vfs: do_last(): make ENOENT exit RCU safe
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328 */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
335
336 /*
337 * Nobody gets write access to a read-only fs.
338 */
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
342
343 /*
344 * Nobody gets write access to an immutable file.
345 */
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
348 }
349
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
353
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
357
358 return security_inode_permission(inode, mask);
359 }
360
361 /**
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
364 *
365 * Given a path increment the reference count to the dentry and the vfsmount.
366 */
367 void path_get(struct path *path)
368 {
369 mntget(path->mnt);
370 dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373
374 /**
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
377 *
378 * Given a path decrement the reference count to the dentry and the vfsmount.
379 */
380 void path_put(struct path *path)
381 {
382 dput(path->dentry);
383 mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386
387 /*
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
396 */
397
398 /**
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
403 *
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
407 */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
413
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
421 }
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
433 /*
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
438 */
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
443 }
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
448 }
449 mntget(nd->path.mnt);
450
451 rcu_read_unlock();
452 br_read_unlock(&vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
455
456 err_child:
457 spin_unlock(&dentry->d_lock);
458 err_parent:
459 spin_unlock(&parent->d_lock);
460 err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
464 }
465
466 /**
467 * release_open_intent - free up open intent resources
468 * @nd: pointer to nameidata
469 */
470 void release_open_intent(struct nameidata *nd)
471 {
472 struct file *file = nd->intent.open.file;
473
474 if (file && !IS_ERR(file)) {
475 if (file->f_path.dentry == NULL)
476 put_filp(file);
477 else
478 fput(file);
479 }
480 }
481
482 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
483 {
484 return dentry->d_op->d_revalidate(dentry, nd);
485 }
486
487 /**
488 * complete_walk - successful completion of path walk
489 * @nd: pointer nameidata
490 *
491 * If we had been in RCU mode, drop out of it and legitimize nd->path.
492 * Revalidate the final result, unless we'd already done that during
493 * the path walk or the filesystem doesn't ask for it. Return 0 on
494 * success, -error on failure. In case of failure caller does not
495 * need to drop nd->path.
496 */
497 static int complete_walk(struct nameidata *nd)
498 {
499 struct dentry *dentry = nd->path.dentry;
500 int status;
501
502 if (nd->flags & LOOKUP_RCU) {
503 nd->flags &= ~LOOKUP_RCU;
504 if (!(nd->flags & LOOKUP_ROOT))
505 nd->root.mnt = NULL;
506 spin_lock(&dentry->d_lock);
507 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
508 spin_unlock(&dentry->d_lock);
509 rcu_read_unlock();
510 br_read_unlock(&vfsmount_lock);
511 return -ECHILD;
512 }
513 BUG_ON(nd->inode != dentry->d_inode);
514 spin_unlock(&dentry->d_lock);
515 mntget(nd->path.mnt);
516 rcu_read_unlock();
517 br_read_unlock(&vfsmount_lock);
518 }
519
520 if (likely(!(nd->flags & LOOKUP_JUMPED)))
521 return 0;
522
523 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
524 return 0;
525
526 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
527 return 0;
528
529 /* Note: we do not d_invalidate() */
530 status = d_revalidate(dentry, nd);
531 if (status > 0)
532 return 0;
533
534 if (!status)
535 status = -ESTALE;
536
537 path_put(&nd->path);
538 return status;
539 }
540
541 static __always_inline void set_root(struct nameidata *nd)
542 {
543 if (!nd->root.mnt)
544 get_fs_root(current->fs, &nd->root);
545 }
546
547 static int link_path_walk(const char *, struct nameidata *);
548
549 static __always_inline void set_root_rcu(struct nameidata *nd)
550 {
551 if (!nd->root.mnt) {
552 struct fs_struct *fs = current->fs;
553 unsigned seq;
554
555 do {
556 seq = read_seqcount_begin(&fs->seq);
557 nd->root = fs->root;
558 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
559 } while (read_seqcount_retry(&fs->seq, seq));
560 }
561 }
562
563 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
564 {
565 int ret;
566
567 if (IS_ERR(link))
568 goto fail;
569
570 if (*link == '/') {
571 set_root(nd);
572 path_put(&nd->path);
573 nd->path = nd->root;
574 path_get(&nd->root);
575 nd->flags |= LOOKUP_JUMPED;
576 }
577 nd->inode = nd->path.dentry->d_inode;
578
579 ret = link_path_walk(link, nd);
580 return ret;
581 fail:
582 path_put(&nd->path);
583 return PTR_ERR(link);
584 }
585
586 static void path_put_conditional(struct path *path, struct nameidata *nd)
587 {
588 dput(path->dentry);
589 if (path->mnt != nd->path.mnt)
590 mntput(path->mnt);
591 }
592
593 static inline void path_to_nameidata(const struct path *path,
594 struct nameidata *nd)
595 {
596 if (!(nd->flags & LOOKUP_RCU)) {
597 dput(nd->path.dentry);
598 if (nd->path.mnt != path->mnt)
599 mntput(nd->path.mnt);
600 }
601 nd->path.mnt = path->mnt;
602 nd->path.dentry = path->dentry;
603 }
604
605 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
606 {
607 struct inode *inode = link->dentry->d_inode;
608 if (!IS_ERR(cookie) && inode->i_op->put_link)
609 inode->i_op->put_link(link->dentry, nd, cookie);
610 path_put(link);
611 }
612
613 static __always_inline int
614 follow_link(struct path *link, struct nameidata *nd, void **p)
615 {
616 int error;
617 struct dentry *dentry = link->dentry;
618
619 BUG_ON(nd->flags & LOOKUP_RCU);
620
621 if (link->mnt == nd->path.mnt)
622 mntget(link->mnt);
623
624 if (unlikely(current->total_link_count >= 40)) {
625 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
626 path_put(&nd->path);
627 return -ELOOP;
628 }
629 cond_resched();
630 current->total_link_count++;
631
632 touch_atime(link);
633 nd_set_link(nd, NULL);
634
635 error = security_inode_follow_link(link->dentry, nd);
636 if (error) {
637 *p = ERR_PTR(error); /* no ->put_link(), please */
638 path_put(&nd->path);
639 return error;
640 }
641
642 nd->last_type = LAST_BIND;
643 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
644 error = PTR_ERR(*p);
645 if (!IS_ERR(*p)) {
646 char *s = nd_get_link(nd);
647 error = 0;
648 if (s)
649 error = __vfs_follow_link(nd, s);
650 else if (nd->last_type == LAST_BIND) {
651 nd->flags |= LOOKUP_JUMPED;
652 nd->inode = nd->path.dentry->d_inode;
653 if (nd->inode->i_op->follow_link) {
654 /* stepped on a _really_ weird one */
655 path_put(&nd->path);
656 error = -ELOOP;
657 }
658 }
659 }
660 return error;
661 }
662
663 static int follow_up_rcu(struct path *path)
664 {
665 struct mount *mnt = real_mount(path->mnt);
666 struct mount *parent;
667 struct dentry *mountpoint;
668
669 parent = mnt->mnt_parent;
670 if (&parent->mnt == path->mnt)
671 return 0;
672 mountpoint = mnt->mnt_mountpoint;
673 path->dentry = mountpoint;
674 path->mnt = &parent->mnt;
675 return 1;
676 }
677
678 int follow_up(struct path *path)
679 {
680 struct mount *mnt = real_mount(path->mnt);
681 struct mount *parent;
682 struct dentry *mountpoint;
683
684 br_read_lock(&vfsmount_lock);
685 parent = mnt->mnt_parent;
686 if (&parent->mnt == path->mnt) {
687 br_read_unlock(&vfsmount_lock);
688 return 0;
689 }
690 mntget(&parent->mnt);
691 mountpoint = dget(mnt->mnt_mountpoint);
692 br_read_unlock(&vfsmount_lock);
693 dput(path->dentry);
694 path->dentry = mountpoint;
695 mntput(path->mnt);
696 path->mnt = &parent->mnt;
697 return 1;
698 }
699
700 /*
701 * Perform an automount
702 * - return -EISDIR to tell follow_managed() to stop and return the path we
703 * were called with.
704 */
705 static int follow_automount(struct path *path, unsigned flags,
706 bool *need_mntput)
707 {
708 struct vfsmount *mnt;
709 int err;
710
711 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
712 return -EREMOTE;
713
714 /* We don't want to mount if someone's just doing a stat -
715 * unless they're stat'ing a directory and appended a '/' to
716 * the name.
717 *
718 * We do, however, want to mount if someone wants to open or
719 * create a file of any type under the mountpoint, wants to
720 * traverse through the mountpoint or wants to open the
721 * mounted directory. Also, autofs may mark negative dentries
722 * as being automount points. These will need the attentions
723 * of the daemon to instantiate them before they can be used.
724 */
725 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
726 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
727 path->dentry->d_inode)
728 return -EISDIR;
729
730 current->total_link_count++;
731 if (current->total_link_count >= 40)
732 return -ELOOP;
733
734 mnt = path->dentry->d_op->d_automount(path);
735 if (IS_ERR(mnt)) {
736 /*
737 * The filesystem is allowed to return -EISDIR here to indicate
738 * it doesn't want to automount. For instance, autofs would do
739 * this so that its userspace daemon can mount on this dentry.
740 *
741 * However, we can only permit this if it's a terminal point in
742 * the path being looked up; if it wasn't then the remainder of
743 * the path is inaccessible and we should say so.
744 */
745 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
746 return -EREMOTE;
747 return PTR_ERR(mnt);
748 }
749
750 if (!mnt) /* mount collision */
751 return 0;
752
753 if (!*need_mntput) {
754 /* lock_mount() may release path->mnt on error */
755 mntget(path->mnt);
756 *need_mntput = true;
757 }
758 err = finish_automount(mnt, path);
759
760 switch (err) {
761 case -EBUSY:
762 /* Someone else made a mount here whilst we were busy */
763 return 0;
764 case 0:
765 path_put(path);
766 path->mnt = mnt;
767 path->dentry = dget(mnt->mnt_root);
768 return 0;
769 default:
770 return err;
771 }
772
773 }
774
775 /*
776 * Handle a dentry that is managed in some way.
777 * - Flagged for transit management (autofs)
778 * - Flagged as mountpoint
779 * - Flagged as automount point
780 *
781 * This may only be called in refwalk mode.
782 *
783 * Serialization is taken care of in namespace.c
784 */
785 static int follow_managed(struct path *path, unsigned flags)
786 {
787 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
788 unsigned managed;
789 bool need_mntput = false;
790 int ret = 0;
791
792 /* Given that we're not holding a lock here, we retain the value in a
793 * local variable for each dentry as we look at it so that we don't see
794 * the components of that value change under us */
795 while (managed = ACCESS_ONCE(path->dentry->d_flags),
796 managed &= DCACHE_MANAGED_DENTRY,
797 unlikely(managed != 0)) {
798 /* Allow the filesystem to manage the transit without i_mutex
799 * being held. */
800 if (managed & DCACHE_MANAGE_TRANSIT) {
801 BUG_ON(!path->dentry->d_op);
802 BUG_ON(!path->dentry->d_op->d_manage);
803 ret = path->dentry->d_op->d_manage(path->dentry, false);
804 if (ret < 0)
805 break;
806 }
807
808 /* Transit to a mounted filesystem. */
809 if (managed & DCACHE_MOUNTED) {
810 struct vfsmount *mounted = lookup_mnt(path);
811 if (mounted) {
812 dput(path->dentry);
813 if (need_mntput)
814 mntput(path->mnt);
815 path->mnt = mounted;
816 path->dentry = dget(mounted->mnt_root);
817 need_mntput = true;
818 continue;
819 }
820
821 /* Something is mounted on this dentry in another
822 * namespace and/or whatever was mounted there in this
823 * namespace got unmounted before we managed to get the
824 * vfsmount_lock */
825 }
826
827 /* Handle an automount point */
828 if (managed & DCACHE_NEED_AUTOMOUNT) {
829 ret = follow_automount(path, flags, &need_mntput);
830 if (ret < 0)
831 break;
832 continue;
833 }
834
835 /* We didn't change the current path point */
836 break;
837 }
838
839 if (need_mntput && path->mnt == mnt)
840 mntput(path->mnt);
841 if (ret == -EISDIR)
842 ret = 0;
843 return ret < 0 ? ret : need_mntput;
844 }
845
846 int follow_down_one(struct path *path)
847 {
848 struct vfsmount *mounted;
849
850 mounted = lookup_mnt(path);
851 if (mounted) {
852 dput(path->dentry);
853 mntput(path->mnt);
854 path->mnt = mounted;
855 path->dentry = dget(mounted->mnt_root);
856 return 1;
857 }
858 return 0;
859 }
860
861 static inline bool managed_dentry_might_block(struct dentry *dentry)
862 {
863 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
864 dentry->d_op->d_manage(dentry, true) < 0);
865 }
866
867 /*
868 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
869 * we meet a managed dentry that would need blocking.
870 */
871 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
872 struct inode **inode)
873 {
874 for (;;) {
875 struct mount *mounted;
876 /*
877 * Don't forget we might have a non-mountpoint managed dentry
878 * that wants to block transit.
879 */
880 if (unlikely(managed_dentry_might_block(path->dentry)))
881 return false;
882
883 if (!d_mountpoint(path->dentry))
884 break;
885
886 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
887 if (!mounted)
888 break;
889 path->mnt = &mounted->mnt;
890 path->dentry = mounted->mnt.mnt_root;
891 nd->flags |= LOOKUP_JUMPED;
892 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
893 /*
894 * Update the inode too. We don't need to re-check the
895 * dentry sequence number here after this d_inode read,
896 * because a mount-point is always pinned.
897 */
898 *inode = path->dentry->d_inode;
899 }
900 return true;
901 }
902
903 static void follow_mount_rcu(struct nameidata *nd)
904 {
905 while (d_mountpoint(nd->path.dentry)) {
906 struct mount *mounted;
907 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
908 if (!mounted)
909 break;
910 nd->path.mnt = &mounted->mnt;
911 nd->path.dentry = mounted->mnt.mnt_root;
912 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
913 }
914 }
915
916 static int follow_dotdot_rcu(struct nameidata *nd)
917 {
918 set_root_rcu(nd);
919
920 while (1) {
921 if (nd->path.dentry == nd->root.dentry &&
922 nd->path.mnt == nd->root.mnt) {
923 break;
924 }
925 if (nd->path.dentry != nd->path.mnt->mnt_root) {
926 struct dentry *old = nd->path.dentry;
927 struct dentry *parent = old->d_parent;
928 unsigned seq;
929
930 seq = read_seqcount_begin(&parent->d_seq);
931 if (read_seqcount_retry(&old->d_seq, nd->seq))
932 goto failed;
933 nd->path.dentry = parent;
934 nd->seq = seq;
935 break;
936 }
937 if (!follow_up_rcu(&nd->path))
938 break;
939 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
940 }
941 follow_mount_rcu(nd);
942 nd->inode = nd->path.dentry->d_inode;
943 return 0;
944
945 failed:
946 nd->flags &= ~LOOKUP_RCU;
947 if (!(nd->flags & LOOKUP_ROOT))
948 nd->root.mnt = NULL;
949 rcu_read_unlock();
950 br_read_unlock(&vfsmount_lock);
951 return -ECHILD;
952 }
953
954 /*
955 * Follow down to the covering mount currently visible to userspace. At each
956 * point, the filesystem owning that dentry may be queried as to whether the
957 * caller is permitted to proceed or not.
958 */
959 int follow_down(struct path *path)
960 {
961 unsigned managed;
962 int ret;
963
964 while (managed = ACCESS_ONCE(path->dentry->d_flags),
965 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
966 /* Allow the filesystem to manage the transit without i_mutex
967 * being held.
968 *
969 * We indicate to the filesystem if someone is trying to mount
970 * something here. This gives autofs the chance to deny anyone
971 * other than its daemon the right to mount on its
972 * superstructure.
973 *
974 * The filesystem may sleep at this point.
975 */
976 if (managed & DCACHE_MANAGE_TRANSIT) {
977 BUG_ON(!path->dentry->d_op);
978 BUG_ON(!path->dentry->d_op->d_manage);
979 ret = path->dentry->d_op->d_manage(
980 path->dentry, false);
981 if (ret < 0)
982 return ret == -EISDIR ? 0 : ret;
983 }
984
985 /* Transit to a mounted filesystem. */
986 if (managed & DCACHE_MOUNTED) {
987 struct vfsmount *mounted = lookup_mnt(path);
988 if (!mounted)
989 break;
990 dput(path->dentry);
991 mntput(path->mnt);
992 path->mnt = mounted;
993 path->dentry = dget(mounted->mnt_root);
994 continue;
995 }
996
997 /* Don't handle automount points here */
998 break;
999 }
1000 return 0;
1001 }
1002
1003 /*
1004 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1005 */
1006 static void follow_mount(struct path *path)
1007 {
1008 while (d_mountpoint(path->dentry)) {
1009 struct vfsmount *mounted = lookup_mnt(path);
1010 if (!mounted)
1011 break;
1012 dput(path->dentry);
1013 mntput(path->mnt);
1014 path->mnt = mounted;
1015 path->dentry = dget(mounted->mnt_root);
1016 }
1017 }
1018
1019 static void follow_dotdot(struct nameidata *nd)
1020 {
1021 set_root(nd);
1022
1023 while(1) {
1024 struct dentry *old = nd->path.dentry;
1025
1026 if (nd->path.dentry == nd->root.dentry &&
1027 nd->path.mnt == nd->root.mnt) {
1028 break;
1029 }
1030 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1031 /* rare case of legitimate dget_parent()... */
1032 nd->path.dentry = dget_parent(nd->path.dentry);
1033 dput(old);
1034 break;
1035 }
1036 if (!follow_up(&nd->path))
1037 break;
1038 }
1039 follow_mount(&nd->path);
1040 nd->inode = nd->path.dentry->d_inode;
1041 }
1042
1043 /*
1044 * This looks up the name in dcache, possibly revalidates the old dentry and
1045 * allocates a new one if not found or not valid. In the need_lookup argument
1046 * returns whether i_op->lookup is necessary.
1047 *
1048 * dir->d_inode->i_mutex must be held
1049 */
1050 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1051 struct nameidata *nd, bool *need_lookup)
1052 {
1053 struct dentry *dentry;
1054 int error;
1055
1056 *need_lookup = false;
1057 dentry = d_lookup(dir, name);
1058 if (dentry) {
1059 if (d_need_lookup(dentry)) {
1060 *need_lookup = true;
1061 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1062 error = d_revalidate(dentry, nd);
1063 if (unlikely(error <= 0)) {
1064 if (error < 0) {
1065 dput(dentry);
1066 return ERR_PTR(error);
1067 } else if (!d_invalidate(dentry)) {
1068 dput(dentry);
1069 dentry = NULL;
1070 }
1071 }
1072 }
1073 }
1074
1075 if (!dentry) {
1076 dentry = d_alloc(dir, name);
1077 if (unlikely(!dentry))
1078 return ERR_PTR(-ENOMEM);
1079
1080 *need_lookup = true;
1081 }
1082 return dentry;
1083 }
1084
1085 /*
1086 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1087 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1088 *
1089 * dir->d_inode->i_mutex must be held
1090 */
1091 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1092 struct nameidata *nd)
1093 {
1094 struct dentry *old;
1095
1096 /* Don't create child dentry for a dead directory. */
1097 if (unlikely(IS_DEADDIR(dir))) {
1098 dput(dentry);
1099 return ERR_PTR(-ENOENT);
1100 }
1101
1102 old = dir->i_op->lookup(dir, dentry, nd);
1103 if (unlikely(old)) {
1104 dput(dentry);
1105 dentry = old;
1106 }
1107 return dentry;
1108 }
1109
1110 static struct dentry *__lookup_hash(struct qstr *name,
1111 struct dentry *base, struct nameidata *nd)
1112 {
1113 bool need_lookup;
1114 struct dentry *dentry;
1115
1116 dentry = lookup_dcache(name, base, nd, &need_lookup);
1117 if (!need_lookup)
1118 return dentry;
1119
1120 return lookup_real(base->d_inode, dentry, nd);
1121 }
1122
1123 /*
1124 * It's more convoluted than I'd like it to be, but... it's still fairly
1125 * small and for now I'd prefer to have fast path as straight as possible.
1126 * It _is_ time-critical.
1127 */
1128 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1129 struct path *path, struct inode **inode)
1130 {
1131 struct vfsmount *mnt = nd->path.mnt;
1132 struct dentry *dentry, *parent = nd->path.dentry;
1133 int need_reval = 1;
1134 int status = 1;
1135 int err;
1136
1137 /*
1138 * Rename seqlock is not required here because in the off chance
1139 * of a false negative due to a concurrent rename, we're going to
1140 * do the non-racy lookup, below.
1141 */
1142 if (nd->flags & LOOKUP_RCU) {
1143 unsigned seq;
1144 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1145 if (!dentry)
1146 goto unlazy;
1147
1148 /*
1149 * This sequence count validates that the inode matches
1150 * the dentry name information from lookup.
1151 */
1152 *inode = dentry->d_inode;
1153 if (read_seqcount_retry(&dentry->d_seq, seq))
1154 return -ECHILD;
1155
1156 /*
1157 * This sequence count validates that the parent had no
1158 * changes while we did the lookup of the dentry above.
1159 *
1160 * The memory barrier in read_seqcount_begin of child is
1161 * enough, we can use __read_seqcount_retry here.
1162 */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 return -ECHILD;
1165 nd->seq = seq;
1166
1167 if (unlikely(d_need_lookup(dentry)))
1168 goto unlazy;
1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 status = d_revalidate(dentry, nd);
1171 if (unlikely(status <= 0)) {
1172 if (status != -ECHILD)
1173 need_reval = 0;
1174 goto unlazy;
1175 }
1176 }
1177 path->mnt = mnt;
1178 path->dentry = dentry;
1179 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 goto unlazy;
1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 goto unlazy;
1183 return 0;
1184 unlazy:
1185 if (unlazy_walk(nd, dentry))
1186 return -ECHILD;
1187 } else {
1188 dentry = __d_lookup(parent, name);
1189 }
1190
1191 if (unlikely(!dentry))
1192 goto need_lookup;
1193
1194 if (unlikely(d_need_lookup(dentry))) {
1195 dput(dentry);
1196 goto need_lookup;
1197 }
1198
1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 status = d_revalidate(dentry, nd);
1201 if (unlikely(status <= 0)) {
1202 if (status < 0) {
1203 dput(dentry);
1204 return status;
1205 }
1206 if (!d_invalidate(dentry)) {
1207 dput(dentry);
1208 goto need_lookup;
1209 }
1210 }
1211
1212 path->mnt = mnt;
1213 path->dentry = dentry;
1214 err = follow_managed(path, nd->flags);
1215 if (unlikely(err < 0)) {
1216 path_put_conditional(path, nd);
1217 return err;
1218 }
1219 if (err)
1220 nd->flags |= LOOKUP_JUMPED;
1221 *inode = path->dentry->d_inode;
1222 return 0;
1223
1224 need_lookup:
1225 return 1;
1226 }
1227
1228 /* Fast lookup failed, do it the slow way */
1229 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1230 struct path *path)
1231 {
1232 struct dentry *dentry, *parent;
1233 int err;
1234
1235 parent = nd->path.dentry;
1236 BUG_ON(nd->inode != parent->d_inode);
1237
1238 mutex_lock(&parent->d_inode->i_mutex);
1239 dentry = __lookup_hash(name, parent, nd);
1240 mutex_unlock(&parent->d_inode->i_mutex);
1241 if (IS_ERR(dentry))
1242 return PTR_ERR(dentry);
1243 path->mnt = nd->path.mnt;
1244 path->dentry = dentry;
1245 err = follow_managed(path, nd->flags);
1246 if (unlikely(err < 0)) {
1247 path_put_conditional(path, nd);
1248 return err;
1249 }
1250 if (err)
1251 nd->flags |= LOOKUP_JUMPED;
1252 return 0;
1253 }
1254
1255 static inline int may_lookup(struct nameidata *nd)
1256 {
1257 if (nd->flags & LOOKUP_RCU) {
1258 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1259 if (err != -ECHILD)
1260 return err;
1261 if (unlazy_walk(nd, NULL))
1262 return -ECHILD;
1263 }
1264 return inode_permission(nd->inode, MAY_EXEC);
1265 }
1266
1267 static inline int handle_dots(struct nameidata *nd, int type)
1268 {
1269 if (type == LAST_DOTDOT) {
1270 if (nd->flags & LOOKUP_RCU) {
1271 if (follow_dotdot_rcu(nd))
1272 return -ECHILD;
1273 } else
1274 follow_dotdot(nd);
1275 }
1276 return 0;
1277 }
1278
1279 static void terminate_walk(struct nameidata *nd)
1280 {
1281 if (!(nd->flags & LOOKUP_RCU)) {
1282 path_put(&nd->path);
1283 } else {
1284 nd->flags &= ~LOOKUP_RCU;
1285 if (!(nd->flags & LOOKUP_ROOT))
1286 nd->root.mnt = NULL;
1287 rcu_read_unlock();
1288 br_read_unlock(&vfsmount_lock);
1289 }
1290 }
1291
1292 /*
1293 * Do we need to follow links? We _really_ want to be able
1294 * to do this check without having to look at inode->i_op,
1295 * so we keep a cache of "no, this doesn't need follow_link"
1296 * for the common case.
1297 */
1298 static inline int should_follow_link(struct inode *inode, int follow)
1299 {
1300 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1301 if (likely(inode->i_op->follow_link))
1302 return follow;
1303
1304 /* This gets set once for the inode lifetime */
1305 spin_lock(&inode->i_lock);
1306 inode->i_opflags |= IOP_NOFOLLOW;
1307 spin_unlock(&inode->i_lock);
1308 }
1309 return 0;
1310 }
1311
1312 static inline int walk_component(struct nameidata *nd, struct path *path,
1313 struct qstr *name, int type, int follow)
1314 {
1315 struct inode *inode;
1316 int err;
1317 /*
1318 * "." and ".." are special - ".." especially so because it has
1319 * to be able to know about the current root directory and
1320 * parent relationships.
1321 */
1322 if (unlikely(type != LAST_NORM))
1323 return handle_dots(nd, type);
1324 err = lookup_fast(nd, name, path, &inode);
1325 if (unlikely(err)) {
1326 if (err < 0)
1327 goto out_err;
1328
1329 err = lookup_slow(nd, name, path);
1330 if (err < 0)
1331 goto out_err;
1332
1333 inode = path->dentry->d_inode;
1334 }
1335 err = -ENOENT;
1336 if (!inode)
1337 goto out_path_put;
1338
1339 if (should_follow_link(inode, follow)) {
1340 if (nd->flags & LOOKUP_RCU) {
1341 if (unlikely(unlazy_walk(nd, path->dentry))) {
1342 err = -ECHILD;
1343 goto out_err;
1344 }
1345 }
1346 BUG_ON(inode != path->dentry->d_inode);
1347 return 1;
1348 }
1349 path_to_nameidata(path, nd);
1350 nd->inode = inode;
1351 return 0;
1352
1353 out_path_put:
1354 path_to_nameidata(path, nd);
1355 out_err:
1356 terminate_walk(nd);
1357 return err;
1358 }
1359
1360 /*
1361 * This limits recursive symlink follows to 8, while
1362 * limiting consecutive symlinks to 40.
1363 *
1364 * Without that kind of total limit, nasty chains of consecutive
1365 * symlinks can cause almost arbitrarily long lookups.
1366 */
1367 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1368 {
1369 int res;
1370
1371 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1372 path_put_conditional(path, nd);
1373 path_put(&nd->path);
1374 return -ELOOP;
1375 }
1376 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1377
1378 nd->depth++;
1379 current->link_count++;
1380
1381 do {
1382 struct path link = *path;
1383 void *cookie;
1384
1385 res = follow_link(&link, nd, &cookie);
1386 if (!res)
1387 res = walk_component(nd, path, &nd->last,
1388 nd->last_type, LOOKUP_FOLLOW);
1389 put_link(nd, &link, cookie);
1390 } while (res > 0);
1391
1392 current->link_count--;
1393 nd->depth--;
1394 return res;
1395 }
1396
1397 /*
1398 * We really don't want to look at inode->i_op->lookup
1399 * when we don't have to. So we keep a cache bit in
1400 * the inode ->i_opflags field that says "yes, we can
1401 * do lookup on this inode".
1402 */
1403 static inline int can_lookup(struct inode *inode)
1404 {
1405 if (likely(inode->i_opflags & IOP_LOOKUP))
1406 return 1;
1407 if (likely(!inode->i_op->lookup))
1408 return 0;
1409
1410 /* We do this once for the lifetime of the inode */
1411 spin_lock(&inode->i_lock);
1412 inode->i_opflags |= IOP_LOOKUP;
1413 spin_unlock(&inode->i_lock);
1414 return 1;
1415 }
1416
1417 /*
1418 * We can do the critical dentry name comparison and hashing
1419 * operations one word at a time, but we are limited to:
1420 *
1421 * - Architectures with fast unaligned word accesses. We could
1422 * do a "get_unaligned()" if this helps and is sufficiently
1423 * fast.
1424 *
1425 * - Little-endian machines (so that we can generate the mask
1426 * of low bytes efficiently). Again, we *could* do a byte
1427 * swapping load on big-endian architectures if that is not
1428 * expensive enough to make the optimization worthless.
1429 *
1430 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1431 * do not trap on the (extremely unlikely) case of a page
1432 * crossing operation.
1433 *
1434 * - Furthermore, we need an efficient 64-bit compile for the
1435 * 64-bit case in order to generate the "number of bytes in
1436 * the final mask". Again, that could be replaced with a
1437 * efficient population count instruction or similar.
1438 */
1439 #ifdef CONFIG_DCACHE_WORD_ACCESS
1440
1441 #include <asm/word-at-a-time.h>
1442
1443 #ifdef CONFIG_64BIT
1444
1445 static inline unsigned int fold_hash(unsigned long hash)
1446 {
1447 hash += hash >> (8*sizeof(int));
1448 return hash;
1449 }
1450
1451 #else /* 32-bit case */
1452
1453 #define fold_hash(x) (x)
1454
1455 #endif
1456
1457 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1458 {
1459 unsigned long a, mask;
1460 unsigned long hash = 0;
1461
1462 for (;;) {
1463 a = load_unaligned_zeropad(name);
1464 if (len < sizeof(unsigned long))
1465 break;
1466 hash += a;
1467 hash *= 9;
1468 name += sizeof(unsigned long);
1469 len -= sizeof(unsigned long);
1470 if (!len)
1471 goto done;
1472 }
1473 mask = ~(~0ul << len*8);
1474 hash += mask & a;
1475 done:
1476 return fold_hash(hash);
1477 }
1478 EXPORT_SYMBOL(full_name_hash);
1479
1480 /*
1481 * Calculate the length and hash of the path component, and
1482 * return the length of the component;
1483 */
1484 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1485 {
1486 unsigned long a, b, adata, bdata, mask, hash, len;
1487 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1488
1489 hash = a = 0;
1490 len = -sizeof(unsigned long);
1491 do {
1492 hash = (hash + a) * 9;
1493 len += sizeof(unsigned long);
1494 a = load_unaligned_zeropad(name+len);
1495 b = a ^ REPEAT_BYTE('/');
1496 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1497
1498 adata = prep_zero_mask(a, adata, &constants);
1499 bdata = prep_zero_mask(b, bdata, &constants);
1500
1501 mask = create_zero_mask(adata | bdata);
1502
1503 hash += a & zero_bytemask(mask);
1504 *hashp = fold_hash(hash);
1505
1506 return len + find_zero(mask);
1507 }
1508
1509 #else
1510
1511 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1512 {
1513 unsigned long hash = init_name_hash();
1514 while (len--)
1515 hash = partial_name_hash(*name++, hash);
1516 return end_name_hash(hash);
1517 }
1518 EXPORT_SYMBOL(full_name_hash);
1519
1520 /*
1521 * We know there's a real path component here of at least
1522 * one character.
1523 */
1524 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1525 {
1526 unsigned long hash = init_name_hash();
1527 unsigned long len = 0, c;
1528
1529 c = (unsigned char)*name;
1530 do {
1531 len++;
1532 hash = partial_name_hash(c, hash);
1533 c = (unsigned char)name[len];
1534 } while (c && c != '/');
1535 *hashp = end_name_hash(hash);
1536 return len;
1537 }
1538
1539 #endif
1540
1541 /*
1542 * Name resolution.
1543 * This is the basic name resolution function, turning a pathname into
1544 * the final dentry. We expect 'base' to be positive and a directory.
1545 *
1546 * Returns 0 and nd will have valid dentry and mnt on success.
1547 * Returns error and drops reference to input namei data on failure.
1548 */
1549 static int link_path_walk(const char *name, struct nameidata *nd)
1550 {
1551 struct path next;
1552 int err;
1553
1554 while (*name=='/')
1555 name++;
1556 if (!*name)
1557 return 0;
1558
1559 /* At this point we know we have a real path component. */
1560 for(;;) {
1561 struct qstr this;
1562 long len;
1563 int type;
1564
1565 err = may_lookup(nd);
1566 if (err)
1567 break;
1568
1569 len = hash_name(name, &this.hash);
1570 this.name = name;
1571 this.len = len;
1572
1573 type = LAST_NORM;
1574 if (name[0] == '.') switch (len) {
1575 case 2:
1576 if (name[1] == '.') {
1577 type = LAST_DOTDOT;
1578 nd->flags |= LOOKUP_JUMPED;
1579 }
1580 break;
1581 case 1:
1582 type = LAST_DOT;
1583 }
1584 if (likely(type == LAST_NORM)) {
1585 struct dentry *parent = nd->path.dentry;
1586 nd->flags &= ~LOOKUP_JUMPED;
1587 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1588 err = parent->d_op->d_hash(parent, nd->inode,
1589 &this);
1590 if (err < 0)
1591 break;
1592 }
1593 }
1594
1595 if (!name[len])
1596 goto last_component;
1597 /*
1598 * If it wasn't NUL, we know it was '/'. Skip that
1599 * slash, and continue until no more slashes.
1600 */
1601 do {
1602 len++;
1603 } while (unlikely(name[len] == '/'));
1604 if (!name[len])
1605 goto last_component;
1606 name += len;
1607
1608 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1609 if (err < 0)
1610 return err;
1611
1612 if (err) {
1613 err = nested_symlink(&next, nd);
1614 if (err)
1615 return err;
1616 }
1617 if (can_lookup(nd->inode))
1618 continue;
1619 err = -ENOTDIR;
1620 break;
1621 /* here ends the main loop */
1622
1623 last_component:
1624 nd->last = this;
1625 nd->last_type = type;
1626 return 0;
1627 }
1628 terminate_walk(nd);
1629 return err;
1630 }
1631
1632 static int path_init(int dfd, const char *name, unsigned int flags,
1633 struct nameidata *nd, struct file **fp)
1634 {
1635 int retval = 0;
1636 int fput_needed;
1637 struct file *file;
1638
1639 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1640 nd->flags = flags | LOOKUP_JUMPED;
1641 nd->depth = 0;
1642 if (flags & LOOKUP_ROOT) {
1643 struct inode *inode = nd->root.dentry->d_inode;
1644 if (*name) {
1645 if (!inode->i_op->lookup)
1646 return -ENOTDIR;
1647 retval = inode_permission(inode, MAY_EXEC);
1648 if (retval)
1649 return retval;
1650 }
1651 nd->path = nd->root;
1652 nd->inode = inode;
1653 if (flags & LOOKUP_RCU) {
1654 br_read_lock(&vfsmount_lock);
1655 rcu_read_lock();
1656 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1657 } else {
1658 path_get(&nd->path);
1659 }
1660 return 0;
1661 }
1662
1663 nd->root.mnt = NULL;
1664
1665 if (*name=='/') {
1666 if (flags & LOOKUP_RCU) {
1667 br_read_lock(&vfsmount_lock);
1668 rcu_read_lock();
1669 set_root_rcu(nd);
1670 } else {
1671 set_root(nd);
1672 path_get(&nd->root);
1673 }
1674 nd->path = nd->root;
1675 } else if (dfd == AT_FDCWD) {
1676 if (flags & LOOKUP_RCU) {
1677 struct fs_struct *fs = current->fs;
1678 unsigned seq;
1679
1680 br_read_lock(&vfsmount_lock);
1681 rcu_read_lock();
1682
1683 do {
1684 seq = read_seqcount_begin(&fs->seq);
1685 nd->path = fs->pwd;
1686 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1687 } while (read_seqcount_retry(&fs->seq, seq));
1688 } else {
1689 get_fs_pwd(current->fs, &nd->path);
1690 }
1691 } else {
1692 struct dentry *dentry;
1693
1694 file = fget_raw_light(dfd, &fput_needed);
1695 retval = -EBADF;
1696 if (!file)
1697 goto out_fail;
1698
1699 dentry = file->f_path.dentry;
1700
1701 if (*name) {
1702 retval = -ENOTDIR;
1703 if (!S_ISDIR(dentry->d_inode->i_mode))
1704 goto fput_fail;
1705
1706 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1707 if (retval)
1708 goto fput_fail;
1709 }
1710
1711 nd->path = file->f_path;
1712 if (flags & LOOKUP_RCU) {
1713 if (fput_needed)
1714 *fp = file;
1715 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1716 br_read_lock(&vfsmount_lock);
1717 rcu_read_lock();
1718 } else {
1719 path_get(&file->f_path);
1720 fput_light(file, fput_needed);
1721 }
1722 }
1723
1724 nd->inode = nd->path.dentry->d_inode;
1725 return 0;
1726
1727 fput_fail:
1728 fput_light(file, fput_needed);
1729 out_fail:
1730 return retval;
1731 }
1732
1733 static inline int lookup_last(struct nameidata *nd, struct path *path)
1734 {
1735 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1736 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1737
1738 nd->flags &= ~LOOKUP_PARENT;
1739 return walk_component(nd, path, &nd->last, nd->last_type,
1740 nd->flags & LOOKUP_FOLLOW);
1741 }
1742
1743 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1744 static int path_lookupat(int dfd, const char *name,
1745 unsigned int flags, struct nameidata *nd)
1746 {
1747 struct file *base = NULL;
1748 struct path path;
1749 int err;
1750
1751 /*
1752 * Path walking is largely split up into 2 different synchronisation
1753 * schemes, rcu-walk and ref-walk (explained in
1754 * Documentation/filesystems/path-lookup.txt). These share much of the
1755 * path walk code, but some things particularly setup, cleanup, and
1756 * following mounts are sufficiently divergent that functions are
1757 * duplicated. Typically there is a function foo(), and its RCU
1758 * analogue, foo_rcu().
1759 *
1760 * -ECHILD is the error number of choice (just to avoid clashes) that
1761 * is returned if some aspect of an rcu-walk fails. Such an error must
1762 * be handled by restarting a traditional ref-walk (which will always
1763 * be able to complete).
1764 */
1765 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1766
1767 if (unlikely(err))
1768 return err;
1769
1770 current->total_link_count = 0;
1771 err = link_path_walk(name, nd);
1772
1773 if (!err && !(flags & LOOKUP_PARENT)) {
1774 err = lookup_last(nd, &path);
1775 while (err > 0) {
1776 void *cookie;
1777 struct path link = path;
1778 nd->flags |= LOOKUP_PARENT;
1779 err = follow_link(&link, nd, &cookie);
1780 if (!err)
1781 err = lookup_last(nd, &path);
1782 put_link(nd, &link, cookie);
1783 }
1784 }
1785
1786 if (!err)
1787 err = complete_walk(nd);
1788
1789 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1790 if (!nd->inode->i_op->lookup) {
1791 path_put(&nd->path);
1792 err = -ENOTDIR;
1793 }
1794 }
1795
1796 if (base)
1797 fput(base);
1798
1799 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1800 path_put(&nd->root);
1801 nd->root.mnt = NULL;
1802 }
1803 return err;
1804 }
1805
1806 static int do_path_lookup(int dfd, const char *name,
1807 unsigned int flags, struct nameidata *nd)
1808 {
1809 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1810 if (unlikely(retval == -ECHILD))
1811 retval = path_lookupat(dfd, name, flags, nd);
1812 if (unlikely(retval == -ESTALE))
1813 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1814
1815 if (likely(!retval)) {
1816 if (unlikely(!audit_dummy_context())) {
1817 if (nd->path.dentry && nd->inode)
1818 audit_inode(name, nd->path.dentry);
1819 }
1820 }
1821 return retval;
1822 }
1823
1824 int kern_path_parent(const char *name, struct nameidata *nd)
1825 {
1826 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1827 }
1828
1829 int kern_path(const char *name, unsigned int flags, struct path *path)
1830 {
1831 struct nameidata nd;
1832 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1833 if (!res)
1834 *path = nd.path;
1835 return res;
1836 }
1837
1838 /**
1839 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1840 * @dentry: pointer to dentry of the base directory
1841 * @mnt: pointer to vfs mount of the base directory
1842 * @name: pointer to file name
1843 * @flags: lookup flags
1844 * @path: pointer to struct path to fill
1845 */
1846 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1847 const char *name, unsigned int flags,
1848 struct path *path)
1849 {
1850 struct nameidata nd;
1851 int err;
1852 nd.root.dentry = dentry;
1853 nd.root.mnt = mnt;
1854 BUG_ON(flags & LOOKUP_PARENT);
1855 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1856 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1857 if (!err)
1858 *path = nd.path;
1859 return err;
1860 }
1861
1862 /*
1863 * Restricted form of lookup. Doesn't follow links, single-component only,
1864 * needs parent already locked. Doesn't follow mounts.
1865 * SMP-safe.
1866 */
1867 static struct dentry *lookup_hash(struct nameidata *nd)
1868 {
1869 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1870 }
1871
1872 /**
1873 * lookup_one_len - filesystem helper to lookup single pathname component
1874 * @name: pathname component to lookup
1875 * @base: base directory to lookup from
1876 * @len: maximum length @len should be interpreted to
1877 *
1878 * Note that this routine is purely a helper for filesystem usage and should
1879 * not be called by generic code. Also note that by using this function the
1880 * nameidata argument is passed to the filesystem methods and a filesystem
1881 * using this helper needs to be prepared for that.
1882 */
1883 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1884 {
1885 struct qstr this;
1886 unsigned int c;
1887 int err;
1888
1889 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1890
1891 this.name = name;
1892 this.len = len;
1893 this.hash = full_name_hash(name, len);
1894 if (!len)
1895 return ERR_PTR(-EACCES);
1896
1897 while (len--) {
1898 c = *(const unsigned char *)name++;
1899 if (c == '/' || c == '\0')
1900 return ERR_PTR(-EACCES);
1901 }
1902 /*
1903 * See if the low-level filesystem might want
1904 * to use its own hash..
1905 */
1906 if (base->d_flags & DCACHE_OP_HASH) {
1907 int err = base->d_op->d_hash(base, base->d_inode, &this);
1908 if (err < 0)
1909 return ERR_PTR(err);
1910 }
1911
1912 err = inode_permission(base->d_inode, MAY_EXEC);
1913 if (err)
1914 return ERR_PTR(err);
1915
1916 return __lookup_hash(&this, base, NULL);
1917 }
1918
1919 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1920 struct path *path, int *empty)
1921 {
1922 struct nameidata nd;
1923 char *tmp = getname_flags(name, flags, empty);
1924 int err = PTR_ERR(tmp);
1925 if (!IS_ERR(tmp)) {
1926
1927 BUG_ON(flags & LOOKUP_PARENT);
1928
1929 err = do_path_lookup(dfd, tmp, flags, &nd);
1930 putname(tmp);
1931 if (!err)
1932 *path = nd.path;
1933 }
1934 return err;
1935 }
1936
1937 int user_path_at(int dfd, const char __user *name, unsigned flags,
1938 struct path *path)
1939 {
1940 return user_path_at_empty(dfd, name, flags, path, NULL);
1941 }
1942
1943 static int user_path_parent(int dfd, const char __user *path,
1944 struct nameidata *nd, char **name)
1945 {
1946 char *s = getname(path);
1947 int error;
1948
1949 if (IS_ERR(s))
1950 return PTR_ERR(s);
1951
1952 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1953 if (error)
1954 putname(s);
1955 else
1956 *name = s;
1957
1958 return error;
1959 }
1960
1961 /*
1962 * It's inline, so penalty for filesystems that don't use sticky bit is
1963 * minimal.
1964 */
1965 static inline int check_sticky(struct inode *dir, struct inode *inode)
1966 {
1967 kuid_t fsuid = current_fsuid();
1968
1969 if (!(dir->i_mode & S_ISVTX))
1970 return 0;
1971 if (uid_eq(inode->i_uid, fsuid))
1972 return 0;
1973 if (uid_eq(dir->i_uid, fsuid))
1974 return 0;
1975 return !inode_capable(inode, CAP_FOWNER);
1976 }
1977
1978 /*
1979 * Check whether we can remove a link victim from directory dir, check
1980 * whether the type of victim is right.
1981 * 1. We can't do it if dir is read-only (done in permission())
1982 * 2. We should have write and exec permissions on dir
1983 * 3. We can't remove anything from append-only dir
1984 * 4. We can't do anything with immutable dir (done in permission())
1985 * 5. If the sticky bit on dir is set we should either
1986 * a. be owner of dir, or
1987 * b. be owner of victim, or
1988 * c. have CAP_FOWNER capability
1989 * 6. If the victim is append-only or immutable we can't do antyhing with
1990 * links pointing to it.
1991 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1992 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1993 * 9. We can't remove a root or mountpoint.
1994 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1995 * nfs_async_unlink().
1996 */
1997 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1998 {
1999 int error;
2000
2001 if (!victim->d_inode)
2002 return -ENOENT;
2003
2004 BUG_ON(victim->d_parent->d_inode != dir);
2005 audit_inode_child(victim, dir);
2006
2007 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2008 if (error)
2009 return error;
2010 if (IS_APPEND(dir))
2011 return -EPERM;
2012 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2013 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2014 return -EPERM;
2015 if (isdir) {
2016 if (!S_ISDIR(victim->d_inode->i_mode))
2017 return -ENOTDIR;
2018 if (IS_ROOT(victim))
2019 return -EBUSY;
2020 } else if (S_ISDIR(victim->d_inode->i_mode))
2021 return -EISDIR;
2022 if (IS_DEADDIR(dir))
2023 return -ENOENT;
2024 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2025 return -EBUSY;
2026 return 0;
2027 }
2028
2029 /* Check whether we can create an object with dentry child in directory
2030 * dir.
2031 * 1. We can't do it if child already exists (open has special treatment for
2032 * this case, but since we are inlined it's OK)
2033 * 2. We can't do it if dir is read-only (done in permission())
2034 * 3. We should have write and exec permissions on dir
2035 * 4. We can't do it if dir is immutable (done in permission())
2036 */
2037 static inline int may_create(struct inode *dir, struct dentry *child)
2038 {
2039 if (child->d_inode)
2040 return -EEXIST;
2041 if (IS_DEADDIR(dir))
2042 return -ENOENT;
2043 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2044 }
2045
2046 /*
2047 * p1 and p2 should be directories on the same fs.
2048 */
2049 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2050 {
2051 struct dentry *p;
2052
2053 if (p1 == p2) {
2054 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2055 return NULL;
2056 }
2057
2058 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2059
2060 p = d_ancestor(p2, p1);
2061 if (p) {
2062 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2063 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2064 return p;
2065 }
2066
2067 p = d_ancestor(p1, p2);
2068 if (p) {
2069 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2070 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2071 return p;
2072 }
2073
2074 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2075 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2076 return NULL;
2077 }
2078
2079 void unlock_rename(struct dentry *p1, struct dentry *p2)
2080 {
2081 mutex_unlock(&p1->d_inode->i_mutex);
2082 if (p1 != p2) {
2083 mutex_unlock(&p2->d_inode->i_mutex);
2084 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2085 }
2086 }
2087
2088 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2089 struct nameidata *nd)
2090 {
2091 int error = may_create(dir, dentry);
2092
2093 if (error)
2094 return error;
2095
2096 if (!dir->i_op->create)
2097 return -EACCES; /* shouldn't it be ENOSYS? */
2098 mode &= S_IALLUGO;
2099 mode |= S_IFREG;
2100 error = security_inode_create(dir, dentry, mode);
2101 if (error)
2102 return error;
2103 error = dir->i_op->create(dir, dentry, mode, nd);
2104 if (!error)
2105 fsnotify_create(dir, dentry);
2106 return error;
2107 }
2108
2109 static int may_open(struct path *path, int acc_mode, int flag)
2110 {
2111 struct dentry *dentry = path->dentry;
2112 struct inode *inode = dentry->d_inode;
2113 int error;
2114
2115 /* O_PATH? */
2116 if (!acc_mode)
2117 return 0;
2118
2119 if (!inode)
2120 return -ENOENT;
2121
2122 switch (inode->i_mode & S_IFMT) {
2123 case S_IFLNK:
2124 return -ELOOP;
2125 case S_IFDIR:
2126 if (acc_mode & MAY_WRITE)
2127 return -EISDIR;
2128 break;
2129 case S_IFBLK:
2130 case S_IFCHR:
2131 if (path->mnt->mnt_flags & MNT_NODEV)
2132 return -EACCES;
2133 /*FALLTHRU*/
2134 case S_IFIFO:
2135 case S_IFSOCK:
2136 flag &= ~O_TRUNC;
2137 break;
2138 }
2139
2140 error = inode_permission(inode, acc_mode);
2141 if (error)
2142 return error;
2143
2144 /*
2145 * An append-only file must be opened in append mode for writing.
2146 */
2147 if (IS_APPEND(inode)) {
2148 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2149 return -EPERM;
2150 if (flag & O_TRUNC)
2151 return -EPERM;
2152 }
2153
2154 /* O_NOATIME can only be set by the owner or superuser */
2155 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2156 return -EPERM;
2157
2158 return 0;
2159 }
2160
2161 static int handle_truncate(struct file *filp)
2162 {
2163 struct path *path = &filp->f_path;
2164 struct inode *inode = path->dentry->d_inode;
2165 int error = get_write_access(inode);
2166 if (error)
2167 return error;
2168 /*
2169 * Refuse to truncate files with mandatory locks held on them.
2170 */
2171 error = locks_verify_locked(inode);
2172 if (!error)
2173 error = security_path_truncate(path);
2174 if (!error) {
2175 error = do_truncate(path->dentry, 0,
2176 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2177 filp);
2178 }
2179 put_write_access(inode);
2180 return error;
2181 }
2182
2183 static inline int open_to_namei_flags(int flag)
2184 {
2185 if ((flag & O_ACCMODE) == 3)
2186 flag--;
2187 return flag;
2188 }
2189
2190 /*
2191 * Handle the last step of open()
2192 */
2193 static struct file *do_last(struct nameidata *nd, struct path *path,
2194 const struct open_flags *op, const char *pathname)
2195 {
2196 struct dentry *dir = nd->path.dentry;
2197 struct dentry *dentry;
2198 int open_flag = op->open_flag;
2199 int will_truncate = open_flag & O_TRUNC;
2200 int want_write = 0;
2201 int acc_mode = op->acc_mode;
2202 struct file *filp;
2203 struct inode *inode;
2204 int symlink_ok = 0;
2205 int error;
2206
2207 nd->flags &= ~LOOKUP_PARENT;
2208 nd->flags |= op->intent;
2209
2210 switch (nd->last_type) {
2211 case LAST_DOTDOT:
2212 case LAST_DOT:
2213 error = handle_dots(nd, nd->last_type);
2214 if (error)
2215 return ERR_PTR(error);
2216 /* fallthrough */
2217 case LAST_ROOT:
2218 error = complete_walk(nd);
2219 if (error)
2220 return ERR_PTR(error);
2221 audit_inode(pathname, nd->path.dentry);
2222 if (open_flag & O_CREAT) {
2223 error = -EISDIR;
2224 goto exit;
2225 }
2226 goto ok;
2227 case LAST_BIND:
2228 error = complete_walk(nd);
2229 if (error)
2230 return ERR_PTR(error);
2231 audit_inode(pathname, dir);
2232 goto ok;
2233 }
2234
2235 if (!(open_flag & O_CREAT)) {
2236 if (nd->last.name[nd->last.len])
2237 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2238 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2239 symlink_ok = 1;
2240 /* we _can_ be in RCU mode here */
2241 error = lookup_fast(nd, &nd->last, path, &inode);
2242 if (unlikely(error)) {
2243 if (error < 0)
2244 goto exit;
2245
2246 error = lookup_slow(nd, &nd->last, path);
2247 if (error < 0)
2248 goto exit;
2249
2250 inode = path->dentry->d_inode;
2251 }
2252 error = -ENOENT;
2253 if (!inode) {
2254 path_to_nameidata(path, nd);
2255 goto exit;
2256 }
2257
2258 if (should_follow_link(inode, !symlink_ok)) {
2259 if (nd->flags & LOOKUP_RCU) {
2260 if (unlikely(unlazy_walk(nd, path->dentry))) {
2261 error = -ECHILD;
2262 goto exit;
2263 }
2264 }
2265 BUG_ON(inode != path->dentry->d_inode);
2266 return NULL;
2267 }
2268 path_to_nameidata(path, nd);
2269 nd->inode = inode;
2270
2271 /* sayonara */
2272 error = complete_walk(nd);
2273 if (error)
2274 return ERR_PTR(error);
2275
2276 error = -ENOTDIR;
2277 if (nd->flags & LOOKUP_DIRECTORY) {
2278 if (!nd->inode->i_op->lookup)
2279 goto exit;
2280 }
2281 audit_inode(pathname, nd->path.dentry);
2282 goto ok;
2283 }
2284
2285 /* create side of things */
2286 /*
2287 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2288 * cleared when we got to the last component we are about to look up
2289 */
2290 error = complete_walk(nd);
2291 if (error)
2292 return ERR_PTR(error);
2293
2294 audit_inode(pathname, dir);
2295 error = -EISDIR;
2296 /* trailing slashes? */
2297 if (nd->last.name[nd->last.len])
2298 goto exit;
2299
2300 mutex_lock(&dir->d_inode->i_mutex);
2301
2302 dentry = lookup_hash(nd);
2303 error = PTR_ERR(dentry);
2304 if (IS_ERR(dentry)) {
2305 mutex_unlock(&dir->d_inode->i_mutex);
2306 goto exit;
2307 }
2308
2309 path->dentry = dentry;
2310 path->mnt = nd->path.mnt;
2311
2312 /* Negative dentry, just create the file */
2313 if (!dentry->d_inode) {
2314 umode_t mode = op->mode;
2315 if (!IS_POSIXACL(dir->d_inode))
2316 mode &= ~current_umask();
2317 /*
2318 * This write is needed to ensure that a
2319 * rw->ro transition does not occur between
2320 * the time when the file is created and when
2321 * a permanent write count is taken through
2322 * the 'struct file' in nameidata_to_filp().
2323 */
2324 error = mnt_want_write(nd->path.mnt);
2325 if (error)
2326 goto exit_mutex_unlock;
2327 want_write = 1;
2328 /* Don't check for write permission, don't truncate */
2329 open_flag &= ~O_TRUNC;
2330 will_truncate = 0;
2331 acc_mode = MAY_OPEN;
2332 error = security_path_mknod(&nd->path, dentry, mode, 0);
2333 if (error)
2334 goto exit_mutex_unlock;
2335 error = vfs_create(dir->d_inode, dentry, mode, nd);
2336 if (error)
2337 goto exit_mutex_unlock;
2338 mutex_unlock(&dir->d_inode->i_mutex);
2339 dput(nd->path.dentry);
2340 nd->path.dentry = dentry;
2341 goto common;
2342 }
2343
2344 /*
2345 * It already exists.
2346 */
2347 mutex_unlock(&dir->d_inode->i_mutex);
2348 audit_inode(pathname, path->dentry);
2349
2350 error = -EEXIST;
2351 if (open_flag & O_EXCL)
2352 goto exit_dput;
2353
2354 error = follow_managed(path, nd->flags);
2355 if (error < 0)
2356 goto exit_dput;
2357
2358 if (error)
2359 nd->flags |= LOOKUP_JUMPED;
2360
2361 BUG_ON(nd->flags & LOOKUP_RCU);
2362 inode = path->dentry->d_inode;
2363 error = -ENOENT;
2364 if (!inode) {
2365 path_to_nameidata(path, nd);
2366 goto exit;
2367 }
2368
2369 if (should_follow_link(inode, !symlink_ok)) {
2370 if (nd->flags & LOOKUP_RCU) {
2371 if (unlikely(unlazy_walk(nd, path->dentry))) {
2372 error = -ECHILD;
2373 goto exit;
2374 }
2375 }
2376 BUG_ON(inode != path->dentry->d_inode);
2377 return NULL;
2378 }
2379
2380 path_to_nameidata(path, nd);
2381 nd->inode = inode;
2382 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2383 error = complete_walk(nd);
2384 if (error)
2385 return ERR_PTR(error);
2386 error = -EISDIR;
2387 if (S_ISDIR(nd->inode->i_mode))
2388 goto exit;
2389 ok:
2390 if (!S_ISREG(nd->inode->i_mode))
2391 will_truncate = 0;
2392
2393 if (will_truncate) {
2394 error = mnt_want_write(nd->path.mnt);
2395 if (error)
2396 goto exit;
2397 want_write = 1;
2398 }
2399 common:
2400 error = may_open(&nd->path, acc_mode, open_flag);
2401 if (error)
2402 goto exit;
2403 filp = nameidata_to_filp(nd);
2404 if (!IS_ERR(filp)) {
2405 error = ima_file_check(filp, op->acc_mode);
2406 if (error) {
2407 fput(filp);
2408 filp = ERR_PTR(error);
2409 }
2410 }
2411 if (!IS_ERR(filp)) {
2412 if (will_truncate) {
2413 error = handle_truncate(filp);
2414 if (error) {
2415 fput(filp);
2416 filp = ERR_PTR(error);
2417 }
2418 }
2419 }
2420 out:
2421 if (want_write)
2422 mnt_drop_write(nd->path.mnt);
2423 terminate_walk(nd);
2424 return filp;
2425
2426 exit_mutex_unlock:
2427 mutex_unlock(&dir->d_inode->i_mutex);
2428 exit_dput:
2429 path_put_conditional(path, nd);
2430 exit:
2431 filp = ERR_PTR(error);
2432 goto out;
2433 }
2434
2435 static struct file *path_openat(int dfd, const char *pathname,
2436 struct nameidata *nd, const struct open_flags *op, int flags)
2437 {
2438 struct file *base = NULL;
2439 struct file *filp;
2440 struct path path;
2441 int error;
2442
2443 filp = get_empty_filp();
2444 if (!filp)
2445 return ERR_PTR(-ENFILE);
2446
2447 filp->f_flags = op->open_flag;
2448 nd->intent.open.file = filp;
2449 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2450 nd->intent.open.create_mode = op->mode;
2451
2452 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2453 if (unlikely(error))
2454 goto out_filp;
2455
2456 current->total_link_count = 0;
2457 error = link_path_walk(pathname, nd);
2458 if (unlikely(error))
2459 goto out_filp;
2460
2461 filp = do_last(nd, &path, op, pathname);
2462 while (unlikely(!filp)) { /* trailing symlink */
2463 struct path link = path;
2464 void *cookie;
2465 if (!(nd->flags & LOOKUP_FOLLOW)) {
2466 path_put_conditional(&path, nd);
2467 path_put(&nd->path);
2468 filp = ERR_PTR(-ELOOP);
2469 break;
2470 }
2471 nd->flags |= LOOKUP_PARENT;
2472 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2473 error = follow_link(&link, nd, &cookie);
2474 if (unlikely(error))
2475 filp = ERR_PTR(error);
2476 else
2477 filp = do_last(nd, &path, op, pathname);
2478 put_link(nd, &link, cookie);
2479 }
2480 out:
2481 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2482 path_put(&nd->root);
2483 if (base)
2484 fput(base);
2485 release_open_intent(nd);
2486 return filp;
2487
2488 out_filp:
2489 filp = ERR_PTR(error);
2490 goto out;
2491 }
2492
2493 struct file *do_filp_open(int dfd, const char *pathname,
2494 const struct open_flags *op, int flags)
2495 {
2496 struct nameidata nd;
2497 struct file *filp;
2498
2499 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2500 if (unlikely(filp == ERR_PTR(-ECHILD)))
2501 filp = path_openat(dfd, pathname, &nd, op, flags);
2502 if (unlikely(filp == ERR_PTR(-ESTALE)))
2503 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2504 return filp;
2505 }
2506
2507 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2508 const char *name, const struct open_flags *op, int flags)
2509 {
2510 struct nameidata nd;
2511 struct file *file;
2512
2513 nd.root.mnt = mnt;
2514 nd.root.dentry = dentry;
2515
2516 flags |= LOOKUP_ROOT;
2517
2518 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2519 return ERR_PTR(-ELOOP);
2520
2521 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2522 if (unlikely(file == ERR_PTR(-ECHILD)))
2523 file = path_openat(-1, name, &nd, op, flags);
2524 if (unlikely(file == ERR_PTR(-ESTALE)))
2525 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2526 return file;
2527 }
2528
2529 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2530 {
2531 struct dentry *dentry = ERR_PTR(-EEXIST);
2532 struct nameidata nd;
2533 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2534 if (error)
2535 return ERR_PTR(error);
2536
2537 /*
2538 * Yucky last component or no last component at all?
2539 * (foo/., foo/.., /////)
2540 */
2541 if (nd.last_type != LAST_NORM)
2542 goto out;
2543 nd.flags &= ~LOOKUP_PARENT;
2544 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2545 nd.intent.open.flags = O_EXCL;
2546
2547 /*
2548 * Do the final lookup.
2549 */
2550 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2551 dentry = lookup_hash(&nd);
2552 if (IS_ERR(dentry))
2553 goto fail;
2554
2555 if (dentry->d_inode)
2556 goto eexist;
2557 /*
2558 * Special case - lookup gave negative, but... we had foo/bar/
2559 * From the vfs_mknod() POV we just have a negative dentry -
2560 * all is fine. Let's be bastards - you had / on the end, you've
2561 * been asking for (non-existent) directory. -ENOENT for you.
2562 */
2563 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2564 dput(dentry);
2565 dentry = ERR_PTR(-ENOENT);
2566 goto fail;
2567 }
2568 *path = nd.path;
2569 return dentry;
2570 eexist:
2571 dput(dentry);
2572 dentry = ERR_PTR(-EEXIST);
2573 fail:
2574 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2575 out:
2576 path_put(&nd.path);
2577 return dentry;
2578 }
2579 EXPORT_SYMBOL(kern_path_create);
2580
2581 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2582 {
2583 char *tmp = getname(pathname);
2584 struct dentry *res;
2585 if (IS_ERR(tmp))
2586 return ERR_CAST(tmp);
2587 res = kern_path_create(dfd, tmp, path, is_dir);
2588 putname(tmp);
2589 return res;
2590 }
2591 EXPORT_SYMBOL(user_path_create);
2592
2593 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2594 {
2595 int error = may_create(dir, dentry);
2596
2597 if (error)
2598 return error;
2599
2600 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2601 return -EPERM;
2602
2603 if (!dir->i_op->mknod)
2604 return -EPERM;
2605
2606 error = devcgroup_inode_mknod(mode, dev);
2607 if (error)
2608 return error;
2609
2610 error = security_inode_mknod(dir, dentry, mode, dev);
2611 if (error)
2612 return error;
2613
2614 error = dir->i_op->mknod(dir, dentry, mode, dev);
2615 if (!error)
2616 fsnotify_create(dir, dentry);
2617 return error;
2618 }
2619
2620 static int may_mknod(umode_t mode)
2621 {
2622 switch (mode & S_IFMT) {
2623 case S_IFREG:
2624 case S_IFCHR:
2625 case S_IFBLK:
2626 case S_IFIFO:
2627 case S_IFSOCK:
2628 case 0: /* zero mode translates to S_IFREG */
2629 return 0;
2630 case S_IFDIR:
2631 return -EPERM;
2632 default:
2633 return -EINVAL;
2634 }
2635 }
2636
2637 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2638 unsigned, dev)
2639 {
2640 struct dentry *dentry;
2641 struct path path;
2642 int error;
2643
2644 if (S_ISDIR(mode))
2645 return -EPERM;
2646
2647 dentry = user_path_create(dfd, filename, &path, 0);
2648 if (IS_ERR(dentry))
2649 return PTR_ERR(dentry);
2650
2651 if (!IS_POSIXACL(path.dentry->d_inode))
2652 mode &= ~current_umask();
2653 error = may_mknod(mode);
2654 if (error)
2655 goto out_dput;
2656 error = mnt_want_write(path.mnt);
2657 if (error)
2658 goto out_dput;
2659 error = security_path_mknod(&path, dentry, mode, dev);
2660 if (error)
2661 goto out_drop_write;
2662 switch (mode & S_IFMT) {
2663 case 0: case S_IFREG:
2664 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2665 break;
2666 case S_IFCHR: case S_IFBLK:
2667 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2668 new_decode_dev(dev));
2669 break;
2670 case S_IFIFO: case S_IFSOCK:
2671 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2672 break;
2673 }
2674 out_drop_write:
2675 mnt_drop_write(path.mnt);
2676 out_dput:
2677 dput(dentry);
2678 mutex_unlock(&path.dentry->d_inode->i_mutex);
2679 path_put(&path);
2680
2681 return error;
2682 }
2683
2684 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2685 {
2686 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2687 }
2688
2689 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2690 {
2691 int error = may_create(dir, dentry);
2692 unsigned max_links = dir->i_sb->s_max_links;
2693
2694 if (error)
2695 return error;
2696
2697 if (!dir->i_op->mkdir)
2698 return -EPERM;
2699
2700 mode &= (S_IRWXUGO|S_ISVTX);
2701 error = security_inode_mkdir(dir, dentry, mode);
2702 if (error)
2703 return error;
2704
2705 if (max_links && dir->i_nlink >= max_links)
2706 return -EMLINK;
2707
2708 error = dir->i_op->mkdir(dir, dentry, mode);
2709 if (!error)
2710 fsnotify_mkdir(dir, dentry);
2711 return error;
2712 }
2713
2714 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2715 {
2716 struct dentry *dentry;
2717 struct path path;
2718 int error;
2719
2720 dentry = user_path_create(dfd, pathname, &path, 1);
2721 if (IS_ERR(dentry))
2722 return PTR_ERR(dentry);
2723
2724 if (!IS_POSIXACL(path.dentry->d_inode))
2725 mode &= ~current_umask();
2726 error = mnt_want_write(path.mnt);
2727 if (error)
2728 goto out_dput;
2729 error = security_path_mkdir(&path, dentry, mode);
2730 if (error)
2731 goto out_drop_write;
2732 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2733 out_drop_write:
2734 mnt_drop_write(path.mnt);
2735 out_dput:
2736 dput(dentry);
2737 mutex_unlock(&path.dentry->d_inode->i_mutex);
2738 path_put(&path);
2739 return error;
2740 }
2741
2742 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2743 {
2744 return sys_mkdirat(AT_FDCWD, pathname, mode);
2745 }
2746
2747 /*
2748 * The dentry_unhash() helper will try to drop the dentry early: we
2749 * should have a usage count of 1 if we're the only user of this
2750 * dentry, and if that is true (possibly after pruning the dcache),
2751 * then we drop the dentry now.
2752 *
2753 * A low-level filesystem can, if it choses, legally
2754 * do a
2755 *
2756 * if (!d_unhashed(dentry))
2757 * return -EBUSY;
2758 *
2759 * if it cannot handle the case of removing a directory
2760 * that is still in use by something else..
2761 */
2762 void dentry_unhash(struct dentry *dentry)
2763 {
2764 shrink_dcache_parent(dentry);
2765 spin_lock(&dentry->d_lock);
2766 if (dentry->d_count == 1)
2767 __d_drop(dentry);
2768 spin_unlock(&dentry->d_lock);
2769 }
2770
2771 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2772 {
2773 int error = may_delete(dir, dentry, 1);
2774
2775 if (error)
2776 return error;
2777
2778 if (!dir->i_op->rmdir)
2779 return -EPERM;
2780
2781 dget(dentry);
2782 mutex_lock(&dentry->d_inode->i_mutex);
2783
2784 error = -EBUSY;
2785 if (d_mountpoint(dentry))
2786 goto out;
2787
2788 error = security_inode_rmdir(dir, dentry);
2789 if (error)
2790 goto out;
2791
2792 shrink_dcache_parent(dentry);
2793 error = dir->i_op->rmdir(dir, dentry);
2794 if (error)
2795 goto out;
2796
2797 dentry->d_inode->i_flags |= S_DEAD;
2798 dont_mount(dentry);
2799
2800 out:
2801 mutex_unlock(&dentry->d_inode->i_mutex);
2802 dput(dentry);
2803 if (!error)
2804 d_delete(dentry);
2805 return error;
2806 }
2807
2808 static long do_rmdir(int dfd, const char __user *pathname)
2809 {
2810 int error = 0;
2811 char * name;
2812 struct dentry *dentry;
2813 struct nameidata nd;
2814
2815 error = user_path_parent(dfd, pathname, &nd, &name);
2816 if (error)
2817 return error;
2818
2819 switch(nd.last_type) {
2820 case LAST_DOTDOT:
2821 error = -ENOTEMPTY;
2822 goto exit1;
2823 case LAST_DOT:
2824 error = -EINVAL;
2825 goto exit1;
2826 case LAST_ROOT:
2827 error = -EBUSY;
2828 goto exit1;
2829 }
2830
2831 nd.flags &= ~LOOKUP_PARENT;
2832
2833 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2834 dentry = lookup_hash(&nd);
2835 error = PTR_ERR(dentry);
2836 if (IS_ERR(dentry))
2837 goto exit2;
2838 if (!dentry->d_inode) {
2839 error = -ENOENT;
2840 goto exit3;
2841 }
2842 error = mnt_want_write(nd.path.mnt);
2843 if (error)
2844 goto exit3;
2845 error = security_path_rmdir(&nd.path, dentry);
2846 if (error)
2847 goto exit4;
2848 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2849 exit4:
2850 mnt_drop_write(nd.path.mnt);
2851 exit3:
2852 dput(dentry);
2853 exit2:
2854 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2855 exit1:
2856 path_put(&nd.path);
2857 putname(name);
2858 return error;
2859 }
2860
2861 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2862 {
2863 return do_rmdir(AT_FDCWD, pathname);
2864 }
2865
2866 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2867 {
2868 int error = may_delete(dir, dentry, 0);
2869
2870 if (error)
2871 return error;
2872
2873 if (!dir->i_op->unlink)
2874 return -EPERM;
2875
2876 mutex_lock(&dentry->d_inode->i_mutex);
2877 if (d_mountpoint(dentry))
2878 error = -EBUSY;
2879 else {
2880 error = security_inode_unlink(dir, dentry);
2881 if (!error) {
2882 error = dir->i_op->unlink(dir, dentry);
2883 if (!error)
2884 dont_mount(dentry);
2885 }
2886 }
2887 mutex_unlock(&dentry->d_inode->i_mutex);
2888
2889 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2890 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2891 fsnotify_link_count(dentry->d_inode);
2892 d_delete(dentry);
2893 }
2894
2895 return error;
2896 }
2897
2898 /*
2899 * Make sure that the actual truncation of the file will occur outside its
2900 * directory's i_mutex. Truncate can take a long time if there is a lot of
2901 * writeout happening, and we don't want to prevent access to the directory
2902 * while waiting on the I/O.
2903 */
2904 static long do_unlinkat(int dfd, const char __user *pathname)
2905 {
2906 int error;
2907 char *name;
2908 struct dentry *dentry;
2909 struct nameidata nd;
2910 struct inode *inode = NULL;
2911
2912 error = user_path_parent(dfd, pathname, &nd, &name);
2913 if (error)
2914 return error;
2915
2916 error = -EISDIR;
2917 if (nd.last_type != LAST_NORM)
2918 goto exit1;
2919
2920 nd.flags &= ~LOOKUP_PARENT;
2921
2922 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2923 dentry = lookup_hash(&nd);
2924 error = PTR_ERR(dentry);
2925 if (!IS_ERR(dentry)) {
2926 /* Why not before? Because we want correct error value */
2927 if (nd.last.name[nd.last.len])
2928 goto slashes;
2929 inode = dentry->d_inode;
2930 if (!inode)
2931 goto slashes;
2932 ihold(inode);
2933 error = mnt_want_write(nd.path.mnt);
2934 if (error)
2935 goto exit2;
2936 error = security_path_unlink(&nd.path, dentry);
2937 if (error)
2938 goto exit3;
2939 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2940 exit3:
2941 mnt_drop_write(nd.path.mnt);
2942 exit2:
2943 dput(dentry);
2944 }
2945 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2946 if (inode)
2947 iput(inode); /* truncate the inode here */
2948 exit1:
2949 path_put(&nd.path);
2950 putname(name);
2951 return error;
2952
2953 slashes:
2954 error = !dentry->d_inode ? -ENOENT :
2955 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2956 goto exit2;
2957 }
2958
2959 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2960 {
2961 if ((flag & ~AT_REMOVEDIR) != 0)
2962 return -EINVAL;
2963
2964 if (flag & AT_REMOVEDIR)
2965 return do_rmdir(dfd, pathname);
2966
2967 return do_unlinkat(dfd, pathname);
2968 }
2969
2970 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2971 {
2972 return do_unlinkat(AT_FDCWD, pathname);
2973 }
2974
2975 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2976 {
2977 int error = may_create(dir, dentry);
2978
2979 if (error)
2980 return error;
2981
2982 if (!dir->i_op->symlink)
2983 return -EPERM;
2984
2985 error = security_inode_symlink(dir, dentry, oldname);
2986 if (error)
2987 return error;
2988
2989 error = dir->i_op->symlink(dir, dentry, oldname);
2990 if (!error)
2991 fsnotify_create(dir, dentry);
2992 return error;
2993 }
2994
2995 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2996 int, newdfd, const char __user *, newname)
2997 {
2998 int error;
2999 char *from;
3000 struct dentry *dentry;
3001 struct path path;
3002
3003 from = getname(oldname);
3004 if (IS_ERR(from))
3005 return PTR_ERR(from);
3006
3007 dentry = user_path_create(newdfd, newname, &path, 0);
3008 error = PTR_ERR(dentry);
3009 if (IS_ERR(dentry))
3010 goto out_putname;
3011
3012 error = mnt_want_write(path.mnt);
3013 if (error)
3014 goto out_dput;
3015 error = security_path_symlink(&path, dentry, from);
3016 if (error)
3017 goto out_drop_write;
3018 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3019 out_drop_write:
3020 mnt_drop_write(path.mnt);
3021 out_dput:
3022 dput(dentry);
3023 mutex_unlock(&path.dentry->d_inode->i_mutex);
3024 path_put(&path);
3025 out_putname:
3026 putname(from);
3027 return error;
3028 }
3029
3030 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3031 {
3032 return sys_symlinkat(oldname, AT_FDCWD, newname);
3033 }
3034
3035 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3036 {
3037 struct inode *inode = old_dentry->d_inode;
3038 unsigned max_links = dir->i_sb->s_max_links;
3039 int error;
3040
3041 if (!inode)
3042 return -ENOENT;
3043
3044 error = may_create(dir, new_dentry);
3045 if (error)
3046 return error;
3047
3048 if (dir->i_sb != inode->i_sb)
3049 return -EXDEV;
3050
3051 /*
3052 * A link to an append-only or immutable file cannot be created.
3053 */
3054 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3055 return -EPERM;
3056 if (!dir->i_op->link)
3057 return -EPERM;
3058 if (S_ISDIR(inode->i_mode))
3059 return -EPERM;
3060
3061 error = security_inode_link(old_dentry, dir, new_dentry);
3062 if (error)
3063 return error;
3064
3065 mutex_lock(&inode->i_mutex);
3066 /* Make sure we don't allow creating hardlink to an unlinked file */
3067 if (inode->i_nlink == 0)
3068 error = -ENOENT;
3069 else if (max_links && inode->i_nlink >= max_links)
3070 error = -EMLINK;
3071 else
3072 error = dir->i_op->link(old_dentry, dir, new_dentry);
3073 mutex_unlock(&inode->i_mutex);
3074 if (!error)
3075 fsnotify_link(dir, inode, new_dentry);
3076 return error;
3077 }
3078
3079 /*
3080 * Hardlinks are often used in delicate situations. We avoid
3081 * security-related surprises by not following symlinks on the
3082 * newname. --KAB
3083 *
3084 * We don't follow them on the oldname either to be compatible
3085 * with linux 2.0, and to avoid hard-linking to directories
3086 * and other special files. --ADM
3087 */
3088 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3089 int, newdfd, const char __user *, newname, int, flags)
3090 {
3091 struct dentry *new_dentry;
3092 struct path old_path, new_path;
3093 int how = 0;
3094 int error;
3095
3096 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3097 return -EINVAL;
3098 /*
3099 * To use null names we require CAP_DAC_READ_SEARCH
3100 * This ensures that not everyone will be able to create
3101 * handlink using the passed filedescriptor.
3102 */
3103 if (flags & AT_EMPTY_PATH) {
3104 if (!capable(CAP_DAC_READ_SEARCH))
3105 return -ENOENT;
3106 how = LOOKUP_EMPTY;
3107 }
3108
3109 if (flags & AT_SYMLINK_FOLLOW)
3110 how |= LOOKUP_FOLLOW;
3111
3112 error = user_path_at(olddfd, oldname, how, &old_path);
3113 if (error)
3114 return error;
3115
3116 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3117 error = PTR_ERR(new_dentry);
3118 if (IS_ERR(new_dentry))
3119 goto out;
3120
3121 error = -EXDEV;
3122 if (old_path.mnt != new_path.mnt)
3123 goto out_dput;
3124 error = mnt_want_write(new_path.mnt);
3125 if (error)
3126 goto out_dput;
3127 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3128 if (error)
3129 goto out_drop_write;
3130 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3131 out_drop_write:
3132 mnt_drop_write(new_path.mnt);
3133 out_dput:
3134 dput(new_dentry);
3135 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3136 path_put(&new_path);
3137 out:
3138 path_put(&old_path);
3139
3140 return error;
3141 }
3142
3143 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3144 {
3145 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3146 }
3147
3148 /*
3149 * The worst of all namespace operations - renaming directory. "Perverted"
3150 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3151 * Problems:
3152 * a) we can get into loop creation. Check is done in is_subdir().
3153 * b) race potential - two innocent renames can create a loop together.
3154 * That's where 4.4 screws up. Current fix: serialization on
3155 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3156 * story.
3157 * c) we have to lock _three_ objects - parents and victim (if it exists).
3158 * And that - after we got ->i_mutex on parents (until then we don't know
3159 * whether the target exists). Solution: try to be smart with locking
3160 * order for inodes. We rely on the fact that tree topology may change
3161 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3162 * move will be locked. Thus we can rank directories by the tree
3163 * (ancestors first) and rank all non-directories after them.
3164 * That works since everybody except rename does "lock parent, lookup,
3165 * lock child" and rename is under ->s_vfs_rename_mutex.
3166 * HOWEVER, it relies on the assumption that any object with ->lookup()
3167 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3168 * we'd better make sure that there's no link(2) for them.
3169 * d) conversion from fhandle to dentry may come in the wrong moment - when
3170 * we are removing the target. Solution: we will have to grab ->i_mutex
3171 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3172 * ->i_mutex on parents, which works but leads to some truly excessive
3173 * locking].
3174 */
3175 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3176 struct inode *new_dir, struct dentry *new_dentry)
3177 {
3178 int error = 0;
3179 struct inode *target = new_dentry->d_inode;
3180 unsigned max_links = new_dir->i_sb->s_max_links;
3181
3182 /*
3183 * If we are going to change the parent - check write permissions,
3184 * we'll need to flip '..'.
3185 */
3186 if (new_dir != old_dir) {
3187 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3188 if (error)
3189 return error;
3190 }
3191
3192 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3193 if (error)
3194 return error;
3195
3196 dget(new_dentry);
3197 if (target)
3198 mutex_lock(&target->i_mutex);
3199
3200 error = -EBUSY;
3201 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3202 goto out;
3203
3204 error = -EMLINK;
3205 if (max_links && !target && new_dir != old_dir &&
3206 new_dir->i_nlink >= max_links)
3207 goto out;
3208
3209 if (target)
3210 shrink_dcache_parent(new_dentry);
3211 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3212 if (error)
3213 goto out;
3214
3215 if (target) {
3216 target->i_flags |= S_DEAD;
3217 dont_mount(new_dentry);
3218 }
3219 out:
3220 if (target)
3221 mutex_unlock(&target->i_mutex);
3222 dput(new_dentry);
3223 if (!error)
3224 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3225 d_move(old_dentry,new_dentry);
3226 return error;
3227 }
3228
3229 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3230 struct inode *new_dir, struct dentry *new_dentry)
3231 {
3232 struct inode *target = new_dentry->d_inode;
3233 int error;
3234
3235 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3236 if (error)
3237 return error;
3238
3239 dget(new_dentry);
3240 if (target)
3241 mutex_lock(&target->i_mutex);
3242
3243 error = -EBUSY;
3244 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3245 goto out;
3246
3247 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3248 if (error)
3249 goto out;
3250
3251 if (target)
3252 dont_mount(new_dentry);
3253 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3254 d_move(old_dentry, new_dentry);
3255 out:
3256 if (target)
3257 mutex_unlock(&target->i_mutex);
3258 dput(new_dentry);
3259 return error;
3260 }
3261
3262 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3263 struct inode *new_dir, struct dentry *new_dentry)
3264 {
3265 int error;
3266 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3267 const unsigned char *old_name;
3268
3269 if (old_dentry->d_inode == new_dentry->d_inode)
3270 return 0;
3271
3272 error = may_delete(old_dir, old_dentry, is_dir);
3273 if (error)
3274 return error;
3275
3276 if (!new_dentry->d_inode)
3277 error = may_create(new_dir, new_dentry);
3278 else
3279 error = may_delete(new_dir, new_dentry, is_dir);
3280 if (error)
3281 return error;
3282
3283 if (!old_dir->i_op->rename)
3284 return -EPERM;
3285
3286 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3287
3288 if (is_dir)
3289 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3290 else
3291 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3292 if (!error)
3293 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3294 new_dentry->d_inode, old_dentry);
3295 fsnotify_oldname_free(old_name);
3296
3297 return error;
3298 }
3299
3300 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3301 int, newdfd, const char __user *, newname)
3302 {
3303 struct dentry *old_dir, *new_dir;
3304 struct dentry *old_dentry, *new_dentry;
3305 struct dentry *trap;
3306 struct nameidata oldnd, newnd;
3307 char *from;
3308 char *to;
3309 int error;
3310
3311 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3312 if (error)
3313 goto exit;
3314
3315 error = user_path_parent(newdfd, newname, &newnd, &to);
3316 if (error)
3317 goto exit1;
3318
3319 error = -EXDEV;
3320 if (oldnd.path.mnt != newnd.path.mnt)
3321 goto exit2;
3322
3323 old_dir = oldnd.path.dentry;
3324 error = -EBUSY;
3325 if (oldnd.last_type != LAST_NORM)
3326 goto exit2;
3327
3328 new_dir = newnd.path.dentry;
3329 if (newnd.last_type != LAST_NORM)
3330 goto exit2;
3331
3332 oldnd.flags &= ~LOOKUP_PARENT;
3333 newnd.flags &= ~LOOKUP_PARENT;
3334 newnd.flags |= LOOKUP_RENAME_TARGET;
3335
3336 trap = lock_rename(new_dir, old_dir);
3337
3338 old_dentry = lookup_hash(&oldnd);
3339 error = PTR_ERR(old_dentry);
3340 if (IS_ERR(old_dentry))
3341 goto exit3;
3342 /* source must exist */
3343 error = -ENOENT;
3344 if (!old_dentry->d_inode)
3345 goto exit4;
3346 /* unless the source is a directory trailing slashes give -ENOTDIR */
3347 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3348 error = -ENOTDIR;
3349 if (oldnd.last.name[oldnd.last.len])
3350 goto exit4;
3351 if (newnd.last.name[newnd.last.len])
3352 goto exit4;
3353 }
3354 /* source should not be ancestor of target */
3355 error = -EINVAL;
3356 if (old_dentry == trap)
3357 goto exit4;
3358 new_dentry = lookup_hash(&newnd);
3359 error = PTR_ERR(new_dentry);
3360 if (IS_ERR(new_dentry))
3361 goto exit4;
3362 /* target should not be an ancestor of source */
3363 error = -ENOTEMPTY;
3364 if (new_dentry == trap)
3365 goto exit5;
3366
3367 error = mnt_want_write(oldnd.path.mnt);
3368 if (error)
3369 goto exit5;
3370 error = security_path_rename(&oldnd.path, old_dentry,
3371 &newnd.path, new_dentry);
3372 if (error)
3373 goto exit6;
3374 error = vfs_rename(old_dir->d_inode, old_dentry,
3375 new_dir->d_inode, new_dentry);
3376 exit6:
3377 mnt_drop_write(oldnd.path.mnt);
3378 exit5:
3379 dput(new_dentry);
3380 exit4:
3381 dput(old_dentry);
3382 exit3:
3383 unlock_rename(new_dir, old_dir);
3384 exit2:
3385 path_put(&newnd.path);
3386 putname(to);
3387 exit1:
3388 path_put(&oldnd.path);
3389 putname(from);
3390 exit:
3391 return error;
3392 }
3393
3394 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3395 {
3396 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3397 }
3398
3399 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3400 {
3401 int len;
3402
3403 len = PTR_ERR(link);
3404 if (IS_ERR(link))
3405 goto out;
3406
3407 len = strlen(link);
3408 if (len > (unsigned) buflen)
3409 len = buflen;
3410 if (copy_to_user(buffer, link, len))
3411 len = -EFAULT;
3412 out:
3413 return len;
3414 }
3415
3416 /*
3417 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3418 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3419 * using) it for any given inode is up to filesystem.
3420 */
3421 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3422 {
3423 struct nameidata nd;
3424 void *cookie;
3425 int res;
3426
3427 nd.depth = 0;
3428 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3429 if (IS_ERR(cookie))
3430 return PTR_ERR(cookie);
3431
3432 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3433 if (dentry->d_inode->i_op->put_link)
3434 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3435 return res;
3436 }
3437
3438 int vfs_follow_link(struct nameidata *nd, const char *link)
3439 {
3440 return __vfs_follow_link(nd, link);
3441 }
3442
3443 /* get the link contents into pagecache */
3444 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3445 {
3446 char *kaddr;
3447 struct page *page;
3448 struct address_space *mapping = dentry->d_inode->i_mapping;
3449 page = read_mapping_page(mapping, 0, NULL);
3450 if (IS_ERR(page))
3451 return (char*)page;
3452 *ppage = page;
3453 kaddr = kmap(page);
3454 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3455 return kaddr;
3456 }
3457
3458 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3459 {
3460 struct page *page = NULL;
3461 char *s = page_getlink(dentry, &page);
3462 int res = vfs_readlink(dentry,buffer,buflen,s);
3463 if (page) {
3464 kunmap(page);
3465 page_cache_release(page);
3466 }
3467 return res;
3468 }
3469
3470 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3471 {
3472 struct page *page = NULL;
3473 nd_set_link(nd, page_getlink(dentry, &page));
3474 return page;
3475 }
3476
3477 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3478 {
3479 struct page *page = cookie;
3480
3481 if (page) {
3482 kunmap(page);
3483 page_cache_release(page);
3484 }
3485 }
3486
3487 /*
3488 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3489 */
3490 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3491 {
3492 struct address_space *mapping = inode->i_mapping;
3493 struct page *page;
3494 void *fsdata;
3495 int err;
3496 char *kaddr;
3497 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3498 if (nofs)
3499 flags |= AOP_FLAG_NOFS;
3500
3501 retry:
3502 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3503 flags, &page, &fsdata);
3504 if (err)
3505 goto fail;
3506
3507 kaddr = kmap_atomic(page);
3508 memcpy(kaddr, symname, len-1);
3509 kunmap_atomic(kaddr);
3510
3511 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3512 page, fsdata);
3513 if (err < 0)
3514 goto fail;
3515 if (err < len-1)
3516 goto retry;
3517
3518 mark_inode_dirty(inode);
3519 return 0;
3520 fail:
3521 return err;
3522 }
3523
3524 int page_symlink(struct inode *inode, const char *symname, int len)
3525 {
3526 return __page_symlink(inode, symname, len,
3527 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3528 }
3529
3530 const struct inode_operations page_symlink_inode_operations = {
3531 .readlink = generic_readlink,
3532 .follow_link = page_follow_link_light,
3533 .put_link = page_put_link,
3534 };
3535
3536 EXPORT_SYMBOL(user_path_at);
3537 EXPORT_SYMBOL(follow_down_one);
3538 EXPORT_SYMBOL(follow_down);
3539 EXPORT_SYMBOL(follow_up);
3540 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3541 EXPORT_SYMBOL(getname);
3542 EXPORT_SYMBOL(lock_rename);
3543 EXPORT_SYMBOL(lookup_one_len);
3544 EXPORT_SYMBOL(page_follow_link_light);
3545 EXPORT_SYMBOL(page_put_link);
3546 EXPORT_SYMBOL(page_readlink);
3547 EXPORT_SYMBOL(__page_symlink);
3548 EXPORT_SYMBOL(page_symlink);
3549 EXPORT_SYMBOL(page_symlink_inode_operations);
3550 EXPORT_SYMBOL(kern_path);
3551 EXPORT_SYMBOL(vfs_path_lookup);
3552 EXPORT_SYMBOL(inode_permission);
3553 EXPORT_SYMBOL(unlock_rename);
3554 EXPORT_SYMBOL(vfs_create);
3555 EXPORT_SYMBOL(vfs_follow_link);
3556 EXPORT_SYMBOL(vfs_link);
3557 EXPORT_SYMBOL(vfs_mkdir);
3558 EXPORT_SYMBOL(vfs_mknod);
3559 EXPORT_SYMBOL(generic_permission);
3560 EXPORT_SYMBOL(vfs_readlink);
3561 EXPORT_SYMBOL(vfs_rename);
3562 EXPORT_SYMBOL(vfs_rmdir);
3563 EXPORT_SYMBOL(vfs_symlink);
3564 EXPORT_SYMBOL(vfs_unlink);
3565 EXPORT_SYMBOL(dentry_unhash);
3566 EXPORT_SYMBOL(generic_readlink);
This page took 0.181599 seconds and 6 git commands to generate.