAY_WRITE) {
246 umode_t mode = inode->i_mode;
247
248 /*
249 * Nobody gets write access to a read-only fs.
250 */
251 if (IS_RDONLY(inode) &&
252 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
253 return -EROFS;
254
255 /*
256 * Nobody gets write access to an immutable file.
257 */
258 if (IS_IMMUTABLE(inode))
259 return -EACCES;
260 }
261
262 if (inode->i_op->permission)
263 retval = inode->i_op->permission(inode, mask);
264 else
265 retval = generic_permission(inode, mask, NULL);
266
267 if (retval)
268 return retval;
269
270 retval = devcgroup_inode_permission(inode, mask);
271 if (retval)
272 return retval;
273
274 return security_inode_permission(inode,
275 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
276 }
277
278 /**
279 * file_permission - check for additional access rights to a given file
280 * @file: file to check access rights for
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
282 *
283 * Used to check for read/write/execute permissions on an already opened
284 * file.
285 *
286 * Note:
287 * Do not use this function in new code. All access checks should
288 * be done using inode_permission().
289 */
290 int file_permission(struct file *file, int mask)
291 {
292 return inode_permission(file->f_path.dentry->d_inode, mask);
293 }
294
295 /*
296 * get_write_access() gets write permission for a file.
297 * put_write_access() releases this write permission.
298 * This is used for regular files.
299 * We cannot support write (and maybe mmap read-write shared) accesses and
300 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301 * can have the following values:
302 * 0: no writers, no VM_DENYWRITE mappings
303 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304 * > 0: (i_writecount) users are writing to the file.
305 *
306 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307 * except for the cases where we don't hold i_writecount yet. Then we need to
308 * use {get,deny}_write_access() - these functions check the sign and refuse
309 * to do the change if sign is wrong. Exclusion between them is provided by
310 * the inode->i_lock spinlock.
311 */
312
313 int get_write_access(struct inode * inode)
314 {
315 spin_lock(&inode->i_lock);
316 if (atomic_read(&inode->i_writecount) < 0) {
317 spin_unlock(&inode->i_lock);
318 return -ETXTBSY;
319 }
320 atomic_inc(&inode->i_writecount);
321 spin_unlock(&inode->i_lock);
322
323 return 0;
324 }
325
326 int deny_write_access(struct file * file)
327 {
328 struct inode *inode = file->f_path.dentry->d_inode;
329
330 spin_lock(&inode->i_lock);
331 if (atomic_read(&inode->i_writecount) > 0) {
332 spin_unlock(&inode->i_lock);
333 return -ETXTBSY;
334 }
335 atomic_dec(&inode->i_writecount);
336 spin_unlock(&inode->i_lock);
337
338 return 0;
339 }
340
341 /**
342 * path_get - get a reference to a path
343 * @path: path to get the reference to
344 *
345 * Given a path increment the reference count to the dentry and the vfsmount.
346 */
347 void path_get(struct path *path)
348 {
349 mntget(path->mnt);
350 dget(path->dentry);
351 }
352 EXPORT_SYMBOL(path_get);
353
354 /**
355 * path_put - put a reference to a path
356 * @path: path to put the reference to
357 *
358 * Given a path decrement the reference count to the dentry and the vfsmount.
359 */
360 void path_put(struct path *path)
361 {
362 dput(path->dentry);
363 mntput(path->mnt);
364 }
365 EXPORT_SYMBOL(path_put);
366
367 /**
368 * release_open_intent - free up open intent resources
369 * @nd: pointer to nameidata
370 */
371 void release_open_intent(struct nameidata *nd)
372 {
373 if (nd->intent.open.file->f_path.dentry == NULL)
374 put_filp(nd->intent.open.file);
375 else
376 fput(nd->intent.open.file);
377 }
378
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
381 {
382 int status = dentry->d_op->d_revalidate(dentry, nd);
383 if (unlikely(status <= 0)) {
384 /*
385 * The dentry failed validation.
386 * If d_revalidate returned 0 attempt to invalidate
387 * the dentry otherwise d_revalidate is asking us
388 * to return a fail status.
389 */
390 if (!status) {
391 if (!d_invalidate(dentry)) {
392 dput(dentry);
393 dentry = NULL;
394 }
395 } else {
396 dput(dentry);
397 dentry = ERR_PTR(status);
398 }
399 }
400 return dentry;
401 }
402
403 /*
404 * Internal lookup() using the new generic dcache.
405 * SMP-safe
406 */
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
408 {
409 struct dentry * dentry = __d_lookup(parent, name);
410
411 /* lockess __d_lookup may fail due to concurrent d_move()
412 * in some unrelated directory, so try with d_lookup
413 */
414 if (!dentry)
415 dentry = d_lookup(parent, name);
416
417 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 dentry = do_revalidate(dentry, nd);
419
420 return dentry;
421 }
422
423 /*
424 * Short-cut version of permission(), for calling by
425 * path_walk(), when dcache lock is held. Combines parts
426 * of permission() and generic_permission(), and tests ONLY for
427 * MAY_EXEC permission.
428 *
429 * If appropriate, check DAC only. If not appropriate, or
430 * short-cut DAC fails, then call permission() to do more
431 * complete permission check.
432 */
433 static int exec_permission_lite(struct inode *inode)
434 {
435 umode_t mode = inode->i_mode;
436
437 if (inode->i_op->permission)
438 return -EAGAIN;
439
440 if (current_fsuid() == inode->i_uid)
441 mode >>= 6;
442 else if (in_group_p(inode->i_gid))
443 mode >>= 3;
444
445 if (mode & MAY_EXEC)
446 goto ok;
447
448 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
449 goto ok;
450
451 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
452 goto ok;
453
454 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
455 goto ok;
456
457 return -EACCES;
458 ok:
459 return security_inode_permission(inode, MAY_EXEC);
460 }
461
462 /*
463 * This is called when everything else fails, and we actually have
464 * to go to the low-level filesystem to find out what we should do..
465 *
466 * We get the directory semaphore, and after getting that we also
467 * make sure that nobody added the entry to the dcache in the meantime..
468 * SMP-safe
469 */
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
471 {
472 struct dentry * result;
473 struct inode *dir = parent->d_inode;
474
475 mutex_lock(&dir->i_mutex);
476 /*
477 * First re-do the cached lookup just in case it was created
478 * while we waited for the directory semaphore..
479 *
480 * FIXME! This could use version numbering or similar to
481 * avoid unnecessary cache lookups.
482 *
483 * The "dcache_lock" is purely to protect the RCU list walker
484 * from concurrent renames at this point (we mustn't get false
485 * negatives from the RCU list walk here, unlike the optimistic
486 * fast walk).
487 *
488 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
489 */
490 result = d_lookup(parent, name);
491 if (!result) {
492 struct dentry *dentry;
493
494 /* Don't create child dentry for a dead directory. */
495 result = ERR_PTR(-ENOENT);
496 if (IS_DEADDIR(dir))
497 goto out_unlock;
498
499 dentry = d_alloc(parent, name);
500 result = ERR_PTR(-ENOMEM);
501 if (dentry) {
502 result = dir->i_op->lookup(dir, dentry, nd);
503 if (result)
504 dput(dentry);
505 else
506 result = dentry;
507 }
508 out_unlock:
509 mutex_unlock(&dir->i_mutex);
510 return result;
511 }
512
513 /*
514 * Uhhuh! Nasty case: the cache was re-populated while
515 * we waited on the semaphore. Need to revalidate.
516 */
517 mutex_unlock(&dir->i_mutex);
518 if (result->d_op && result->d_op->d_revalidate) {
519 result = do_revalidate(result, nd);
520 if (!result)
521 result = ERR_PTR(-ENOENT);
522 }
523 return result;
524 }
525
526 /*
527 * Wrapper to retry pathname resolution whenever the underlying
528 * file system returns an ESTALE.
529 *
530 * Retry the whole path once, forcing real lookup requests
531 * instead of relying on the dcache.
532 */
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
534 {
535 struct path save = nd->path;
536 int result;
537
538 /* make sure the stuff we saved doesn't go away */
539 path_get(&save);
540
541 result = __link_path_walk(name, nd);
542 if (result == -ESTALE) {
543 /* nd->path had been dropped */
544 nd->path = save;
545 path_get(&nd->path);
546 nd->flags |= LOOKUP_REVAL;
547 result = __link_path_walk(name, nd);
548 }
549
550 path_put(&save);
551
552 return result;
553 }
554
555 static __always_inline void set_root(struct nameidata *nd)
556 {
557 if (!nd->root.mnt) {
558 struct fs_struct *fs = current->fs;
559 read_lock(&fs->lock);
560 nd->root = fs->root;
561 path_get(&nd->root);
562 read_unlock(&fs->lock);
563 }
564 }
565
566 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
567 {
568 int res = 0;
569 char *name;
570 if (IS_ERR(link))
571 goto fail;
572
573 if (*link == '/') {
574 set_root(nd);
575 path_put(&nd->path);
576 nd->path = nd->root;
577 path_get(&nd->root);
578 }
579
580 res = link_path_walk(link, nd);
581 if (nd->depth || res || nd->last_type!=LAST_NORM)
582 return res;
583 /*
584 * If it is an iterative symlinks resolution in open_namei() we
585 * have to copy the last component. And all that crap because of
586 * bloody create() on broken symlinks. Furrfu...
587 */
588 name = __getname();
589 if (unlikely(!name)) {
590 path_put(&nd->path);
591 return -ENOMEM;
592 }
593 strcpy(name, nd->last.name);
594 nd->last.name = name;
595 return 0;
596 fail:
597 path_put(&nd->path);
598 return PTR_ERR(link);
599 }
600
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 {
603 dput(path->dentry);
604 if (path->mnt != nd->path.mnt)
605 mntput(path->mnt);
606 }
607
608 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
609 {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 nd->path.mnt = path->mnt;
614 nd->path.dentry = path->dentry;
615 }
616
617 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
618 {
619 int error;
620 void *cookie;
621 struct dentry *dentry = path->dentry;
622
623 touch_atime(path->mnt, dentry);
624 nd_set_link(nd, NULL);
625
626 if (path->mnt != nd->path.mnt) {
627 path_to_nameidata(path, nd);
628 dget(dentry);
629 }
630 mntget(path->mnt);
631 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
632 error = PTR_ERR(cookie);
633 if (!IS_ERR(cookie)) {
634 char *s = nd_get_link(nd);
635 error = 0;
636 if (s)
637 error = __vfs_follow_link(nd, s);
638 if (dentry->d_inode->i_op->put_link)
639 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
640 }
641 path_put(path);
642
643 return error;
644 }
645
646 /*
647 * This limits recursive symlink follows to 8, while
648 * limiting consecutive symlinks to 40.
649 *
650 * Without that kind of total limit, nasty chains of consecutive
651 * symlinks can cause almost arbitrarily long lookups.
652 */
653 static inline int do_follow_link(struct path *path, struct nameidata *nd)
654 {
655 int err = -ELOOP;
656 if (current->link_count >= MAX_NESTED_LINKS)
657 goto loop;
658 if (current->total_link_count >= 40)
659 goto loop;
660 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
661 cond_resched();
662 err = security_inode_follow_link(path->dentry, nd);
663 if (err)
664 goto loop;
665 current->link_count++;
666 current->total_link_count++;
667 nd->depth++;
668 err = __do_follow_link(path, nd);
669 current->link_count--;
670 nd->depth--;
671 return err;
672 loop:
673 path_put_conditional(path, nd);
674 path_put(&nd->path);
675 return err;
676 }
677
678 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
679 {
680 struct vfsmount *parent;
681 struct dentry *mountpoint;
682 spin_lock(&vfsmount_lock);
683 parent=(*mnt)->mnt_parent;
684 if (parent == *mnt) {
685 spin_unlock(&vfsmount_lock);
686 return 0;
687 }
688 mntget(parent);
689 mountpoint=dget((*mnt)->mnt_mountpoint);
690 spin_unlock(&vfsmount_lock);
691 dput(*dentry);
692 *dentry = mountpoint;
693 mntput(*mnt);
694 *mnt = parent;
695 return 1;
696 }
697
698 /* no need for dcache_lock, as serialization is taken care in
699 * namespace.c
700 */
701 static int __follow_mount(struct path *path)
702 {
703 int res = 0;
704 while (d_mountpoint(path->dentry)) {
705 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
706 if (!mounted)
707 break;
708 dput(path->dentry);
709 if (res)
710 mntput(path->mnt);
711 path->mnt = mounted;
712 path->dentry = dget(mounted->mnt_root);
713 res = 1;
714 }
715 return res;
716 }
717
718 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
719 {
720 while (d_mountpoint(*dentry)) {
721 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
722 if (!mounted)
723 break;
724 dput(*dentry);
725 mntput(*mnt);
726 *mnt = mounted;
727 *dentry = dget(mounted->mnt_root);
728 }
729 }
730
731 /* no need for dcache_lock, as serialization is taken care in
732 * namespace.c
733 */
734 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
735 {
736 struct vfsmount *mounted;
737
738 mounted = lookup_mnt(*mnt, *dentry);
739 if (mounted) {
740 dput(*dentry);
741 mntput(*mnt);
742 *mnt = mounted;
743 *dentry = dget(mounted->mnt_root);
744 return 1;
745 }
746 return 0;
747 }
748
749 static __always_inline void follow_dotdot(struct nameidata *nd)
750 {
751 set_root(nd);
752
753 while(1) {
754 struct vfsmount *parent;
755 struct dentry *old = nd->path.dentry;
756
757 if (nd->path.dentry == nd->root.dentry &&
758 nd->path.mnt == nd->root.mnt) {
759 break;
760 }
761 spin_lock(&dcache_lock);
762 if (nd->path.dentry != nd->path.mnt->mnt_root) {
763 nd->path.dentry = dget(nd->path.dentry->d_parent);
764 spin_unlock(&dcache_lock);
765 dput(old);
766 break;
767 }
768 spin_unlock(&dcache_lock);
769 spin_lock(&vfsmount_lock);
770 parent = nd->path.mnt->mnt_parent;
771 if (parent == nd->path.mnt) {
772 spin_unlock(&vfsmount_lock);
773 break;
774 }
775 mntget(parent);
776 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
777 spin_unlock(&vfsmount_lock);
778 dput(old);
779 mntput(nd->path.mnt);
780 nd->path.mnt = parent;
781 }
782 follow_mount(&nd->path.mnt, &nd->path.dentry);
783 }
784
785 /*
786 * It's more convoluted than I'd like it to be, but... it's still fairly
787 * small and for now I'd prefer to have fast path as straight as possible.
788 * It _is_ time-critical.
789 */
790 static int do_lookup(struct nameidata *nd, struct qstr *name,
791 struct path *path)
792 {
793 struct vfsmount *mnt = nd->path.mnt;
794 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
795
796 if (!dentry)
797 goto need_lookup;
798 if (dentry->d_op && dentry->d_op->d_revalidate)
799 goto need_revalidate;
800 done:
801 path->mnt = mnt;
802 path->dentry = dentry;
803 __follow_mount(path);
804 return 0;
805
806 need_lookup:
807 dentry = real_lookup(nd->path.dentry, name, nd);
808 if (IS_ERR(dentry))
809 goto fail;
810 goto done;
811
812 need_revalidate:
813 dentry = do_revalidate(dentry, nd);
814 if (!dentry)
815 goto need_lookup;
816 if (IS_ERR(dentry))
817 goto fail;
818 goto done;
819
820 fail:
821 return PTR_ERR(dentry);
822 }
823
824 /*
825 * Name resolution.
826 * This is the basic name resolution function, turning a pathname into
827 * the final dentry. We expect 'base' to be positive and a directory.
828 *
829 * Returns 0 and nd will have valid dentry and mnt on success.
830 * Returns error and drops reference to input namei data on failure.
831 */
832 static int __link_path_walk(const char *name, struct nameidata *nd)
833 {
834 struct path next;
835 struct inode *inode;
836 int err;
837 unsigned int lookup_flags = nd->flags;
838
839 while (*name=='/')
840 name++;
841 if (!*name)
842 goto return_reval;
843
844 inode = nd->path.dentry->d_inode;
845 if (nd->depth)
846 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
847
848 /* At this point we know we have a real path component. */
849 for(;;) {
850 unsigned long hash;
851 struct qstr this;
852 unsigned int c;
853
854 nd->flags |= LOOKUP_CONTINUE;
855 err = exec_permission_lite(inode);
856 if (err == -EAGAIN)
857 err = inode_permission(nd->path.dentry->d_inode,
858 MAY_EXEC);
859 if (!err)
860 err = ima_path_check(&nd->path, MAY_EXEC,
861 IMA_COUNT_UPDATE);
862 if (err)
863 break;
864
865 this.name = name;
866 c = *(const unsigned char *)name;
867
868 hash = init_name_hash();
869 do {
870 name++;
871 hash = partial_name_hash(c, hash);
872 c = *(const unsigned char *)name;
873 } while (c && (c != '/'));
874 this.len = name - (const char *) this.name;
875 this.hash = end_name_hash(hash);
876
877 /* remove trailing slashes? */
878 if (!c)
879 goto last_component;
880 while (*++name == '/');
881 if (!*name)
882 goto last_with_slashes;
883
884 /*
885 * "." and ".." are special - ".." especially so because it has
886 * to be able to know about the current root directory and
887 * parent relationships.
888 */
889 if (this.name[0] == '.') switch (this.len) {
890 default:
891 break;
892 case 2:
893 if (this.name[1] != '.')
894 break;
895 follow_dotdot(nd);
896 inode = nd->path.dentry->d_inode;
897 /* fallthrough */
898 case 1:
899 continue;
900 }
901 /*
902 * See if the low-level filesystem might want
903 * to use its own hash..
904 */
905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 &this);
908 if (err < 0)
909 break;
910 }
911 /* This does the actual lookups.. */
912 err = do_lookup(nd, &this, &next);
913 if (err)
914 break;
915
916 err = -ENOENT;
917 inode = next.dentry->d_inode;
918 if (!inode)
919 goto out_dput;
920
921 if (inode->i_op->follow_link) {
922 err = do_follow_link(&next, nd);
923 if (err)
924 goto return_err;
925 err = -ENOENT;
926 inode = nd->path.dentry->d_inode;
927 if (!inode)
928 break;
929 } else
930 path_to_nameidata(&next, nd);
931 err = -ENOTDIR;
932 if (!inode->i_op->lookup)
933 break;
934 continue;
935 /* here ends the main loop */
936
937 last_with_slashes:
938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
939 last_component:
940 /* Clear LOOKUP_CONTINUE iff it was previously unset */
941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
942 if (lookup_flags & LOOKUP_PARENT)
943 goto lookup_parent;
944 if (this.name[0] == '.') switch (this.len) {
945 default:
946 break;
947 case 2:
948 if (this.name[1] != '.')
949 break;
950 follow_dotdot(nd);
951 inode = nd->path.dentry->d_inode;
952 /* fallthrough */
953 case 1:
954 goto return_reval;
955 }
956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 &this);
959 if (err < 0)
960 break;
961 }
962 err = do_lookup(nd, &this, &next);
963 if (err)
964 break;
965 inode = next.dentry->d_inode;
966 if ((lookup_flags & LOOKUP_FOLLOW)
967 && inode && inode->i_op->follow_link) {
968 err = do_follow_link(&next, nd);
969 if (err)
970 goto return_err;
971 inode = nd->path.dentry->d_inode;
972 } else
973 path_to_nameidata(&next, nd);
974 err = -ENOENT;
975 if (!inode)
976 break;
977 if (lookup_flags & LOOKUP_DIRECTORY) {
978 err = -ENOTDIR;
979 if (!inode->i_op->lookup)
980 break;
981 }
982 goto return_base;
983 lookup_parent:
984 nd->last = this;
985 nd->last_type = LAST_NORM;
986 if (this.name[0] != '.')
987 goto return_base;
988 if (this.len == 1)
989 nd->last_type = LAST_DOT;
990 else if (this.len == 2 && this.name[1] == '.')
991 nd->last_type = LAST_DOTDOT;
992 else
993 goto return_base;
994 return_reval:
995 /*
996 * We bypassed the ordinary revalidation routines.
997 * We may need to check the cached dentry for staleness.
998 */
999 if (nd->path.dentry && nd->path.dentry->d_sb &&
1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001 err = -ESTALE;
1002 /* Note: we do not d_invalidate() */
1003 if (!nd->path.dentry->d_op->d_revalidate(
1004 nd->path.dentry, nd))
1005 break;
1006 }
1007 return_base:
1008 return 0;
1009 out_dput:
1010 path_put_conditional(&next, nd);
1011 break;
1012 }
1013 path_put(&nd->path);
1014 return_err:
1015 return err;
1016 }
1017
1018 static int path_walk(const char *name, struct nameidata *nd)
1019 {
1020 current->total_link_count = 0;
1021 return link_path_walk(name, nd);
1022 }
1023
1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1025 {
1026 int retval = 0;
1027 int fput_needed;
1028 struct file *file;
1029
1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031 nd->flags = flags;
1032 nd->depth = 0;
1033 nd->root.mnt = NULL;
1034
1035 if (*name=='/') {
1036 set_root(nd);
1037 nd->path = nd->root;
1038 path_get(&nd->root);
1039 } else if (dfd == AT_FDCWD) {
1040 struct fs_struct *fs = current->fs;
1041 read_lock(&fs->lock);
1042 nd->path = fs->pwd;
1043 path_get(&fs->pwd);
1044 read_unlock(&fs->lock);
1045 } else {
1046 struct dentry *dentry;
1047
1048 file = fget_light(dfd, &fput_needed);
1049 retval = -EBADF;
1050 if (!file)
1051 goto out_fail;
1052
1053 dentry = file->f_path.dentry;
1054
1055 retval = -ENOTDIR;
1056 if (!S_ISDIR(dentry->d_inode->i_mode))
1057 goto fput_fail;
1058
1059 retval = file_permission(file, MAY_EXEC);
1060 if (retval)
1061 goto fput_fail;
1062
1063 nd->path = file->f_path;
1064 path_get(&file->f_path);
1065
1066 fput_light(file, fput_needed);
1067 }
1068 return 0;
1069
1070 fput_fail:
1071 fput_light(file, fput_needed);
1072 out_fail:
1073 return retval;
1074 }
1075
1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077 static int do_path_lookup(int dfd, const char *name,
1078 unsigned int flags, struct nameidata *nd)
1079 {
1080 int retval = path_init(dfd, name, flags, nd);
1081 if (!retval)
1082 retval = path_walk(name, nd);
1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084 nd->path.dentry->d_inode))
1085 audit_inode(name, nd->path.dentry);
1086 if (nd->root.mnt) {
1087 path_put(&nd->root);
1088 nd->root.mnt = NULL;
1089 }
1090 return retval;
1091 }
1092
1093 int path_lookup(const char *name, unsigned int flags,
1094 struct nameidata *nd)
1095 {
1096 return do_path_lookup(AT_FDCWD, name, flags, nd);
1097 }
1098
1099 int kern_path(const char *name, unsigned int flags, struct path *path)
1100 {
1101 struct nameidata nd;
1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103 if (!res)
1104 *path = nd.path;
1105 return res;
1106 }
1107
1108 /**
1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110 * @dentry: pointer to dentry of the base directory
1111 * @mnt: pointer to vfs mount of the base directory
1112 * @name: pointer to file name
1113 * @flags: lookup flags
1114 * @nd: pointer to nameidata
1115 */
1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117 const char *name, unsigned int flags,
1118 struct nameidata *nd)
1119 {
1120 int retval;
1121
1122 /* same as do_path_lookup */
1123 nd->last_type = LAST_ROOT;
1124 nd->flags = flags;
1125 nd->depth = 0;
1126 nd->root.mnt = NULL;
1127
1128 nd->path.dentry = dentry;
1129 nd->path.mnt = mnt;
1130 path_get(&nd->path);
1131
1132 retval = path_walk(name, nd);
1133 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1134 nd->path.dentry->d_inode))
1135 audit_inode(name, nd->path.dentry);
1136
1137 if (nd->root.mnt) {
1138 path_put(&nd->root);
1139 nd->root.mnt = NULL;
1140 }
1141
1142 return retval;
1143 }
1144
1145 /**
1146 * path_lookup_open - lookup a file path with open intent
1147 * @dfd: the directory to use as base, or AT_FDCWD
1148 * @name: pointer to file name
1149 * @lookup_flags: lookup intent flags
1150 * @nd: pointer to nameidata
1151 * @open_flags: open intent flags
1152 */
1153 static int path_lookup_open(int dfd, const char *name,
1154 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1155 {
1156 struct file *filp = get_empty_filp();
1157 int err;
1158
1159 if (filp == NULL)
1160 return -ENFILE;
1161 nd->intent.open.file = filp;
1162 nd->intent.open.flags = open_flags;
1163 nd->intent.open.create_mode = 0;
1164 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1165 if (IS_ERR(nd->intent.open.file)) {
1166 if (err == 0) {
1167 err = PTR_ERR(nd->intent.open.file);
1168 path_put(&nd->path);
1169 }
1170 } else if (err != 0)
1171 release_open_intent(nd);
1172 return err;
1173 }
1174
1175 static struct dentry *__lookup_hash(struct qstr *name,
1176 struct dentry *base, struct nameidata *nd)
1177 {
1178 struct dentry *dentry;
1179 struct inode *inode;
1180 int err;
1181
1182 inode = base->d_inode;
1183
1184 /*
1185 * See if the low-level filesystem might want
1186 * to use its own hash..
1187 */
1188 if (base->d_op && base->d_op->d_hash) {
1189 err = base->d_op->d_hash(base, name);
1190 dentry = ERR_PTR(err);
1191 if (err < 0)
1192 goto out;
1193 }
1194
1195 dentry = cached_lookup(base, name, nd);
1196 if (!dentry) {
1197 struct dentry *new;
1198
1199 /* Don't create child dentry for a dead directory. */
1200 dentry = ERR_PTR(-ENOENT);
1201 if (IS_DEADDIR(inode))
1202 goto out;
1203
1204 new = d_alloc(base, name);
1205 dentry = ERR_PTR(-ENOMEM);
1206 if (!new)
1207 goto out;
1208 dentry = inode->i_op->lookup(inode, new, nd);
1209 if (!dentry)
1210 dentry = new;
1211 else
1212 dput(new);
1213 }
1214 out:
1215 return dentry;
1216 }
1217
1218 /*
1219 * Restricted form of lookup. Doesn't follow links, single-component only,
1220 * needs parent already locked. Doesn't follow mounts.
1221 * SMP-safe.
1222 */
1223 static struct dentry *lookup_hash(struct nameidata *nd)
1224 {
1225 int err;
1226
1227 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1228 if (err)
1229 return ERR_PTR(err);
1230 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1231 }
1232
1233 static int __lookup_one_len(const char *name, struct qstr *this,
1234 struct dentry *base, int len)
1235 {
1236 unsigned long hash;
1237 unsigned int c;
1238
1239 this->name = name;
1240 this->len = len;
1241 if (!len)
1242 return -EACCES;
1243
1244 hash = init_name_hash();
1245 while (len--) {
1246 c = *(const unsigned char *)name++;
1247 if (c == '/' || c == '\0')
1248 return -EACCES;
1249 hash = partial_name_hash(c, hash);
1250 }
1251 this->hash = end_name_hash(hash);
1252 return 0;
1253 }
1254
1255 /**
1256 * lookup_one_len - filesystem helper to lookup single pathname component
1257 * @name: pathname component to lookup
1258 * @base: base directory to lookup from
1259 * @len: maximum length @len should be interpreted to
1260 *
1261 * Note that this routine is purely a helper for filesystem usage and should
1262 * not be called by generic code. Also note that by using this function the
1263 * nameidata argument is passed to the filesystem methods and a filesystem
1264 * using this helper needs to be prepared for that.
1265 */
1266 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1267 {
1268 int err;
1269 struct qstr this;
1270
1271 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1272
1273 err = __lookup_one_len(name, &this, base, len);
1274 if (err)
1275 return ERR_PTR(err);
1276
1277 err = inode_permission(base->d_inode, MAY_EXEC);
1278 if (err)
1279 return ERR_PTR(err);
1280 return __lookup_hash(&this, base, NULL);
1281 }
1282
1283 /**
1284 * lookup_one_noperm - bad hack for sysfs
1285 * @name: pathname component to lookup
1286 * @base: base directory to lookup from
1287 *
1288 * This is a variant of lookup_one_len that doesn't perform any permission
1289 * checks. It's a horrible hack to work around the braindead sysfs
1290 * architecture and should not be used anywhere else.
1291 *
1292 * DON'T USE THIS FUNCTION EVER, thanks.
1293 */
1294 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1295 {
1296 int err;
1297 struct qstr this;
1298
1299 err = __lookup_one_len(name, &this, base, strlen(name));
1300 if (err)
1301 return ERR_PTR(err);
1302 return __lookup_hash(&this, base, NULL);
1303 }
1304
1305 int user_path_at(int dfd, const char __user *name, unsigned flags,
1306 struct path *path)
1307 {
1308 struct nameidata nd;
1309 char *tmp = getname(name);
1310 int err = PTR_ERR(tmp);
1311 if (!IS_ERR(tmp)) {
1312
1313 BUG_ON(flags & LOOKUP_PARENT);
1314
1315 err = do_path_lookup(dfd, tmp, flags, &nd);
1316 putname(tmp);
1317 if (!err)
1318 *path = nd.path;
1319 }
1320 return err;
1321 }
1322
1323 static int user_path_parent(int dfd, const char __user *path,
1324 struct nameidata *nd, char **name)
1325 {
1326 char *s = getname(path);
1327 int error;
1328
1329 if (IS_ERR(s))
1330 return PTR_ERR(s);
1331
1332 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1333 if (error)
1334 putname(s);
1335 else
1336 *name = s;
1337
1338 return error;
1339 }
1340
1341 /*
1342 * It's inline, so penalty for filesystems that don't use sticky bit is
1343 * minimal.
1344 */
1345 static inline int check_sticky(struct inode *dir, struct inode *inode)
1346 {
1347 uid_t fsuid = current_fsuid();
1348
1349 if (!(dir->i_mode & S_ISVTX))
1350 return 0;
1351 if (inode->i_uid == fsuid)
1352 return 0;
1353 if (dir->i_uid == fsuid)
1354 return 0;
1355 return !capable(CAP_FOWNER);
1356 }
1357
1358 /*
1359 * Check whether we can remove a link victim from directory dir, check
1360 * whether the type of victim is right.
1361 * 1. We can't do it if dir is read-only (done in permission())
1362 * 2. We should have write and exec permissions on dir
1363 * 3. We can't remove anything from append-only dir
1364 * 4. We can't do anything with immutable dir (done in permission())
1365 * 5. If the sticky bit on dir is set we should either
1366 * a. be owner of dir, or
1367 * b. be owner of victim, or
1368 * c. have CAP_FOWNER capability
1369 * 6. If the victim is append-only or immutable we can't do antyhing with
1370 * links pointing to it.
1371 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1372 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1373 * 9. We can't remove a root or mountpoint.
1374 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1375 * nfs_async_unlink().
1376 */
1377 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1378 {
1379 int error;
1380
1381 if (!victim->d_inode)
1382 return -ENOENT;
1383
1384 BUG_ON(victim->d_parent->d_inode != dir);
1385 audit_inode_child(victim->d_name.name, victim, dir);
1386
1387 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1388 if (error)
1389 return error;
1390 if (IS_APPEND(dir))
1391 return -EPERM;
1392 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1393 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1394 return -EPERM;
1395 if (isdir) {
1396 if (!S_ISDIR(victim->d_inode->i_mode))
1397 return -ENOTDIR;
1398 if (IS_ROOT(victim))
1399 return -EBUSY;
1400 } else if (S_ISDIR(victim->d_inode->i_mode))
1401 return -EISDIR;
1402 if (IS_DEADDIR(dir))
1403 return -ENOENT;
1404 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1405 return -EBUSY;
1406 return 0;
1407 }
1408
1409 /* Check whether we can create an object with dentry child in directory
1410 * dir.
1411 * 1. We can't do it if child already exists (open has special treatment for
1412 * this case, but since we are inlined it's OK)
1413 * 2. We can't do it if dir is read-only (done in permission())
1414 * 3. We should have write and exec permissions on dir
1415 * 4. We can't do it if dir is immutable (done in permission())
1416 */
1417 static inline int may_create(struct inode *dir, struct dentry *child)
1418 {
1419 if (child->d_inode)
1420 return -EEXIST;
1421 if (IS_DEADDIR(dir))
1422 return -ENOENT;
1423 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1424 }
1425
1426 /*
1427 * O_DIRECTORY translates into forcing a directory lookup.
1428 */
1429 static inline int lookup_flags(unsigned int f)
1430 {
1431 unsigned long retval = LOOKUP_FOLLOW;
1432
1433 if (f & O_NOFOLLOW)
1434 retval &= ~LOOKUP_FOLLOW;
1435
1436 if (f & O_DIRECTORY)
1437 retval |= LOOKUP_DIRECTORY;
1438
1439 return retval;
1440 }
1441
1442 /*
1443 * p1 and p2 should be directories on the same fs.
1444 */
1445 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1446 {
1447 struct dentry *p;
1448
1449 if (p1 == p2) {
1450 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1451 return NULL;
1452 }
1453
1454 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1455
1456 p = d_ancestor(p2, p1);
1457 if (p) {
1458 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1459 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1460 return p;
1461 }
1462
1463 p = d_ancestor(p1, p2);
1464 if (p) {
1465 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1466 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1467 return p;
1468 }
1469
1470 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1471 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1472 return NULL;
1473 }
1474
1475 void unlock_rename(struct dentry *p1, struct dentry *p2)
1476 {
1477 mutex_unlock(&p1->d_inode->i_mutex);
1478 if (p1 != p2) {
1479 mutex_unlock(&p2->d_inode->i_mutex);
1480 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1481 }
1482 }
1483
1484 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1485 struct nameidata *nd)
1486 {
1487 int error = may_create(dir, dentry);
1488
1489 if (error)
1490 return error;
1491
1492 if (!dir->i_op->create)
1493 return -EACCES; /* shouldn't it be ENOSYS? */
1494 mode &= S_IALLUGO;
1495 mode |= S_IFREG;
1496 error = security_inode_create(dir, dentry, mode);
1497 if (error)
1498 return error;
1499 vfs_dq_init(dir);
1500 error = dir->i_op->create(dir, dentry, mode, nd);
1501 if (!error)
1502 fsnotify_create(dir, dentry);
1503 return error;
1504 }
1505
1506 int may_open(struct path *path, int acc_mode, int flag)
1507 {
1508 struct dentry *dentry = path->dentry;
1509 struct inode *inode = dentry->d_inode;
1510 int error;
1511
1512 if (!inode)
1513 return -ENOENT;
1514
1515 switch (inode->i_mode & S_IFMT) {
1516 case S_IFLNK:
1517 return -ELOOP;
1518 case S_IFDIR:
1519 if (acc_mode & MAY_WRITE)
1520 return -EISDIR;
1521 break;
1522 case S_IFBLK:
1523 case S_IFCHR:
1524 if (path->mnt->mnt_flags & MNT_NODEV)
1525 return -EACCES;
1526 /*FALLTHRU*/
1527 case S_IFIFO:
1528 case S_IFSOCK:
1529 flag &= ~O_TRUNC;
1530 break;
1531 }
1532
1533 error = inode_permission(inode, acc_mode);
1534 if (error)
1535 return error;
1536
1537 error = ima_path_check(path,
1538 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC),
1539 IMA_COUNT_UPDATE);
1540 if (error)
1541 return error;
1542 /*
1543 * An append-only file must be opened in append mode for writing.
1544 */
1545 if (IS_APPEND(inode)) {
1546 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1547 return -EPERM;
1548 if (flag & O_TRUNC)
1549 return -EPERM;
1550 }
1551
1552 /* O_NOATIME can only be set by the owner or superuser */
1553 if (flag & O_NOATIME)
1554 if (!is_owner_or_cap(inode))
1555 return -EPERM;
1556
1557 /*
1558 * Ensure there are no outstanding leases on the file.
1559 */
1560 error = break_lease(inode, flag);
1561 if (error)
1562 return error;
1563
1564 if (flag & O_TRUNC) {
1565 error = get_write_access(inode);
1566 if (error)
1567 return error;
1568
1569 /*
1570 * Refuse to truncate files with mandatory locks held on them.
1571 */
1572 error = locks_verify_locked(inode);
1573 if (!error)
1574 error = security_path_truncate(path, 0,
1575 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1576 if (!error) {
1577 vfs_dq_init(inode);
1578
1579 error = do_truncate(dentry, 0,
1580 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1581 NULL);
1582 }
1583 put_write_access(inode);
1584 if (error)
1585 return error;
1586 } else
1587 if (flag & FMODE_WRITE)
1588 vfs_dq_init(inode);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Be careful about ever adding any more callers of this
1595 * function. Its flags must be in the namei format, not
1596 * what get passed to sys_open().
1597 */
1598 static int __open_namei_create(struct nameidata *nd, struct path *path,
1599 int flag, int mode)
1600 {
1601 int error;
1602 struct dentry *dir = nd->path.dentry;
1603
1604 if (!IS_POSIXACL(dir->d_inode))
1605 mode &= ~current_umask();
1606 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1607 if (error)
1608 goto out_unlock;
1609 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1610 out_unlock:
1611 mutex_unlock(&dir->d_inode->i_mutex);
1612 dput(nd->path.dentry);
1613 nd->path.dentry = path->dentry;
1614 if (error)
1615 return error;
1616 /* Don't check for write permission, don't truncate */
1617 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1618 }
1619
1620 /*
1621 * Note that while the flag value (low two bits) for sys_open means:
1622 * 00 - read-only
1623 * 01 - write-only
1624 * 10 - read-write
1625 * 11 - special
1626 * it is changed into
1627 * 00 - no permissions needed
1628 * 01 - read-permission
1629 * 10 - write-permission
1630 * 11 - read-write
1631 * for the internal routines (ie open_namei()/follow_link() etc)
1632 * This is more logical, and also allows the 00 "no perm needed"
1633 * to be used for symlinks (where the permissions are checked
1634 * later).
1635 *
1636 */
1637 static inline int open_to_namei_flags(int flag)
1638 {
1639 if ((flag+1) & O_ACCMODE)
1640 flag++;
1641 return flag;
1642 }
1643
1644 static int open_will_write_to_fs(int flag, struct inode *inode)
1645 {
1646 /*
1647 * We'll never write to the fs underlying
1648 * a device file.
1649 */
1650 if (special_file(inode->i_mode))
1651 return 0;
1652 return (flag & O_TRUNC);
1653 }
1654
1655 /*
1656 * Note that the low bits of the passed in "open_flag"
1657 * are not the same as in the local variable "flag". See
1658 * open_to_namei_flags() for more details.
1659 */
1660 struct file *do_filp_open(int dfd, const char *pathname,
1661 int open_flag, int mode, int acc_mode)
1662 {
1663 struct file *filp;
1664 struct nameidata nd;
1665 int error;
1666 struct path path;
1667 struct dentry *dir;
1668 int count = 0;
1669 int will_write;
1670 int flag = open_to_namei_flags(open_flag);
1671
1672 if (!acc_mode)
1673 acc_mode = MAY_OPEN | ACC_MODE(flag);
1674
1675 /* O_TRUNC implies we need access checks for write permissions */
1676 if (flag & O_TRUNC)
1677 acc_mode |= MAY_WRITE;
1678
1679 /* Allow the LSM permission hook to distinguish append
1680 access from general write access. */
1681 if (flag & O_APPEND)
1682 acc_mode |= MAY_APPEND;
1683
1684 /*
1685 * The simplest case - just a plain lookup.
1686 */
1687 if (!(flag & O_CREAT)) {
1688 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1689 &nd, flag);
1690 if (error)
1691 return ERR_PTR(error);
1692 goto ok;
1693 }
1694
1695 /*
1696 * Create - we need to know the parent.
1697 */
1698 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1699 if (error)
1700 return ERR_PTR(error);
1701 error = path_walk(pathname, &nd);
1702 if (error)
1703 return ERR_PTR(error);
1704 if (unlikely(!audit_dummy_context()))
1705 audit_inode(pathname, nd.path.dentry);
1706
1707 /*
1708 * We have the parent and last component. First of all, check
1709 * that we are not asked to creat(2) an obvious directory - that
1710 * will not do.
1711 */
1712 error = -EISDIR;
1713 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1714 goto exit_parent;
1715
1716 error = -ENFILE;
1717 filp = get_empty_filp();
1718 if (filp == NULL)
1719 goto exit_parent;
1720 nd.intent.open.file = filp;
1721 nd.intent.open.flags = flag;
1722 nd.intent.open.create_mode = mode;
1723 dir = nd.path.dentry;
1724 nd.flags &= ~LOOKUP_PARENT;
1725 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1726 if (flag & O_EXCL)
1727 nd.flags |= LOOKUP_EXCL;
1728 mutex_lock(&dir->d_inode->i_mutex);
1729 path.dentry = lookup_hash(&nd);
1730 path.mnt = nd.path.mnt;
1731
1732 do_last:
1733 error = PTR_ERR(path.dentry);
1734 if (IS_ERR(path.dentry)) {
1735 mutex_unlock(&dir->d_inode->i_mutex);
1736 goto exit;
1737 }
1738
1739 if (IS_ERR(nd.intent.open.file)) {
1740 error = PTR_ERR(nd.intent.open.file);
1741 goto exit_mutex_unlock;
1742 }
1743
1744 /* Negative dentry, just create the file */
1745 if (!path.dentry->d_inode) {
1746 /*
1747 * This write is needed to ensure that a
1748 * ro->rw transition does not occur between
1749 * the time when the file is created and when
1750 * a permanent write count is taken through
1751 * the 'struct file' in nameidata_to_filp().
1752 */
1753 error = mnt_want_write(nd.path.mnt);
1754 if (error)
1755 goto exit_mutex_unlock;
1756 error = __open_namei_create(&nd, &path, flag, mode);
1757 if (error) {
1758 mnt_drop_write(nd.path.mnt);
1759 goto exit;
1760 }
1761 filp = nameidata_to_filp(&nd, open_flag);
1762 mnt_drop_write(nd.path.mnt);
1763 return filp;
1764 }
1765
1766 /*
1767 * It already exists.
1768 */
1769 mutex_unlock(&dir->d_inode->i_mutex);
1770 audit_inode(pathname, path.dentry);
1771
1772 error = -EEXIST;
1773 if (flag & O_EXCL)
1774 goto exit_dput;
1775
1776 if (__follow_mount(&path)) {
1777 error = -ELOOP;
1778 if (flag & O_NOFOLLOW)
1779 goto exit_dput;
1780 }
1781
1782 error = -ENOENT;
1783 if (!path.dentry->d_inode)
1784 goto exit_dput;
1785 if (path.dentry->d_inode->i_op->follow_link)
1786 goto do_link;
1787
1788 path_to_nameidata(&path, &nd);
1789 error = -EISDIR;
1790 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1791 goto exit;
1792 ok:
1793 /*
1794 * Consider:
1795 * 1. may_open() truncates a file
1796 * 2. a rw->ro mount transition occurs
1797 * 3. nameidata_to_filp() fails due to
1798 * the ro mount.
1799 * That would be inconsistent, and should
1800 * be avoided. Taking this mnt write here
1801 * ensures that (2) can not occur.
1802 */
1803 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1804 if (will_write) {
1805 error = mnt_want_write(nd.path.mnt);
1806 if (error)
1807 goto exit;
1808 }
1809 error = may_open(&nd.path, acc_mode, flag);
1810 if (error) {
1811 if (will_write)
1812 mnt_drop_write(nd.path.mnt);
1813 goto exit;
1814 }
1815 filp = nameidata_to_filp(&nd, open_flag);
1816 /*
1817 * It is now safe to drop the mnt write
1818 * because the filp has had a write taken
1819 * on its behalf.
1820 */
1821 if (will_write)
1822 mnt_drop_write(nd.path.mnt);
1823 return filp;
1824
1825 exit_mutex_unlock:
1826 mutex_unlock(&dir->d_inode->i_mutex);
1827 exit_dput:
1828 path_put_conditional(&path, &nd);
1829 exit:
1830 if (!IS_ERR(nd.intent.open.file))
1831 release_open_intent(&nd);
1832 exit_parent:
1833 if (nd.root.mnt)
1834 path_put(&nd.root);
1835 path_put(&nd.path);
1836 return ERR_PTR(error);
1837
1838 do_link:
1839 error = -ELOOP;
1840 if (flag & O_NOFOLLOW)
1841 goto exit_dput;
1842 /*
1843 * This is subtle. Instead of calling do_follow_link() we do the
1844 * thing by hands. The reason is that this way we have zero link_count
1845 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1846 * After that we have the parent and last component, i.e.
1847 * we are in the same situation as after the first path_walk().
1848 * Well, almost - if the last component is normal we get its copy
1849 * stored in nd->last.name and we will have to putname() it when we
1850 * are done. Procfs-like symlinks just set LAST_BIND.
1851 */
1852 nd.flags |= LOOKUP_PARENT;
1853 error = security_inode_follow_link(path.dentry, &nd);
1854 if (error)
1855 goto exit_dput;
1856 error = __do_follow_link(&path, &nd);
1857 if (error) {
1858 /* Does someone understand code flow here? Or it is only
1859 * me so stupid? Anathema to whoever designed this non-sense
1860 * with "intent.open".
1861 */
1862 release_open_intent(&nd);
1863 return ERR_PTR(error);
1864 }
1865 nd.flags &= ~LOOKUP_PARENT;
1866 if (nd.last_type == LAST_BIND)
1867 goto ok;
1868 error = -EISDIR;
1869 if (nd.last_type != LAST_NORM)
1870 goto exit;
1871 if (nd.last.name[nd.last.len]) {
1872 __putname(nd.last.name);
1873 goto exit;
1874 }
1875 error = -ELOOP;
1876 if (count++==32) {
1877 __putname(nd.last.name);
1878 goto exit;
1879 }
1880 dir = nd.path.dentry;
1881 mutex_lock(&dir->d_inode->i_mutex);
1882 path.dentry = lookup_hash(&nd);
1883 path.mnt = nd.path.mnt;
1884 __putname(nd.last.name);
1885 goto do_last;
1886 }
1887
1888 /**
1889 * filp_open - open file and return file pointer
1890 *
1891 * @filename: path to open
1892 * @flags: open flags as per the open(2) second argument
1893 * @mode: mode for the new file if O_CREAT is set, else ignored
1894 *
1895 * This is the helper to open a file from kernelspace if you really
1896 * have to. But in generally you should not do this, so please move
1897 * along, nothing to see here..
1898 */
1899 struct file *filp_open(const char *filename, int flags, int mode)
1900 {
1901 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1902 }
1903 EXPORT_SYMBOL(filp_open);
1904
1905 /**
1906 * lookup_create - lookup a dentry, creating it if it doesn't exist
1907 * @nd: nameidata info
1908 * @is_dir: directory flag
1909 *
1910 * Simple function to lookup and return a dentry and create it
1911 * if it doesn't exist. Is SMP-safe.
1912 *
1913 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1914 */
1915 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1916 {
1917 struct dentry *dentry = ERR_PTR(-EEXIST);
1918
1919 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1920 /*
1921 * Yucky last component or no last component at all?
1922 * (foo/., foo/.., /////)
1923 */
1924 if (nd->last_type != LAST_NORM)
1925 goto fail;
1926 nd->flags &= ~LOOKUP_PARENT;
1927 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1928 nd->intent.open.flags = O_EXCL;
1929
1930 /*
1931 * Do the final lookup.
1932 */
1933 dentry = lookup_hash(nd);
1934 if (IS_ERR(dentry))
1935 goto fail;
1936
1937 if (dentry->d_inode)
1938 goto eexist;
1939 /*
1940 * Special case - lookup gave negative, but... we had foo/bar/
1941 * From the vfs_mknod() POV we just have a negative dentry -
1942 * all is fine. Let's be bastards - you had / on the end, you've
1943 * been asking for (non-existent) directory. -ENOENT for you.
1944 */
1945 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1946 dput(dentry);
1947 dentry = ERR_PTR(-ENOENT);
1948 }
1949 return dentry;
1950 eexist:
1951 dput(dentry);
1952 dentry = ERR_PTR(-EEXIST);
1953 fail:
1954 return dentry;
1955 }
1956 EXPORT_SYMBOL_GPL(lookup_create);
1957
1958 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1959 {
1960 int error = may_create(dir, dentry);
1961
1962 if (error)
1963 return error;
1964
1965 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1966 return -EPERM;
1967
1968 if (!dir->i_op->mknod)
1969 return -EPERM;
1970
1971 error = devcgroup_inode_mknod(mode, dev);
1972 if (error)
1973 return error;
1974
1975 error = security_inode_mknod(dir, dentry, mode, dev);
1976 if (error)
1977 return error;
1978
1979 vfs_dq_init(dir);
1980 error = dir->i_op->mknod(dir, dentry, mode, dev);
1981 if (!error)
1982 fsnotify_create(dir, dentry);
1983 return error;
1984 }
1985
1986 static int may_mknod(mode_t mode)
1987 {
1988 switch (mode & S_IFMT) {
1989 case S_IFREG:
1990 case S_IFCHR:
1991 case S_IFBLK:
1992 case S_IFIFO:
1993 case S_IFSOCK:
1994 case 0: /* zero mode translates to S_IFREG */
1995 return 0;
1996 case S_IFDIR:
1997 return -EPERM;
1998 default:
1999 return -EINVAL;
2000 }
2001 }
2002
2003 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2004 unsigned, dev)
2005 {
2006 int error;
2007 char *tmp;
2008 struct dentry *dentry;
2009 struct nameidata nd;
2010
2011 if (S_ISDIR(mode))
2012 return -EPERM;
2013
2014 error = user_path_parent(dfd, filename, &nd, &tmp);
2015 if (error)
2016 return error;
2017
2018 dentry = lookup_create(&nd, 0);
2019 if (IS_ERR(dentry)) {
2020 error = PTR_ERR(dentry);
2021 goto out_unlock;
2022 }
2023 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2024 mode &= ~current_umask();
2025 error = may_mknod(mode);
2026 if (error)
2027 goto out_dput;
2028 error = mnt_want_write(nd.path.mnt);
2029 if (error)
2030 goto out_dput;
2031 error = security_path_mknod(&nd.path, dentry, mode, dev);
2032 if (error)
2033 goto out_drop_write;
2034 switch (mode & S_IFMT) {
2035 case 0: case S_IFREG:
2036 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2037 break;
2038 case S_IFCHR: case S_IFBLK:
2039 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2040 new_decode_dev(dev));
2041 break;
2042 case S_IFIFO: case S_IFSOCK:
2043 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2044 break;
2045 }
2046 out_drop_write:
2047 mnt_drop_write(nd.path.mnt);
2048 out_dput:
2049 dput(dentry);
2050 out_unlock:
2051 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2052 path_put(&nd.path);
2053 putname(tmp);
2054
2055 return error;
2056 }
2057
2058 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2059 {
2060 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2061 }
2062
2063 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2064 {
2065 int error = may_create(dir, dentry);
2066
2067 if (error)
2068 return error;
2069
2070 if (!dir->i_op->mkdir)
2071 return -EPERM;
2072
2073 mode &= (S_IRWXUGO|S_ISVTX);
2074 error = security_inode_mkdir(dir, dentry, mode);
2075 if (error)
2076 return error;
2077
2078 vfs_dq_init(dir);
2079 error = dir->i_op->mkdir(dir, dentry, mode);
2080 if (!error)
2081 fsnotify_mkdir(dir, dentry);
2082 return error;
2083 }
2084
2085 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2086 {
2087 int error = 0;
2088 char * tmp;
2089 struct dentry *dentry;
2090 struct nameidata nd;
2091
2092 error = user_path_parent(dfd, pathname, &nd, &tmp);
2093 if (error)
2094 goto out_err;
2095
2096 dentry = lookup_create(&nd, 1);
2097 error = PTR_ERR(dentry);
2098 if (IS_ERR(dentry))
2099 goto out_unlock;
2100
2101 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2102 mode &= ~current_umask();
2103 error = mnt_want_write(nd.path.mnt);
2104 if (error)
2105 goto out_dput;
2106 error = security_path_mkdir(&nd.path, dentry, mode);
2107 if (error)
2108 goto out_drop_write;
2109 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2110 out_drop_write:
2111 mnt_drop_write(nd.path.mnt);
2112 out_dput:
2113 dput(dentry);
2114 out_unlock:
2115 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2116 path_put(&nd.path);
2117 putname(tmp);
2118 out_err:
2119 return error;
2120 }
2121
2122 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2123 {
2124 return sys_mkdirat(AT_FDCWD, pathname, mode);
2125 }
2126
2127 /*
2128 * We try to drop the dentry early: we should have
2129 * a usage count of 2 if we're the only user of this
2130 * dentry, and if that is true (possibly after pruning
2131 * the dcache), then we drop the dentry now.
2132 *
2133 * A low-level filesystem can, if it choses, legally
2134 * do a
2135 *
2136 * if (!d_unhashed(dentry))
2137 * return -EBUSY;
2138 *
2139 * if it cannot handle the case of removing a directory
2140 * that is still in use by something else..
2141 */
2142 void dentry_unhash(struct dentry *dentry)
2143 {
2144 dget(dentry);
2145 shrink_dcache_parent(dentry);
2146 spin_lock(&dcache_lock);
2147 spin_lock(&dentry->d_lock);
2148 if (atomic_read(&dentry->d_count) == 2)
2149 __d_drop(dentry);
2150 spin_unlock(&dentry->d_lock);
2151 spin_unlock(&dcache_lock);
2152 }
2153
2154 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2155 {
2156 int error = may_delete(dir, dentry, 1);
2157
2158 if (error)
2159 return error;
2160
2161 if (!dir->i_op->rmdir)
2162 return -EPERM;
2163
2164 vfs_dq_init(dir);
2165
2166 mutex_lock(&dentry->d_inode->i_mutex);
2167 dentry_unhash(dentry);
2168 if (d_mountpoint(dentry))
2169 error = -EBUSY;
2170 else {
2171 error = security_inode_rmdir(dir, dentry);
2172 if (!error) {
2173 error = dir->i_op->rmdir(dir, dentry);
2174 if (!error)
2175 dentry->d_inode->i_flags |= S_DEAD;
2176 }
2177 }
2178 mutex_unlock(&dentry->d_inode->i_mutex);
2179 if (!error) {
2180 d_delete(dentry);
2181 }
2182 dput(dentry);
2183
2184 return error;
2185 }
2186
2187 static long do_rmdir(int dfd, const char __user *pathname)
2188 {
2189 int error = 0;
2190 char * name;
2191 struct dentry *dentry;
2192 struct nameidata nd;
2193
2194 error = user_path_parent(dfd, pathname, &nd, &name);
2195 if (error)
2196 return error;
2197
2198 switch(nd.last_type) {
2199 case LAST_DOTDOT:
2200 error = -ENOTEMPTY;
2201 goto exit1;
2202 case LAST_DOT:
2203 error = -EINVAL;
2204 goto exit1;
2205 case LAST_ROOT:
2206 error = -EBUSY;
2207 goto exit1;
2208 }
2209
2210 nd.flags &= ~LOOKUP_PARENT;
2211
2212 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2213 dentry = lookup_hash(&nd);
2214 error = PTR_ERR(dentry);
2215 if (IS_ERR(dentry))
2216 goto exit2;
2217 error = mnt_want_write(nd.path.mnt);
2218 if (error)
2219 goto exit3;
2220 error = security_path_rmdir(&nd.path, dentry);
2221 if (error)
2222 goto exit4;
2223 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2224 exit4:
2225 mnt_drop_write(nd.path.mnt);
2226 exit3:
2227 dput(dentry);
2228 exit2:
2229 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2230 exit1:
2231 path_put(&nd.path);
2232 putname(name);
2233 return error;
2234 }
2235
2236 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2237 {
2238 return do_rmdir(AT_FDCWD, pathname);
2239 }
2240
2241 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2242 {
2243 int error = may_delete(dir, dentry, 0);
2244
2245 if (error)
2246 return error;
2247
2248 if (!dir->i_op->unlink)
2249 return -EPERM;
2250
2251 vfs_dq_init(dir);
2252
2253 mutex_lock(&dentry->d_inode->i_mutex);
2254 if (d_mountpoint(dentry))
2255 error = -EBUSY;
2256 else {
2257 error = security_inode_unlink(dir, dentry);
2258 if (!error)
2259 error = dir->i_op->unlink(dir, dentry);
2260 }
2261 mutex_unlock(&dentry->d_inode->i_mutex);
2262
2263 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2264 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2265 fsnotify_link_count(dentry->d_inode);
2266 d_delete(dentry);
2267 }
2268
2269 return error;
2270 }
2271
2272 /*
2273 * Make sure that the actual truncation of the file will occur outside its
2274 * directory's i_mutex. Truncate can take a long time if there is a lot of
2275 * writeout happening, and we don't want to prevent access to the directory
2276 * while waiting on the I/O.
2277 */
2278 static long do_unlinkat(int dfd, const char __user *pathname)
2279 {
2280 int error;
2281 char *name;
2282 struct dentry *dentry;
2283 struct nameidata nd;
2284 struct inode *inode = NULL;
2285
2286 error = user_path_parent(dfd, pathname, &nd, &name);
2287 if (error)
2288 return error;
2289
2290 error = -EISDIR;
2291 if (nd.last_type != LAST_NORM)
2292 goto exit1;
2293
2294 nd.flags &= ~LOOKUP_PARENT;
2295
2296 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2297 dentry = lookup_hash(&nd);
2298 error = PTR_ERR(dentry);
2299 if (!IS_ERR(dentry)) {
2300 /* Why not before? Because we want correct error value */
2301 if (nd.last.name[nd.last.len])
2302 goto slashes;
2303 inode = dentry->d_inode;
2304 if (inode)
2305 atomic_inc(&inode->i_count);
2306 error = mnt_want_write(nd.path.mnt);
2307 if (error)
2308 goto exit2;
2309 error = security_path_unlink(&nd.path, dentry);
2310 if (error)
2311 goto exit3;
2312 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2313 exit3:
2314 mnt_drop_write(nd.path.mnt);
2315 exit2:
2316 dput(dentry);
2317 }
2318 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2319 if (inode)
2320 iput(inode); /* truncate the inode here */
2321 exit1:
2322 path_put(&nd.path);
2323 putname(name);
2324 return error;
2325
2326 slashes:
2327 error = !dentry->d_inode ? -ENOENT :
2328 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2329 goto exit2;
2330 }
2331
2332 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2333 {
2334 if ((flag & ~AT_REMOVEDIR) != 0)
2335 return -EINVAL;
2336
2337 if (flag & AT_REMOVEDIR)
2338 return do_rmdir(dfd, pathname);
2339
2340 return do_unlinkat(dfd, pathname);
2341 }
2342
2343 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2344 {
2345 return do_unlinkat(AT_FDCWD, pathname);
2346 }
2347
2348 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2349 {
2350 int error = may_create(dir, dentry);
2351
2352 if (error)
2353 return error;
2354
2355 if (!dir->i_op->symlink)
2356 return -EPERM;
2357
2358 error = security_inode_symlink(dir, dentry, oldname);
2359 if (error)
2360 return error;
2361
2362 vfs_dq_init(dir);
2363 error = dir->i_op->symlink(dir, dentry, oldname);
2364 if (!error)
2365 fsnotify_create(dir, dentry);
2366 return error;
2367 }
2368
2369 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2370 int, newdfd, const char __user *, newname)
2371 {
2372 int error;
2373 char *from;
2374 char *to;
2375 struct dentry *dentry;
2376 struct nameidata nd;
2377
2378 from = getname(oldname);
2379 if (IS_ERR(from))
2380 return PTR_ERR(from);
2381
2382 error = user_path_parent(newdfd, newname, &nd, &to);
2383 if (error)
2384 goto out_putname;
2385
2386 dentry = lookup_create(&nd, 0);
2387 error = PTR_ERR(dentry);
2388 if (IS_ERR(dentry))
2389 goto out_unlock;
2390
2391 error = mnt_want_write(nd.path.mnt);
2392 if (error)
2393 goto out_dput;
2394 error = security_path_symlink(&nd.path, dentry, from);
2395 if (error)
2396 goto out_drop_write;
2397 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2398 out_drop_write:
2399 mnt_drop_write(nd.path.mnt);
2400 out_dput:
2401 dput(dentry);
2402 out_unlock:
2403 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2404 path_put(&nd.path);
2405 putname(to);
2406 out_putname:
2407 putname(from);
2408 return error;
2409 }
2410
2411 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2412 {
2413 return sys_symlinkat(oldname, AT_FDCWD, newname);
2414 }
2415
2416 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2417 {
2418 struct inode *inode = old_dentry->d_inode;
2419 int error;
2420
2421 if (!inode)
2422 return -ENOENT;
2423
2424 error = may_create(dir, new_dentry);
2425 if (error)
2426 return error;
2427
2428 if (dir->i_sb != inode->i_sb)
2429 return -EXDEV;
2430
2431 /*
2432 * A link to an append-only or immutable file cannot be created.
2433 */
2434 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2435 return -EPERM;
2436 if (!dir->i_op->link)
2437 return -EPERM;
2438 if (S_ISDIR(inode->i_mode))
2439 return -EPERM;
2440
2441 error = security_inode_link(old_dentry, dir, new_dentry);
2442 if (error)
2443 return error;
2444
2445 mutex_lock(&inode->i_mutex);
2446 vfs_dq_init(dir);
2447 error = dir->i_op->link(old_dentry, dir, new_dentry);
2448 mutex_unlock(&inode->i_mutex);
2449 if (!error)
2450 fsnotify_link(dir, inode, new_dentry);
2451 return error;
2452 }
2453
2454 /*
2455 * Hardlinks are often used in delicate situations. We avoid
2456 * security-related surprises by not following symlinks on the
2457 * newname. --KAB
2458 *
2459 * We don't follow them on the oldname either to be compatible
2460 * with linux 2.0, and to avoid hard-linking to directories
2461 * and other special files. --ADM
2462 */
2463 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2464 int, newdfd, const char __user *, newname, int, flags)
2465 {
2466 struct dentry *new_dentry;
2467 struct nameidata nd;
2468 struct path old_path;
2469 int error;
2470 char *to;
2471
2472 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2473 return -EINVAL;
2474
2475 error = user_path_at(olddfd, oldname,
2476 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2477 &old_path);
2478 if (error)
2479 return error;
2480
2481 error = user_path_parent(newdfd, newname, &nd, &to);
2482 if (error)
2483 goto out;
2484 error = -EXDEV;
2485 if (old_path.mnt != nd.path.mnt)
2486 goto out_release;
2487 new_dentry = lookup_create(&nd, 0);
2488 error = PTR_ERR(new_dentry);
2489 if (IS_ERR(new_dentry))
2490 goto out_unlock;
2491 error = mnt_want_write(nd.path.mnt);
2492 if (error)
2493 goto out_dput;
2494 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2495 if (error)
2496 goto out_drop_write;
2497 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2498 out_drop_write:
2499 mnt_drop_write(nd.path.mnt);
2500 out_dput:
2501 dput(new_dentry);
2502 out_unlock:
2503 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2504 out_release:
2505 path_put(&nd.path);
2506 putname(to);
2507 out:
2508 path_put(&old_path);
2509
2510 return error;
2511 }
2512
2513 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2514 {
2515 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2516 }
2517
2518 /*
2519 * The worst of all namespace operations - renaming directory. "Perverted"
2520 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2521 * Problems:
2522 * a) we can get into loop creation. Check is done in is_subdir().
2523 * b) race potential - two innocent renames can create a loop together.
2524 * That's where 4.4 screws up. Current fix: serialization on
2525 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2526 * story.
2527 * c) we have to lock _three_ objects - parents and victim (if it exists).
2528 * And that - after we got ->i_mutex on parents (until then we don't know
2529 * whether the target exists). Solution: try to be smart with locking
2530 * order for inodes. We rely on the fact that tree topology may change
2531 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2532 * move will be locked. Thus we can rank directories by the tree
2533 * (ancestors first) and rank all non-directories after them.
2534 * That works since everybody except rename does "lock parent, lookup,
2535 * lock child" and rename is under ->s_vfs_rename_mutex.
2536 * HOWEVER, it relies on the assumption that any object with ->lookup()
2537 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2538 * we'd better make sure that there's no link(2) for them.
2539 * d) some filesystems don't support opened-but-unlinked directories,
2540 * either because of layout or because they are not ready to deal with
2541 * all cases correctly. The latter will be fixed (taking this sort of
2542 * stuff into VFS), but the former is not going away. Solution: the same
2543 * trick as in rmdir().
2544 * e) conversion from fhandle to dentry may come in the wrong moment - when
2545 * we are removing the target. Solution: we will have to grab ->i_mutex
2546 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2547 * ->i_mutex on parents, which works but leads to some truely excessive
2548 * locking].
2549 */
2550 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2551 struct inode *new_dir, struct dentry *new_dentry)
2552 {
2553 int error = 0;
2554 struct inode *target;
2555
2556 /*
2557 * If we are going to change the parent - check write permissions,
2558 * we'll need to flip '..'.
2559 */
2560 if (new_dir != old_dir) {
2561 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2562 if (error)
2563 return error;
2564 }
2565
2566 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2567 if (error)
2568 return error;
2569
2570 target = new_dentry->d_inode;
2571 if (target) {
2572 mutex_lock(&target->i_mutex);
2573 dentry_unhash(new_dentry);
2574 }
2575 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2576 error = -EBUSY;
2577 else
2578 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2579 if (target) {
2580 if (!error)
2581 target->i_flags |= S_DEAD;
2582 mutex_unlock(&target->i_mutex);
2583 if (d_unhashed(new_dentry))
2584 d_rehash(new_dentry);
2585 dput(new_dentry);
2586 }
2587 if (!error)
2588 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2589 d_move(old_dentry,new_dentry);
2590 return error;
2591 }
2592
2593 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2594 struct inode *new_dir, struct dentry *new_dentry)
2595 {
2596 struct inode *target;
2597 int error;
2598
2599 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2600 if (error)
2601 return error;
2602
2603 dget(new_dentry);
2604 target = new_dentry->d_inode;
2605 if (target)
2606 mutex_lock(&target->i_mutex);
2607 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2608 error = -EBUSY;
2609 else
2610 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2611 if (!error) {
2612 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2613 d_move(old_dentry, new_dentry);
2614 }
2615 if (target)
2616 mutex_unlock(&target->i_mutex);
2617 dput(new_dentry);
2618 return error;
2619 }
2620
2621 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2622 struct inode *new_dir, struct dentry *new_dentry)
2623 {
2624 int error;
2625 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2626 const char *old_name;
2627
2628 if (old_dentry->d_inode == new_dentry->d_inode)
2629 return 0;
2630
2631 error = may_delete(old_dir, old_dentry, is_dir);
2632 if (error)
2633 return error;
2634
2635 if (!new_dentry->d_inode)
2636 error = may_create(new_dir, new_dentry);
2637 else
2638 error = may_delete(new_dir, new_dentry, is_dir);
2639 if (error)
2640 return error;
2641
2642 if (!old_dir->i_op->rename)
2643 return -EPERM;
2644
2645 vfs_dq_init(old_dir);
2646 vfs_dq_init(new_dir);
2647
2648 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2649
2650 if (is_dir)
2651 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2652 else
2653 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2654 if (!error) {
2655 const char *new_name = old_dentry->d_name.name;
2656 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2657 new_dentry->d_inode, old_dentry);
2658 }
2659 fsnotify_oldname_free(old_name);
2660
2661 return error;
2662 }
2663
2664 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2665 int, newdfd, const char __user *, newname)
2666 {
2667 struct dentry *old_dir, *new_dir;
2668 struct dentry *old_dentry, *new_dentry;
2669 struct dentry *trap;
2670 struct nameidata oldnd, newnd;
2671 char *from;
2672 char *to;
2673 int error;
2674
2675 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2676 if (error)
2677 goto exit;
2678
2679 error = user_path_parent(newdfd, newname, &newnd, &to);
2680 if (error)
2681 goto exit1;
2682
2683 error = -EXDEV;
2684 if (oldnd.path.mnt != newnd.path.mnt)
2685 goto exit2;
2686
2687 old_dir = oldnd.path.dentry;
2688 error = -EBUSY;
2689 if (oldnd.last_type != LAST_NORM)
2690 goto exit2;
2691
2692 new_dir = newnd.path.dentry;
2693 if (newnd.last_type != LAST_NORM)
2694 goto exit2;
2695
2696 oldnd.flags &= ~LOOKUP_PARENT;
2697 newnd.flags &= ~LOOKUP_PARENT;
2698 newnd.flags |= LOOKUP_RENAME_TARGET;
2699
2700 trap = lock_rename(new_dir, old_dir);
2701
2702 old_dentry = lookup_hash(&oldnd);
2703 error = PTR_ERR(old_dentry);
2704 if (IS_ERR(old_dentry))
2705 goto exit3;
2706 /* source must exist */
2707 error = -ENOENT;
2708 if (!old_dentry->d_inode)
2709 goto exit4;
2710 /* unless the source is a directory trailing slashes give -ENOTDIR */
2711 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2712 error = -ENOTDIR;
2713 if (oldnd.last.name[oldnd.last.len])
2714 goto exit4;
2715 if (newnd.last.name[newnd.last.len])
2716 goto exit4;
2717 }
2718 /* source should not be ancestor of target */
2719 error = -EINVAL;
2720 if (old_dentry == trap)
2721 goto exit4;
2722 new_dentry = lookup_hash(&newnd);
2723 error = PTR_ERR(new_dentry);
2724 if (IS_ERR(new_dentry))
2725 goto exit4;
2726 /* target should not be an ancestor of source */
2727 error = -ENOTEMPTY;
2728 if (new_dentry == trap)
2729 goto exit5;
2730
2731 error = mnt_want_write(oldnd.path.mnt);
2732 if (error)
2733 goto exit5;
2734 error = security_path_rename(&oldnd.path, old_dentry,
2735 &newnd.path, new_dentry);
2736 if (error)
2737 goto exit6;
2738 error = vfs_rename(old_dir->d_inode, old_dentry,
2739 new_dir->d_inode, new_dentry);
2740 exit6:
2741 mnt_drop_write(oldnd.path.mnt);
2742 exit5:
2743 dput(new_dentry);
2744 exit4:
2745 dput(old_dentry);
2746 exit3:
2747 unlock_rename(new_dir, old_dir);
2748 exit2:
2749 path_put(&newnd.path);
2750 putname(to);
2751 exit1:
2752 path_put(&oldnd.path);
2753 putname(from);
2754 exit:
2755 return error;
2756 }
2757
2758 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2759 {
2760 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2761 }
2762
2763 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2764 {
2765 int len;
2766
2767 len = PTR_ERR(link);
2768 if (IS_ERR(link))
2769 goto out;
2770
2771 len = strlen(link);
2772 if (len > (unsigned) buflen)
2773 len = buflen;
2774 if (copy_to_user(buffer, link, len))
2775 len = -EFAULT;
2776 out:
2777 return len;
2778 }
2779
2780 /*
2781 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2782 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2783 * using) it for any given inode is up to filesystem.
2784 */
2785 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2786 {
2787 struct nameidata nd;
2788 void *cookie;
2789 int res;
2790
2791 nd.depth = 0;
2792 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2793 if (IS_ERR(cookie))
2794 return PTR_ERR(cookie);
2795
2796 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2797 if (dentry->d_inode->i_op->put_link)
2798 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2799 return res;
2800 }
2801
2802 int vfs_follow_link(struct nameidata *nd, const char *link)
2803 {
2804 return __vfs_follow_link(nd, link);
2805 }
2806
2807 /* get the link contents into pagecache */
2808 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2809 {
2810 char *kaddr;
2811 struct page *page;
2812 struct address_space *mapping = dentry->d_inode->i_mapping;
2813 page = read_mapping_page(mapping, 0, NULL);
2814 if (IS_ERR(page))
2815 return (char*)page;
2816 *ppage = page;
2817 kaddr = kmap(page);
2818 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2819 return kaddr;
2820 }
2821
2822 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2823 {
2824 struct page *page = NULL;
2825 char *s = page_getlink(dentry, &page);
2826 int res = vfs_readlink(dentry,buffer,buflen,s);
2827 if (page) {
2828 kunmap(page);
2829 page_cache_release(page);
2830 }
2831 return res;
2832 }
2833
2834 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2835 {
2836 struct page *page = NULL;
2837 nd_set_link(nd, page_getlink(dentry, &page));
2838 return page;
2839 }
2840
2841 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2842 {
2843 struct page *page = cookie;
2844
2845 if (page) {
2846 kunmap(page);
2847 page_cache_release(page);
2848 }
2849 }
2850
2851 /*
2852 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2853 */
2854 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2855 {
2856 struct address_space *mapping = inode->i_mapping;
2857 struct page *page;
2858 void *fsdata;
2859 int err;
2860 char *kaddr;
2861 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2862 if (nofs)
2863 flags |= AOP_FLAG_NOFS;
2864
2865 retry:
2866 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2867 flags, &page, &fsdata);
2868 if (err)
2869 goto fail;
2870
2871 kaddr = kmap_atomic(page, KM_USER0);
2872 memcpy(kaddr, symname, len-1);
2873 kunmap_atomic(kaddr, KM_USER0);
2874
2875 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2876 page, fsdata);
2877 if (err < 0)
2878 goto fail;
2879 if (err < len-1)
2880 goto retry;
2881
2882 mark_inode_dirty(inode);
2883 return 0;
2884 fail:
2885 return err;
2886 }
2887
2888 int page_symlink(struct inode *inode, const char *symname, int len)
2889 {
2890 return __page_symlink(inode, symname, len,
2891 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2892 }
2893
2894 const struct inode_operations page_symlink_inode_operations = {
2895 .readlink = generic_readlink,
2896 .follow_link = page_follow_link_light,
2897 .put_link = page_put_link,
2898 };
2899
2900 EXPORT_SYMBOL(user_path_at);
2901 EXPORT_SYMBOL(follow_down);
2902 EXPORT_SYMBOL(follow_up);
2903 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2904 EXPORT_SYMBOL(getname);
2905 EXPORT_SYMBOL(lock_rename);
2906 EXPORT_SYMBOL(lookup_one_len);
2907 EXPORT_SYMBOL(page_follow_link_light);
2908 EXPORT_SYMBOL(page_put_link);
2909 EXPORT_SYMBOL(page_readlink);
2910 EXPORT_SYMBOL(__page_symlink);
2911 EXPORT_SYMBOL(page_symlink);
2912 EXPORT_SYMBOL(page_symlink_inode_operations);
2913 EXPORT_SYMBOL(path_lookup);
2914 EXPORT_SYMBOL(kern_path);
2915 EXPORT_SYMBOL(vfs_path_lookup);
2916 EXPORT_SYMBOL(inode_permission);
2917 EXPORT_SYMBOL(file_permission);
2918 EXPORT_SYMBOL(unlock_rename);
2919 EXPORT_SYMBOL(vfs_create);
2920 EXPORT_SYMBOL(vfs_follow_link);
2921 EXPORT_SYMBOL(vfs_link);
2922 EXPORT_SYMBOL(vfs_mkdir);
2923 EXPORT_SYMBOL(vfs_mknod);
2924 EXPORT_SYMBOL(generic_permission);
2925 EXPORT_SYMBOL(vfs_readlink);
2926 EXPORT_SYMBOL(vfs_rename);
2927 EXPORT_SYMBOL(vfs_rmdir);
2928 EXPORT_SYMBOL(vfs_symlink);
2929 EXPORT_SYMBOL(vfs_unlink);
2930 EXPORT_SYMBOL(dentry_unhash);
2931 EXPORT_SYMBOL(generic_readlink);
This page took 0.124447 seconds and 6 git commands to generate.