Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511
512 BUG_ON(!(nd->flags & LOOKUP_RCU));
513
514 /*
515 * Get a reference to the parent first: we're
516 * going to make "path_put(nd->path)" valid in
517 * non-RCU context for "terminate_walk()".
518 *
519 * If this doesn't work, return immediately with
520 * RCU walking still active (and then we will do
521 * the RCU walk cleanup in terminate_walk()).
522 */
523 if (!lockref_get_not_dead(&parent->d_lockref))
524 return -ECHILD;
525
526 /*
527 * After the mntget(), we terminate_walk() will do
528 * the right thing for non-RCU mode, and all our
529 * subsequent exit cases should unlock_rcu_walk()
530 * before returning.
531 */
532 mntget(nd->path.mnt);
533 nd->flags &= ~LOOKUP_RCU;
534
535 /*
536 * For a negative lookup, the lookup sequence point is the parents
537 * sequence point, and it only needs to revalidate the parent dentry.
538 *
539 * For a positive lookup, we need to move both the parent and the
540 * dentry from the RCU domain to be properly refcounted. And the
541 * sequence number in the dentry validates *both* dentry counters,
542 * since we checked the sequence number of the parent after we got
543 * the child sequence number. So we know the parent must still
544 * be valid if the child sequence number is still valid.
545 */
546 if (!dentry) {
547 if (read_seqcount_retry(&parent->d_seq, nd->seq))
548 goto out;
549 BUG_ON(nd->inode != parent->d_inode);
550 } else {
551 if (!lockref_get_not_dead(&dentry->d_lockref))
552 goto out;
553 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554 goto drop_dentry;
555 }
556
557 /*
558 * Sequence counts matched. Now make sure that the root is
559 * still valid and get it if required.
560 */
561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562 spin_lock(&fs->lock);
563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564 goto unlock_and_drop_dentry;
565 path_get(&nd->root);
566 spin_unlock(&fs->lock);
567 }
568
569 unlock_rcu_walk();
570 return 0;
571
572 unlock_and_drop_dentry:
573 spin_unlock(&fs->lock);
574 drop_dentry:
575 unlock_rcu_walk();
576 dput(dentry);
577 goto drop_root_mnt;
578 out:
579 unlock_rcu_walk();
580 drop_root_mnt:
581 if (!(nd->flags & LOOKUP_ROOT))
582 nd->root.mnt = NULL;
583 return -ECHILD;
584 }
585
586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
587 {
588 return dentry->d_op->d_revalidate(dentry, flags);
589 }
590
591 /**
592 * complete_walk - successful completion of path walk
593 * @nd: pointer nameidata
594 *
595 * If we had been in RCU mode, drop out of it and legitimize nd->path.
596 * Revalidate the final result, unless we'd already done that during
597 * the path walk or the filesystem doesn't ask for it. Return 0 on
598 * success, -error on failure. In case of failure caller does not
599 * need to drop nd->path.
600 */
601 static int complete_walk(struct nameidata *nd)
602 {
603 struct dentry *dentry = nd->path.dentry;
604 int status;
605
606 if (nd->flags & LOOKUP_RCU) {
607 nd->flags &= ~LOOKUP_RCU;
608 if (!(nd->flags & LOOKUP_ROOT))
609 nd->root.mnt = NULL;
610
611 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
612 unlock_rcu_walk();
613 return -ECHILD;
614 }
615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
616 unlock_rcu_walk();
617 dput(dentry);
618 return -ECHILD;
619 }
620 mntget(nd->path.mnt);
621 unlock_rcu_walk();
622 }
623
624 if (likely(!(nd->flags & LOOKUP_JUMPED)))
625 return 0;
626
627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
628 return 0;
629
630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
631 if (status > 0)
632 return 0;
633
634 if (!status)
635 status = -ESTALE;
636
637 path_put(&nd->path);
638 return status;
639 }
640
641 static __always_inline void set_root(struct nameidata *nd)
642 {
643 if (!nd->root.mnt)
644 get_fs_root(current->fs, &nd->root);
645 }
646
647 static int link_path_walk(const char *, struct nameidata *);
648
649 static __always_inline void set_root_rcu(struct nameidata *nd)
650 {
651 if (!nd->root.mnt) {
652 struct fs_struct *fs = current->fs;
653 unsigned seq;
654
655 do {
656 seq = read_seqcount_begin(&fs->seq);
657 nd->root = fs->root;
658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
659 } while (read_seqcount_retry(&fs->seq, seq));
660 }
661 }
662
663 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
664 {
665 int ret;
666
667 if (IS_ERR(link))
668 goto fail;
669
670 if (*link == '/') {
671 set_root(nd);
672 path_put(&nd->path);
673 nd->path = nd->root;
674 path_get(&nd->root);
675 nd->flags |= LOOKUP_JUMPED;
676 }
677 nd->inode = nd->path.dentry->d_inode;
678
679 ret = link_path_walk(link, nd);
680 return ret;
681 fail:
682 path_put(&nd->path);
683 return PTR_ERR(link);
684 }
685
686 static void path_put_conditional(struct path *path, struct nameidata *nd)
687 {
688 dput(path->dentry);
689 if (path->mnt != nd->path.mnt)
690 mntput(path->mnt);
691 }
692
693 static inline void path_to_nameidata(const struct path *path,
694 struct nameidata *nd)
695 {
696 if (!(nd->flags & LOOKUP_RCU)) {
697 dput(nd->path.dentry);
698 if (nd->path.mnt != path->mnt)
699 mntput(nd->path.mnt);
700 }
701 nd->path.mnt = path->mnt;
702 nd->path.dentry = path->dentry;
703 }
704
705 /*
706 * Helper to directly jump to a known parsed path from ->follow_link,
707 * caller must have taken a reference to path beforehand.
708 */
709 void nd_jump_link(struct nameidata *nd, struct path *path)
710 {
711 path_put(&nd->path);
712
713 nd->path = *path;
714 nd->inode = nd->path.dentry->d_inode;
715 nd->flags |= LOOKUP_JUMPED;
716 }
717
718 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
719 {
720 struct inode *inode = link->dentry->d_inode;
721 if (inode->i_op->put_link)
722 inode->i_op->put_link(link->dentry, nd, cookie);
723 path_put(link);
724 }
725
726 int sysctl_protected_symlinks __read_mostly = 0;
727 int sysctl_protected_hardlinks __read_mostly = 0;
728
729 /**
730 * may_follow_link - Check symlink following for unsafe situations
731 * @link: The path of the symlink
732 * @nd: nameidata pathwalk data
733 *
734 * In the case of the sysctl_protected_symlinks sysctl being enabled,
735 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
736 * in a sticky world-writable directory. This is to protect privileged
737 * processes from failing races against path names that may change out
738 * from under them by way of other users creating malicious symlinks.
739 * It will permit symlinks to be followed only when outside a sticky
740 * world-writable directory, or when the uid of the symlink and follower
741 * match, or when the directory owner matches the symlink's owner.
742 *
743 * Returns 0 if following the symlink is allowed, -ve on error.
744 */
745 static inline int may_follow_link(struct path *link, struct nameidata *nd)
746 {
747 const struct inode *inode;
748 const struct inode *parent;
749
750 if (!sysctl_protected_symlinks)
751 return 0;
752
753 /* Allowed if owner and follower match. */
754 inode = link->dentry->d_inode;
755 if (uid_eq(current_cred()->fsuid, inode->i_uid))
756 return 0;
757
758 /* Allowed if parent directory not sticky and world-writable. */
759 parent = nd->path.dentry->d_inode;
760 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
761 return 0;
762
763 /* Allowed if parent directory and link owner match. */
764 if (uid_eq(parent->i_uid, inode->i_uid))
765 return 0;
766
767 audit_log_link_denied("follow_link", link);
768 path_put_conditional(link, nd);
769 path_put(&nd->path);
770 return -EACCES;
771 }
772
773 /**
774 * safe_hardlink_source - Check for safe hardlink conditions
775 * @inode: the source inode to hardlink from
776 *
777 * Return false if at least one of the following conditions:
778 * - inode is not a regular file
779 * - inode is setuid
780 * - inode is setgid and group-exec
781 * - access failure for read and write
782 *
783 * Otherwise returns true.
784 */
785 static bool safe_hardlink_source(struct inode *inode)
786 {
787 umode_t mode = inode->i_mode;
788
789 /* Special files should not get pinned to the filesystem. */
790 if (!S_ISREG(mode))
791 return false;
792
793 /* Setuid files should not get pinned to the filesystem. */
794 if (mode & S_ISUID)
795 return false;
796
797 /* Executable setgid files should not get pinned to the filesystem. */
798 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
799 return false;
800
801 /* Hardlinking to unreadable or unwritable sources is dangerous. */
802 if (inode_permission(inode, MAY_READ | MAY_WRITE))
803 return false;
804
805 return true;
806 }
807
808 /**
809 * may_linkat - Check permissions for creating a hardlink
810 * @link: the source to hardlink from
811 *
812 * Block hardlink when all of:
813 * - sysctl_protected_hardlinks enabled
814 * - fsuid does not match inode
815 * - hardlink source is unsafe (see safe_hardlink_source() above)
816 * - not CAP_FOWNER
817 *
818 * Returns 0 if successful, -ve on error.
819 */
820 static int may_linkat(struct path *link)
821 {
822 const struct cred *cred;
823 struct inode *inode;
824
825 if (!sysctl_protected_hardlinks)
826 return 0;
827
828 cred = current_cred();
829 inode = link->dentry->d_inode;
830
831 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
832 * otherwise, it must be a safe source.
833 */
834 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
835 capable(CAP_FOWNER))
836 return 0;
837
838 audit_log_link_denied("linkat", link);
839 return -EPERM;
840 }
841
842 static __always_inline int
843 follow_link(struct path *link, struct nameidata *nd, void **p)
844 {
845 struct dentry *dentry = link->dentry;
846 int error;
847 char *s;
848
849 BUG_ON(nd->flags & LOOKUP_RCU);
850
851 if (link->mnt == nd->path.mnt)
852 mntget(link->mnt);
853
854 error = -ELOOP;
855 if (unlikely(current->total_link_count >= 40))
856 goto out_put_nd_path;
857
858 cond_resched();
859 current->total_link_count++;
860
861 touch_atime(link);
862 nd_set_link(nd, NULL);
863
864 error = security_inode_follow_link(link->dentry, nd);
865 if (error)
866 goto out_put_nd_path;
867
868 nd->last_type = LAST_BIND;
869 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
870 error = PTR_ERR(*p);
871 if (IS_ERR(*p))
872 goto out_put_nd_path;
873
874 error = 0;
875 s = nd_get_link(nd);
876 if (s) {
877 error = __vfs_follow_link(nd, s);
878 if (unlikely(error))
879 put_link(nd, link, *p);
880 }
881
882 return error;
883
884 out_put_nd_path:
885 *p = NULL;
886 path_put(&nd->path);
887 path_put(link);
888 return error;
889 }
890
891 static int follow_up_rcu(struct path *path)
892 {
893 struct mount *mnt = real_mount(path->mnt);
894 struct mount *parent;
895 struct dentry *mountpoint;
896
897 parent = mnt->mnt_parent;
898 if (&parent->mnt == path->mnt)
899 return 0;
900 mountpoint = mnt->mnt_mountpoint;
901 path->dentry = mountpoint;
902 path->mnt = &parent->mnt;
903 return 1;
904 }
905
906 /*
907 * follow_up - Find the mountpoint of path's vfsmount
908 *
909 * Given a path, find the mountpoint of its source file system.
910 * Replace @path with the path of the mountpoint in the parent mount.
911 * Up is towards /.
912 *
913 * Return 1 if we went up a level and 0 if we were already at the
914 * root.
915 */
916 int follow_up(struct path *path)
917 {
918 struct mount *mnt = real_mount(path->mnt);
919 struct mount *parent;
920 struct dentry *mountpoint;
921
922 br_read_lock(&vfsmount_lock);
923 parent = mnt->mnt_parent;
924 if (parent == mnt) {
925 br_read_unlock(&vfsmount_lock);
926 return 0;
927 }
928 mntget(&parent->mnt);
929 mountpoint = dget(mnt->mnt_mountpoint);
930 br_read_unlock(&vfsmount_lock);
931 dput(path->dentry);
932 path->dentry = mountpoint;
933 mntput(path->mnt);
934 path->mnt = &parent->mnt;
935 return 1;
936 }
937
938 /*
939 * Perform an automount
940 * - return -EISDIR to tell follow_managed() to stop and return the path we
941 * were called with.
942 */
943 static int follow_automount(struct path *path, unsigned flags,
944 bool *need_mntput)
945 {
946 struct vfsmount *mnt;
947 int err;
948
949 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
950 return -EREMOTE;
951
952 /* We don't want to mount if someone's just doing a stat -
953 * unless they're stat'ing a directory and appended a '/' to
954 * the name.
955 *
956 * We do, however, want to mount if someone wants to open or
957 * create a file of any type under the mountpoint, wants to
958 * traverse through the mountpoint or wants to open the
959 * mounted directory. Also, autofs may mark negative dentries
960 * as being automount points. These will need the attentions
961 * of the daemon to instantiate them before they can be used.
962 */
963 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
964 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
965 path->dentry->d_inode)
966 return -EISDIR;
967
968 current->total_link_count++;
969 if (current->total_link_count >= 40)
970 return -ELOOP;
971
972 mnt = path->dentry->d_op->d_automount(path);
973 if (IS_ERR(mnt)) {
974 /*
975 * The filesystem is allowed to return -EISDIR here to indicate
976 * it doesn't want to automount. For instance, autofs would do
977 * this so that its userspace daemon can mount on this dentry.
978 *
979 * However, we can only permit this if it's a terminal point in
980 * the path being looked up; if it wasn't then the remainder of
981 * the path is inaccessible and we should say so.
982 */
983 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
984 return -EREMOTE;
985 return PTR_ERR(mnt);
986 }
987
988 if (!mnt) /* mount collision */
989 return 0;
990
991 if (!*need_mntput) {
992 /* lock_mount() may release path->mnt on error */
993 mntget(path->mnt);
994 *need_mntput = true;
995 }
996 err = finish_automount(mnt, path);
997
998 switch (err) {
999 case -EBUSY:
1000 /* Someone else made a mount here whilst we were busy */
1001 return 0;
1002 case 0:
1003 path_put(path);
1004 path->mnt = mnt;
1005 path->dentry = dget(mnt->mnt_root);
1006 return 0;
1007 default:
1008 return err;
1009 }
1010
1011 }
1012
1013 /*
1014 * Handle a dentry that is managed in some way.
1015 * - Flagged for transit management (autofs)
1016 * - Flagged as mountpoint
1017 * - Flagged as automount point
1018 *
1019 * This may only be called in refwalk mode.
1020 *
1021 * Serialization is taken care of in namespace.c
1022 */
1023 static int follow_managed(struct path *path, unsigned flags)
1024 {
1025 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1026 unsigned managed;
1027 bool need_mntput = false;
1028 int ret = 0;
1029
1030 /* Given that we're not holding a lock here, we retain the value in a
1031 * local variable for each dentry as we look at it so that we don't see
1032 * the components of that value change under us */
1033 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1034 managed &= DCACHE_MANAGED_DENTRY,
1035 unlikely(managed != 0)) {
1036 /* Allow the filesystem to manage the transit without i_mutex
1037 * being held. */
1038 if (managed & DCACHE_MANAGE_TRANSIT) {
1039 BUG_ON(!path->dentry->d_op);
1040 BUG_ON(!path->dentry->d_op->d_manage);
1041 ret = path->dentry->d_op->d_manage(path->dentry, false);
1042 if (ret < 0)
1043 break;
1044 }
1045
1046 /* Transit to a mounted filesystem. */
1047 if (managed & DCACHE_MOUNTED) {
1048 struct vfsmount *mounted = lookup_mnt(path);
1049 if (mounted) {
1050 dput(path->dentry);
1051 if (need_mntput)
1052 mntput(path->mnt);
1053 path->mnt = mounted;
1054 path->dentry = dget(mounted->mnt_root);
1055 need_mntput = true;
1056 continue;
1057 }
1058
1059 /* Something is mounted on this dentry in another
1060 * namespace and/or whatever was mounted there in this
1061 * namespace got unmounted before we managed to get the
1062 * vfsmount_lock */
1063 }
1064
1065 /* Handle an automount point */
1066 if (managed & DCACHE_NEED_AUTOMOUNT) {
1067 ret = follow_automount(path, flags, &need_mntput);
1068 if (ret < 0)
1069 break;
1070 continue;
1071 }
1072
1073 /* We didn't change the current path point */
1074 break;
1075 }
1076
1077 if (need_mntput && path->mnt == mnt)
1078 mntput(path->mnt);
1079 if (ret == -EISDIR)
1080 ret = 0;
1081 return ret < 0 ? ret : need_mntput;
1082 }
1083
1084 int follow_down_one(struct path *path)
1085 {
1086 struct vfsmount *mounted;
1087
1088 mounted = lookup_mnt(path);
1089 if (mounted) {
1090 dput(path->dentry);
1091 mntput(path->mnt);
1092 path->mnt = mounted;
1093 path->dentry = dget(mounted->mnt_root);
1094 return 1;
1095 }
1096 return 0;
1097 }
1098
1099 static inline bool managed_dentry_might_block(struct dentry *dentry)
1100 {
1101 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1102 dentry->d_op->d_manage(dentry, true) < 0);
1103 }
1104
1105 /*
1106 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1107 * we meet a managed dentry that would need blocking.
1108 */
1109 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1110 struct inode **inode)
1111 {
1112 for (;;) {
1113 struct mount *mounted;
1114 /*
1115 * Don't forget we might have a non-mountpoint managed dentry
1116 * that wants to block transit.
1117 */
1118 if (unlikely(managed_dentry_might_block(path->dentry)))
1119 return false;
1120
1121 if (!d_mountpoint(path->dentry))
1122 break;
1123
1124 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1125 if (!mounted)
1126 break;
1127 path->mnt = &mounted->mnt;
1128 path->dentry = mounted->mnt.mnt_root;
1129 nd->flags |= LOOKUP_JUMPED;
1130 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1131 /*
1132 * Update the inode too. We don't need to re-check the
1133 * dentry sequence number here after this d_inode read,
1134 * because a mount-point is always pinned.
1135 */
1136 *inode = path->dentry->d_inode;
1137 }
1138 return true;
1139 }
1140
1141 static void follow_mount_rcu(struct nameidata *nd)
1142 {
1143 while (d_mountpoint(nd->path.dentry)) {
1144 struct mount *mounted;
1145 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1146 if (!mounted)
1147 break;
1148 nd->path.mnt = &mounted->mnt;
1149 nd->path.dentry = mounted->mnt.mnt_root;
1150 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1151 }
1152 }
1153
1154 static int follow_dotdot_rcu(struct nameidata *nd)
1155 {
1156 set_root_rcu(nd);
1157
1158 while (1) {
1159 if (nd->path.dentry == nd->root.dentry &&
1160 nd->path.mnt == nd->root.mnt) {
1161 break;
1162 }
1163 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1164 struct dentry *old = nd->path.dentry;
1165 struct dentry *parent = old->d_parent;
1166 unsigned seq;
1167
1168 seq = read_seqcount_begin(&parent->d_seq);
1169 if (read_seqcount_retry(&old->d_seq, nd->seq))
1170 goto failed;
1171 nd->path.dentry = parent;
1172 nd->seq = seq;
1173 break;
1174 }
1175 if (!follow_up_rcu(&nd->path))
1176 break;
1177 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1178 }
1179 follow_mount_rcu(nd);
1180 nd->inode = nd->path.dentry->d_inode;
1181 return 0;
1182
1183 failed:
1184 nd->flags &= ~LOOKUP_RCU;
1185 if (!(nd->flags & LOOKUP_ROOT))
1186 nd->root.mnt = NULL;
1187 unlock_rcu_walk();
1188 return -ECHILD;
1189 }
1190
1191 /*
1192 * Follow down to the covering mount currently visible to userspace. At each
1193 * point, the filesystem owning that dentry may be queried as to whether the
1194 * caller is permitted to proceed or not.
1195 */
1196 int follow_down(struct path *path)
1197 {
1198 unsigned managed;
1199 int ret;
1200
1201 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1202 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1203 /* Allow the filesystem to manage the transit without i_mutex
1204 * being held.
1205 *
1206 * We indicate to the filesystem if someone is trying to mount
1207 * something here. This gives autofs the chance to deny anyone
1208 * other than its daemon the right to mount on its
1209 * superstructure.
1210 *
1211 * The filesystem may sleep at this point.
1212 */
1213 if (managed & DCACHE_MANAGE_TRANSIT) {
1214 BUG_ON(!path->dentry->d_op);
1215 BUG_ON(!path->dentry->d_op->d_manage);
1216 ret = path->dentry->d_op->d_manage(
1217 path->dentry, false);
1218 if (ret < 0)
1219 return ret == -EISDIR ? 0 : ret;
1220 }
1221
1222 /* Transit to a mounted filesystem. */
1223 if (managed & DCACHE_MOUNTED) {
1224 struct vfsmount *mounted = lookup_mnt(path);
1225 if (!mounted)
1226 break;
1227 dput(path->dentry);
1228 mntput(path->mnt);
1229 path->mnt = mounted;
1230 path->dentry = dget(mounted->mnt_root);
1231 continue;
1232 }
1233
1234 /* Don't handle automount points here */
1235 break;
1236 }
1237 return 0;
1238 }
1239
1240 /*
1241 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1242 */
1243 static void follow_mount(struct path *path)
1244 {
1245 while (d_mountpoint(path->dentry)) {
1246 struct vfsmount *mounted = lookup_mnt(path);
1247 if (!mounted)
1248 break;
1249 dput(path->dentry);
1250 mntput(path->mnt);
1251 path->mnt = mounted;
1252 path->dentry = dget(mounted->mnt_root);
1253 }
1254 }
1255
1256 static void follow_dotdot(struct nameidata *nd)
1257 {
1258 set_root(nd);
1259
1260 while(1) {
1261 struct dentry *old = nd->path.dentry;
1262
1263 if (nd->path.dentry == nd->root.dentry &&
1264 nd->path.mnt == nd->root.mnt) {
1265 break;
1266 }
1267 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1268 /* rare case of legitimate dget_parent()... */
1269 nd->path.dentry = dget_parent(nd->path.dentry);
1270 dput(old);
1271 break;
1272 }
1273 if (!follow_up(&nd->path))
1274 break;
1275 }
1276 follow_mount(&nd->path);
1277 nd->inode = nd->path.dentry->d_inode;
1278 }
1279
1280 /*
1281 * This looks up the name in dcache, possibly revalidates the old dentry and
1282 * allocates a new one if not found or not valid. In the need_lookup argument
1283 * returns whether i_op->lookup is necessary.
1284 *
1285 * dir->d_inode->i_mutex must be held
1286 */
1287 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1288 unsigned int flags, bool *need_lookup)
1289 {
1290 struct dentry *dentry;
1291 int error;
1292
1293 *need_lookup = false;
1294 dentry = d_lookup(dir, name);
1295 if (dentry) {
1296 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1297 error = d_revalidate(dentry, flags);
1298 if (unlikely(error <= 0)) {
1299 if (error < 0) {
1300 dput(dentry);
1301 return ERR_PTR(error);
1302 } else if (!d_invalidate(dentry)) {
1303 dput(dentry);
1304 dentry = NULL;
1305 }
1306 }
1307 }
1308 }
1309
1310 if (!dentry) {
1311 dentry = d_alloc(dir, name);
1312 if (unlikely(!dentry))
1313 return ERR_PTR(-ENOMEM);
1314
1315 *need_lookup = true;
1316 }
1317 return dentry;
1318 }
1319
1320 /*
1321 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1322 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1323 *
1324 * dir->d_inode->i_mutex must be held
1325 */
1326 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1327 unsigned int flags)
1328 {
1329 struct dentry *old;
1330
1331 /* Don't create child dentry for a dead directory. */
1332 if (unlikely(IS_DEADDIR(dir))) {
1333 dput(dentry);
1334 return ERR_PTR(-ENOENT);
1335 }
1336
1337 old = dir->i_op->lookup(dir, dentry, flags);
1338 if (unlikely(old)) {
1339 dput(dentry);
1340 dentry = old;
1341 }
1342 return dentry;
1343 }
1344
1345 static struct dentry *__lookup_hash(struct qstr *name,
1346 struct dentry *base, unsigned int flags)
1347 {
1348 bool need_lookup;
1349 struct dentry *dentry;
1350
1351 dentry = lookup_dcache(name, base, flags, &need_lookup);
1352 if (!need_lookup)
1353 return dentry;
1354
1355 return lookup_real(base->d_inode, dentry, flags);
1356 }
1357
1358 /*
1359 * It's more convoluted than I'd like it to be, but... it's still fairly
1360 * small and for now I'd prefer to have fast path as straight as possible.
1361 * It _is_ time-critical.
1362 */
1363 static int lookup_fast(struct nameidata *nd,
1364 struct path *path, struct inode **inode)
1365 {
1366 struct vfsmount *mnt = nd->path.mnt;
1367 struct dentry *dentry, *parent = nd->path.dentry;
1368 int need_reval = 1;
1369 int status = 1;
1370 int err;
1371
1372 /*
1373 * Rename seqlock is not required here because in the off chance
1374 * of a false negative due to a concurrent rename, we're going to
1375 * do the non-racy lookup, below.
1376 */
1377 if (nd->flags & LOOKUP_RCU) {
1378 unsigned seq;
1379 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1380 if (!dentry)
1381 goto unlazy;
1382
1383 /*
1384 * This sequence count validates that the inode matches
1385 * the dentry name information from lookup.
1386 */
1387 *inode = dentry->d_inode;
1388 if (read_seqcount_retry(&dentry->d_seq, seq))
1389 return -ECHILD;
1390
1391 /*
1392 * This sequence count validates that the parent had no
1393 * changes while we did the lookup of the dentry above.
1394 *
1395 * The memory barrier in read_seqcount_begin of child is
1396 * enough, we can use __read_seqcount_retry here.
1397 */
1398 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1399 return -ECHILD;
1400 nd->seq = seq;
1401
1402 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1403 status = d_revalidate(dentry, nd->flags);
1404 if (unlikely(status <= 0)) {
1405 if (status != -ECHILD)
1406 need_reval = 0;
1407 goto unlazy;
1408 }
1409 }
1410 path->mnt = mnt;
1411 path->dentry = dentry;
1412 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1413 goto unlazy;
1414 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1415 goto unlazy;
1416 return 0;
1417 unlazy:
1418 if (unlazy_walk(nd, dentry))
1419 return -ECHILD;
1420 } else {
1421 dentry = __d_lookup(parent, &nd->last);
1422 }
1423
1424 if (unlikely(!dentry))
1425 goto need_lookup;
1426
1427 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1428 status = d_revalidate(dentry, nd->flags);
1429 if (unlikely(status <= 0)) {
1430 if (status < 0) {
1431 dput(dentry);
1432 return status;
1433 }
1434 if (!d_invalidate(dentry)) {
1435 dput(dentry);
1436 goto need_lookup;
1437 }
1438 }
1439
1440 path->mnt = mnt;
1441 path->dentry = dentry;
1442 err = follow_managed(path, nd->flags);
1443 if (unlikely(err < 0)) {
1444 path_put_conditional(path, nd);
1445 return err;
1446 }
1447 if (err)
1448 nd->flags |= LOOKUP_JUMPED;
1449 *inode = path->dentry->d_inode;
1450 return 0;
1451
1452 need_lookup:
1453 return 1;
1454 }
1455
1456 /* Fast lookup failed, do it the slow way */
1457 static int lookup_slow(struct nameidata *nd, struct path *path)
1458 {
1459 struct dentry *dentry, *parent;
1460 int err;
1461
1462 parent = nd->path.dentry;
1463 BUG_ON(nd->inode != parent->d_inode);
1464
1465 mutex_lock(&parent->d_inode->i_mutex);
1466 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1467 mutex_unlock(&parent->d_inode->i_mutex);
1468 if (IS_ERR(dentry))
1469 return PTR_ERR(dentry);
1470 path->mnt = nd->path.mnt;
1471 path->dentry = dentry;
1472 err = follow_managed(path, nd->flags);
1473 if (unlikely(err < 0)) {
1474 path_put_conditional(path, nd);
1475 return err;
1476 }
1477 if (err)
1478 nd->flags |= LOOKUP_JUMPED;
1479 return 0;
1480 }
1481
1482 static inline int may_lookup(struct nameidata *nd)
1483 {
1484 if (nd->flags & LOOKUP_RCU) {
1485 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1486 if (err != -ECHILD)
1487 return err;
1488 if (unlazy_walk(nd, NULL))
1489 return -ECHILD;
1490 }
1491 return inode_permission(nd->inode, MAY_EXEC);
1492 }
1493
1494 static inline int handle_dots(struct nameidata *nd, int type)
1495 {
1496 if (type == LAST_DOTDOT) {
1497 if (nd->flags & LOOKUP_RCU) {
1498 if (follow_dotdot_rcu(nd))
1499 return -ECHILD;
1500 } else
1501 follow_dotdot(nd);
1502 }
1503 return 0;
1504 }
1505
1506 static void terminate_walk(struct nameidata *nd)
1507 {
1508 if (!(nd->flags & LOOKUP_RCU)) {
1509 path_put(&nd->path);
1510 } else {
1511 nd->flags &= ~LOOKUP_RCU;
1512 if (!(nd->flags & LOOKUP_ROOT))
1513 nd->root.mnt = NULL;
1514 unlock_rcu_walk();
1515 }
1516 }
1517
1518 /*
1519 * Do we need to follow links? We _really_ want to be able
1520 * to do this check without having to look at inode->i_op,
1521 * so we keep a cache of "no, this doesn't need follow_link"
1522 * for the common case.
1523 */
1524 static inline int should_follow_link(struct inode *inode, int follow)
1525 {
1526 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1527 if (likely(inode->i_op->follow_link))
1528 return follow;
1529
1530 /* This gets set once for the inode lifetime */
1531 spin_lock(&inode->i_lock);
1532 inode->i_opflags |= IOP_NOFOLLOW;
1533 spin_unlock(&inode->i_lock);
1534 }
1535 return 0;
1536 }
1537
1538 static inline int walk_component(struct nameidata *nd, struct path *path,
1539 int follow)
1540 {
1541 struct inode *inode;
1542 int err;
1543 /*
1544 * "." and ".." are special - ".." especially so because it has
1545 * to be able to know about the current root directory and
1546 * parent relationships.
1547 */
1548 if (unlikely(nd->last_type != LAST_NORM))
1549 return handle_dots(nd, nd->last_type);
1550 err = lookup_fast(nd, path, &inode);
1551 if (unlikely(err)) {
1552 if (err < 0)
1553 goto out_err;
1554
1555 err = lookup_slow(nd, path);
1556 if (err < 0)
1557 goto out_err;
1558
1559 inode = path->dentry->d_inode;
1560 }
1561 err = -ENOENT;
1562 if (!inode)
1563 goto out_path_put;
1564
1565 if (should_follow_link(inode, follow)) {
1566 if (nd->flags & LOOKUP_RCU) {
1567 if (unlikely(unlazy_walk(nd, path->dentry))) {
1568 err = -ECHILD;
1569 goto out_err;
1570 }
1571 }
1572 BUG_ON(inode != path->dentry->d_inode);
1573 return 1;
1574 }
1575 path_to_nameidata(path, nd);
1576 nd->inode = inode;
1577 return 0;
1578
1579 out_path_put:
1580 path_to_nameidata(path, nd);
1581 out_err:
1582 terminate_walk(nd);
1583 return err;
1584 }
1585
1586 /*
1587 * This limits recursive symlink follows to 8, while
1588 * limiting consecutive symlinks to 40.
1589 *
1590 * Without that kind of total limit, nasty chains of consecutive
1591 * symlinks can cause almost arbitrarily long lookups.
1592 */
1593 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1594 {
1595 int res;
1596
1597 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1598 path_put_conditional(path, nd);
1599 path_put(&nd->path);
1600 return -ELOOP;
1601 }
1602 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1603
1604 nd->depth++;
1605 current->link_count++;
1606
1607 do {
1608 struct path link = *path;
1609 void *cookie;
1610
1611 res = follow_link(&link, nd, &cookie);
1612 if (res)
1613 break;
1614 res = walk_component(nd, path, LOOKUP_FOLLOW);
1615 put_link(nd, &link, cookie);
1616 } while (res > 0);
1617
1618 current->link_count--;
1619 nd->depth--;
1620 return res;
1621 }
1622
1623 /*
1624 * We really don't want to look at inode->i_op->lookup
1625 * when we don't have to. So we keep a cache bit in
1626 * the inode ->i_opflags field that says "yes, we can
1627 * do lookup on this inode".
1628 */
1629 static inline int can_lookup(struct inode *inode)
1630 {
1631 if (likely(inode->i_opflags & IOP_LOOKUP))
1632 return 1;
1633 if (likely(!inode->i_op->lookup))
1634 return 0;
1635
1636 /* We do this once for the lifetime of the inode */
1637 spin_lock(&inode->i_lock);
1638 inode->i_opflags |= IOP_LOOKUP;
1639 spin_unlock(&inode->i_lock);
1640 return 1;
1641 }
1642
1643 /*
1644 * We can do the critical dentry name comparison and hashing
1645 * operations one word at a time, but we are limited to:
1646 *
1647 * - Architectures with fast unaligned word accesses. We could
1648 * do a "get_unaligned()" if this helps and is sufficiently
1649 * fast.
1650 *
1651 * - Little-endian machines (so that we can generate the mask
1652 * of low bytes efficiently). Again, we *could* do a byte
1653 * swapping load on big-endian architectures if that is not
1654 * expensive enough to make the optimization worthless.
1655 *
1656 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1657 * do not trap on the (extremely unlikely) case of a page
1658 * crossing operation.
1659 *
1660 * - Furthermore, we need an efficient 64-bit compile for the
1661 * 64-bit case in order to generate the "number of bytes in
1662 * the final mask". Again, that could be replaced with a
1663 * efficient population count instruction or similar.
1664 */
1665 #ifdef CONFIG_DCACHE_WORD_ACCESS
1666
1667 #include <asm/word-at-a-time.h>
1668
1669 #ifdef CONFIG_64BIT
1670
1671 static inline unsigned int fold_hash(unsigned long hash)
1672 {
1673 hash += hash >> (8*sizeof(int));
1674 return hash;
1675 }
1676
1677 #else /* 32-bit case */
1678
1679 #define fold_hash(x) (x)
1680
1681 #endif
1682
1683 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1684 {
1685 unsigned long a, mask;
1686 unsigned long hash = 0;
1687
1688 for (;;) {
1689 a = load_unaligned_zeropad(name);
1690 if (len < sizeof(unsigned long))
1691 break;
1692 hash += a;
1693 hash *= 9;
1694 name += sizeof(unsigned long);
1695 len -= sizeof(unsigned long);
1696 if (!len)
1697 goto done;
1698 }
1699 mask = ~(~0ul << len*8);
1700 hash += mask & a;
1701 done:
1702 return fold_hash(hash);
1703 }
1704 EXPORT_SYMBOL(full_name_hash);
1705
1706 /*
1707 * Calculate the length and hash of the path component, and
1708 * return the length of the component;
1709 */
1710 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1711 {
1712 unsigned long a, b, adata, bdata, mask, hash, len;
1713 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1714
1715 hash = a = 0;
1716 len = -sizeof(unsigned long);
1717 do {
1718 hash = (hash + a) * 9;
1719 len += sizeof(unsigned long);
1720 a = load_unaligned_zeropad(name+len);
1721 b = a ^ REPEAT_BYTE('/');
1722 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1723
1724 adata = prep_zero_mask(a, adata, &constants);
1725 bdata = prep_zero_mask(b, bdata, &constants);
1726
1727 mask = create_zero_mask(adata | bdata);
1728
1729 hash += a & zero_bytemask(mask);
1730 *hashp = fold_hash(hash);
1731
1732 return len + find_zero(mask);
1733 }
1734
1735 #else
1736
1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1738 {
1739 unsigned long hash = init_name_hash();
1740 while (len--)
1741 hash = partial_name_hash(*name++, hash);
1742 return end_name_hash(hash);
1743 }
1744 EXPORT_SYMBOL(full_name_hash);
1745
1746 /*
1747 * We know there's a real path component here of at least
1748 * one character.
1749 */
1750 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1751 {
1752 unsigned long hash = init_name_hash();
1753 unsigned long len = 0, c;
1754
1755 c = (unsigned char)*name;
1756 do {
1757 len++;
1758 hash = partial_name_hash(c, hash);
1759 c = (unsigned char)name[len];
1760 } while (c && c != '/');
1761 *hashp = end_name_hash(hash);
1762 return len;
1763 }
1764
1765 #endif
1766
1767 /*
1768 * Name resolution.
1769 * This is the basic name resolution function, turning a pathname into
1770 * the final dentry. We expect 'base' to be positive and a directory.
1771 *
1772 * Returns 0 and nd will have valid dentry and mnt on success.
1773 * Returns error and drops reference to input namei data on failure.
1774 */
1775 static int link_path_walk(const char *name, struct nameidata *nd)
1776 {
1777 struct path next;
1778 int err;
1779
1780 while (*name=='/')
1781 name++;
1782 if (!*name)
1783 return 0;
1784
1785 /* At this point we know we have a real path component. */
1786 for(;;) {
1787 struct qstr this;
1788 long len;
1789 int type;
1790
1791 err = may_lookup(nd);
1792 if (err)
1793 break;
1794
1795 len = hash_name(name, &this.hash);
1796 this.name = name;
1797 this.len = len;
1798
1799 type = LAST_NORM;
1800 if (name[0] == '.') switch (len) {
1801 case 2:
1802 if (name[1] == '.') {
1803 type = LAST_DOTDOT;
1804 nd->flags |= LOOKUP_JUMPED;
1805 }
1806 break;
1807 case 1:
1808 type = LAST_DOT;
1809 }
1810 if (likely(type == LAST_NORM)) {
1811 struct dentry *parent = nd->path.dentry;
1812 nd->flags &= ~LOOKUP_JUMPED;
1813 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1814 err = parent->d_op->d_hash(parent, &this);
1815 if (err < 0)
1816 break;
1817 }
1818 }
1819
1820 nd->last = this;
1821 nd->last_type = type;
1822
1823 if (!name[len])
1824 return 0;
1825 /*
1826 * If it wasn't NUL, we know it was '/'. Skip that
1827 * slash, and continue until no more slashes.
1828 */
1829 do {
1830 len++;
1831 } while (unlikely(name[len] == '/'));
1832 if (!name[len])
1833 return 0;
1834
1835 name += len;
1836
1837 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1838 if (err < 0)
1839 return err;
1840
1841 if (err) {
1842 err = nested_symlink(&next, nd);
1843 if (err)
1844 return err;
1845 }
1846 if (!can_lookup(nd->inode)) {
1847 err = -ENOTDIR;
1848 break;
1849 }
1850 }
1851 terminate_walk(nd);
1852 return err;
1853 }
1854
1855 static int path_init(int dfd, const char *name, unsigned int flags,
1856 struct nameidata *nd, struct file **fp)
1857 {
1858 int retval = 0;
1859
1860 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1861 nd->flags = flags | LOOKUP_JUMPED;
1862 nd->depth = 0;
1863 if (flags & LOOKUP_ROOT) {
1864 struct inode *inode = nd->root.dentry->d_inode;
1865 if (*name) {
1866 if (!can_lookup(inode))
1867 return -ENOTDIR;
1868 retval = inode_permission(inode, MAY_EXEC);
1869 if (retval)
1870 return retval;
1871 }
1872 nd->path = nd->root;
1873 nd->inode = inode;
1874 if (flags & LOOKUP_RCU) {
1875 lock_rcu_walk();
1876 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1877 } else {
1878 path_get(&nd->path);
1879 }
1880 return 0;
1881 }
1882
1883 nd->root.mnt = NULL;
1884
1885 if (*name=='/') {
1886 if (flags & LOOKUP_RCU) {
1887 lock_rcu_walk();
1888 set_root_rcu(nd);
1889 } else {
1890 set_root(nd);
1891 path_get(&nd->root);
1892 }
1893 nd->path = nd->root;
1894 } else if (dfd == AT_FDCWD) {
1895 if (flags & LOOKUP_RCU) {
1896 struct fs_struct *fs = current->fs;
1897 unsigned seq;
1898
1899 lock_rcu_walk();
1900
1901 do {
1902 seq = read_seqcount_begin(&fs->seq);
1903 nd->path = fs->pwd;
1904 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1905 } while (read_seqcount_retry(&fs->seq, seq));
1906 } else {
1907 get_fs_pwd(current->fs, &nd->path);
1908 }
1909 } else {
1910 /* Caller must check execute permissions on the starting path component */
1911 struct fd f = fdget_raw(dfd);
1912 struct dentry *dentry;
1913
1914 if (!f.file)
1915 return -EBADF;
1916
1917 dentry = f.file->f_path.dentry;
1918
1919 if (*name) {
1920 if (!can_lookup(dentry->d_inode)) {
1921 fdput(f);
1922 return -ENOTDIR;
1923 }
1924 }
1925
1926 nd->path = f.file->f_path;
1927 if (flags & LOOKUP_RCU) {
1928 if (f.need_put)
1929 *fp = f.file;
1930 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1931 lock_rcu_walk();
1932 } else {
1933 path_get(&nd->path);
1934 fdput(f);
1935 }
1936 }
1937
1938 nd->inode = nd->path.dentry->d_inode;
1939 return 0;
1940 }
1941
1942 static inline int lookup_last(struct nameidata *nd, struct path *path)
1943 {
1944 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1945 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1946
1947 nd->flags &= ~LOOKUP_PARENT;
1948 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1949 }
1950
1951 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1952 static int path_lookupat(int dfd, const char *name,
1953 unsigned int flags, struct nameidata *nd)
1954 {
1955 struct file *base = NULL;
1956 struct path path;
1957 int err;
1958
1959 /*
1960 * Path walking is largely split up into 2 different synchronisation
1961 * schemes, rcu-walk and ref-walk (explained in
1962 * Documentation/filesystems/path-lookup.txt). These share much of the
1963 * path walk code, but some things particularly setup, cleanup, and
1964 * following mounts are sufficiently divergent that functions are
1965 * duplicated. Typically there is a function foo(), and its RCU
1966 * analogue, foo_rcu().
1967 *
1968 * -ECHILD is the error number of choice (just to avoid clashes) that
1969 * is returned if some aspect of an rcu-walk fails. Such an error must
1970 * be handled by restarting a traditional ref-walk (which will always
1971 * be able to complete).
1972 */
1973 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1974
1975 if (unlikely(err))
1976 return err;
1977
1978 current->total_link_count = 0;
1979 err = link_path_walk(name, nd);
1980
1981 if (!err && !(flags & LOOKUP_PARENT)) {
1982 err = lookup_last(nd, &path);
1983 while (err > 0) {
1984 void *cookie;
1985 struct path link = path;
1986 err = may_follow_link(&link, nd);
1987 if (unlikely(err))
1988 break;
1989 nd->flags |= LOOKUP_PARENT;
1990 err = follow_link(&link, nd, &cookie);
1991 if (err)
1992 break;
1993 err = lookup_last(nd, &path);
1994 put_link(nd, &link, cookie);
1995 }
1996 }
1997
1998 if (!err)
1999 err = complete_walk(nd);
2000
2001 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2002 if (!can_lookup(nd->inode)) {
2003 path_put(&nd->path);
2004 err = -ENOTDIR;
2005 }
2006 }
2007
2008 if (base)
2009 fput(base);
2010
2011 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2012 path_put(&nd->root);
2013 nd->root.mnt = NULL;
2014 }
2015 return err;
2016 }
2017
2018 static int filename_lookup(int dfd, struct filename *name,
2019 unsigned int flags, struct nameidata *nd)
2020 {
2021 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2022 if (unlikely(retval == -ECHILD))
2023 retval = path_lookupat(dfd, name->name, flags, nd);
2024 if (unlikely(retval == -ESTALE))
2025 retval = path_lookupat(dfd, name->name,
2026 flags | LOOKUP_REVAL, nd);
2027
2028 if (likely(!retval))
2029 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2030 return retval;
2031 }
2032
2033 static int do_path_lookup(int dfd, const char *name,
2034 unsigned int flags, struct nameidata *nd)
2035 {
2036 struct filename filename = { .name = name };
2037
2038 return filename_lookup(dfd, &filename, flags, nd);
2039 }
2040
2041 /* does lookup, returns the object with parent locked */
2042 struct dentry *kern_path_locked(const char *name, struct path *path)
2043 {
2044 struct nameidata nd;
2045 struct dentry *d;
2046 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2047 if (err)
2048 return ERR_PTR(err);
2049 if (nd.last_type != LAST_NORM) {
2050 path_put(&nd.path);
2051 return ERR_PTR(-EINVAL);
2052 }
2053 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2054 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2055 if (IS_ERR(d)) {
2056 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2057 path_put(&nd.path);
2058 return d;
2059 }
2060 *path = nd.path;
2061 return d;
2062 }
2063
2064 int kern_path(const char *name, unsigned int flags, struct path *path)
2065 {
2066 struct nameidata nd;
2067 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2068 if (!res)
2069 *path = nd.path;
2070 return res;
2071 }
2072
2073 /**
2074 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2075 * @dentry: pointer to dentry of the base directory
2076 * @mnt: pointer to vfs mount of the base directory
2077 * @name: pointer to file name
2078 * @flags: lookup flags
2079 * @path: pointer to struct path to fill
2080 */
2081 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2082 const char *name, unsigned int flags,
2083 struct path *path)
2084 {
2085 struct nameidata nd;
2086 int err;
2087 nd.root.dentry = dentry;
2088 nd.root.mnt = mnt;
2089 BUG_ON(flags & LOOKUP_PARENT);
2090 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2091 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2092 if (!err)
2093 *path = nd.path;
2094 return err;
2095 }
2096
2097 /*
2098 * Restricted form of lookup. Doesn't follow links, single-component only,
2099 * needs parent already locked. Doesn't follow mounts.
2100 * SMP-safe.
2101 */
2102 static struct dentry *lookup_hash(struct nameidata *nd)
2103 {
2104 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2105 }
2106
2107 /**
2108 * lookup_one_len - filesystem helper to lookup single pathname component
2109 * @name: pathname component to lookup
2110 * @base: base directory to lookup from
2111 * @len: maximum length @len should be interpreted to
2112 *
2113 * Note that this routine is purely a helper for filesystem usage and should
2114 * not be called by generic code. Also note that by using this function the
2115 * nameidata argument is passed to the filesystem methods and a filesystem
2116 * using this helper needs to be prepared for that.
2117 */
2118 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2119 {
2120 struct qstr this;
2121 unsigned int c;
2122 int err;
2123
2124 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2125
2126 this.name = name;
2127 this.len = len;
2128 this.hash = full_name_hash(name, len);
2129 if (!len)
2130 return ERR_PTR(-EACCES);
2131
2132 if (unlikely(name[0] == '.')) {
2133 if (len < 2 || (len == 2 && name[1] == '.'))
2134 return ERR_PTR(-EACCES);
2135 }
2136
2137 while (len--) {
2138 c = *(const unsigned char *)name++;
2139 if (c == '/' || c == '\0')
2140 return ERR_PTR(-EACCES);
2141 }
2142 /*
2143 * See if the low-level filesystem might want
2144 * to use its own hash..
2145 */
2146 if (base->d_flags & DCACHE_OP_HASH) {
2147 int err = base->d_op->d_hash(base, &this);
2148 if (err < 0)
2149 return ERR_PTR(err);
2150 }
2151
2152 err = inode_permission(base->d_inode, MAY_EXEC);
2153 if (err)
2154 return ERR_PTR(err);
2155
2156 return __lookup_hash(&this, base, 0);
2157 }
2158
2159 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2160 struct path *path, int *empty)
2161 {
2162 struct nameidata nd;
2163 struct filename *tmp = getname_flags(name, flags, empty);
2164 int err = PTR_ERR(tmp);
2165 if (!IS_ERR(tmp)) {
2166
2167 BUG_ON(flags & LOOKUP_PARENT);
2168
2169 err = filename_lookup(dfd, tmp, flags, &nd);
2170 putname(tmp);
2171 if (!err)
2172 *path = nd.path;
2173 }
2174 return err;
2175 }
2176
2177 int user_path_at(int dfd, const char __user *name, unsigned flags,
2178 struct path *path)
2179 {
2180 return user_path_at_empty(dfd, name, flags, path, NULL);
2181 }
2182
2183 /*
2184 * NB: most callers don't do anything directly with the reference to the
2185 * to struct filename, but the nd->last pointer points into the name string
2186 * allocated by getname. So we must hold the reference to it until all
2187 * path-walking is complete.
2188 */
2189 static struct filename *
2190 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2191 unsigned int flags)
2192 {
2193 struct filename *s = getname(path);
2194 int error;
2195
2196 /* only LOOKUP_REVAL is allowed in extra flags */
2197 flags &= LOOKUP_REVAL;
2198
2199 if (IS_ERR(s))
2200 return s;
2201
2202 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2203 if (error) {
2204 putname(s);
2205 return ERR_PTR(error);
2206 }
2207
2208 return s;
2209 }
2210
2211 /**
2212 * mountpoint_last - look up last component for umount
2213 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2214 * @path: pointer to container for result
2215 *
2216 * This is a special lookup_last function just for umount. In this case, we
2217 * need to resolve the path without doing any revalidation.
2218 *
2219 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2220 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2221 * in almost all cases, this lookup will be served out of the dcache. The only
2222 * cases where it won't are if nd->last refers to a symlink or the path is
2223 * bogus and it doesn't exist.
2224 *
2225 * Returns:
2226 * -error: if there was an error during lookup. This includes -ENOENT if the
2227 * lookup found a negative dentry. The nd->path reference will also be
2228 * put in this case.
2229 *
2230 * 0: if we successfully resolved nd->path and found it to not to be a
2231 * symlink that needs to be followed. "path" will also be populated.
2232 * The nd->path reference will also be put.
2233 *
2234 * 1: if we successfully resolved nd->last and found it to be a symlink
2235 * that needs to be followed. "path" will be populated with the path
2236 * to the link, and nd->path will *not* be put.
2237 */
2238 static int
2239 mountpoint_last(struct nameidata *nd, struct path *path)
2240 {
2241 int error = 0;
2242 struct dentry *dentry;
2243 struct dentry *dir = nd->path.dentry;
2244
2245 /* If we're in rcuwalk, drop out of it to handle last component */
2246 if (nd->flags & LOOKUP_RCU) {
2247 if (unlazy_walk(nd, NULL)) {
2248 error = -ECHILD;
2249 goto out;
2250 }
2251 }
2252
2253 nd->flags &= ~LOOKUP_PARENT;
2254
2255 if (unlikely(nd->last_type != LAST_NORM)) {
2256 error = handle_dots(nd, nd->last_type);
2257 if (error)
2258 goto out;
2259 dentry = dget(nd->path.dentry);
2260 goto done;
2261 }
2262
2263 mutex_lock(&dir->d_inode->i_mutex);
2264 dentry = d_lookup(dir, &nd->last);
2265 if (!dentry) {
2266 /*
2267 * No cached dentry. Mounted dentries are pinned in the cache,
2268 * so that means that this dentry is probably a symlink or the
2269 * path doesn't actually point to a mounted dentry.
2270 */
2271 dentry = d_alloc(dir, &nd->last);
2272 if (!dentry) {
2273 error = -ENOMEM;
2274 goto out;
2275 }
2276 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2277 error = PTR_ERR(dentry);
2278 if (IS_ERR(dentry))
2279 goto out;
2280 }
2281 mutex_unlock(&dir->d_inode->i_mutex);
2282
2283 done:
2284 if (!dentry->d_inode) {
2285 error = -ENOENT;
2286 dput(dentry);
2287 goto out;
2288 }
2289 path->dentry = dentry;
2290 path->mnt = mntget(nd->path.mnt);
2291 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW))
2292 return 1;
2293 follow_mount(path);
2294 error = 0;
2295 out:
2296 terminate_walk(nd);
2297 return error;
2298 }
2299
2300 /**
2301 * path_mountpoint - look up a path to be umounted
2302 * @dfd: directory file descriptor to start walk from
2303 * @name: full pathname to walk
2304 * @flags: lookup flags
2305 *
2306 * Look up the given name, but don't attempt to revalidate the last component.
2307 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2308 */
2309 static int
2310 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2311 {
2312 struct file *base = NULL;
2313 struct nameidata nd;
2314 int err;
2315
2316 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2317 if (unlikely(err))
2318 return err;
2319
2320 current->total_link_count = 0;
2321 err = link_path_walk(name, &nd);
2322 if (err)
2323 goto out;
2324
2325 err = mountpoint_last(&nd, path);
2326 while (err > 0) {
2327 void *cookie;
2328 struct path link = *path;
2329 err = may_follow_link(&link, &nd);
2330 if (unlikely(err))
2331 break;
2332 nd.flags |= LOOKUP_PARENT;
2333 err = follow_link(&link, &nd, &cookie);
2334 if (err)
2335 break;
2336 err = mountpoint_last(&nd, path);
2337 put_link(&nd, &link, cookie);
2338 }
2339 out:
2340 if (base)
2341 fput(base);
2342
2343 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2344 path_put(&nd.root);
2345
2346 return err;
2347 }
2348
2349 static int
2350 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2351 unsigned int flags)
2352 {
2353 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2354 if (unlikely(error == -ECHILD))
2355 error = path_mountpoint(dfd, s->name, path, flags);
2356 if (unlikely(error == -ESTALE))
2357 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2358 if (likely(!error))
2359 audit_inode(s, path->dentry, 0);
2360 return error;
2361 }
2362
2363 /**
2364 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2365 * @dfd: directory file descriptor
2366 * @name: pathname from userland
2367 * @flags: lookup flags
2368 * @path: pointer to container to hold result
2369 *
2370 * A umount is a special case for path walking. We're not actually interested
2371 * in the inode in this situation, and ESTALE errors can be a problem. We
2372 * simply want track down the dentry and vfsmount attached at the mountpoint
2373 * and avoid revalidating the last component.
2374 *
2375 * Returns 0 and populates "path" on success.
2376 */
2377 int
2378 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2379 struct path *path)
2380 {
2381 struct filename *s = getname(name);
2382 int error;
2383 if (IS_ERR(s))
2384 return PTR_ERR(s);
2385 error = filename_mountpoint(dfd, s, path, flags);
2386 putname(s);
2387 return error;
2388 }
2389
2390 int
2391 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2392 unsigned int flags)
2393 {
2394 struct filename s = {.name = name};
2395 return filename_mountpoint(dfd, &s, path, flags);
2396 }
2397 EXPORT_SYMBOL(kern_path_mountpoint);
2398
2399 /*
2400 * It's inline, so penalty for filesystems that don't use sticky bit is
2401 * minimal.
2402 */
2403 static inline int check_sticky(struct inode *dir, struct inode *inode)
2404 {
2405 kuid_t fsuid = current_fsuid();
2406
2407 if (!(dir->i_mode & S_ISVTX))
2408 return 0;
2409 if (uid_eq(inode->i_uid, fsuid))
2410 return 0;
2411 if (uid_eq(dir->i_uid, fsuid))
2412 return 0;
2413 return !inode_capable(inode, CAP_FOWNER);
2414 }
2415
2416 /*
2417 * Check whether we can remove a link victim from directory dir, check
2418 * whether the type of victim is right.
2419 * 1. We can't do it if dir is read-only (done in permission())
2420 * 2. We should have write and exec permissions on dir
2421 * 3. We can't remove anything from append-only dir
2422 * 4. We can't do anything with immutable dir (done in permission())
2423 * 5. If the sticky bit on dir is set we should either
2424 * a. be owner of dir, or
2425 * b. be owner of victim, or
2426 * c. have CAP_FOWNER capability
2427 * 6. If the victim is append-only or immutable we can't do antyhing with
2428 * links pointing to it.
2429 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2430 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2431 * 9. We can't remove a root or mountpoint.
2432 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2433 * nfs_async_unlink().
2434 */
2435 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2436 {
2437 int error;
2438
2439 if (!victim->d_inode)
2440 return -ENOENT;
2441
2442 BUG_ON(victim->d_parent->d_inode != dir);
2443 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2444
2445 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2446 if (error)
2447 return error;
2448 if (IS_APPEND(dir))
2449 return -EPERM;
2450 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2451 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2452 return -EPERM;
2453 if (isdir) {
2454 if (!S_ISDIR(victim->d_inode->i_mode))
2455 return -ENOTDIR;
2456 if (IS_ROOT(victim))
2457 return -EBUSY;
2458 } else if (S_ISDIR(victim->d_inode->i_mode))
2459 return -EISDIR;
2460 if (IS_DEADDIR(dir))
2461 return -ENOENT;
2462 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2463 return -EBUSY;
2464 return 0;
2465 }
2466
2467 /* Check whether we can create an object with dentry child in directory
2468 * dir.
2469 * 1. We can't do it if child already exists (open has special treatment for
2470 * this case, but since we are inlined it's OK)
2471 * 2. We can't do it if dir is read-only (done in permission())
2472 * 3. We should have write and exec permissions on dir
2473 * 4. We can't do it if dir is immutable (done in permission())
2474 */
2475 static inline int may_create(struct inode *dir, struct dentry *child)
2476 {
2477 if (child->d_inode)
2478 return -EEXIST;
2479 if (IS_DEADDIR(dir))
2480 return -ENOENT;
2481 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2482 }
2483
2484 /*
2485 * p1 and p2 should be directories on the same fs.
2486 */
2487 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2488 {
2489 struct dentry *p;
2490
2491 if (p1 == p2) {
2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2493 return NULL;
2494 }
2495
2496 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2497
2498 p = d_ancestor(p2, p1);
2499 if (p) {
2500 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2501 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2502 return p;
2503 }
2504
2505 p = d_ancestor(p1, p2);
2506 if (p) {
2507 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2508 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2509 return p;
2510 }
2511
2512 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2513 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2514 return NULL;
2515 }
2516
2517 void unlock_rename(struct dentry *p1, struct dentry *p2)
2518 {
2519 mutex_unlock(&p1->d_inode->i_mutex);
2520 if (p1 != p2) {
2521 mutex_unlock(&p2->d_inode->i_mutex);
2522 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2523 }
2524 }
2525
2526 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2527 bool want_excl)
2528 {
2529 int error = may_create(dir, dentry);
2530 if (error)
2531 return error;
2532
2533 if (!dir->i_op->create)
2534 return -EACCES; /* shouldn't it be ENOSYS? */
2535 mode &= S_IALLUGO;
2536 mode |= S_IFREG;
2537 error = security_inode_create(dir, dentry, mode);
2538 if (error)
2539 return error;
2540 error = dir->i_op->create(dir, dentry, mode, want_excl);
2541 if (!error)
2542 fsnotify_create(dir, dentry);
2543 return error;
2544 }
2545
2546 static int may_open(struct path *path, int acc_mode, int flag)
2547 {
2548 struct dentry *dentry = path->dentry;
2549 struct inode *inode = dentry->d_inode;
2550 int error;
2551
2552 /* O_PATH? */
2553 if (!acc_mode)
2554 return 0;
2555
2556 if (!inode)
2557 return -ENOENT;
2558
2559 switch (inode->i_mode & S_IFMT) {
2560 case S_IFLNK:
2561 return -ELOOP;
2562 case S_IFDIR:
2563 if (acc_mode & MAY_WRITE)
2564 return -EISDIR;
2565 break;
2566 case S_IFBLK:
2567 case S_IFCHR:
2568 if (path->mnt->mnt_flags & MNT_NODEV)
2569 return -EACCES;
2570 /*FALLTHRU*/
2571 case S_IFIFO:
2572 case S_IFSOCK:
2573 flag &= ~O_TRUNC;
2574 break;
2575 }
2576
2577 error = inode_permission(inode, acc_mode);
2578 if (error)
2579 return error;
2580
2581 /*
2582 * An append-only file must be opened in append mode for writing.
2583 */
2584 if (IS_APPEND(inode)) {
2585 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2586 return -EPERM;
2587 if (flag & O_TRUNC)
2588 return -EPERM;
2589 }
2590
2591 /* O_NOATIME can only be set by the owner or superuser */
2592 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2593 return -EPERM;
2594
2595 return 0;
2596 }
2597
2598 static int handle_truncate(struct file *filp)
2599 {
2600 struct path *path = &filp->f_path;
2601 struct inode *inode = path->dentry->d_inode;
2602 int error = get_write_access(inode);
2603 if (error)
2604 return error;
2605 /*
2606 * Refuse to truncate files with mandatory locks held on them.
2607 */
2608 error = locks_verify_locked(inode);
2609 if (!error)
2610 error = security_path_truncate(path);
2611 if (!error) {
2612 error = do_truncate(path->dentry, 0,
2613 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2614 filp);
2615 }
2616 put_write_access(inode);
2617 return error;
2618 }
2619
2620 static inline int open_to_namei_flags(int flag)
2621 {
2622 if ((flag & O_ACCMODE) == 3)
2623 flag--;
2624 return flag;
2625 }
2626
2627 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2628 {
2629 int error = security_path_mknod(dir, dentry, mode, 0);
2630 if (error)
2631 return error;
2632
2633 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2634 if (error)
2635 return error;
2636
2637 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2638 }
2639
2640 /*
2641 * Attempt to atomically look up, create and open a file from a negative
2642 * dentry.
2643 *
2644 * Returns 0 if successful. The file will have been created and attached to
2645 * @file by the filesystem calling finish_open().
2646 *
2647 * Returns 1 if the file was looked up only or didn't need creating. The
2648 * caller will need to perform the open themselves. @path will have been
2649 * updated to point to the new dentry. This may be negative.
2650 *
2651 * Returns an error code otherwise.
2652 */
2653 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2654 struct path *path, struct file *file,
2655 const struct open_flags *op,
2656 bool got_write, bool need_lookup,
2657 int *opened)
2658 {
2659 struct inode *dir = nd->path.dentry->d_inode;
2660 unsigned open_flag = open_to_namei_flags(op->open_flag);
2661 umode_t mode;
2662 int error;
2663 int acc_mode;
2664 int create_error = 0;
2665 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2666
2667 BUG_ON(dentry->d_inode);
2668
2669 /* Don't create child dentry for a dead directory. */
2670 if (unlikely(IS_DEADDIR(dir))) {
2671 error = -ENOENT;
2672 goto out;
2673 }
2674
2675 mode = op->mode;
2676 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2677 mode &= ~current_umask();
2678
2679 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2680 open_flag &= ~O_TRUNC;
2681 *opened |= FILE_CREATED;
2682 }
2683
2684 /*
2685 * Checking write permission is tricky, bacuse we don't know if we are
2686 * going to actually need it: O_CREAT opens should work as long as the
2687 * file exists. But checking existence breaks atomicity. The trick is
2688 * to check access and if not granted clear O_CREAT from the flags.
2689 *
2690 * Another problem is returing the "right" error value (e.g. for an
2691 * O_EXCL open we want to return EEXIST not EROFS).
2692 */
2693 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2694 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2695 if (!(open_flag & O_CREAT)) {
2696 /*
2697 * No O_CREATE -> atomicity not a requirement -> fall
2698 * back to lookup + open
2699 */
2700 goto no_open;
2701 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2702 /* Fall back and fail with the right error */
2703 create_error = -EROFS;
2704 goto no_open;
2705 } else {
2706 /* No side effects, safe to clear O_CREAT */
2707 create_error = -EROFS;
2708 open_flag &= ~O_CREAT;
2709 }
2710 }
2711
2712 if (open_flag & O_CREAT) {
2713 error = may_o_create(&nd->path, dentry, mode);
2714 if (error) {
2715 create_error = error;
2716 if (open_flag & O_EXCL)
2717 goto no_open;
2718 open_flag &= ~O_CREAT;
2719 }
2720 }
2721
2722 if (nd->flags & LOOKUP_DIRECTORY)
2723 open_flag |= O_DIRECTORY;
2724
2725 file->f_path.dentry = DENTRY_NOT_SET;
2726 file->f_path.mnt = nd->path.mnt;
2727 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2728 opened);
2729 if (error < 0) {
2730 if (create_error && error == -ENOENT)
2731 error = create_error;
2732 goto out;
2733 }
2734
2735 acc_mode = op->acc_mode;
2736 if (*opened & FILE_CREATED) {
2737 fsnotify_create(dir, dentry);
2738 acc_mode = MAY_OPEN;
2739 }
2740
2741 if (error) { /* returned 1, that is */
2742 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2743 error = -EIO;
2744 goto out;
2745 }
2746 if (file->f_path.dentry) {
2747 dput(dentry);
2748 dentry = file->f_path.dentry;
2749 }
2750 if (create_error && dentry->d_inode == NULL) {
2751 error = create_error;
2752 goto out;
2753 }
2754 goto looked_up;
2755 }
2756
2757 /*
2758 * We didn't have the inode before the open, so check open permission
2759 * here.
2760 */
2761 error = may_open(&file->f_path, acc_mode, open_flag);
2762 if (error)
2763 fput(file);
2764
2765 out:
2766 dput(dentry);
2767 return error;
2768
2769 no_open:
2770 if (need_lookup) {
2771 dentry = lookup_real(dir, dentry, nd->flags);
2772 if (IS_ERR(dentry))
2773 return PTR_ERR(dentry);
2774
2775 if (create_error) {
2776 int open_flag = op->open_flag;
2777
2778 error = create_error;
2779 if ((open_flag & O_EXCL)) {
2780 if (!dentry->d_inode)
2781 goto out;
2782 } else if (!dentry->d_inode) {
2783 goto out;
2784 } else if ((open_flag & O_TRUNC) &&
2785 S_ISREG(dentry->d_inode->i_mode)) {
2786 goto out;
2787 }
2788 /* will fail later, go on to get the right error */
2789 }
2790 }
2791 looked_up:
2792 path->dentry = dentry;
2793 path->mnt = nd->path.mnt;
2794 return 1;
2795 }
2796
2797 /*
2798 * Look up and maybe create and open the last component.
2799 *
2800 * Must be called with i_mutex held on parent.
2801 *
2802 * Returns 0 if the file was successfully atomically created (if necessary) and
2803 * opened. In this case the file will be returned attached to @file.
2804 *
2805 * Returns 1 if the file was not completely opened at this time, though lookups
2806 * and creations will have been performed and the dentry returned in @path will
2807 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2808 * specified then a negative dentry may be returned.
2809 *
2810 * An error code is returned otherwise.
2811 *
2812 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2813 * cleared otherwise prior to returning.
2814 */
2815 static int lookup_open(struct nameidata *nd, struct path *path,
2816 struct file *file,
2817 const struct open_flags *op,
2818 bool got_write, int *opened)
2819 {
2820 struct dentry *dir = nd->path.dentry;
2821 struct inode *dir_inode = dir->d_inode;
2822 struct dentry *dentry;
2823 int error;
2824 bool need_lookup;
2825
2826 *opened &= ~FILE_CREATED;
2827 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2828 if (IS_ERR(dentry))
2829 return PTR_ERR(dentry);
2830
2831 /* Cached positive dentry: will open in f_op->open */
2832 if (!need_lookup && dentry->d_inode)
2833 goto out_no_open;
2834
2835 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2836 return atomic_open(nd, dentry, path, file, op, got_write,
2837 need_lookup, opened);
2838 }
2839
2840 if (need_lookup) {
2841 BUG_ON(dentry->d_inode);
2842
2843 dentry = lookup_real(dir_inode, dentry, nd->flags);
2844 if (IS_ERR(dentry))
2845 return PTR_ERR(dentry);
2846 }
2847
2848 /* Negative dentry, just create the file */
2849 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2850 umode_t mode = op->mode;
2851 if (!IS_POSIXACL(dir->d_inode))
2852 mode &= ~current_umask();
2853 /*
2854 * This write is needed to ensure that a
2855 * rw->ro transition does not occur between
2856 * the time when the file is created and when
2857 * a permanent write count is taken through
2858 * the 'struct file' in finish_open().
2859 */
2860 if (!got_write) {
2861 error = -EROFS;
2862 goto out_dput;
2863 }
2864 *opened |= FILE_CREATED;
2865 error = security_path_mknod(&nd->path, dentry, mode, 0);
2866 if (error)
2867 goto out_dput;
2868 error = vfs_create(dir->d_inode, dentry, mode,
2869 nd->flags & LOOKUP_EXCL);
2870 if (error)
2871 goto out_dput;
2872 }
2873 out_no_open:
2874 path->dentry = dentry;
2875 path->mnt = nd->path.mnt;
2876 return 1;
2877
2878 out_dput:
2879 dput(dentry);
2880 return error;
2881 }
2882
2883 /*
2884 * Handle the last step of open()
2885 */
2886 static int do_last(struct nameidata *nd, struct path *path,
2887 struct file *file, const struct open_flags *op,
2888 int *opened, struct filename *name)
2889 {
2890 struct dentry *dir = nd->path.dentry;
2891 int open_flag = op->open_flag;
2892 bool will_truncate = (open_flag & O_TRUNC) != 0;
2893 bool got_write = false;
2894 int acc_mode = op->acc_mode;
2895 struct inode *inode;
2896 bool symlink_ok = false;
2897 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2898 bool retried = false;
2899 int error;
2900
2901 nd->flags &= ~LOOKUP_PARENT;
2902 nd->flags |= op->intent;
2903
2904 if (nd->last_type != LAST_NORM) {
2905 error = handle_dots(nd, nd->last_type);
2906 if (error)
2907 return error;
2908 goto finish_open;
2909 }
2910
2911 if (!(open_flag & O_CREAT)) {
2912 if (nd->last.name[nd->last.len])
2913 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2914 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2915 symlink_ok = true;
2916 /* we _can_ be in RCU mode here */
2917 error = lookup_fast(nd, path, &inode);
2918 if (likely(!error))
2919 goto finish_lookup;
2920
2921 if (error < 0)
2922 goto out;
2923
2924 BUG_ON(nd->inode != dir->d_inode);
2925 } else {
2926 /* create side of things */
2927 /*
2928 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2929 * has been cleared when we got to the last component we are
2930 * about to look up
2931 */
2932 error = complete_walk(nd);
2933 if (error)
2934 return error;
2935
2936 audit_inode(name, dir, LOOKUP_PARENT);
2937 error = -EISDIR;
2938 /* trailing slashes? */
2939 if (nd->last.name[nd->last.len])
2940 goto out;
2941 }
2942
2943 retry_lookup:
2944 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2945 error = mnt_want_write(nd->path.mnt);
2946 if (!error)
2947 got_write = true;
2948 /*
2949 * do _not_ fail yet - we might not need that or fail with
2950 * a different error; let lookup_open() decide; we'll be
2951 * dropping this one anyway.
2952 */
2953 }
2954 mutex_lock(&dir->d_inode->i_mutex);
2955 error = lookup_open(nd, path, file, op, got_write, opened);
2956 mutex_unlock(&dir->d_inode->i_mutex);
2957
2958 if (error <= 0) {
2959 if (error)
2960 goto out;
2961
2962 if ((*opened & FILE_CREATED) ||
2963 !S_ISREG(file_inode(file)->i_mode))
2964 will_truncate = false;
2965
2966 audit_inode(name, file->f_path.dentry, 0);
2967 goto opened;
2968 }
2969
2970 if (*opened & FILE_CREATED) {
2971 /* Don't check for write permission, don't truncate */
2972 open_flag &= ~O_TRUNC;
2973 will_truncate = false;
2974 acc_mode = MAY_OPEN;
2975 path_to_nameidata(path, nd);
2976 goto finish_open_created;
2977 }
2978
2979 /*
2980 * create/update audit record if it already exists.
2981 */
2982 if (path->dentry->d_inode)
2983 audit_inode(name, path->dentry, 0);
2984
2985 /*
2986 * If atomic_open() acquired write access it is dropped now due to
2987 * possible mount and symlink following (this might be optimized away if
2988 * necessary...)
2989 */
2990 if (got_write) {
2991 mnt_drop_write(nd->path.mnt);
2992 got_write = false;
2993 }
2994
2995 error = -EEXIST;
2996 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2997 goto exit_dput;
2998
2999 error = follow_managed(path, nd->flags);
3000 if (error < 0)
3001 goto exit_dput;
3002
3003 if (error)
3004 nd->flags |= LOOKUP_JUMPED;
3005
3006 BUG_ON(nd->flags & LOOKUP_RCU);
3007 inode = path->dentry->d_inode;
3008 finish_lookup:
3009 /* we _can_ be in RCU mode here */
3010 error = -ENOENT;
3011 if (!inode) {
3012 path_to_nameidata(path, nd);
3013 goto out;
3014 }
3015
3016 if (should_follow_link(inode, !symlink_ok)) {
3017 if (nd->flags & LOOKUP_RCU) {
3018 if (unlikely(unlazy_walk(nd, path->dentry))) {
3019 error = -ECHILD;
3020 goto out;
3021 }
3022 }
3023 BUG_ON(inode != path->dentry->d_inode);
3024 return 1;
3025 }
3026
3027 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3028 path_to_nameidata(path, nd);
3029 } else {
3030 save_parent.dentry = nd->path.dentry;
3031 save_parent.mnt = mntget(path->mnt);
3032 nd->path.dentry = path->dentry;
3033
3034 }
3035 nd->inode = inode;
3036 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3037 finish_open:
3038 error = complete_walk(nd);
3039 if (error) {
3040 path_put(&save_parent);
3041 return error;
3042 }
3043 audit_inode(name, nd->path.dentry, 0);
3044 error = -EISDIR;
3045 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3046 goto out;
3047 error = -ENOTDIR;
3048 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3049 goto out;
3050 if (!S_ISREG(nd->inode->i_mode))
3051 will_truncate = false;
3052
3053 if (will_truncate) {
3054 error = mnt_want_write(nd->path.mnt);
3055 if (error)
3056 goto out;
3057 got_write = true;
3058 }
3059 finish_open_created:
3060 error = may_open(&nd->path, acc_mode, open_flag);
3061 if (error)
3062 goto out;
3063 file->f_path.mnt = nd->path.mnt;
3064 error = finish_open(file, nd->path.dentry, NULL, opened);
3065 if (error) {
3066 if (error == -EOPENSTALE)
3067 goto stale_open;
3068 goto out;
3069 }
3070 opened:
3071 error = open_check_o_direct(file);
3072 if (error)
3073 goto exit_fput;
3074 error = ima_file_check(file, op->acc_mode);
3075 if (error)
3076 goto exit_fput;
3077
3078 if (will_truncate) {
3079 error = handle_truncate(file);
3080 if (error)
3081 goto exit_fput;
3082 }
3083 out:
3084 if (got_write)
3085 mnt_drop_write(nd->path.mnt);
3086 path_put(&save_parent);
3087 terminate_walk(nd);
3088 return error;
3089
3090 exit_dput:
3091 path_put_conditional(path, nd);
3092 goto out;
3093 exit_fput:
3094 fput(file);
3095 goto out;
3096
3097 stale_open:
3098 /* If no saved parent or already retried then can't retry */
3099 if (!save_parent.dentry || retried)
3100 goto out;
3101
3102 BUG_ON(save_parent.dentry != dir);
3103 path_put(&nd->path);
3104 nd->path = save_parent;
3105 nd->inode = dir->d_inode;
3106 save_parent.mnt = NULL;
3107 save_parent.dentry = NULL;
3108 if (got_write) {
3109 mnt_drop_write(nd->path.mnt);
3110 got_write = false;
3111 }
3112 retried = true;
3113 goto retry_lookup;
3114 }
3115
3116 static int do_tmpfile(int dfd, struct filename *pathname,
3117 struct nameidata *nd, int flags,
3118 const struct open_flags *op,
3119 struct file *file, int *opened)
3120 {
3121 static const struct qstr name = QSTR_INIT("/", 1);
3122 struct dentry *dentry, *child;
3123 struct inode *dir;
3124 int error = path_lookupat(dfd, pathname->name,
3125 flags | LOOKUP_DIRECTORY, nd);
3126 if (unlikely(error))
3127 return error;
3128 error = mnt_want_write(nd->path.mnt);
3129 if (unlikely(error))
3130 goto out;
3131 /* we want directory to be writable */
3132 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3133 if (error)
3134 goto out2;
3135 dentry = nd->path.dentry;
3136 dir = dentry->d_inode;
3137 if (!dir->i_op->tmpfile) {
3138 error = -EOPNOTSUPP;
3139 goto out2;
3140 }
3141 child = d_alloc(dentry, &name);
3142 if (unlikely(!child)) {
3143 error = -ENOMEM;
3144 goto out2;
3145 }
3146 nd->flags &= ~LOOKUP_DIRECTORY;
3147 nd->flags |= op->intent;
3148 dput(nd->path.dentry);
3149 nd->path.dentry = child;
3150 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3151 if (error)
3152 goto out2;
3153 audit_inode(pathname, nd->path.dentry, 0);
3154 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3155 if (error)
3156 goto out2;
3157 file->f_path.mnt = nd->path.mnt;
3158 error = finish_open(file, nd->path.dentry, NULL, opened);
3159 if (error)
3160 goto out2;
3161 error = open_check_o_direct(file);
3162 if (error) {
3163 fput(file);
3164 } else if (!(op->open_flag & O_EXCL)) {
3165 struct inode *inode = file_inode(file);
3166 spin_lock(&inode->i_lock);
3167 inode->i_state |= I_LINKABLE;
3168 spin_unlock(&inode->i_lock);
3169 }
3170 out2:
3171 mnt_drop_write(nd->path.mnt);
3172 out:
3173 path_put(&nd->path);
3174 return error;
3175 }
3176
3177 static struct file *path_openat(int dfd, struct filename *pathname,
3178 struct nameidata *nd, const struct open_flags *op, int flags)
3179 {
3180 struct file *base = NULL;
3181 struct file *file;
3182 struct path path;
3183 int opened = 0;
3184 int error;
3185
3186 file = get_empty_filp();
3187 if (IS_ERR(file))
3188 return file;
3189
3190 file->f_flags = op->open_flag;
3191
3192 if (unlikely(file->f_flags & __O_TMPFILE)) {
3193 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3194 goto out;
3195 }
3196
3197 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3198 if (unlikely(error))
3199 goto out;
3200
3201 current->total_link_count = 0;
3202 error = link_path_walk(pathname->name, nd);
3203 if (unlikely(error))
3204 goto out;
3205
3206 error = do_last(nd, &path, file, op, &opened, pathname);
3207 while (unlikely(error > 0)) { /* trailing symlink */
3208 struct path link = path;
3209 void *cookie;
3210 if (!(nd->flags & LOOKUP_FOLLOW)) {
3211 path_put_conditional(&path, nd);
3212 path_put(&nd->path);
3213 error = -ELOOP;
3214 break;
3215 }
3216 error = may_follow_link(&link, nd);
3217 if (unlikely(error))
3218 break;
3219 nd->flags |= LOOKUP_PARENT;
3220 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3221 error = follow_link(&link, nd, &cookie);
3222 if (unlikely(error))
3223 break;
3224 error = do_last(nd, &path, file, op, &opened, pathname);
3225 put_link(nd, &link, cookie);
3226 }
3227 out:
3228 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3229 path_put(&nd->root);
3230 if (base)
3231 fput(base);
3232 if (!(opened & FILE_OPENED)) {
3233 BUG_ON(!error);
3234 put_filp(file);
3235 }
3236 if (unlikely(error)) {
3237 if (error == -EOPENSTALE) {
3238 if (flags & LOOKUP_RCU)
3239 error = -ECHILD;
3240 else
3241 error = -ESTALE;
3242 }
3243 file = ERR_PTR(error);
3244 }
3245 return file;
3246 }
3247
3248 struct file *do_filp_open(int dfd, struct filename *pathname,
3249 const struct open_flags *op)
3250 {
3251 struct nameidata nd;
3252 int flags = op->lookup_flags;
3253 struct file *filp;
3254
3255 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3256 if (unlikely(filp == ERR_PTR(-ECHILD)))
3257 filp = path_openat(dfd, pathname, &nd, op, flags);
3258 if (unlikely(filp == ERR_PTR(-ESTALE)))
3259 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3260 return filp;
3261 }
3262
3263 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3264 const char *name, const struct open_flags *op)
3265 {
3266 struct nameidata nd;
3267 struct file *file;
3268 struct filename filename = { .name = name };
3269 int flags = op->lookup_flags | LOOKUP_ROOT;
3270
3271 nd.root.mnt = mnt;
3272 nd.root.dentry = dentry;
3273
3274 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3275 return ERR_PTR(-ELOOP);
3276
3277 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3278 if (unlikely(file == ERR_PTR(-ECHILD)))
3279 file = path_openat(-1, &filename, &nd, op, flags);
3280 if (unlikely(file == ERR_PTR(-ESTALE)))
3281 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3282 return file;
3283 }
3284
3285 struct dentry *kern_path_create(int dfd, const char *pathname,
3286 struct path *path, unsigned int lookup_flags)
3287 {
3288 struct dentry *dentry = ERR_PTR(-EEXIST);
3289 struct nameidata nd;
3290 int err2;
3291 int error;
3292 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3293
3294 /*
3295 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3296 * other flags passed in are ignored!
3297 */
3298 lookup_flags &= LOOKUP_REVAL;
3299
3300 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3301 if (error)
3302 return ERR_PTR(error);
3303
3304 /*
3305 * Yucky last component or no last component at all?
3306 * (foo/., foo/.., /////)
3307 */
3308 if (nd.last_type != LAST_NORM)
3309 goto out;
3310 nd.flags &= ~LOOKUP_PARENT;
3311 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3312
3313 /* don't fail immediately if it's r/o, at least try to report other errors */
3314 err2 = mnt_want_write(nd.path.mnt);
3315 /*
3316 * Do the final lookup.
3317 */
3318 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3319 dentry = lookup_hash(&nd);
3320 if (IS_ERR(dentry))
3321 goto unlock;
3322
3323 error = -EEXIST;
3324 if (dentry->d_inode)
3325 goto fail;
3326 /*
3327 * Special case - lookup gave negative, but... we had foo/bar/
3328 * From the vfs_mknod() POV we just have a negative dentry -
3329 * all is fine. Let's be bastards - you had / on the end, you've
3330 * been asking for (non-existent) directory. -ENOENT for you.
3331 */
3332 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3333 error = -ENOENT;
3334 goto fail;
3335 }
3336 if (unlikely(err2)) {
3337 error = err2;
3338 goto fail;
3339 }
3340 *path = nd.path;
3341 return dentry;
3342 fail:
3343 dput(dentry);
3344 dentry = ERR_PTR(error);
3345 unlock:
3346 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3347 if (!err2)
3348 mnt_drop_write(nd.path.mnt);
3349 out:
3350 path_put(&nd.path);
3351 return dentry;
3352 }
3353 EXPORT_SYMBOL(kern_path_create);
3354
3355 void done_path_create(struct path *path, struct dentry *dentry)
3356 {
3357 dput(dentry);
3358 mutex_unlock(&path->dentry->d_inode->i_mutex);
3359 mnt_drop_write(path->mnt);
3360 path_put(path);
3361 }
3362 EXPORT_SYMBOL(done_path_create);
3363
3364 struct dentry *user_path_create(int dfd, const char __user *pathname,
3365 struct path *path, unsigned int lookup_flags)
3366 {
3367 struct filename *tmp = getname(pathname);
3368 struct dentry *res;
3369 if (IS_ERR(tmp))
3370 return ERR_CAST(tmp);
3371 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3372 putname(tmp);
3373 return res;
3374 }
3375 EXPORT_SYMBOL(user_path_create);
3376
3377 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3378 {
3379 int error = may_create(dir, dentry);
3380
3381 if (error)
3382 return error;
3383
3384 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3385 return -EPERM;
3386
3387 if (!dir->i_op->mknod)
3388 return -EPERM;
3389
3390 error = devcgroup_inode_mknod(mode, dev);
3391 if (error)
3392 return error;
3393
3394 error = security_inode_mknod(dir, dentry, mode, dev);
3395 if (error)
3396 return error;
3397
3398 error = dir->i_op->mknod(dir, dentry, mode, dev);
3399 if (!error)
3400 fsnotify_create(dir, dentry);
3401 return error;
3402 }
3403
3404 static int may_mknod(umode_t mode)
3405 {
3406 switch (mode & S_IFMT) {
3407 case S_IFREG:
3408 case S_IFCHR:
3409 case S_IFBLK:
3410 case S_IFIFO:
3411 case S_IFSOCK:
3412 case 0: /* zero mode translates to S_IFREG */
3413 return 0;
3414 case S_IFDIR:
3415 return -EPERM;
3416 default:
3417 return -EINVAL;
3418 }
3419 }
3420
3421 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3422 unsigned, dev)
3423 {
3424 struct dentry *dentry;
3425 struct path path;
3426 int error;
3427 unsigned int lookup_flags = 0;
3428
3429 error = may_mknod(mode);
3430 if (error)
3431 return error;
3432 retry:
3433 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3434 if (IS_ERR(dentry))
3435 return PTR_ERR(dentry);
3436
3437 if (!IS_POSIXACL(path.dentry->d_inode))
3438 mode &= ~current_umask();
3439 error = security_path_mknod(&path, dentry, mode, dev);
3440 if (error)
3441 goto out;
3442 switch (mode & S_IFMT) {
3443 case 0: case S_IFREG:
3444 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3445 break;
3446 case S_IFCHR: case S_IFBLK:
3447 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3448 new_decode_dev(dev));
3449 break;
3450 case S_IFIFO: case S_IFSOCK:
3451 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3452 break;
3453 }
3454 out:
3455 done_path_create(&path, dentry);
3456 if (retry_estale(error, lookup_flags)) {
3457 lookup_flags |= LOOKUP_REVAL;
3458 goto retry;
3459 }
3460 return error;
3461 }
3462
3463 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3464 {
3465 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3466 }
3467
3468 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3469 {
3470 int error = may_create(dir, dentry);
3471 unsigned max_links = dir->i_sb->s_max_links;
3472
3473 if (error)
3474 return error;
3475
3476 if (!dir->i_op->mkdir)
3477 return -EPERM;
3478
3479 mode &= (S_IRWXUGO|S_ISVTX);
3480 error = security_inode_mkdir(dir, dentry, mode);
3481 if (error)
3482 return error;
3483
3484 if (max_links && dir->i_nlink >= max_links)
3485 return -EMLINK;
3486
3487 error = dir->i_op->mkdir(dir, dentry, mode);
3488 if (!error)
3489 fsnotify_mkdir(dir, dentry);
3490 return error;
3491 }
3492
3493 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3494 {
3495 struct dentry *dentry;
3496 struct path path;
3497 int error;
3498 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3499
3500 retry:
3501 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3502 if (IS_ERR(dentry))
3503 return PTR_ERR(dentry);
3504
3505 if (!IS_POSIXACL(path.dentry->d_inode))
3506 mode &= ~current_umask();
3507 error = security_path_mkdir(&path, dentry, mode);
3508 if (!error)
3509 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3510 done_path_create(&path, dentry);
3511 if (retry_estale(error, lookup_flags)) {
3512 lookup_flags |= LOOKUP_REVAL;
3513 goto retry;
3514 }
3515 return error;
3516 }
3517
3518 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3519 {
3520 return sys_mkdirat(AT_FDCWD, pathname, mode);
3521 }
3522
3523 /*
3524 * The dentry_unhash() helper will try to drop the dentry early: we
3525 * should have a usage count of 1 if we're the only user of this
3526 * dentry, and if that is true (possibly after pruning the dcache),
3527 * then we drop the dentry now.
3528 *
3529 * A low-level filesystem can, if it choses, legally
3530 * do a
3531 *
3532 * if (!d_unhashed(dentry))
3533 * return -EBUSY;
3534 *
3535 * if it cannot handle the case of removing a directory
3536 * that is still in use by something else..
3537 */
3538 void dentry_unhash(struct dentry *dentry)
3539 {
3540 shrink_dcache_parent(dentry);
3541 spin_lock(&dentry->d_lock);
3542 if (dentry->d_lockref.count == 1)
3543 __d_drop(dentry);
3544 spin_unlock(&dentry->d_lock);
3545 }
3546
3547 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3548 {
3549 int error = may_delete(dir, dentry, 1);
3550
3551 if (error)
3552 return error;
3553
3554 if (!dir->i_op->rmdir)
3555 return -EPERM;
3556
3557 dget(dentry);
3558 mutex_lock(&dentry->d_inode->i_mutex);
3559
3560 error = -EBUSY;
3561 if (d_mountpoint(dentry))
3562 goto out;
3563
3564 error = security_inode_rmdir(dir, dentry);
3565 if (error)
3566 goto out;
3567
3568 shrink_dcache_parent(dentry);
3569 error = dir->i_op->rmdir(dir, dentry);
3570 if (error)
3571 goto out;
3572
3573 dentry->d_inode->i_flags |= S_DEAD;
3574 dont_mount(dentry);
3575
3576 out:
3577 mutex_unlock(&dentry->d_inode->i_mutex);
3578 dput(dentry);
3579 if (!error)
3580 d_delete(dentry);
3581 return error;
3582 }
3583
3584 static long do_rmdir(int dfd, const char __user *pathname)
3585 {
3586 int error = 0;
3587 struct filename *name;
3588 struct dentry *dentry;
3589 struct nameidata nd;
3590 unsigned int lookup_flags = 0;
3591 retry:
3592 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3593 if (IS_ERR(name))
3594 return PTR_ERR(name);
3595
3596 switch(nd.last_type) {
3597 case LAST_DOTDOT:
3598 error = -ENOTEMPTY;
3599 goto exit1;
3600 case LAST_DOT:
3601 error = -EINVAL;
3602 goto exit1;
3603 case LAST_ROOT:
3604 error = -EBUSY;
3605 goto exit1;
3606 }
3607
3608 nd.flags &= ~LOOKUP_PARENT;
3609 error = mnt_want_write(nd.path.mnt);
3610 if (error)
3611 goto exit1;
3612
3613 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3614 dentry = lookup_hash(&nd);
3615 error = PTR_ERR(dentry);
3616 if (IS_ERR(dentry))
3617 goto exit2;
3618 if (!dentry->d_inode) {
3619 error = -ENOENT;
3620 goto exit3;
3621 }
3622 error = security_path_rmdir(&nd.path, dentry);
3623 if (error)
3624 goto exit3;
3625 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3626 exit3:
3627 dput(dentry);
3628 exit2:
3629 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3630 mnt_drop_write(nd.path.mnt);
3631 exit1:
3632 path_put(&nd.path);
3633 putname(name);
3634 if (retry_estale(error, lookup_flags)) {
3635 lookup_flags |= LOOKUP_REVAL;
3636 goto retry;
3637 }
3638 return error;
3639 }
3640
3641 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3642 {
3643 return do_rmdir(AT_FDCWD, pathname);
3644 }
3645
3646 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3647 {
3648 int error = may_delete(dir, dentry, 0);
3649
3650 if (error)
3651 return error;
3652
3653 if (!dir->i_op->unlink)
3654 return -EPERM;
3655
3656 mutex_lock(&dentry->d_inode->i_mutex);
3657 if (d_mountpoint(dentry))
3658 error = -EBUSY;
3659 else {
3660 error = security_inode_unlink(dir, dentry);
3661 if (!error) {
3662 error = dir->i_op->unlink(dir, dentry);
3663 if (!error)
3664 dont_mount(dentry);
3665 }
3666 }
3667 mutex_unlock(&dentry->d_inode->i_mutex);
3668
3669 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3670 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3671 fsnotify_link_count(dentry->d_inode);
3672 d_delete(dentry);
3673 }
3674
3675 return error;
3676 }
3677
3678 /*
3679 * Make sure that the actual truncation of the file will occur outside its
3680 * directory's i_mutex. Truncate can take a long time if there is a lot of
3681 * writeout happening, and we don't want to prevent access to the directory
3682 * while waiting on the I/O.
3683 */
3684 static long do_unlinkat(int dfd, const char __user *pathname)
3685 {
3686 int error;
3687 struct filename *name;
3688 struct dentry *dentry;
3689 struct nameidata nd;
3690 struct inode *inode = NULL;
3691 unsigned int lookup_flags = 0;
3692 retry:
3693 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3694 if (IS_ERR(name))
3695 return PTR_ERR(name);
3696
3697 error = -EISDIR;
3698 if (nd.last_type != LAST_NORM)
3699 goto exit1;
3700
3701 nd.flags &= ~LOOKUP_PARENT;
3702 error = mnt_want_write(nd.path.mnt);
3703 if (error)
3704 goto exit1;
3705
3706 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3707 dentry = lookup_hash(&nd);
3708 error = PTR_ERR(dentry);
3709 if (!IS_ERR(dentry)) {
3710 /* Why not before? Because we want correct error value */
3711 if (nd.last.name[nd.last.len])
3712 goto slashes;
3713 inode = dentry->d_inode;
3714 if (!inode)
3715 goto slashes;
3716 ihold(inode);
3717 error = security_path_unlink(&nd.path, dentry);
3718 if (error)
3719 goto exit2;
3720 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3721 exit2:
3722 dput(dentry);
3723 }
3724 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3725 if (inode)
3726 iput(inode); /* truncate the inode here */
3727 mnt_drop_write(nd.path.mnt);
3728 exit1:
3729 path_put(&nd.path);
3730 putname(name);
3731 if (retry_estale(error, lookup_flags)) {
3732 lookup_flags |= LOOKUP_REVAL;
3733 inode = NULL;
3734 goto retry;
3735 }
3736 return error;
3737
3738 slashes:
3739 error = !dentry->d_inode ? -ENOENT :
3740 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3741 goto exit2;
3742 }
3743
3744 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3745 {
3746 if ((flag & ~AT_REMOVEDIR) != 0)
3747 return -EINVAL;
3748
3749 if (flag & AT_REMOVEDIR)
3750 return do_rmdir(dfd, pathname);
3751
3752 return do_unlinkat(dfd, pathname);
3753 }
3754
3755 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3756 {
3757 return do_unlinkat(AT_FDCWD, pathname);
3758 }
3759
3760 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3761 {
3762 int error = may_create(dir, dentry);
3763
3764 if (error)
3765 return error;
3766
3767 if (!dir->i_op->symlink)
3768 return -EPERM;
3769
3770 error = security_inode_symlink(dir, dentry, oldname);
3771 if (error)
3772 return error;
3773
3774 error = dir->i_op->symlink(dir, dentry, oldname);
3775 if (!error)
3776 fsnotify_create(dir, dentry);
3777 return error;
3778 }
3779
3780 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3781 int, newdfd, const char __user *, newname)
3782 {
3783 int error;
3784 struct filename *from;
3785 struct dentry *dentry;
3786 struct path path;
3787 unsigned int lookup_flags = 0;
3788
3789 from = getname(oldname);
3790 if (IS_ERR(from))
3791 return PTR_ERR(from);
3792 retry:
3793 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3794 error = PTR_ERR(dentry);
3795 if (IS_ERR(dentry))
3796 goto out_putname;
3797
3798 error = security_path_symlink(&path, dentry, from->name);
3799 if (!error)
3800 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3801 done_path_create(&path, dentry);
3802 if (retry_estale(error, lookup_flags)) {
3803 lookup_flags |= LOOKUP_REVAL;
3804 goto retry;
3805 }
3806 out_putname:
3807 putname(from);
3808 return error;
3809 }
3810
3811 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3812 {
3813 return sys_symlinkat(oldname, AT_FDCWD, newname);
3814 }
3815
3816 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3817 {
3818 struct inode *inode = old_dentry->d_inode;
3819 unsigned max_links = dir->i_sb->s_max_links;
3820 int error;
3821
3822 if (!inode)
3823 return -ENOENT;
3824
3825 error = may_create(dir, new_dentry);
3826 if (error)
3827 return error;
3828
3829 if (dir->i_sb != inode->i_sb)
3830 return -EXDEV;
3831
3832 /*
3833 * A link to an append-only or immutable file cannot be created.
3834 */
3835 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3836 return -EPERM;
3837 if (!dir->i_op->link)
3838 return -EPERM;
3839 if (S_ISDIR(inode->i_mode))
3840 return -EPERM;
3841
3842 error = security_inode_link(old_dentry, dir, new_dentry);
3843 if (error)
3844 return error;
3845
3846 mutex_lock(&inode->i_mutex);
3847 /* Make sure we don't allow creating hardlink to an unlinked file */
3848 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3849 error = -ENOENT;
3850 else if (max_links && inode->i_nlink >= max_links)
3851 error = -EMLINK;
3852 else
3853 error = dir->i_op->link(old_dentry, dir, new_dentry);
3854
3855 if (!error && (inode->i_state & I_LINKABLE)) {
3856 spin_lock(&inode->i_lock);
3857 inode->i_state &= ~I_LINKABLE;
3858 spin_unlock(&inode->i_lock);
3859 }
3860 mutex_unlock(&inode->i_mutex);
3861 if (!error)
3862 fsnotify_link(dir, inode, new_dentry);
3863 return error;
3864 }
3865
3866 /*
3867 * Hardlinks are often used in delicate situations. We avoid
3868 * security-related surprises by not following symlinks on the
3869 * newname. --KAB
3870 *
3871 * We don't follow them on the oldname either to be compatible
3872 * with linux 2.0, and to avoid hard-linking to directories
3873 * and other special files. --ADM
3874 */
3875 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3876 int, newdfd, const char __user *, newname, int, flags)
3877 {
3878 struct dentry *new_dentry;
3879 struct path old_path, new_path;
3880 int how = 0;
3881 int error;
3882
3883 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3884 return -EINVAL;
3885 /*
3886 * To use null names we require CAP_DAC_READ_SEARCH
3887 * This ensures that not everyone will be able to create
3888 * handlink using the passed filedescriptor.
3889 */
3890 if (flags & AT_EMPTY_PATH) {
3891 if (!capable(CAP_DAC_READ_SEARCH))
3892 return -ENOENT;
3893 how = LOOKUP_EMPTY;
3894 }
3895
3896 if (flags & AT_SYMLINK_FOLLOW)
3897 how |= LOOKUP_FOLLOW;
3898 retry:
3899 error = user_path_at(olddfd, oldname, how, &old_path);
3900 if (error)
3901 return error;
3902
3903 new_dentry = user_path_create(newdfd, newname, &new_path,
3904 (how & LOOKUP_REVAL));
3905 error = PTR_ERR(new_dentry);
3906 if (IS_ERR(new_dentry))
3907 goto out;
3908
3909 error = -EXDEV;
3910 if (old_path.mnt != new_path.mnt)
3911 goto out_dput;
3912 error = may_linkat(&old_path);
3913 if (unlikely(error))
3914 goto out_dput;
3915 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3916 if (error)
3917 goto out_dput;
3918 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3919 out_dput:
3920 done_path_create(&new_path, new_dentry);
3921 if (retry_estale(error, how)) {
3922 how |= LOOKUP_REVAL;
3923 goto retry;
3924 }
3925 out:
3926 path_put(&old_path);
3927
3928 return error;
3929 }
3930
3931 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3932 {
3933 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3934 }
3935
3936 /*
3937 * The worst of all namespace operations - renaming directory. "Perverted"
3938 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3939 * Problems:
3940 * a) we can get into loop creation. Check is done in is_subdir().
3941 * b) race potential - two innocent renames can create a loop together.
3942 * That's where 4.4 screws up. Current fix: serialization on
3943 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3944 * story.
3945 * c) we have to lock _three_ objects - parents and victim (if it exists).
3946 * And that - after we got ->i_mutex on parents (until then we don't know
3947 * whether the target exists). Solution: try to be smart with locking
3948 * order for inodes. We rely on the fact that tree topology may change
3949 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3950 * move will be locked. Thus we can rank directories by the tree
3951 * (ancestors first) and rank all non-directories after them.
3952 * That works since everybody except rename does "lock parent, lookup,
3953 * lock child" and rename is under ->s_vfs_rename_mutex.
3954 * HOWEVER, it relies on the assumption that any object with ->lookup()
3955 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3956 * we'd better make sure that there's no link(2) for them.
3957 * d) conversion from fhandle to dentry may come in the wrong moment - when
3958 * we are removing the target. Solution: we will have to grab ->i_mutex
3959 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3960 * ->i_mutex on parents, which works but leads to some truly excessive
3961 * locking].
3962 */
3963 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3964 struct inode *new_dir, struct dentry *new_dentry)
3965 {
3966 int error = 0;
3967 struct inode *target = new_dentry->d_inode;
3968 unsigned max_links = new_dir->i_sb->s_max_links;
3969
3970 /*
3971 * If we are going to change the parent - check write permissions,
3972 * we'll need to flip '..'.
3973 */
3974 if (new_dir != old_dir) {
3975 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3976 if (error)
3977 return error;
3978 }
3979
3980 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3981 if (error)
3982 return error;
3983
3984 dget(new_dentry);
3985 if (target)
3986 mutex_lock(&target->i_mutex);
3987
3988 error = -EBUSY;
3989 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3990 goto out;
3991
3992 error = -EMLINK;
3993 if (max_links && !target && new_dir != old_dir &&
3994 new_dir->i_nlink >= max_links)
3995 goto out;
3996
3997 if (target)
3998 shrink_dcache_parent(new_dentry);
3999 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4000 if (error)
4001 goto out;
4002
4003 if (target) {
4004 target->i_flags |= S_DEAD;
4005 dont_mount(new_dentry);
4006 }
4007 out:
4008 if (target)
4009 mutex_unlock(&target->i_mutex);
4010 dput(new_dentry);
4011 if (!error)
4012 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4013 d_move(old_dentry,new_dentry);
4014 return error;
4015 }
4016
4017 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4018 struct inode *new_dir, struct dentry *new_dentry)
4019 {
4020 struct inode *target = new_dentry->d_inode;
4021 int error;
4022
4023 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4024 if (error)
4025 return error;
4026
4027 dget(new_dentry);
4028 if (target)
4029 mutex_lock(&target->i_mutex);
4030
4031 error = -EBUSY;
4032 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4033 goto out;
4034
4035 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4036 if (error)
4037 goto out;
4038
4039 if (target)
4040 dont_mount(new_dentry);
4041 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4042 d_move(old_dentry, new_dentry);
4043 out:
4044 if (target)
4045 mutex_unlock(&target->i_mutex);
4046 dput(new_dentry);
4047 return error;
4048 }
4049
4050 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4051 struct inode *new_dir, struct dentry *new_dentry)
4052 {
4053 int error;
4054 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4055 const unsigned char *old_name;
4056
4057 if (old_dentry->d_inode == new_dentry->d_inode)
4058 return 0;
4059
4060 error = may_delete(old_dir, old_dentry, is_dir);
4061 if (error)
4062 return error;
4063
4064 if (!new_dentry->d_inode)
4065 error = may_create(new_dir, new_dentry);
4066 else
4067 error = may_delete(new_dir, new_dentry, is_dir);
4068 if (error)
4069 return error;
4070
4071 if (!old_dir->i_op->rename)
4072 return -EPERM;
4073
4074 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4075
4076 if (is_dir)
4077 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4078 else
4079 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4080 if (!error)
4081 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4082 new_dentry->d_inode, old_dentry);
4083 fsnotify_oldname_free(old_name);
4084
4085 return error;
4086 }
4087
4088 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4089 int, newdfd, const char __user *, newname)
4090 {
4091 struct dentry *old_dir, *new_dir;
4092 struct dentry *old_dentry, *new_dentry;
4093 struct dentry *trap;
4094 struct nameidata oldnd, newnd;
4095 struct filename *from;
4096 struct filename *to;
4097 unsigned int lookup_flags = 0;
4098 bool should_retry = false;
4099 int error;
4100 retry:
4101 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4102 if (IS_ERR(from)) {
4103 error = PTR_ERR(from);
4104 goto exit;
4105 }
4106
4107 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4108 if (IS_ERR(to)) {
4109 error = PTR_ERR(to);
4110 goto exit1;
4111 }
4112
4113 error = -EXDEV;
4114 if (oldnd.path.mnt != newnd.path.mnt)
4115 goto exit2;
4116
4117 old_dir = oldnd.path.dentry;
4118 error = -EBUSY;
4119 if (oldnd.last_type != LAST_NORM)
4120 goto exit2;
4121
4122 new_dir = newnd.path.dentry;
4123 if (newnd.last_type != LAST_NORM)
4124 goto exit2;
4125
4126 error = mnt_want_write(oldnd.path.mnt);
4127 if (error)
4128 goto exit2;
4129
4130 oldnd.flags &= ~LOOKUP_PARENT;
4131 newnd.flags &= ~LOOKUP_PARENT;
4132 newnd.flags |= LOOKUP_RENAME_TARGET;
4133
4134 trap = lock_rename(new_dir, old_dir);
4135
4136 old_dentry = lookup_hash(&oldnd);
4137 error = PTR_ERR(old_dentry);
4138 if (IS_ERR(old_dentry))
4139 goto exit3;
4140 /* source must exist */
4141 error = -ENOENT;
4142 if (!old_dentry->d_inode)
4143 goto exit4;
4144 /* unless the source is a directory trailing slashes give -ENOTDIR */
4145 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4146 error = -ENOTDIR;
4147 if (oldnd.last.name[oldnd.last.len])
4148 goto exit4;
4149 if (newnd.last.name[newnd.last.len])
4150 goto exit4;
4151 }
4152 /* source should not be ancestor of target */
4153 error = -EINVAL;
4154 if (old_dentry == trap)
4155 goto exit4;
4156 new_dentry = lookup_hash(&newnd);
4157 error = PTR_ERR(new_dentry);
4158 if (IS_ERR(new_dentry))
4159 goto exit4;
4160 /* target should not be an ancestor of source */
4161 error = -ENOTEMPTY;
4162 if (new_dentry == trap)
4163 goto exit5;
4164
4165 error = security_path_rename(&oldnd.path, old_dentry,
4166 &newnd.path, new_dentry);
4167 if (error)
4168 goto exit5;
4169 error = vfs_rename(old_dir->d_inode, old_dentry,
4170 new_dir->d_inode, new_dentry);
4171 exit5:
4172 dput(new_dentry);
4173 exit4:
4174 dput(old_dentry);
4175 exit3:
4176 unlock_rename(new_dir, old_dir);
4177 mnt_drop_write(oldnd.path.mnt);
4178 exit2:
4179 if (retry_estale(error, lookup_flags))
4180 should_retry = true;
4181 path_put(&newnd.path);
4182 putname(to);
4183 exit1:
4184 path_put(&oldnd.path);
4185 putname(from);
4186 if (should_retry) {
4187 should_retry = false;
4188 lookup_flags |= LOOKUP_REVAL;
4189 goto retry;
4190 }
4191 exit:
4192 return error;
4193 }
4194
4195 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4196 {
4197 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4198 }
4199
4200 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4201 {
4202 int len;
4203
4204 len = PTR_ERR(link);
4205 if (IS_ERR(link))
4206 goto out;
4207
4208 len = strlen(link);
4209 if (len > (unsigned) buflen)
4210 len = buflen;
4211 if (copy_to_user(buffer, link, len))
4212 len = -EFAULT;
4213 out:
4214 return len;
4215 }
4216
4217 /*
4218 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4219 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4220 * using) it for any given inode is up to filesystem.
4221 */
4222 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4223 {
4224 struct nameidata nd;
4225 void *cookie;
4226 int res;
4227
4228 nd.depth = 0;
4229 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4230 if (IS_ERR(cookie))
4231 return PTR_ERR(cookie);
4232
4233 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4234 if (dentry->d_inode->i_op->put_link)
4235 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4236 return res;
4237 }
4238
4239 int vfs_follow_link(struct nameidata *nd, const char *link)
4240 {
4241 return __vfs_follow_link(nd, link);
4242 }
4243
4244 /* get the link contents into pagecache */
4245 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4246 {
4247 char *kaddr;
4248 struct page *page;
4249 struct address_space *mapping = dentry->d_inode->i_mapping;
4250 page = read_mapping_page(mapping, 0, NULL);
4251 if (IS_ERR(page))
4252 return (char*)page;
4253 *ppage = page;
4254 kaddr = kmap(page);
4255 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4256 return kaddr;
4257 }
4258
4259 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4260 {
4261 struct page *page = NULL;
4262 char *s = page_getlink(dentry, &page);
4263 int res = vfs_readlink(dentry,buffer,buflen,s);
4264 if (page) {
4265 kunmap(page);
4266 page_cache_release(page);
4267 }
4268 return res;
4269 }
4270
4271 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4272 {
4273 struct page *page = NULL;
4274 nd_set_link(nd, page_getlink(dentry, &page));
4275 return page;
4276 }
4277
4278 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4279 {
4280 struct page *page = cookie;
4281
4282 if (page) {
4283 kunmap(page);
4284 page_cache_release(page);
4285 }
4286 }
4287
4288 /*
4289 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4290 */
4291 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4292 {
4293 struct address_space *mapping = inode->i_mapping;
4294 struct page *page;
4295 void *fsdata;
4296 int err;
4297 char *kaddr;
4298 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4299 if (nofs)
4300 flags |= AOP_FLAG_NOFS;
4301
4302 retry:
4303 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4304 flags, &page, &fsdata);
4305 if (err)
4306 goto fail;
4307
4308 kaddr = kmap_atomic(page);
4309 memcpy(kaddr, symname, len-1);
4310 kunmap_atomic(kaddr);
4311
4312 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4313 page, fsdata);
4314 if (err < 0)
4315 goto fail;
4316 if (err < len-1)
4317 goto retry;
4318
4319 mark_inode_dirty(inode);
4320 return 0;
4321 fail:
4322 return err;
4323 }
4324
4325 int page_symlink(struct inode *inode, const char *symname, int len)
4326 {
4327 return __page_symlink(inode, symname, len,
4328 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4329 }
4330
4331 const struct inode_operations page_symlink_inode_operations = {
4332 .readlink = generic_readlink,
4333 .follow_link = page_follow_link_light,
4334 .put_link = page_put_link,
4335 };
4336
4337 EXPORT_SYMBOL(user_path_at);
4338 EXPORT_SYMBOL(follow_down_one);
4339 EXPORT_SYMBOL(follow_down);
4340 EXPORT_SYMBOL(follow_up);
4341 EXPORT_SYMBOL(get_write_access); /* nfsd */
4342 EXPORT_SYMBOL(lock_rename);
4343 EXPORT_SYMBOL(lookup_one_len);
4344 EXPORT_SYMBOL(page_follow_link_light);
4345 EXPORT_SYMBOL(page_put_link);
4346 EXPORT_SYMBOL(page_readlink);
4347 EXPORT_SYMBOL(__page_symlink);
4348 EXPORT_SYMBOL(page_symlink);
4349 EXPORT_SYMBOL(page_symlink_inode_operations);
4350 EXPORT_SYMBOL(kern_path);
4351 EXPORT_SYMBOL(vfs_path_lookup);
4352 EXPORT_SYMBOL(inode_permission);
4353 EXPORT_SYMBOL(unlock_rename);
4354 EXPORT_SYMBOL(vfs_create);
4355 EXPORT_SYMBOL(vfs_follow_link);
4356 EXPORT_SYMBOL(vfs_link);
4357 EXPORT_SYMBOL(vfs_mkdir);
4358 EXPORT_SYMBOL(vfs_mknod);
4359 EXPORT_SYMBOL(generic_permission);
4360 EXPORT_SYMBOL(vfs_readlink);
4361 EXPORT_SYMBOL(vfs_rename);
4362 EXPORT_SYMBOL(vfs_rmdir);
4363 EXPORT_SYMBOL(vfs_symlink);
4364 EXPORT_SYMBOL(vfs_unlink);
4365 EXPORT_SYMBOL(dentry_unhash);
4366 EXPORT_SYMBOL(generic_readlink);
This page took 0.112596 seconds and 6 git commands to generate.