Merge branch 'fixes' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
211 *
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
215 */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 int ret;
220
221 /*
222 * Do the basic POSIX ACL permission checks.
223 */
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
227
228 /*
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
231 */
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
235
236 /*
237 * Searching includes executable on directories, else just read.
238 */
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
243
244 return -EACCES;
245 }
246
247 /**
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251 *
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
256 */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 int retval;
260
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
263
264 /*
265 * Nobody gets write access to a read-only fs.
266 */
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
270
271 /*
272 * Nobody gets write access to an immutable file.
273 */
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
276 }
277
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
283
284 if (retval)
285 return retval;
286
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
290
291 return security_inode_permission(inode, mask);
292 }
293
294 /**
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298 *
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
301 *
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
305 */
306 int file_permission(struct file *file, int mask)
307 {
308 return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310
311 /*
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
321 *
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
327 */
328
329 int get_write_access(struct inode * inode)
330 {
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
335 }
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
338
339 return 0;
340 }
341
342 int deny_write_access(struct file * file)
343 {
344 struct inode *inode = file->f_path.dentry->d_inode;
345
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
350 }
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
353
354 return 0;
355 }
356
357 /**
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
360 *
361 * Given a path increment the reference count to the dentry and the vfsmount.
362 */
363 void path_get(struct path *path)
364 {
365 mntget(path->mnt);
366 dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369
370 /**
371 * path_get_long - get a long reference to a path
372 * @path: path to get the reference to
373 *
374 * Given a path increment the reference count to the dentry and the vfsmount.
375 */
376 void path_get_long(struct path *path)
377 {
378 mntget_long(path->mnt);
379 dget(path->dentry);
380 }
381
382 /**
383 * path_put - put a reference to a path
384 * @path: path to put the reference to
385 *
386 * Given a path decrement the reference count to the dentry and the vfsmount.
387 */
388 void path_put(struct path *path)
389 {
390 dput(path->dentry);
391 mntput(path->mnt);
392 }
393 EXPORT_SYMBOL(path_put);
394
395 /**
396 * path_put_long - put a long reference to a path
397 * @path: path to put the reference to
398 *
399 * Given a path decrement the reference count to the dentry and the vfsmount.
400 */
401 void path_put_long(struct path *path)
402 {
403 dput(path->dentry);
404 mntput_long(path->mnt);
405 }
406
407 /**
408 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
409 * @nd: nameidata pathwalk data to drop
410 * Returns: 0 on success, -ECHILD on failure
411 *
412 * Path walking has 2 modes, rcu-walk and ref-walk (see
413 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
414 * to drop out of rcu-walk mode and take normal reference counts on dentries
415 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
416 * refcounts at the last known good point before rcu-walk got stuck, so
417 * ref-walk may continue from there. If this is not successful (eg. a seqcount
418 * has changed), then failure is returned and path walk restarts from the
419 * beginning in ref-walk mode.
420 *
421 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
422 * ref-walk. Must be called from rcu-walk context.
423 */
424 static int nameidata_drop_rcu(struct nameidata *nd)
425 {
426 struct fs_struct *fs = current->fs;
427 struct dentry *dentry = nd->path.dentry;
428
429 BUG_ON(!(nd->flags & LOOKUP_RCU));
430 if (nd->root.mnt) {
431 spin_lock(&fs->lock);
432 if (nd->root.mnt != fs->root.mnt ||
433 nd->root.dentry != fs->root.dentry)
434 goto err_root;
435 }
436 spin_lock(&dentry->d_lock);
437 if (!__d_rcu_to_refcount(dentry, nd->seq))
438 goto err;
439 BUG_ON(nd->inode != dentry->d_inode);
440 spin_unlock(&dentry->d_lock);
441 if (nd->root.mnt) {
442 path_get(&nd->root);
443 spin_unlock(&fs->lock);
444 }
445 mntget(nd->path.mnt);
446
447 rcu_read_unlock();
448 br_read_unlock(vfsmount_lock);
449 nd->flags &= ~LOOKUP_RCU;
450 return 0;
451 err:
452 spin_unlock(&dentry->d_lock);
453 err_root:
454 if (nd->root.mnt)
455 spin_unlock(&fs->lock);
456 return -ECHILD;
457 }
458
459 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
460 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
461 {
462 if (nd->flags & LOOKUP_RCU)
463 return nameidata_drop_rcu(nd);
464 return 0;
465 }
466
467 /**
468 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
469 * @nd: nameidata pathwalk data to drop
470 * @dentry: dentry to drop
471 * Returns: 0 on success, -ECHILD on failure
472 *
473 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
474 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
475 * @nd. Must be called from rcu-walk context.
476 */
477 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
478 {
479 struct fs_struct *fs = current->fs;
480 struct dentry *parent = nd->path.dentry;
481
482 /*
483 * It can be possible to revalidate the dentry that we started
484 * the path walk with. force_reval_path may also revalidate the
485 * dentry already committed to the nameidata.
486 */
487 if (unlikely(parent == dentry))
488 return nameidata_drop_rcu(nd);
489
490 BUG_ON(!(nd->flags & LOOKUP_RCU));
491 if (nd->root.mnt) {
492 spin_lock(&fs->lock);
493 if (nd->root.mnt != fs->root.mnt ||
494 nd->root.dentry != fs->root.dentry)
495 goto err_root;
496 }
497 spin_lock(&parent->d_lock);
498 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
499 if (!__d_rcu_to_refcount(dentry, nd->seq))
500 goto err;
501 /*
502 * If the sequence check on the child dentry passed, then the child has
503 * not been removed from its parent. This means the parent dentry must
504 * be valid and able to take a reference at this point.
505 */
506 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
507 BUG_ON(!parent->d_count);
508 parent->d_count++;
509 spin_unlock(&dentry->d_lock);
510 spin_unlock(&parent->d_lock);
511 if (nd->root.mnt) {
512 path_get(&nd->root);
513 spin_unlock(&fs->lock);
514 }
515 mntget(nd->path.mnt);
516
517 rcu_read_unlock();
518 br_read_unlock(vfsmount_lock);
519 nd->flags &= ~LOOKUP_RCU;
520 return 0;
521 err:
522 spin_unlock(&dentry->d_lock);
523 spin_unlock(&parent->d_lock);
524 err_root:
525 if (nd->root.mnt)
526 spin_unlock(&fs->lock);
527 return -ECHILD;
528 }
529
530 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
531 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
532 {
533 if (nd->flags & LOOKUP_RCU)
534 return nameidata_dentry_drop_rcu(nd, dentry);
535 return 0;
536 }
537
538 /**
539 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
540 * @nd: nameidata pathwalk data to drop
541 * Returns: 0 on success, -ECHILD on failure
542 *
543 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
544 * nd->path should be the final element of the lookup, so nd->root is discarded.
545 * Must be called from rcu-walk context.
546 */
547 static int nameidata_drop_rcu_last(struct nameidata *nd)
548 {
549 struct dentry *dentry = nd->path.dentry;
550
551 BUG_ON(!(nd->flags & LOOKUP_RCU));
552 nd->flags &= ~LOOKUP_RCU;
553 nd->root.mnt = NULL;
554 spin_lock(&dentry->d_lock);
555 if (!__d_rcu_to_refcount(dentry, nd->seq))
556 goto err_unlock;
557 BUG_ON(nd->inode != dentry->d_inode);
558 spin_unlock(&dentry->d_lock);
559
560 mntget(nd->path.mnt);
561
562 rcu_read_unlock();
563 br_read_unlock(vfsmount_lock);
564
565 return 0;
566
567 err_unlock:
568 spin_unlock(&dentry->d_lock);
569 rcu_read_unlock();
570 br_read_unlock(vfsmount_lock);
571 return -ECHILD;
572 }
573
574 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
575 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
576 {
577 if (likely(nd->flags & LOOKUP_RCU))
578 return nameidata_drop_rcu_last(nd);
579 return 0;
580 }
581
582 /**
583 * release_open_intent - free up open intent resources
584 * @nd: pointer to nameidata
585 */
586 void release_open_intent(struct nameidata *nd)
587 {
588 if (nd->intent.open.file->f_path.dentry == NULL)
589 put_filp(nd->intent.open.file);
590 else
591 fput(nd->intent.open.file);
592 }
593
594 /*
595 * Call d_revalidate and handle filesystems that request rcu-walk
596 * to be dropped. This may be called and return in rcu-walk mode,
597 * regardless of success or error. If -ECHILD is returned, the caller
598 * must return -ECHILD back up the path walk stack so path walk may
599 * be restarted in ref-walk mode.
600 */
601 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
602 {
603 int status;
604
605 status = dentry->d_op->d_revalidate(dentry, nd);
606 if (status == -ECHILD) {
607 if (nameidata_dentry_drop_rcu(nd, dentry))
608 return status;
609 status = dentry->d_op->d_revalidate(dentry, nd);
610 }
611
612 return status;
613 }
614
615 static inline struct dentry *
616 do_revalidate(struct dentry *dentry, struct nameidata *nd)
617 {
618 int status;
619
620 status = d_revalidate(dentry, nd);
621 if (unlikely(status <= 0)) {
622 /*
623 * The dentry failed validation.
624 * If d_revalidate returned 0 attempt to invalidate
625 * the dentry otherwise d_revalidate is asking us
626 * to return a fail status.
627 */
628 if (status < 0) {
629 /* If we're in rcu-walk, we don't have a ref */
630 if (!(nd->flags & LOOKUP_RCU))
631 dput(dentry);
632 dentry = ERR_PTR(status);
633
634 } else {
635 /* Don't d_invalidate in rcu-walk mode */
636 if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
637 return ERR_PTR(-ECHILD);
638 if (!d_invalidate(dentry)) {
639 dput(dentry);
640 dentry = NULL;
641 }
642 }
643 }
644 return dentry;
645 }
646
647 static inline int need_reval_dot(struct dentry *dentry)
648 {
649 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
650 return 0;
651
652 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
653 return 0;
654
655 return 1;
656 }
657
658 /*
659 * force_reval_path - force revalidation of a dentry
660 *
661 * In some situations the path walking code will trust dentries without
662 * revalidating them. This causes problems for filesystems that depend on
663 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
664 * (which indicates that it's possible for the dentry to go stale), force
665 * a d_revalidate call before proceeding.
666 *
667 * Returns 0 if the revalidation was successful. If the revalidation fails,
668 * either return the error returned by d_revalidate or -ESTALE if the
669 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
670 * invalidate the dentry. It's up to the caller to handle putting references
671 * to the path if necessary.
672 */
673 static int
674 force_reval_path(struct path *path, struct nameidata *nd)
675 {
676 int status;
677 struct dentry *dentry = path->dentry;
678
679 /*
680 * only check on filesystems where it's possible for the dentry to
681 * become stale.
682 */
683 if (!need_reval_dot(dentry))
684 return 0;
685
686 status = d_revalidate(dentry, nd);
687 if (status > 0)
688 return 0;
689
690 if (!status) {
691 /* Don't d_invalidate in rcu-walk mode */
692 if (nameidata_drop_rcu(nd))
693 return -ECHILD;
694 d_invalidate(dentry);
695 status = -ESTALE;
696 }
697 return status;
698 }
699
700 /*
701 * Short-cut version of permission(), for calling on directories
702 * during pathname resolution. Combines parts of permission()
703 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
704 *
705 * If appropriate, check DAC only. If not appropriate, or
706 * short-cut DAC fails, then call ->permission() to do more
707 * complete permission check.
708 */
709 static inline int exec_permission(struct inode *inode, unsigned int flags)
710 {
711 int ret;
712
713 if (inode->i_op->permission) {
714 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
715 } else {
716 ret = acl_permission_check(inode, MAY_EXEC, flags,
717 inode->i_op->check_acl);
718 }
719 if (likely(!ret))
720 goto ok;
721 if (ret == -ECHILD)
722 return ret;
723
724 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
725 goto ok;
726
727 return ret;
728 ok:
729 return security_inode_exec_permission(inode, flags);
730 }
731
732 static __always_inline void set_root(struct nameidata *nd)
733 {
734 if (!nd->root.mnt)
735 get_fs_root(current->fs, &nd->root);
736 }
737
738 static int link_path_walk(const char *, struct nameidata *);
739
740 static __always_inline void set_root_rcu(struct nameidata *nd)
741 {
742 if (!nd->root.mnt) {
743 struct fs_struct *fs = current->fs;
744 unsigned seq;
745
746 do {
747 seq = read_seqcount_begin(&fs->seq);
748 nd->root = fs->root;
749 } while (read_seqcount_retry(&fs->seq, seq));
750 }
751 }
752
753 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
754 {
755 int ret;
756
757 if (IS_ERR(link))
758 goto fail;
759
760 if (*link == '/') {
761 set_root(nd);
762 path_put(&nd->path);
763 nd->path = nd->root;
764 path_get(&nd->root);
765 }
766 nd->inode = nd->path.dentry->d_inode;
767
768 ret = link_path_walk(link, nd);
769 return ret;
770 fail:
771 path_put(&nd->path);
772 return PTR_ERR(link);
773 }
774
775 static void path_put_conditional(struct path *path, struct nameidata *nd)
776 {
777 dput(path->dentry);
778 if (path->mnt != nd->path.mnt)
779 mntput(path->mnt);
780 }
781
782 static inline void path_to_nameidata(const struct path *path,
783 struct nameidata *nd)
784 {
785 if (!(nd->flags & LOOKUP_RCU)) {
786 dput(nd->path.dentry);
787 if (nd->path.mnt != path->mnt)
788 mntput(nd->path.mnt);
789 }
790 nd->path.mnt = path->mnt;
791 nd->path.dentry = path->dentry;
792 }
793
794 static __always_inline int
795 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
796 {
797 int error;
798 struct dentry *dentry = link->dentry;
799
800 touch_atime(link->mnt, dentry);
801 nd_set_link(nd, NULL);
802
803 if (link->mnt != nd->path.mnt) {
804 path_to_nameidata(link, nd);
805 nd->inode = nd->path.dentry->d_inode;
806 dget(dentry);
807 }
808 mntget(link->mnt);
809
810 nd->last_type = LAST_BIND;
811 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
812 error = PTR_ERR(*p);
813 if (!IS_ERR(*p)) {
814 char *s = nd_get_link(nd);
815 error = 0;
816 if (s)
817 error = __vfs_follow_link(nd, s);
818 else if (nd->last_type == LAST_BIND) {
819 error = force_reval_path(&nd->path, nd);
820 if (error)
821 path_put(&nd->path);
822 }
823 }
824 return error;
825 }
826
827 /*
828 * This limits recursive symlink follows to 8, while
829 * limiting consecutive symlinks to 40.
830 *
831 * Without that kind of total limit, nasty chains of consecutive
832 * symlinks can cause almost arbitrarily long lookups.
833 */
834 static inline int do_follow_link(struct path *path, struct nameidata *nd)
835 {
836 void *cookie;
837 int err = -ELOOP;
838 if (current->link_count >= MAX_NESTED_LINKS)
839 goto loop;
840 if (current->total_link_count >= 40)
841 goto loop;
842 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
843 cond_resched();
844 err = security_inode_follow_link(path->dentry, nd);
845 if (err)
846 goto loop;
847 current->link_count++;
848 current->total_link_count++;
849 nd->depth++;
850 err = __do_follow_link(path, nd, &cookie);
851 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
852 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
853 path_put(path);
854 current->link_count--;
855 nd->depth--;
856 return err;
857 loop:
858 path_put_conditional(path, nd);
859 path_put(&nd->path);
860 return err;
861 }
862
863 static int follow_up_rcu(struct path *path)
864 {
865 struct vfsmount *parent;
866 struct dentry *mountpoint;
867
868 parent = path->mnt->mnt_parent;
869 if (parent == path->mnt)
870 return 0;
871 mountpoint = path->mnt->mnt_mountpoint;
872 path->dentry = mountpoint;
873 path->mnt = parent;
874 return 1;
875 }
876
877 int follow_up(struct path *path)
878 {
879 struct vfsmount *parent;
880 struct dentry *mountpoint;
881
882 br_read_lock(vfsmount_lock);
883 parent = path->mnt->mnt_parent;
884 if (parent == path->mnt) {
885 br_read_unlock(vfsmount_lock);
886 return 0;
887 }
888 mntget(parent);
889 mountpoint = dget(path->mnt->mnt_mountpoint);
890 br_read_unlock(vfsmount_lock);
891 dput(path->dentry);
892 path->dentry = mountpoint;
893 mntput(path->mnt);
894 path->mnt = parent;
895 return 1;
896 }
897
898 /*
899 * serialization is taken care of in namespace.c
900 */
901 static void __follow_mount_rcu(struct nameidata *nd, struct path *path,
902 struct inode **inode)
903 {
904 while (d_mountpoint(path->dentry)) {
905 struct vfsmount *mounted;
906 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
907 if (!mounted)
908 return;
909 path->mnt = mounted;
910 path->dentry = mounted->mnt_root;
911 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
912 *inode = path->dentry->d_inode;
913 }
914 }
915
916 static int __follow_mount(struct path *path)
917 {
918 int res = 0;
919 while (d_mountpoint(path->dentry)) {
920 struct vfsmount *mounted = lookup_mnt(path);
921 if (!mounted)
922 break;
923 dput(path->dentry);
924 if (res)
925 mntput(path->mnt);
926 path->mnt = mounted;
927 path->dentry = dget(mounted->mnt_root);
928 res = 1;
929 }
930 return res;
931 }
932
933 static void follow_mount(struct path *path)
934 {
935 while (d_mountpoint(path->dentry)) {
936 struct vfsmount *mounted = lookup_mnt(path);
937 if (!mounted)
938 break;
939 dput(path->dentry);
940 mntput(path->mnt);
941 path->mnt = mounted;
942 path->dentry = dget(mounted->mnt_root);
943 }
944 }
945
946 int follow_down(struct path *path)
947 {
948 struct vfsmount *mounted;
949
950 mounted = lookup_mnt(path);
951 if (mounted) {
952 dput(path->dentry);
953 mntput(path->mnt);
954 path->mnt = mounted;
955 path->dentry = dget(mounted->mnt_root);
956 return 1;
957 }
958 return 0;
959 }
960
961 static int follow_dotdot_rcu(struct nameidata *nd)
962 {
963 struct inode *inode = nd->inode;
964
965 set_root_rcu(nd);
966
967 while(1) {
968 if (nd->path.dentry == nd->root.dentry &&
969 nd->path.mnt == nd->root.mnt) {
970 break;
971 }
972 if (nd->path.dentry != nd->path.mnt->mnt_root) {
973 struct dentry *old = nd->path.dentry;
974 struct dentry *parent = old->d_parent;
975 unsigned seq;
976
977 seq = read_seqcount_begin(&parent->d_seq);
978 if (read_seqcount_retry(&old->d_seq, nd->seq))
979 return -ECHILD;
980 inode = parent->d_inode;
981 nd->path.dentry = parent;
982 nd->seq = seq;
983 break;
984 }
985 if (!follow_up_rcu(&nd->path))
986 break;
987 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
988 inode = nd->path.dentry->d_inode;
989 }
990 __follow_mount_rcu(nd, &nd->path, &inode);
991 nd->inode = inode;
992
993 return 0;
994 }
995
996 static void follow_dotdot(struct nameidata *nd)
997 {
998 set_root(nd);
999
1000 while(1) {
1001 struct dentry *old = nd->path.dentry;
1002
1003 if (nd->path.dentry == nd->root.dentry &&
1004 nd->path.mnt == nd->root.mnt) {
1005 break;
1006 }
1007 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1008 /* rare case of legitimate dget_parent()... */
1009 nd->path.dentry = dget_parent(nd->path.dentry);
1010 dput(old);
1011 break;
1012 }
1013 if (!follow_up(&nd->path))
1014 break;
1015 }
1016 follow_mount(&nd->path);
1017 nd->inode = nd->path.dentry->d_inode;
1018 }
1019
1020 /*
1021 * Allocate a dentry with name and parent, and perform a parent
1022 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1023 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1024 * have verified that no child exists while under i_mutex.
1025 */
1026 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1027 struct qstr *name, struct nameidata *nd)
1028 {
1029 struct inode *inode = parent->d_inode;
1030 struct dentry *dentry;
1031 struct dentry *old;
1032
1033 /* Don't create child dentry for a dead directory. */
1034 if (unlikely(IS_DEADDIR(inode)))
1035 return ERR_PTR(-ENOENT);
1036
1037 dentry = d_alloc(parent, name);
1038 if (unlikely(!dentry))
1039 return ERR_PTR(-ENOMEM);
1040
1041 old = inode->i_op->lookup(inode, dentry, nd);
1042 if (unlikely(old)) {
1043 dput(dentry);
1044 dentry = old;
1045 }
1046 return dentry;
1047 }
1048
1049 /*
1050 * It's more convoluted than I'd like it to be, but... it's still fairly
1051 * small and for now I'd prefer to have fast path as straight as possible.
1052 * It _is_ time-critical.
1053 */
1054 static int do_lookup(struct nameidata *nd, struct qstr *name,
1055 struct path *path, struct inode **inode)
1056 {
1057 struct vfsmount *mnt = nd->path.mnt;
1058 struct dentry *dentry, *parent = nd->path.dentry;
1059 struct inode *dir;
1060 /*
1061 * See if the low-level filesystem might want
1062 * to use its own hash..
1063 */
1064 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1065 int err = parent->d_op->d_hash(parent, nd->inode, name);
1066 if (err < 0)
1067 return err;
1068 }
1069
1070 /*
1071 * Rename seqlock is not required here because in the off chance
1072 * of a false negative due to a concurrent rename, we're going to
1073 * do the non-racy lookup, below.
1074 */
1075 if (nd->flags & LOOKUP_RCU) {
1076 unsigned seq;
1077
1078 *inode = nd->inode;
1079 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1080 if (!dentry) {
1081 if (nameidata_drop_rcu(nd))
1082 return -ECHILD;
1083 goto need_lookup;
1084 }
1085 /* Memory barrier in read_seqcount_begin of child is enough */
1086 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1087 return -ECHILD;
1088
1089 nd->seq = seq;
1090 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1091 goto need_revalidate;
1092 path->mnt = mnt;
1093 path->dentry = dentry;
1094 __follow_mount_rcu(nd, path, inode);
1095 } else {
1096 dentry = __d_lookup(parent, name);
1097 if (!dentry)
1098 goto need_lookup;
1099 found:
1100 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1101 goto need_revalidate;
1102 done:
1103 path->mnt = mnt;
1104 path->dentry = dentry;
1105 __follow_mount(path);
1106 *inode = path->dentry->d_inode;
1107 }
1108 return 0;
1109
1110 need_lookup:
1111 dir = parent->d_inode;
1112 BUG_ON(nd->inode != dir);
1113
1114 mutex_lock(&dir->i_mutex);
1115 /*
1116 * First re-do the cached lookup just in case it was created
1117 * while we waited for the directory semaphore, or the first
1118 * lookup failed due to an unrelated rename.
1119 *
1120 * This could use version numbering or similar to avoid unnecessary
1121 * cache lookups, but then we'd have to do the first lookup in the
1122 * non-racy way. However in the common case here, everything should
1123 * be hot in cache, so would it be a big win?
1124 */
1125 dentry = d_lookup(parent, name);
1126 if (likely(!dentry)) {
1127 dentry = d_alloc_and_lookup(parent, name, nd);
1128 mutex_unlock(&dir->i_mutex);
1129 if (IS_ERR(dentry))
1130 goto fail;
1131 goto done;
1132 }
1133 /*
1134 * Uhhuh! Nasty case: the cache was re-populated while
1135 * we waited on the semaphore. Need to revalidate.
1136 */
1137 mutex_unlock(&dir->i_mutex);
1138 goto found;
1139
1140 need_revalidate:
1141 dentry = do_revalidate(dentry, nd);
1142 if (!dentry)
1143 goto need_lookup;
1144 if (IS_ERR(dentry))
1145 goto fail;
1146 goto done;
1147
1148 fail:
1149 return PTR_ERR(dentry);
1150 }
1151
1152 /*
1153 * This is a temporary kludge to deal with "automount" symlinks; proper
1154 * solution is to trigger them on follow_mount(), so that do_lookup()
1155 * would DTRT. To be killed before 2.6.34-final.
1156 */
1157 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
1158 {
1159 return inode && unlikely(inode->i_op->follow_link) &&
1160 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
1161 }
1162
1163 /*
1164 * Name resolution.
1165 * This is the basic name resolution function, turning a pathname into
1166 * the final dentry. We expect 'base' to be positive and a directory.
1167 *
1168 * Returns 0 and nd will have valid dentry and mnt on success.
1169 * Returns error and drops reference to input namei data on failure.
1170 */
1171 static int link_path_walk(const char *name, struct nameidata *nd)
1172 {
1173 struct path next;
1174 int err;
1175 unsigned int lookup_flags = nd->flags;
1176
1177 while (*name=='/')
1178 name++;
1179 if (!*name)
1180 goto return_reval;
1181
1182 if (nd->depth)
1183 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1184
1185 /* At this point we know we have a real path component. */
1186 for(;;) {
1187 struct inode *inode;
1188 unsigned long hash;
1189 struct qstr this;
1190 unsigned int c;
1191
1192 nd->flags |= LOOKUP_CONTINUE;
1193 if (nd->flags & LOOKUP_RCU) {
1194 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1195 if (err == -ECHILD) {
1196 if (nameidata_drop_rcu(nd))
1197 return -ECHILD;
1198 goto exec_again;
1199 }
1200 } else {
1201 exec_again:
1202 err = exec_permission(nd->inode, 0);
1203 }
1204 if (err)
1205 break;
1206
1207 this.name = name;
1208 c = *(const unsigned char *)name;
1209
1210 hash = init_name_hash();
1211 do {
1212 name++;
1213 hash = partial_name_hash(c, hash);
1214 c = *(const unsigned char *)name;
1215 } while (c && (c != '/'));
1216 this.len = name - (const char *) this.name;
1217 this.hash = end_name_hash(hash);
1218
1219 /* remove trailing slashes? */
1220 if (!c)
1221 goto last_component;
1222 while (*++name == '/');
1223 if (!*name)
1224 goto last_with_slashes;
1225
1226 /*
1227 * "." and ".." are special - ".." especially so because it has
1228 * to be able to know about the current root directory and
1229 * parent relationships.
1230 */
1231 if (this.name[0] == '.') switch (this.len) {
1232 default:
1233 break;
1234 case 2:
1235 if (this.name[1] != '.')
1236 break;
1237 if (nd->flags & LOOKUP_RCU) {
1238 if (follow_dotdot_rcu(nd))
1239 return -ECHILD;
1240 } else
1241 follow_dotdot(nd);
1242 /* fallthrough */
1243 case 1:
1244 continue;
1245 }
1246 /* This does the actual lookups.. */
1247 err = do_lookup(nd, &this, &next, &inode);
1248 if (err)
1249 break;
1250 err = -ENOENT;
1251 if (!inode)
1252 goto out_dput;
1253
1254 if (inode->i_op->follow_link) {
1255 /* We commonly drop rcu-walk here */
1256 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1257 return -ECHILD;
1258 BUG_ON(inode != next.dentry->d_inode);
1259 err = do_follow_link(&next, nd);
1260 if (err)
1261 goto return_err;
1262 nd->inode = nd->path.dentry->d_inode;
1263 err = -ENOENT;
1264 if (!nd->inode)
1265 break;
1266 } else {
1267 path_to_nameidata(&next, nd);
1268 nd->inode = inode;
1269 }
1270 err = -ENOTDIR;
1271 if (!nd->inode->i_op->lookup)
1272 break;
1273 continue;
1274 /* here ends the main loop */
1275
1276 last_with_slashes:
1277 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1278 last_component:
1279 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1280 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1281 if (lookup_flags & LOOKUP_PARENT)
1282 goto lookup_parent;
1283 if (this.name[0] == '.') switch (this.len) {
1284 default:
1285 break;
1286 case 2:
1287 if (this.name[1] != '.')
1288 break;
1289 if (nd->flags & LOOKUP_RCU) {
1290 if (follow_dotdot_rcu(nd))
1291 return -ECHILD;
1292 } else
1293 follow_dotdot(nd);
1294 /* fallthrough */
1295 case 1:
1296 goto return_reval;
1297 }
1298 err = do_lookup(nd, &this, &next, &inode);
1299 if (err)
1300 break;
1301 if (follow_on_final(inode, lookup_flags)) {
1302 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1303 return -ECHILD;
1304 BUG_ON(inode != next.dentry->d_inode);
1305 err = do_follow_link(&next, nd);
1306 if (err)
1307 goto return_err;
1308 nd->inode = nd->path.dentry->d_inode;
1309 } else {
1310 path_to_nameidata(&next, nd);
1311 nd->inode = inode;
1312 }
1313 err = -ENOENT;
1314 if (!nd->inode)
1315 break;
1316 if (lookup_flags & LOOKUP_DIRECTORY) {
1317 err = -ENOTDIR;
1318 if (!nd->inode->i_op->lookup)
1319 break;
1320 }
1321 goto return_base;
1322 lookup_parent:
1323 nd->last = this;
1324 nd->last_type = LAST_NORM;
1325 if (this.name[0] != '.')
1326 goto return_base;
1327 if (this.len == 1)
1328 nd->last_type = LAST_DOT;
1329 else if (this.len == 2 && this.name[1] == '.')
1330 nd->last_type = LAST_DOTDOT;
1331 else
1332 goto return_base;
1333 return_reval:
1334 /*
1335 * We bypassed the ordinary revalidation routines.
1336 * We may need to check the cached dentry for staleness.
1337 */
1338 if (need_reval_dot(nd->path.dentry)) {
1339 /* Note: we do not d_invalidate() */
1340 err = d_revalidate(nd->path.dentry, nd);
1341 if (!err)
1342 err = -ESTALE;
1343 if (err < 0)
1344 break;
1345 }
1346 return_base:
1347 if (nameidata_drop_rcu_last_maybe(nd))
1348 return -ECHILD;
1349 return 0;
1350 out_dput:
1351 if (!(nd->flags & LOOKUP_RCU))
1352 path_put_conditional(&next, nd);
1353 break;
1354 }
1355 if (!(nd->flags & LOOKUP_RCU))
1356 path_put(&nd->path);
1357 return_err:
1358 return err;
1359 }
1360
1361 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1362 {
1363 current->total_link_count = 0;
1364
1365 return link_path_walk(name, nd);
1366 }
1367
1368 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1369 {
1370 current->total_link_count = 0;
1371
1372 return link_path_walk(name, nd);
1373 }
1374
1375 static int path_walk(const char *name, struct nameidata *nd)
1376 {
1377 struct path save = nd->path;
1378 int result;
1379
1380 current->total_link_count = 0;
1381
1382 /* make sure the stuff we saved doesn't go away */
1383 path_get(&save);
1384
1385 result = link_path_walk(name, nd);
1386 if (result == -ESTALE) {
1387 /* nd->path had been dropped */
1388 current->total_link_count = 0;
1389 nd->path = save;
1390 path_get(&nd->path);
1391 nd->flags |= LOOKUP_REVAL;
1392 result = link_path_walk(name, nd);
1393 }
1394
1395 path_put(&save);
1396
1397 return result;
1398 }
1399
1400 static void path_finish_rcu(struct nameidata *nd)
1401 {
1402 if (nd->flags & LOOKUP_RCU) {
1403 /* RCU dangling. Cancel it. */
1404 nd->flags &= ~LOOKUP_RCU;
1405 nd->root.mnt = NULL;
1406 rcu_read_unlock();
1407 br_read_unlock(vfsmount_lock);
1408 }
1409 if (nd->file)
1410 fput(nd->file);
1411 }
1412
1413 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1414 {
1415 int retval = 0;
1416 int fput_needed;
1417 struct file *file;
1418
1419 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1420 nd->flags = flags | LOOKUP_RCU;
1421 nd->depth = 0;
1422 nd->root.mnt = NULL;
1423 nd->file = NULL;
1424
1425 if (*name=='/') {
1426 struct fs_struct *fs = current->fs;
1427 unsigned seq;
1428
1429 br_read_lock(vfsmount_lock);
1430 rcu_read_lock();
1431
1432 do {
1433 seq = read_seqcount_begin(&fs->seq);
1434 nd->root = fs->root;
1435 nd->path = nd->root;
1436 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1437 } while (read_seqcount_retry(&fs->seq, seq));
1438
1439 } else if (dfd == AT_FDCWD) {
1440 struct fs_struct *fs = current->fs;
1441 unsigned seq;
1442
1443 br_read_lock(vfsmount_lock);
1444 rcu_read_lock();
1445
1446 do {
1447 seq = read_seqcount_begin(&fs->seq);
1448 nd->path = fs->pwd;
1449 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1450 } while (read_seqcount_retry(&fs->seq, seq));
1451
1452 } else {
1453 struct dentry *dentry;
1454
1455 file = fget_light(dfd, &fput_needed);
1456 retval = -EBADF;
1457 if (!file)
1458 goto out_fail;
1459
1460 dentry = file->f_path.dentry;
1461
1462 retval = -ENOTDIR;
1463 if (!S_ISDIR(dentry->d_inode->i_mode))
1464 goto fput_fail;
1465
1466 retval = file_permission(file, MAY_EXEC);
1467 if (retval)
1468 goto fput_fail;
1469
1470 nd->path = file->f_path;
1471 if (fput_needed)
1472 nd->file = file;
1473
1474 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1475 br_read_lock(vfsmount_lock);
1476 rcu_read_lock();
1477 }
1478 nd->inode = nd->path.dentry->d_inode;
1479 return 0;
1480
1481 fput_fail:
1482 fput_light(file, fput_needed);
1483 out_fail:
1484 return retval;
1485 }
1486
1487 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1488 {
1489 int retval = 0;
1490 int fput_needed;
1491 struct file *file;
1492
1493 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1494 nd->flags = flags;
1495 nd->depth = 0;
1496 nd->root.mnt = NULL;
1497
1498 if (*name=='/') {
1499 set_root(nd);
1500 nd->path = nd->root;
1501 path_get(&nd->root);
1502 } else if (dfd == AT_FDCWD) {
1503 get_fs_pwd(current->fs, &nd->path);
1504 } else {
1505 struct dentry *dentry;
1506
1507 file = fget_light(dfd, &fput_needed);
1508 retval = -EBADF;
1509 if (!file)
1510 goto out_fail;
1511
1512 dentry = file->f_path.dentry;
1513
1514 retval = -ENOTDIR;
1515 if (!S_ISDIR(dentry->d_inode->i_mode))
1516 goto fput_fail;
1517
1518 retval = file_permission(file, MAY_EXEC);
1519 if (retval)
1520 goto fput_fail;
1521
1522 nd->path = file->f_path;
1523 path_get(&file->f_path);
1524
1525 fput_light(file, fput_needed);
1526 }
1527 nd->inode = nd->path.dentry->d_inode;
1528 return 0;
1529
1530 fput_fail:
1531 fput_light(file, fput_needed);
1532 out_fail:
1533 return retval;
1534 }
1535
1536 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1537 static int do_path_lookup(int dfd, const char *name,
1538 unsigned int flags, struct nameidata *nd)
1539 {
1540 int retval;
1541
1542 /*
1543 * Path walking is largely split up into 2 different synchronisation
1544 * schemes, rcu-walk and ref-walk (explained in
1545 * Documentation/filesystems/path-lookup.txt). These share much of the
1546 * path walk code, but some things particularly setup, cleanup, and
1547 * following mounts are sufficiently divergent that functions are
1548 * duplicated. Typically there is a function foo(), and its RCU
1549 * analogue, foo_rcu().
1550 *
1551 * -ECHILD is the error number of choice (just to avoid clashes) that
1552 * is returned if some aspect of an rcu-walk fails. Such an error must
1553 * be handled by restarting a traditional ref-walk (which will always
1554 * be able to complete).
1555 */
1556 retval = path_init_rcu(dfd, name, flags, nd);
1557 if (unlikely(retval))
1558 return retval;
1559 retval = path_walk_rcu(name, nd);
1560 path_finish_rcu(nd);
1561 if (nd->root.mnt) {
1562 path_put(&nd->root);
1563 nd->root.mnt = NULL;
1564 }
1565
1566 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1567 /* slower, locked walk */
1568 if (retval == -ESTALE)
1569 flags |= LOOKUP_REVAL;
1570 retval = path_init(dfd, name, flags, nd);
1571 if (unlikely(retval))
1572 return retval;
1573 retval = path_walk(name, nd);
1574 if (nd->root.mnt) {
1575 path_put(&nd->root);
1576 nd->root.mnt = NULL;
1577 }
1578 }
1579
1580 if (likely(!retval)) {
1581 if (unlikely(!audit_dummy_context())) {
1582 if (nd->path.dentry && nd->inode)
1583 audit_inode(name, nd->path.dentry);
1584 }
1585 }
1586
1587 return retval;
1588 }
1589
1590 int path_lookup(const char *name, unsigned int flags,
1591 struct nameidata *nd)
1592 {
1593 return do_path_lookup(AT_FDCWD, name, flags, nd);
1594 }
1595
1596 int kern_path(const char *name, unsigned int flags, struct path *path)
1597 {
1598 struct nameidata nd;
1599 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1600 if (!res)
1601 *path = nd.path;
1602 return res;
1603 }
1604
1605 /**
1606 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1607 * @dentry: pointer to dentry of the base directory
1608 * @mnt: pointer to vfs mount of the base directory
1609 * @name: pointer to file name
1610 * @flags: lookup flags
1611 * @nd: pointer to nameidata
1612 */
1613 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1614 const char *name, unsigned int flags,
1615 struct nameidata *nd)
1616 {
1617 int retval;
1618
1619 /* same as do_path_lookup */
1620 nd->last_type = LAST_ROOT;
1621 nd->flags = flags;
1622 nd->depth = 0;
1623
1624 nd->path.dentry = dentry;
1625 nd->path.mnt = mnt;
1626 path_get(&nd->path);
1627 nd->root = nd->path;
1628 path_get(&nd->root);
1629 nd->inode = nd->path.dentry->d_inode;
1630
1631 retval = path_walk(name, nd);
1632 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1633 nd->inode))
1634 audit_inode(name, nd->path.dentry);
1635
1636 path_put(&nd->root);
1637 nd->root.mnt = NULL;
1638
1639 return retval;
1640 }
1641
1642 static struct dentry *__lookup_hash(struct qstr *name,
1643 struct dentry *base, struct nameidata *nd)
1644 {
1645 struct inode *inode = base->d_inode;
1646 struct dentry *dentry;
1647 int err;
1648
1649 err = exec_permission(inode, 0);
1650 if (err)
1651 return ERR_PTR(err);
1652
1653 /*
1654 * See if the low-level filesystem might want
1655 * to use its own hash..
1656 */
1657 if (base->d_flags & DCACHE_OP_HASH) {
1658 err = base->d_op->d_hash(base, inode, name);
1659 dentry = ERR_PTR(err);
1660 if (err < 0)
1661 goto out;
1662 }
1663
1664 /*
1665 * Don't bother with __d_lookup: callers are for creat as
1666 * well as unlink, so a lot of the time it would cost
1667 * a double lookup.
1668 */
1669 dentry = d_lookup(base, name);
1670
1671 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1672 dentry = do_revalidate(dentry, nd);
1673
1674 if (!dentry)
1675 dentry = d_alloc_and_lookup(base, name, nd);
1676 out:
1677 return dentry;
1678 }
1679
1680 /*
1681 * Restricted form of lookup. Doesn't follow links, single-component only,
1682 * needs parent already locked. Doesn't follow mounts.
1683 * SMP-safe.
1684 */
1685 static struct dentry *lookup_hash(struct nameidata *nd)
1686 {
1687 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1688 }
1689
1690 static int __lookup_one_len(const char *name, struct qstr *this,
1691 struct dentry *base, int len)
1692 {
1693 unsigned long hash;
1694 unsigned int c;
1695
1696 this->name = name;
1697 this->len = len;
1698 if (!len)
1699 return -EACCES;
1700
1701 hash = init_name_hash();
1702 while (len--) {
1703 c = *(const unsigned char *)name++;
1704 if (c == '/' || c == '\0')
1705 return -EACCES;
1706 hash = partial_name_hash(c, hash);
1707 }
1708 this->hash = end_name_hash(hash);
1709 return 0;
1710 }
1711
1712 /**
1713 * lookup_one_len - filesystem helper to lookup single pathname component
1714 * @name: pathname component to lookup
1715 * @base: base directory to lookup from
1716 * @len: maximum length @len should be interpreted to
1717 *
1718 * Note that this routine is purely a helper for filesystem usage and should
1719 * not be called by generic code. Also note that by using this function the
1720 * nameidata argument is passed to the filesystem methods and a filesystem
1721 * using this helper needs to be prepared for that.
1722 */
1723 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1724 {
1725 int err;
1726 struct qstr this;
1727
1728 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1729
1730 err = __lookup_one_len(name, &this, base, len);
1731 if (err)
1732 return ERR_PTR(err);
1733
1734 return __lookup_hash(&this, base, NULL);
1735 }
1736
1737 int user_path_at(int dfd, const char __user *name, unsigned flags,
1738 struct path *path)
1739 {
1740 struct nameidata nd;
1741 char *tmp = getname(name);
1742 int err = PTR_ERR(tmp);
1743 if (!IS_ERR(tmp)) {
1744
1745 BUG_ON(flags & LOOKUP_PARENT);
1746
1747 err = do_path_lookup(dfd, tmp, flags, &nd);
1748 putname(tmp);
1749 if (!err)
1750 *path = nd.path;
1751 }
1752 return err;
1753 }
1754
1755 static int user_path_parent(int dfd, const char __user *path,
1756 struct nameidata *nd, char **name)
1757 {
1758 char *s = getname(path);
1759 int error;
1760
1761 if (IS_ERR(s))
1762 return PTR_ERR(s);
1763
1764 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1765 if (error)
1766 putname(s);
1767 else
1768 *name = s;
1769
1770 return error;
1771 }
1772
1773 /*
1774 * It's inline, so penalty for filesystems that don't use sticky bit is
1775 * minimal.
1776 */
1777 static inline int check_sticky(struct inode *dir, struct inode *inode)
1778 {
1779 uid_t fsuid = current_fsuid();
1780
1781 if (!(dir->i_mode & S_ISVTX))
1782 return 0;
1783 if (inode->i_uid == fsuid)
1784 return 0;
1785 if (dir->i_uid == fsuid)
1786 return 0;
1787 return !capable(CAP_FOWNER);
1788 }
1789
1790 /*
1791 * Check whether we can remove a link victim from directory dir, check
1792 * whether the type of victim is right.
1793 * 1. We can't do it if dir is read-only (done in permission())
1794 * 2. We should have write and exec permissions on dir
1795 * 3. We can't remove anything from append-only dir
1796 * 4. We can't do anything with immutable dir (done in permission())
1797 * 5. If the sticky bit on dir is set we should either
1798 * a. be owner of dir, or
1799 * b. be owner of victim, or
1800 * c. have CAP_FOWNER capability
1801 * 6. If the victim is append-only or immutable we can't do antyhing with
1802 * links pointing to it.
1803 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1804 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1805 * 9. We can't remove a root or mountpoint.
1806 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1807 * nfs_async_unlink().
1808 */
1809 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1810 {
1811 int error;
1812
1813 if (!victim->d_inode)
1814 return -ENOENT;
1815
1816 BUG_ON(victim->d_parent->d_inode != dir);
1817 audit_inode_child(victim, dir);
1818
1819 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1820 if (error)
1821 return error;
1822 if (IS_APPEND(dir))
1823 return -EPERM;
1824 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1825 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1826 return -EPERM;
1827 if (isdir) {
1828 if (!S_ISDIR(victim->d_inode->i_mode))
1829 return -ENOTDIR;
1830 if (IS_ROOT(victim))
1831 return -EBUSY;
1832 } else if (S_ISDIR(victim->d_inode->i_mode))
1833 return -EISDIR;
1834 if (IS_DEADDIR(dir))
1835 return -ENOENT;
1836 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1837 return -EBUSY;
1838 return 0;
1839 }
1840
1841 /* Check whether we can create an object with dentry child in directory
1842 * dir.
1843 * 1. We can't do it if child already exists (open has special treatment for
1844 * this case, but since we are inlined it's OK)
1845 * 2. We can't do it if dir is read-only (done in permission())
1846 * 3. We should have write and exec permissions on dir
1847 * 4. We can't do it if dir is immutable (done in permission())
1848 */
1849 static inline int may_create(struct inode *dir, struct dentry *child)
1850 {
1851 if (child->d_inode)
1852 return -EEXIST;
1853 if (IS_DEADDIR(dir))
1854 return -ENOENT;
1855 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1856 }
1857
1858 /*
1859 * p1 and p2 should be directories on the same fs.
1860 */
1861 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1862 {
1863 struct dentry *p;
1864
1865 if (p1 == p2) {
1866 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1867 return NULL;
1868 }
1869
1870 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1871
1872 p = d_ancestor(p2, p1);
1873 if (p) {
1874 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1875 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1876 return p;
1877 }
1878
1879 p = d_ancestor(p1, p2);
1880 if (p) {
1881 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1882 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1883 return p;
1884 }
1885
1886 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1887 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1888 return NULL;
1889 }
1890
1891 void unlock_rename(struct dentry *p1, struct dentry *p2)
1892 {
1893 mutex_unlock(&p1->d_inode->i_mutex);
1894 if (p1 != p2) {
1895 mutex_unlock(&p2->d_inode->i_mutex);
1896 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1897 }
1898 }
1899
1900 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1901 struct nameidata *nd)
1902 {
1903 int error = may_create(dir, dentry);
1904
1905 if (error)
1906 return error;
1907
1908 if (!dir->i_op->create)
1909 return -EACCES; /* shouldn't it be ENOSYS? */
1910 mode &= S_IALLUGO;
1911 mode |= S_IFREG;
1912 error = security_inode_create(dir, dentry, mode);
1913 if (error)
1914 return error;
1915 error = dir->i_op->create(dir, dentry, mode, nd);
1916 if (!error)
1917 fsnotify_create(dir, dentry);
1918 return error;
1919 }
1920
1921 int may_open(struct path *path, int acc_mode, int flag)
1922 {
1923 struct dentry *dentry = path->dentry;
1924 struct inode *inode = dentry->d_inode;
1925 int error;
1926
1927 if (!inode)
1928 return -ENOENT;
1929
1930 switch (inode->i_mode & S_IFMT) {
1931 case S_IFLNK:
1932 return -ELOOP;
1933 case S_IFDIR:
1934 if (acc_mode & MAY_WRITE)
1935 return -EISDIR;
1936 break;
1937 case S_IFBLK:
1938 case S_IFCHR:
1939 if (path->mnt->mnt_flags & MNT_NODEV)
1940 return -EACCES;
1941 /*FALLTHRU*/
1942 case S_IFIFO:
1943 case S_IFSOCK:
1944 flag &= ~O_TRUNC;
1945 break;
1946 }
1947
1948 error = inode_permission(inode, acc_mode);
1949 if (error)
1950 return error;
1951
1952 /*
1953 * An append-only file must be opened in append mode for writing.
1954 */
1955 if (IS_APPEND(inode)) {
1956 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1957 return -EPERM;
1958 if (flag & O_TRUNC)
1959 return -EPERM;
1960 }
1961
1962 /* O_NOATIME can only be set by the owner or superuser */
1963 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1964 return -EPERM;
1965
1966 /*
1967 * Ensure there are no outstanding leases on the file.
1968 */
1969 return break_lease(inode, flag);
1970 }
1971
1972 static int handle_truncate(struct file *filp)
1973 {
1974 struct path *path = &filp->f_path;
1975 struct inode *inode = path->dentry->d_inode;
1976 int error = get_write_access(inode);
1977 if (error)
1978 return error;
1979 /*
1980 * Refuse to truncate files with mandatory locks held on them.
1981 */
1982 error = locks_verify_locked(inode);
1983 if (!error)
1984 error = security_path_truncate(path);
1985 if (!error) {
1986 error = do_truncate(path->dentry, 0,
1987 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1988 filp);
1989 }
1990 put_write_access(inode);
1991 return error;
1992 }
1993
1994 /*
1995 * Be careful about ever adding any more callers of this
1996 * function. Its flags must be in the namei format, not
1997 * what get passed to sys_open().
1998 */
1999 static int __open_namei_create(struct nameidata *nd, struct path *path,
2000 int open_flag, int mode)
2001 {
2002 int error;
2003 struct dentry *dir = nd->path.dentry;
2004
2005 if (!IS_POSIXACL(dir->d_inode))
2006 mode &= ~current_umask();
2007 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2008 if (error)
2009 goto out_unlock;
2010 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2011 out_unlock:
2012 mutex_unlock(&dir->d_inode->i_mutex);
2013 dput(nd->path.dentry);
2014 nd->path.dentry = path->dentry;
2015
2016 if (error)
2017 return error;
2018 /* Don't check for write permission, don't truncate */
2019 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2020 }
2021
2022 /*
2023 * Note that while the flag value (low two bits) for sys_open means:
2024 * 00 - read-only
2025 * 01 - write-only
2026 * 10 - read-write
2027 * 11 - special
2028 * it is changed into
2029 * 00 - no permissions needed
2030 * 01 - read-permission
2031 * 10 - write-permission
2032 * 11 - read-write
2033 * for the internal routines (ie open_namei()/follow_link() etc)
2034 * This is more logical, and also allows the 00 "no perm needed"
2035 * to be used for symlinks (where the permissions are checked
2036 * later).
2037 *
2038 */
2039 static inline int open_to_namei_flags(int flag)
2040 {
2041 if ((flag+1) & O_ACCMODE)
2042 flag++;
2043 return flag;
2044 }
2045
2046 static int open_will_truncate(int flag, struct inode *inode)
2047 {
2048 /*
2049 * We'll never write to the fs underlying
2050 * a device file.
2051 */
2052 if (special_file(inode->i_mode))
2053 return 0;
2054 return (flag & O_TRUNC);
2055 }
2056
2057 static struct file *finish_open(struct nameidata *nd,
2058 int open_flag, int acc_mode)
2059 {
2060 struct file *filp;
2061 int will_truncate;
2062 int error;
2063
2064 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2065 if (will_truncate) {
2066 error = mnt_want_write(nd->path.mnt);
2067 if (error)
2068 goto exit;
2069 }
2070 error = may_open(&nd->path, acc_mode, open_flag);
2071 if (error) {
2072 if (will_truncate)
2073 mnt_drop_write(nd->path.mnt);
2074 goto exit;
2075 }
2076 filp = nameidata_to_filp(nd);
2077 if (!IS_ERR(filp)) {
2078 error = ima_file_check(filp, acc_mode);
2079 if (error) {
2080 fput(filp);
2081 filp = ERR_PTR(error);
2082 }
2083 }
2084 if (!IS_ERR(filp)) {
2085 if (will_truncate) {
2086 error = handle_truncate(filp);
2087 if (error) {
2088 fput(filp);
2089 filp = ERR_PTR(error);
2090 }
2091 }
2092 }
2093 /*
2094 * It is now safe to drop the mnt write
2095 * because the filp has had a write taken
2096 * on its behalf.
2097 */
2098 if (will_truncate)
2099 mnt_drop_write(nd->path.mnt);
2100 path_put(&nd->path);
2101 return filp;
2102
2103 exit:
2104 if (!IS_ERR(nd->intent.open.file))
2105 release_open_intent(nd);
2106 path_put(&nd->path);
2107 return ERR_PTR(error);
2108 }
2109
2110 /*
2111 * Handle O_CREAT case for do_filp_open
2112 */
2113 static struct file *do_last(struct nameidata *nd, struct path *path,
2114 int open_flag, int acc_mode,
2115 int mode, const char *pathname)
2116 {
2117 struct dentry *dir = nd->path.dentry;
2118 struct file *filp;
2119 int error = -EISDIR;
2120
2121 switch (nd->last_type) {
2122 case LAST_DOTDOT:
2123 follow_dotdot(nd);
2124 dir = nd->path.dentry;
2125 case LAST_DOT:
2126 if (need_reval_dot(dir)) {
2127 int status = d_revalidate(nd->path.dentry, nd);
2128 if (!status)
2129 status = -ESTALE;
2130 if (status < 0) {
2131 error = status;
2132 goto exit;
2133 }
2134 }
2135 /* fallthrough */
2136 case LAST_ROOT:
2137 goto exit;
2138 case LAST_BIND:
2139 audit_inode(pathname, dir);
2140 goto ok;
2141 }
2142
2143 /* trailing slashes? */
2144 if (nd->last.name[nd->last.len])
2145 goto exit;
2146
2147 mutex_lock(&dir->d_inode->i_mutex);
2148
2149 path->dentry = lookup_hash(nd);
2150 path->mnt = nd->path.mnt;
2151
2152 error = PTR_ERR(path->dentry);
2153 if (IS_ERR(path->dentry)) {
2154 mutex_unlock(&dir->d_inode->i_mutex);
2155 goto exit;
2156 }
2157
2158 if (IS_ERR(nd->intent.open.file)) {
2159 error = PTR_ERR(nd->intent.open.file);
2160 goto exit_mutex_unlock;
2161 }
2162
2163 /* Negative dentry, just create the file */
2164 if (!path->dentry->d_inode) {
2165 /*
2166 * This write is needed to ensure that a
2167 * ro->rw transition does not occur between
2168 * the time when the file is created and when
2169 * a permanent write count is taken through
2170 * the 'struct file' in nameidata_to_filp().
2171 */
2172 error = mnt_want_write(nd->path.mnt);
2173 if (error)
2174 goto exit_mutex_unlock;
2175 error = __open_namei_create(nd, path, open_flag, mode);
2176 if (error) {
2177 mnt_drop_write(nd->path.mnt);
2178 goto exit;
2179 }
2180 filp = nameidata_to_filp(nd);
2181 mnt_drop_write(nd->path.mnt);
2182 path_put(&nd->path);
2183 if (!IS_ERR(filp)) {
2184 error = ima_file_check(filp, acc_mode);
2185 if (error) {
2186 fput(filp);
2187 filp = ERR_PTR(error);
2188 }
2189 }
2190 return filp;
2191 }
2192
2193 /*
2194 * It already exists.
2195 */
2196 mutex_unlock(&dir->d_inode->i_mutex);
2197 audit_inode(pathname, path->dentry);
2198
2199 error = -EEXIST;
2200 if (open_flag & O_EXCL)
2201 goto exit_dput;
2202
2203 if (__follow_mount(path)) {
2204 error = -ELOOP;
2205 if (open_flag & O_NOFOLLOW)
2206 goto exit_dput;
2207 }
2208
2209 error = -ENOENT;
2210 if (!path->dentry->d_inode)
2211 goto exit_dput;
2212
2213 if (path->dentry->d_inode->i_op->follow_link)
2214 return NULL;
2215
2216 path_to_nameidata(path, nd);
2217 nd->inode = path->dentry->d_inode;
2218 error = -EISDIR;
2219 if (S_ISDIR(nd->inode->i_mode))
2220 goto exit;
2221 ok:
2222 filp = finish_open(nd, open_flag, acc_mode);
2223 return filp;
2224
2225 exit_mutex_unlock:
2226 mutex_unlock(&dir->d_inode->i_mutex);
2227 exit_dput:
2228 path_put_conditional(path, nd);
2229 exit:
2230 if (!IS_ERR(nd->intent.open.file))
2231 release_open_intent(nd);
2232 path_put(&nd->path);
2233 return ERR_PTR(error);
2234 }
2235
2236 /*
2237 * Note that the low bits of the passed in "open_flag"
2238 * are not the same as in the local variable "flag". See
2239 * open_to_namei_flags() for more details.
2240 */
2241 struct file *do_filp_open(int dfd, const char *pathname,
2242 int open_flag, int mode, int acc_mode)
2243 {
2244 struct file *filp;
2245 struct nameidata nd;
2246 int error;
2247 struct path path;
2248 int count = 0;
2249 int flag = open_to_namei_flags(open_flag);
2250 int flags;
2251
2252 if (!(open_flag & O_CREAT))
2253 mode = 0;
2254
2255 /* Must never be set by userspace */
2256 open_flag &= ~FMODE_NONOTIFY;
2257
2258 /*
2259 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2260 * check for O_DSYNC if the need any syncing at all we enforce it's
2261 * always set instead of having to deal with possibly weird behaviour
2262 * for malicious applications setting only __O_SYNC.
2263 */
2264 if (open_flag & __O_SYNC)
2265 open_flag |= O_DSYNC;
2266
2267 if (!acc_mode)
2268 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2269
2270 /* O_TRUNC implies we need access checks for write permissions */
2271 if (open_flag & O_TRUNC)
2272 acc_mode |= MAY_WRITE;
2273
2274 /* Allow the LSM permission hook to distinguish append
2275 access from general write access. */
2276 if (open_flag & O_APPEND)
2277 acc_mode |= MAY_APPEND;
2278
2279 flags = LOOKUP_OPEN;
2280 if (open_flag & O_CREAT) {
2281 flags |= LOOKUP_CREATE;
2282 if (open_flag & O_EXCL)
2283 flags |= LOOKUP_EXCL;
2284 }
2285 if (open_flag & O_DIRECTORY)
2286 flags |= LOOKUP_DIRECTORY;
2287 if (!(open_flag & O_NOFOLLOW))
2288 flags |= LOOKUP_FOLLOW;
2289
2290 filp = get_empty_filp();
2291 if (!filp)
2292 return ERR_PTR(-ENFILE);
2293
2294 filp->f_flags = open_flag;
2295 nd.intent.open.file = filp;
2296 nd.intent.open.flags = flag;
2297 nd.intent.open.create_mode = mode;
2298
2299 if (open_flag & O_CREAT)
2300 goto creat;
2301
2302 /* !O_CREAT, simple open */
2303 error = do_path_lookup(dfd, pathname, flags, &nd);
2304 if (unlikely(error))
2305 goto out_filp;
2306 error = -ELOOP;
2307 if (!(nd.flags & LOOKUP_FOLLOW)) {
2308 if (nd.inode->i_op->follow_link)
2309 goto out_path;
2310 }
2311 error = -ENOTDIR;
2312 if (nd.flags & LOOKUP_DIRECTORY) {
2313 if (!nd.inode->i_op->lookup)
2314 goto out_path;
2315 }
2316 audit_inode(pathname, nd.path.dentry);
2317 filp = finish_open(&nd, open_flag, acc_mode);
2318 return filp;
2319
2320 creat:
2321 /* OK, have to create the file. Find the parent. */
2322 error = path_init_rcu(dfd, pathname,
2323 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2324 if (error)
2325 goto out_filp;
2326 error = path_walk_rcu(pathname, &nd);
2327 path_finish_rcu(&nd);
2328 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2329 /* slower, locked walk */
2330 if (error == -ESTALE) {
2331 reval:
2332 flags |= LOOKUP_REVAL;
2333 }
2334 error = path_init(dfd, pathname,
2335 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2336 if (error)
2337 goto out_filp;
2338
2339 error = path_walk_simple(pathname, &nd);
2340 }
2341 if (unlikely(error))
2342 goto out_filp;
2343 if (unlikely(!audit_dummy_context()))
2344 audit_inode(pathname, nd.path.dentry);
2345
2346 /*
2347 * We have the parent and last component.
2348 */
2349 nd.flags = flags;
2350 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2351 while (unlikely(!filp)) { /* trailing symlink */
2352 struct path link = path;
2353 struct inode *linki = link.dentry->d_inode;
2354 void *cookie;
2355 error = -ELOOP;
2356 /* S_ISDIR part is a temporary automount kludge */
2357 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(linki->i_mode))
2358 goto exit_dput;
2359 if (count++ == 32)
2360 goto exit_dput;
2361 /*
2362 * This is subtle. Instead of calling do_follow_link() we do
2363 * the thing by hands. The reason is that this way we have zero
2364 * link_count and path_walk() (called from ->follow_link)
2365 * honoring LOOKUP_PARENT. After that we have the parent and
2366 * last component, i.e. we are in the same situation as after
2367 * the first path_walk(). Well, almost - if the last component
2368 * is normal we get its copy stored in nd->last.name and we will
2369 * have to putname() it when we are done. Procfs-like symlinks
2370 * just set LAST_BIND.
2371 */
2372 nd.flags |= LOOKUP_PARENT;
2373 error = security_inode_follow_link(link.dentry, &nd);
2374 if (error)
2375 goto exit_dput;
2376 error = __do_follow_link(&link, &nd, &cookie);
2377 if (unlikely(error)) {
2378 if (!IS_ERR(cookie) && linki->i_op->put_link)
2379 linki->i_op->put_link(link.dentry, &nd, cookie);
2380 /* nd.path had been dropped */
2381 nd.path = link;
2382 goto out_path;
2383 }
2384 nd.flags &= ~LOOKUP_PARENT;
2385 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2386 if (linki->i_op->put_link)
2387 linki->i_op->put_link(link.dentry, &nd, cookie);
2388 path_put(&link);
2389 }
2390 out:
2391 if (nd.root.mnt)
2392 path_put(&nd.root);
2393 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2394 goto reval;
2395 return filp;
2396
2397 exit_dput:
2398 path_put_conditional(&path, &nd);
2399 out_path:
2400 path_put(&nd.path);
2401 out_filp:
2402 if (!IS_ERR(nd.intent.open.file))
2403 release_open_intent(&nd);
2404 filp = ERR_PTR(error);
2405 goto out;
2406 }
2407
2408 /**
2409 * filp_open - open file and return file pointer
2410 *
2411 * @filename: path to open
2412 * @flags: open flags as per the open(2) second argument
2413 * @mode: mode for the new file if O_CREAT is set, else ignored
2414 *
2415 * This is the helper to open a file from kernelspace if you really
2416 * have to. But in generally you should not do this, so please move
2417 * along, nothing to see here..
2418 */
2419 struct file *filp_open(const char *filename, int flags, int mode)
2420 {
2421 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2422 }
2423 EXPORT_SYMBOL(filp_open);
2424
2425 /**
2426 * lookup_create - lookup a dentry, creating it if it doesn't exist
2427 * @nd: nameidata info
2428 * @is_dir: directory flag
2429 *
2430 * Simple function to lookup and return a dentry and create it
2431 * if it doesn't exist. Is SMP-safe.
2432 *
2433 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2434 */
2435 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2436 {
2437 struct dentry *dentry = ERR_PTR(-EEXIST);
2438
2439 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2440 /*
2441 * Yucky last component or no last component at all?
2442 * (foo/., foo/.., /////)
2443 */
2444 if (nd->last_type != LAST_NORM)
2445 goto fail;
2446 nd->flags &= ~LOOKUP_PARENT;
2447 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2448 nd->intent.open.flags = O_EXCL;
2449
2450 /*
2451 * Do the final lookup.
2452 */
2453 dentry = lookup_hash(nd);
2454 if (IS_ERR(dentry))
2455 goto fail;
2456
2457 if (dentry->d_inode)
2458 goto eexist;
2459 /*
2460 * Special case - lookup gave negative, but... we had foo/bar/
2461 * From the vfs_mknod() POV we just have a negative dentry -
2462 * all is fine. Let's be bastards - you had / on the end, you've
2463 * been asking for (non-existent) directory. -ENOENT for you.
2464 */
2465 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2466 dput(dentry);
2467 dentry = ERR_PTR(-ENOENT);
2468 }
2469 return dentry;
2470 eexist:
2471 dput(dentry);
2472 dentry = ERR_PTR(-EEXIST);
2473 fail:
2474 return dentry;
2475 }
2476 EXPORT_SYMBOL_GPL(lookup_create);
2477
2478 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2479 {
2480 int error = may_create(dir, dentry);
2481
2482 if (error)
2483 return error;
2484
2485 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2486 return -EPERM;
2487
2488 if (!dir->i_op->mknod)
2489 return -EPERM;
2490
2491 error = devcgroup_inode_mknod(mode, dev);
2492 if (error)
2493 return error;
2494
2495 error = security_inode_mknod(dir, dentry, mode, dev);
2496 if (error)
2497 return error;
2498
2499 error = dir->i_op->mknod(dir, dentry, mode, dev);
2500 if (!error)
2501 fsnotify_create(dir, dentry);
2502 return error;
2503 }
2504
2505 static int may_mknod(mode_t mode)
2506 {
2507 switch (mode & S_IFMT) {
2508 case S_IFREG:
2509 case S_IFCHR:
2510 case S_IFBLK:
2511 case S_IFIFO:
2512 case S_IFSOCK:
2513 case 0: /* zero mode translates to S_IFREG */
2514 return 0;
2515 case S_IFDIR:
2516 return -EPERM;
2517 default:
2518 return -EINVAL;
2519 }
2520 }
2521
2522 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2523 unsigned, dev)
2524 {
2525 int error;
2526 char *tmp;
2527 struct dentry *dentry;
2528 struct nameidata nd;
2529
2530 if (S_ISDIR(mode))
2531 return -EPERM;
2532
2533 error = user_path_parent(dfd, filename, &nd, &tmp);
2534 if (error)
2535 return error;
2536
2537 dentry = lookup_create(&nd, 0);
2538 if (IS_ERR(dentry)) {
2539 error = PTR_ERR(dentry);
2540 goto out_unlock;
2541 }
2542 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2543 mode &= ~current_umask();
2544 error = may_mknod(mode);
2545 if (error)
2546 goto out_dput;
2547 error = mnt_want_write(nd.path.mnt);
2548 if (error)
2549 goto out_dput;
2550 error = security_path_mknod(&nd.path, dentry, mode, dev);
2551 if (error)
2552 goto out_drop_write;
2553 switch (mode & S_IFMT) {
2554 case 0: case S_IFREG:
2555 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2556 break;
2557 case S_IFCHR: case S_IFBLK:
2558 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2559 new_decode_dev(dev));
2560 break;
2561 case S_IFIFO: case S_IFSOCK:
2562 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2563 break;
2564 }
2565 out_drop_write:
2566 mnt_drop_write(nd.path.mnt);
2567 out_dput:
2568 dput(dentry);
2569 out_unlock:
2570 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2571 path_put(&nd.path);
2572 putname(tmp);
2573
2574 return error;
2575 }
2576
2577 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2578 {
2579 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2580 }
2581
2582 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2583 {
2584 int error = may_create(dir, dentry);
2585
2586 if (error)
2587 return error;
2588
2589 if (!dir->i_op->mkdir)
2590 return -EPERM;
2591
2592 mode &= (S_IRWXUGO|S_ISVTX);
2593 error = security_inode_mkdir(dir, dentry, mode);
2594 if (error)
2595 return error;
2596
2597 error = dir->i_op->mkdir(dir, dentry, mode);
2598 if (!error)
2599 fsnotify_mkdir(dir, dentry);
2600 return error;
2601 }
2602
2603 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2604 {
2605 int error = 0;
2606 char * tmp;
2607 struct dentry *dentry;
2608 struct nameidata nd;
2609
2610 error = user_path_parent(dfd, pathname, &nd, &tmp);
2611 if (error)
2612 goto out_err;
2613
2614 dentry = lookup_create(&nd, 1);
2615 error = PTR_ERR(dentry);
2616 if (IS_ERR(dentry))
2617 goto out_unlock;
2618
2619 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2620 mode &= ~current_umask();
2621 error = mnt_want_write(nd.path.mnt);
2622 if (error)
2623 goto out_dput;
2624 error = security_path_mkdir(&nd.path, dentry, mode);
2625 if (error)
2626 goto out_drop_write;
2627 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2628 out_drop_write:
2629 mnt_drop_write(nd.path.mnt);
2630 out_dput:
2631 dput(dentry);
2632 out_unlock:
2633 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2634 path_put(&nd.path);
2635 putname(tmp);
2636 out_err:
2637 return error;
2638 }
2639
2640 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2641 {
2642 return sys_mkdirat(AT_FDCWD, pathname, mode);
2643 }
2644
2645 /*
2646 * We try to drop the dentry early: we should have
2647 * a usage count of 2 if we're the only user of this
2648 * dentry, and if that is true (possibly after pruning
2649 * the dcache), then we drop the dentry now.
2650 *
2651 * A low-level filesystem can, if it choses, legally
2652 * do a
2653 *
2654 * if (!d_unhashed(dentry))
2655 * return -EBUSY;
2656 *
2657 * if it cannot handle the case of removing a directory
2658 * that is still in use by something else..
2659 */
2660 void dentry_unhash(struct dentry *dentry)
2661 {
2662 dget(dentry);
2663 shrink_dcache_parent(dentry);
2664 spin_lock(&dentry->d_lock);
2665 if (dentry->d_count == 2)
2666 __d_drop(dentry);
2667 spin_unlock(&dentry->d_lock);
2668 }
2669
2670 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2671 {
2672 int error = may_delete(dir, dentry, 1);
2673
2674 if (error)
2675 return error;
2676
2677 if (!dir->i_op->rmdir)
2678 return -EPERM;
2679
2680 mutex_lock(&dentry->d_inode->i_mutex);
2681 dentry_unhash(dentry);
2682 if (d_mountpoint(dentry))
2683 error = -EBUSY;
2684 else {
2685 error = security_inode_rmdir(dir, dentry);
2686 if (!error) {
2687 error = dir->i_op->rmdir(dir, dentry);
2688 if (!error) {
2689 dentry->d_inode->i_flags |= S_DEAD;
2690 dont_mount(dentry);
2691 }
2692 }
2693 }
2694 mutex_unlock(&dentry->d_inode->i_mutex);
2695 if (!error) {
2696 d_delete(dentry);
2697 }
2698 dput(dentry);
2699
2700 return error;
2701 }
2702
2703 static long do_rmdir(int dfd, const char __user *pathname)
2704 {
2705 int error = 0;
2706 char * name;
2707 struct dentry *dentry;
2708 struct nameidata nd;
2709
2710 error = user_path_parent(dfd, pathname, &nd, &name);
2711 if (error)
2712 return error;
2713
2714 switch(nd.last_type) {
2715 case LAST_DOTDOT:
2716 error = -ENOTEMPTY;
2717 goto exit1;
2718 case LAST_DOT:
2719 error = -EINVAL;
2720 goto exit1;
2721 case LAST_ROOT:
2722 error = -EBUSY;
2723 goto exit1;
2724 }
2725
2726 nd.flags &= ~LOOKUP_PARENT;
2727
2728 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2729 dentry = lookup_hash(&nd);
2730 error = PTR_ERR(dentry);
2731 if (IS_ERR(dentry))
2732 goto exit2;
2733 error = mnt_want_write(nd.path.mnt);
2734 if (error)
2735 goto exit3;
2736 error = security_path_rmdir(&nd.path, dentry);
2737 if (error)
2738 goto exit4;
2739 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2740 exit4:
2741 mnt_drop_write(nd.path.mnt);
2742 exit3:
2743 dput(dentry);
2744 exit2:
2745 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2746 exit1:
2747 path_put(&nd.path);
2748 putname(name);
2749 return error;
2750 }
2751
2752 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2753 {
2754 return do_rmdir(AT_FDCWD, pathname);
2755 }
2756
2757 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2758 {
2759 int error = may_delete(dir, dentry, 0);
2760
2761 if (error)
2762 return error;
2763
2764 if (!dir->i_op->unlink)
2765 return -EPERM;
2766
2767 mutex_lock(&dentry->d_inode->i_mutex);
2768 if (d_mountpoint(dentry))
2769 error = -EBUSY;
2770 else {
2771 error = security_inode_unlink(dir, dentry);
2772 if (!error) {
2773 error = dir->i_op->unlink(dir, dentry);
2774 if (!error)
2775 dont_mount(dentry);
2776 }
2777 }
2778 mutex_unlock(&dentry->d_inode->i_mutex);
2779
2780 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2781 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2782 fsnotify_link_count(dentry->d_inode);
2783 d_delete(dentry);
2784 }
2785
2786 return error;
2787 }
2788
2789 /*
2790 * Make sure that the actual truncation of the file will occur outside its
2791 * directory's i_mutex. Truncate can take a long time if there is a lot of
2792 * writeout happening, and we don't want to prevent access to the directory
2793 * while waiting on the I/O.
2794 */
2795 static long do_unlinkat(int dfd, const char __user *pathname)
2796 {
2797 int error;
2798 char *name;
2799 struct dentry *dentry;
2800 struct nameidata nd;
2801 struct inode *inode = NULL;
2802
2803 error = user_path_parent(dfd, pathname, &nd, &name);
2804 if (error)
2805 return error;
2806
2807 error = -EISDIR;
2808 if (nd.last_type != LAST_NORM)
2809 goto exit1;
2810
2811 nd.flags &= ~LOOKUP_PARENT;
2812
2813 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2814 dentry = lookup_hash(&nd);
2815 error = PTR_ERR(dentry);
2816 if (!IS_ERR(dentry)) {
2817 /* Why not before? Because we want correct error value */
2818 if (nd.last.name[nd.last.len])
2819 goto slashes;
2820 inode = dentry->d_inode;
2821 if (inode)
2822 ihold(inode);
2823 error = mnt_want_write(nd.path.mnt);
2824 if (error)
2825 goto exit2;
2826 error = security_path_unlink(&nd.path, dentry);
2827 if (error)
2828 goto exit3;
2829 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2830 exit3:
2831 mnt_drop_write(nd.path.mnt);
2832 exit2:
2833 dput(dentry);
2834 }
2835 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2836 if (inode)
2837 iput(inode); /* truncate the inode here */
2838 exit1:
2839 path_put(&nd.path);
2840 putname(name);
2841 return error;
2842
2843 slashes:
2844 error = !dentry->d_inode ? -ENOENT :
2845 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2846 goto exit2;
2847 }
2848
2849 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2850 {
2851 if ((flag & ~AT_REMOVEDIR) != 0)
2852 return -EINVAL;
2853
2854 if (flag & AT_REMOVEDIR)
2855 return do_rmdir(dfd, pathname);
2856
2857 return do_unlinkat(dfd, pathname);
2858 }
2859
2860 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2861 {
2862 return do_unlinkat(AT_FDCWD, pathname);
2863 }
2864
2865 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2866 {
2867 int error = may_create(dir, dentry);
2868
2869 if (error)
2870 return error;
2871
2872 if (!dir->i_op->symlink)
2873 return -EPERM;
2874
2875 error = security_inode_symlink(dir, dentry, oldname);
2876 if (error)
2877 return error;
2878
2879 error = dir->i_op->symlink(dir, dentry, oldname);
2880 if (!error)
2881 fsnotify_create(dir, dentry);
2882 return error;
2883 }
2884
2885 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2886 int, newdfd, const char __user *, newname)
2887 {
2888 int error;
2889 char *from;
2890 char *to;
2891 struct dentry *dentry;
2892 struct nameidata nd;
2893
2894 from = getname(oldname);
2895 if (IS_ERR(from))
2896 return PTR_ERR(from);
2897
2898 error = user_path_parent(newdfd, newname, &nd, &to);
2899 if (error)
2900 goto out_putname;
2901
2902 dentry = lookup_create(&nd, 0);
2903 error = PTR_ERR(dentry);
2904 if (IS_ERR(dentry))
2905 goto out_unlock;
2906
2907 error = mnt_want_write(nd.path.mnt);
2908 if (error)
2909 goto out_dput;
2910 error = security_path_symlink(&nd.path, dentry, from);
2911 if (error)
2912 goto out_drop_write;
2913 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2914 out_drop_write:
2915 mnt_drop_write(nd.path.mnt);
2916 out_dput:
2917 dput(dentry);
2918 out_unlock:
2919 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2920 path_put(&nd.path);
2921 putname(to);
2922 out_putname:
2923 putname(from);
2924 return error;
2925 }
2926
2927 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2928 {
2929 return sys_symlinkat(oldname, AT_FDCWD, newname);
2930 }
2931
2932 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2933 {
2934 struct inode *inode = old_dentry->d_inode;
2935 int error;
2936
2937 if (!inode)
2938 return -ENOENT;
2939
2940 error = may_create(dir, new_dentry);
2941 if (error)
2942 return error;
2943
2944 if (dir->i_sb != inode->i_sb)
2945 return -EXDEV;
2946
2947 /*
2948 * A link to an append-only or immutable file cannot be created.
2949 */
2950 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2951 return -EPERM;
2952 if (!dir->i_op->link)
2953 return -EPERM;
2954 if (S_ISDIR(inode->i_mode))
2955 return -EPERM;
2956
2957 error = security_inode_link(old_dentry, dir, new_dentry);
2958 if (error)
2959 return error;
2960
2961 mutex_lock(&inode->i_mutex);
2962 error = dir->i_op->link(old_dentry, dir, new_dentry);
2963 mutex_unlock(&inode->i_mutex);
2964 if (!error)
2965 fsnotify_link(dir, inode, new_dentry);
2966 return error;
2967 }
2968
2969 /*
2970 * Hardlinks are often used in delicate situations. We avoid
2971 * security-related surprises by not following symlinks on the
2972 * newname. --KAB
2973 *
2974 * We don't follow them on the oldname either to be compatible
2975 * with linux 2.0, and to avoid hard-linking to directories
2976 * and other special files. --ADM
2977 */
2978 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2979 int, newdfd, const char __user *, newname, int, flags)
2980 {
2981 struct dentry *new_dentry;
2982 struct nameidata nd;
2983 struct path old_path;
2984 int error;
2985 char *to;
2986
2987 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2988 return -EINVAL;
2989
2990 error = user_path_at(olddfd, oldname,
2991 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2992 &old_path);
2993 if (error)
2994 return error;
2995
2996 error = user_path_parent(newdfd, newname, &nd, &to);
2997 if (error)
2998 goto out;
2999 error = -EXDEV;
3000 if (old_path.mnt != nd.path.mnt)
3001 goto out_release;
3002 new_dentry = lookup_create(&nd, 0);
3003 error = PTR_ERR(new_dentry);
3004 if (IS_ERR(new_dentry))
3005 goto out_unlock;
3006 error = mnt_want_write(nd.path.mnt);
3007 if (error)
3008 goto out_dput;
3009 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3010 if (error)
3011 goto out_drop_write;
3012 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3013 out_drop_write:
3014 mnt_drop_write(nd.path.mnt);
3015 out_dput:
3016 dput(new_dentry);
3017 out_unlock:
3018 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3019 out_release:
3020 path_put(&nd.path);
3021 putname(to);
3022 out:
3023 path_put(&old_path);
3024
3025 return error;
3026 }
3027
3028 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3029 {
3030 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3031 }
3032
3033 /*
3034 * The worst of all namespace operations - renaming directory. "Perverted"
3035 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3036 * Problems:
3037 * a) we can get into loop creation. Check is done in is_subdir().
3038 * b) race potential - two innocent renames can create a loop together.
3039 * That's where 4.4 screws up. Current fix: serialization on
3040 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3041 * story.
3042 * c) we have to lock _three_ objects - parents and victim (if it exists).
3043 * And that - after we got ->i_mutex on parents (until then we don't know
3044 * whether the target exists). Solution: try to be smart with locking
3045 * order for inodes. We rely on the fact that tree topology may change
3046 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3047 * move will be locked. Thus we can rank directories by the tree
3048 * (ancestors first) and rank all non-directories after them.
3049 * That works since everybody except rename does "lock parent, lookup,
3050 * lock child" and rename is under ->s_vfs_rename_mutex.
3051 * HOWEVER, it relies on the assumption that any object with ->lookup()
3052 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3053 * we'd better make sure that there's no link(2) for them.
3054 * d) some filesystems don't support opened-but-unlinked directories,
3055 * either because of layout or because they are not ready to deal with
3056 * all cases correctly. The latter will be fixed (taking this sort of
3057 * stuff into VFS), but the former is not going away. Solution: the same
3058 * trick as in rmdir().
3059 * e) conversion from fhandle to dentry may come in the wrong moment - when
3060 * we are removing the target. Solution: we will have to grab ->i_mutex
3061 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3062 * ->i_mutex on parents, which works but leads to some truly excessive
3063 * locking].
3064 */
3065 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3066 struct inode *new_dir, struct dentry *new_dentry)
3067 {
3068 int error = 0;
3069 struct inode *target;
3070
3071 /*
3072 * If we are going to change the parent - check write permissions,
3073 * we'll need to flip '..'.
3074 */
3075 if (new_dir != old_dir) {
3076 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3077 if (error)
3078 return error;
3079 }
3080
3081 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3082 if (error)
3083 return error;
3084
3085 target = new_dentry->d_inode;
3086 if (target)
3087 mutex_lock(&target->i_mutex);
3088 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3089 error = -EBUSY;
3090 else {
3091 if (target)
3092 dentry_unhash(new_dentry);
3093 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3094 }
3095 if (target) {
3096 if (!error) {
3097 target->i_flags |= S_DEAD;
3098 dont_mount(new_dentry);
3099 }
3100 mutex_unlock(&target->i_mutex);
3101 if (d_unhashed(new_dentry))
3102 d_rehash(new_dentry);
3103 dput(new_dentry);
3104 }
3105 if (!error)
3106 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3107 d_move(old_dentry,new_dentry);
3108 return error;
3109 }
3110
3111 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3112 struct inode *new_dir, struct dentry *new_dentry)
3113 {
3114 struct inode *target;
3115 int error;
3116
3117 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3118 if (error)
3119 return error;
3120
3121 dget(new_dentry);
3122 target = new_dentry->d_inode;
3123 if (target)
3124 mutex_lock(&target->i_mutex);
3125 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3126 error = -EBUSY;
3127 else
3128 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3129 if (!error) {
3130 if (target)
3131 dont_mount(new_dentry);
3132 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3133 d_move(old_dentry, new_dentry);
3134 }
3135 if (target)
3136 mutex_unlock(&target->i_mutex);
3137 dput(new_dentry);
3138 return error;
3139 }
3140
3141 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3142 struct inode *new_dir, struct dentry *new_dentry)
3143 {
3144 int error;
3145 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3146 const unsigned char *old_name;
3147
3148 if (old_dentry->d_inode == new_dentry->d_inode)
3149 return 0;
3150
3151 error = may_delete(old_dir, old_dentry, is_dir);
3152 if (error)
3153 return error;
3154
3155 if (!new_dentry->d_inode)
3156 error = may_create(new_dir, new_dentry);
3157 else
3158 error = may_delete(new_dir, new_dentry, is_dir);
3159 if (error)
3160 return error;
3161
3162 if (!old_dir->i_op->rename)
3163 return -EPERM;
3164
3165 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3166
3167 if (is_dir)
3168 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3169 else
3170 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3171 if (!error)
3172 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3173 new_dentry->d_inode, old_dentry);
3174 fsnotify_oldname_free(old_name);
3175
3176 return error;
3177 }
3178
3179 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3180 int, newdfd, const char __user *, newname)
3181 {
3182 struct dentry *old_dir, *new_dir;
3183 struct dentry *old_dentry, *new_dentry;
3184 struct dentry *trap;
3185 struct nameidata oldnd, newnd;
3186 char *from;
3187 char *to;
3188 int error;
3189
3190 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3191 if (error)
3192 goto exit;
3193
3194 error = user_path_parent(newdfd, newname, &newnd, &to);
3195 if (error)
3196 goto exit1;
3197
3198 error = -EXDEV;
3199 if (oldnd.path.mnt != newnd.path.mnt)
3200 goto exit2;
3201
3202 old_dir = oldnd.path.dentry;
3203 error = -EBUSY;
3204 if (oldnd.last_type != LAST_NORM)
3205 goto exit2;
3206
3207 new_dir = newnd.path.dentry;
3208 if (newnd.last_type != LAST_NORM)
3209 goto exit2;
3210
3211 oldnd.flags &= ~LOOKUP_PARENT;
3212 newnd.flags &= ~LOOKUP_PARENT;
3213 newnd.flags |= LOOKUP_RENAME_TARGET;
3214
3215 trap = lock_rename(new_dir, old_dir);
3216
3217 old_dentry = lookup_hash(&oldnd);
3218 error = PTR_ERR(old_dentry);
3219 if (IS_ERR(old_dentry))
3220 goto exit3;
3221 /* source must exist */
3222 error = -ENOENT;
3223 if (!old_dentry->d_inode)
3224 goto exit4;
3225 /* unless the source is a directory trailing slashes give -ENOTDIR */
3226 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3227 error = -ENOTDIR;
3228 if (oldnd.last.name[oldnd.last.len])
3229 goto exit4;
3230 if (newnd.last.name[newnd.last.len])
3231 goto exit4;
3232 }
3233 /* source should not be ancestor of target */
3234 error = -EINVAL;
3235 if (old_dentry == trap)
3236 goto exit4;
3237 new_dentry = lookup_hash(&newnd);
3238 error = PTR_ERR(new_dentry);
3239 if (IS_ERR(new_dentry))
3240 goto exit4;
3241 /* target should not be an ancestor of source */
3242 error = -ENOTEMPTY;
3243 if (new_dentry == trap)
3244 goto exit5;
3245
3246 error = mnt_want_write(oldnd.path.mnt);
3247 if (error)
3248 goto exit5;
3249 error = security_path_rename(&oldnd.path, old_dentry,
3250 &newnd.path, new_dentry);
3251 if (error)
3252 goto exit6;
3253 error = vfs_rename(old_dir->d_inode, old_dentry,
3254 new_dir->d_inode, new_dentry);
3255 exit6:
3256 mnt_drop_write(oldnd.path.mnt);
3257 exit5:
3258 dput(new_dentry);
3259 exit4:
3260 dput(old_dentry);
3261 exit3:
3262 unlock_rename(new_dir, old_dir);
3263 exit2:
3264 path_put(&newnd.path);
3265 putname(to);
3266 exit1:
3267 path_put(&oldnd.path);
3268 putname(from);
3269 exit:
3270 return error;
3271 }
3272
3273 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3274 {
3275 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3276 }
3277
3278 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3279 {
3280 int len;
3281
3282 len = PTR_ERR(link);
3283 if (IS_ERR(link))
3284 goto out;
3285
3286 len = strlen(link);
3287 if (len > (unsigned) buflen)
3288 len = buflen;
3289 if (copy_to_user(buffer, link, len))
3290 len = -EFAULT;
3291 out:
3292 return len;
3293 }
3294
3295 /*
3296 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3297 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3298 * using) it for any given inode is up to filesystem.
3299 */
3300 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3301 {
3302 struct nameidata nd;
3303 void *cookie;
3304 int res;
3305
3306 nd.depth = 0;
3307 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3308 if (IS_ERR(cookie))
3309 return PTR_ERR(cookie);
3310
3311 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3312 if (dentry->d_inode->i_op->put_link)
3313 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3314 return res;
3315 }
3316
3317 int vfs_follow_link(struct nameidata *nd, const char *link)
3318 {
3319 return __vfs_follow_link(nd, link);
3320 }
3321
3322 /* get the link contents into pagecache */
3323 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3324 {
3325 char *kaddr;
3326 struct page *page;
3327 struct address_space *mapping = dentry->d_inode->i_mapping;
3328 page = read_mapping_page(mapping, 0, NULL);
3329 if (IS_ERR(page))
3330 return (char*)page;
3331 *ppage = page;
3332 kaddr = kmap(page);
3333 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3334 return kaddr;
3335 }
3336
3337 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3338 {
3339 struct page *page = NULL;
3340 char *s = page_getlink(dentry, &page);
3341 int res = vfs_readlink(dentry,buffer,buflen,s);
3342 if (page) {
3343 kunmap(page);
3344 page_cache_release(page);
3345 }
3346 return res;
3347 }
3348
3349 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3350 {
3351 struct page *page = NULL;
3352 nd_set_link(nd, page_getlink(dentry, &page));
3353 return page;
3354 }
3355
3356 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3357 {
3358 struct page *page = cookie;
3359
3360 if (page) {
3361 kunmap(page);
3362 page_cache_release(page);
3363 }
3364 }
3365
3366 /*
3367 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3368 */
3369 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3370 {
3371 struct address_space *mapping = inode->i_mapping;
3372 struct page *page;
3373 void *fsdata;
3374 int err;
3375 char *kaddr;
3376 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3377 if (nofs)
3378 flags |= AOP_FLAG_NOFS;
3379
3380 retry:
3381 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3382 flags, &page, &fsdata);
3383 if (err)
3384 goto fail;
3385
3386 kaddr = kmap_atomic(page, KM_USER0);
3387 memcpy(kaddr, symname, len-1);
3388 kunmap_atomic(kaddr, KM_USER0);
3389
3390 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3391 page, fsdata);
3392 if (err < 0)
3393 goto fail;
3394 if (err < len-1)
3395 goto retry;
3396
3397 mark_inode_dirty(inode);
3398 return 0;
3399 fail:
3400 return err;
3401 }
3402
3403 int page_symlink(struct inode *inode, const char *symname, int len)
3404 {
3405 return __page_symlink(inode, symname, len,
3406 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3407 }
3408
3409 const struct inode_operations page_symlink_inode_operations = {
3410 .readlink = generic_readlink,
3411 .follow_link = page_follow_link_light,
3412 .put_link = page_put_link,
3413 };
3414
3415 EXPORT_SYMBOL(user_path_at);
3416 EXPORT_SYMBOL(follow_down);
3417 EXPORT_SYMBOL(follow_up);
3418 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3419 EXPORT_SYMBOL(getname);
3420 EXPORT_SYMBOL(lock_rename);
3421 EXPORT_SYMBOL(lookup_one_len);
3422 EXPORT_SYMBOL(page_follow_link_light);
3423 EXPORT_SYMBOL(page_put_link);
3424 EXPORT_SYMBOL(page_readlink);
3425 EXPORT_SYMBOL(__page_symlink);
3426 EXPORT_SYMBOL(page_symlink);
3427 EXPORT_SYMBOL(page_symlink_inode_operations);
3428 EXPORT_SYMBOL(path_lookup);
3429 EXPORT_SYMBOL(kern_path);
3430 EXPORT_SYMBOL(vfs_path_lookup);
3431 EXPORT_SYMBOL(inode_permission);
3432 EXPORT_SYMBOL(file_permission);
3433 EXPORT_SYMBOL(unlock_rename);
3434 EXPORT_SYMBOL(vfs_create);
3435 EXPORT_SYMBOL(vfs_follow_link);
3436 EXPORT_SYMBOL(vfs_link);
3437 EXPORT_SYMBOL(vfs_mkdir);
3438 EXPORT_SYMBOL(vfs_mknod);
3439 EXPORT_SYMBOL(generic_permission);
3440 EXPORT_SYMBOL(vfs_readlink);
3441 EXPORT_SYMBOL(vfs_rename);
3442 EXPORT_SYMBOL(vfs_rmdir);
3443 EXPORT_SYMBOL(vfs_symlink);
3444 EXPORT_SYMBOL(vfs_unlink);
3445 EXPORT_SYMBOL(dentry_unhash);
3446 EXPORT_SYMBOL(generic_readlink);
This page took 0.169958 seconds and 6 git commands to generate.