Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 struct qstr last;
498 struct path root;
499 struct inode *inode; /* path.dentry.d_inode */
500 unsigned int flags;
501 unsigned seq, m_seq;
502 int last_type;
503 unsigned depth;
504 struct file *base;
505 char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507
508 /*
509 * Path walking has 2 modes, rcu-walk and ref-walk (see
510 * Documentation/filesystems/path-lookup.txt). In situations when we can't
511 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513 * mode. Refcounts are grabbed at the last known good point before rcu-walk
514 * got stuck, so ref-walk may continue from there. If this is not successful
515 * (eg. a seqcount has changed), then failure is returned and it's up to caller
516 * to restart the path walk from the beginning in ref-walk mode.
517 */
518
519 /**
520 * unlazy_walk - try to switch to ref-walk mode.
521 * @nd: nameidata pathwalk data
522 * @dentry: child of nd->path.dentry or NULL
523 * Returns: 0 on success, -ECHILD on failure
524 *
525 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
527 * @nd or NULL. Must be called from rcu-walk context.
528 */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 struct fs_struct *fs = current->fs;
532 struct dentry *parent = nd->path.dentry;
533
534 BUG_ON(!(nd->flags & LOOKUP_RCU));
535
536 /*
537 * After legitimizing the bastards, terminate_walk()
538 * will do the right thing for non-RCU mode, and all our
539 * subsequent exit cases should rcu_read_unlock()
540 * before returning. Do vfsmount first; if dentry
541 * can't be legitimized, just set nd->path.dentry to NULL
542 * and rely on dput(NULL) being a no-op.
543 */
544 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 return -ECHILD;
546 nd->flags &= ~LOOKUP_RCU;
547
548 if (!lockref_get_not_dead(&parent->d_lockref)) {
549 nd->path.dentry = NULL;
550 goto out;
551 }
552
553 /*
554 * For a negative lookup, the lookup sequence point is the parents
555 * sequence point, and it only needs to revalidate the parent dentry.
556 *
557 * For a positive lookup, we need to move both the parent and the
558 * dentry from the RCU domain to be properly refcounted. And the
559 * sequence number in the dentry validates *both* dentry counters,
560 * since we checked the sequence number of the parent after we got
561 * the child sequence number. So we know the parent must still
562 * be valid if the child sequence number is still valid.
563 */
564 if (!dentry) {
565 if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 goto out;
567 BUG_ON(nd->inode != parent->d_inode);
568 } else {
569 if (!lockref_get_not_dead(&dentry->d_lockref))
570 goto out;
571 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 goto drop_dentry;
573 }
574
575 /*
576 * Sequence counts matched. Now make sure that the root is
577 * still valid and get it if required.
578 */
579 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 spin_lock(&fs->lock);
581 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 goto unlock_and_drop_dentry;
583 path_get(&nd->root);
584 spin_unlock(&fs->lock);
585 }
586
587 rcu_read_unlock();
588 return 0;
589
590 unlock_and_drop_dentry:
591 spin_unlock(&fs->lock);
592 drop_dentry:
593 rcu_read_unlock();
594 dput(dentry);
595 goto drop_root_mnt;
596 out:
597 rcu_read_unlock();
598 drop_root_mnt:
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 return -ECHILD;
602 }
603
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 return dentry->d_op->d_revalidate(dentry, flags);
607 }
608
609 /**
610 * complete_walk - successful completion of path walk
611 * @nd: pointer nameidata
612 *
613 * If we had been in RCU mode, drop out of it and legitimize nd->path.
614 * Revalidate the final result, unless we'd already done that during
615 * the path walk or the filesystem doesn't ask for it. Return 0 on
616 * success, -error on failure. In case of failure caller does not
617 * need to drop nd->path.
618 */
619 static int complete_walk(struct nameidata *nd)
620 {
621 struct dentry *dentry = nd->path.dentry;
622 int status;
623
624 if (nd->flags & LOOKUP_RCU) {
625 nd->flags &= ~LOOKUP_RCU;
626 if (!(nd->flags & LOOKUP_ROOT))
627 nd->root.mnt = NULL;
628
629 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 rcu_read_unlock();
631 return -ECHILD;
632 }
633 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 rcu_read_unlock();
635 mntput(nd->path.mnt);
636 return -ECHILD;
637 }
638 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 rcu_read_unlock();
640 dput(dentry);
641 mntput(nd->path.mnt);
642 return -ECHILD;
643 }
644 rcu_read_unlock();
645 }
646
647 if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 return 0;
649
650 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 return 0;
652
653 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 if (status > 0)
655 return 0;
656
657 if (!status)
658 status = -ESTALE;
659
660 path_put(&nd->path);
661 return status;
662 }
663
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 get_fs_root(current->fs, &nd->root);
667 }
668
669 static int link_path_walk(const char *, struct nameidata *);
670
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
675
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
682 }
683
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
689 }
690
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
693 {
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
698 }
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
701 }
702
703 /*
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
706 */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 path_put(&nd->path);
710
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
714 }
715
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721
722 char *nd_get_link(struct nameidata *nd)
723 {
724 return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 struct inode *inode = link->dentry->d_inode;
731 if (inode->i_op->put_link)
732 inode->i_op->put_link(link->dentry, nd, cookie);
733 path_put(link);
734 }
735
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738
739 /**
740 * may_follow_link - Check symlink following for unsafe situations
741 * @link: The path of the symlink
742 * @nd: nameidata pathwalk data
743 *
744 * In the case of the sysctl_protected_symlinks sysctl being enabled,
745 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746 * in a sticky world-writable directory. This is to protect privileged
747 * processes from failing races against path names that may change out
748 * from under them by way of other users creating malicious symlinks.
749 * It will permit symlinks to be followed only when outside a sticky
750 * world-writable directory, or when the uid of the symlink and follower
751 * match, or when the directory owner matches the symlink's owner.
752 *
753 * Returns 0 if following the symlink is allowed, -ve on error.
754 */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 const struct inode *inode;
758 const struct inode *parent;
759
760 if (!sysctl_protected_symlinks)
761 return 0;
762
763 /* Allowed if owner and follower match. */
764 inode = link->dentry->d_inode;
765 if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 return 0;
767
768 /* Allowed if parent directory not sticky and world-writable. */
769 parent = nd->path.dentry->d_inode;
770 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 return 0;
772
773 /* Allowed if parent directory and link owner match. */
774 if (uid_eq(parent->i_uid, inode->i_uid))
775 return 0;
776
777 audit_log_link_denied("follow_link", link);
778 path_put_conditional(link, nd);
779 path_put(&nd->path);
780 return -EACCES;
781 }
782
783 /**
784 * safe_hardlink_source - Check for safe hardlink conditions
785 * @inode: the source inode to hardlink from
786 *
787 * Return false if at least one of the following conditions:
788 * - inode is not a regular file
789 * - inode is setuid
790 * - inode is setgid and group-exec
791 * - access failure for read and write
792 *
793 * Otherwise returns true.
794 */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 umode_t mode = inode->i_mode;
798
799 /* Special files should not get pinned to the filesystem. */
800 if (!S_ISREG(mode))
801 return false;
802
803 /* Setuid files should not get pinned to the filesystem. */
804 if (mode & S_ISUID)
805 return false;
806
807 /* Executable setgid files should not get pinned to the filesystem. */
808 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 return false;
810
811 /* Hardlinking to unreadable or unwritable sources is dangerous. */
812 if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 return false;
814
815 return true;
816 }
817
818 /**
819 * may_linkat - Check permissions for creating a hardlink
820 * @link: the source to hardlink from
821 *
822 * Block hardlink when all of:
823 * - sysctl_protected_hardlinks enabled
824 * - fsuid does not match inode
825 * - hardlink source is unsafe (see safe_hardlink_source() above)
826 * - not CAP_FOWNER
827 *
828 * Returns 0 if successful, -ve on error.
829 */
830 static int may_linkat(struct path *link)
831 {
832 const struct cred *cred;
833 struct inode *inode;
834
835 if (!sysctl_protected_hardlinks)
836 return 0;
837
838 cred = current_cred();
839 inode = link->dentry->d_inode;
840
841 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 * otherwise, it must be a safe source.
843 */
844 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 capable(CAP_FOWNER))
846 return 0;
847
848 audit_log_link_denied("linkat", link);
849 return -EPERM;
850 }
851
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 struct dentry *dentry = link->dentry;
856 int error;
857 char *s;
858
859 BUG_ON(nd->flags & LOOKUP_RCU);
860
861 if (link->mnt == nd->path.mnt)
862 mntget(link->mnt);
863
864 error = -ELOOP;
865 if (unlikely(current->total_link_count >= 40))
866 goto out_put_nd_path;
867
868 cond_resched();
869 current->total_link_count++;
870
871 touch_atime(link);
872 nd_set_link(nd, NULL);
873
874 error = security_inode_follow_link(link->dentry, nd);
875 if (error)
876 goto out_put_nd_path;
877
878 nd->last_type = LAST_BIND;
879 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 error = PTR_ERR(*p);
881 if (IS_ERR(*p))
882 goto out_put_nd_path;
883
884 error = 0;
885 s = nd_get_link(nd);
886 if (s) {
887 if (unlikely(IS_ERR(s))) {
888 path_put(&nd->path);
889 put_link(nd, link, *p);
890 return PTR_ERR(s);
891 }
892 if (*s == '/') {
893 if (!nd->root.mnt)
894 set_root(nd);
895 path_put(&nd->path);
896 nd->path = nd->root;
897 path_get(&nd->root);
898 nd->flags |= LOOKUP_JUMPED;
899 }
900 nd->inode = nd->path.dentry->d_inode;
901 error = link_path_walk(s, nd);
902 if (unlikely(error))
903 put_link(nd, link, *p);
904 }
905
906 return error;
907
908 out_put_nd_path:
909 *p = NULL;
910 path_put(&nd->path);
911 path_put(link);
912 return error;
913 }
914
915 static int follow_up_rcu(struct path *path)
916 {
917 struct mount *mnt = real_mount(path->mnt);
918 struct mount *parent;
919 struct dentry *mountpoint;
920
921 parent = mnt->mnt_parent;
922 if (&parent->mnt == path->mnt)
923 return 0;
924 mountpoint = mnt->mnt_mountpoint;
925 path->dentry = mountpoint;
926 path->mnt = &parent->mnt;
927 return 1;
928 }
929
930 /*
931 * follow_up - Find the mountpoint of path's vfsmount
932 *
933 * Given a path, find the mountpoint of its source file system.
934 * Replace @path with the path of the mountpoint in the parent mount.
935 * Up is towards /.
936 *
937 * Return 1 if we went up a level and 0 if we were already at the
938 * root.
939 */
940 int follow_up(struct path *path)
941 {
942 struct mount *mnt = real_mount(path->mnt);
943 struct mount *parent;
944 struct dentry *mountpoint;
945
946 read_seqlock_excl(&mount_lock);
947 parent = mnt->mnt_parent;
948 if (parent == mnt) {
949 read_sequnlock_excl(&mount_lock);
950 return 0;
951 }
952 mntget(&parent->mnt);
953 mountpoint = dget(mnt->mnt_mountpoint);
954 read_sequnlock_excl(&mount_lock);
955 dput(path->dentry);
956 path->dentry = mountpoint;
957 mntput(path->mnt);
958 path->mnt = &parent->mnt;
959 return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962
963 /*
964 * Perform an automount
965 * - return -EISDIR to tell follow_managed() to stop and return the path we
966 * were called with.
967 */
968 static int follow_automount(struct path *path, unsigned flags,
969 bool *need_mntput)
970 {
971 struct vfsmount *mnt;
972 int err;
973
974 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 return -EREMOTE;
976
977 /* We don't want to mount if someone's just doing a stat -
978 * unless they're stat'ing a directory and appended a '/' to
979 * the name.
980 *
981 * We do, however, want to mount if someone wants to open or
982 * create a file of any type under the mountpoint, wants to
983 * traverse through the mountpoint or wants to open the
984 * mounted directory. Also, autofs may mark negative dentries
985 * as being automount points. These will need the attentions
986 * of the daemon to instantiate them before they can be used.
987 */
988 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 path->dentry->d_inode)
991 return -EISDIR;
992
993 current->total_link_count++;
994 if (current->total_link_count >= 40)
995 return -ELOOP;
996
997 mnt = path->dentry->d_op->d_automount(path);
998 if (IS_ERR(mnt)) {
999 /*
1000 * The filesystem is allowed to return -EISDIR here to indicate
1001 * it doesn't want to automount. For instance, autofs would do
1002 * this so that its userspace daemon can mount on this dentry.
1003 *
1004 * However, we can only permit this if it's a terminal point in
1005 * the path being looked up; if it wasn't then the remainder of
1006 * the path is inaccessible and we should say so.
1007 */
1008 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 return -EREMOTE;
1010 return PTR_ERR(mnt);
1011 }
1012
1013 if (!mnt) /* mount collision */
1014 return 0;
1015
1016 if (!*need_mntput) {
1017 /* lock_mount() may release path->mnt on error */
1018 mntget(path->mnt);
1019 *need_mntput = true;
1020 }
1021 err = finish_automount(mnt, path);
1022
1023 switch (err) {
1024 case -EBUSY:
1025 /* Someone else made a mount here whilst we were busy */
1026 return 0;
1027 case 0:
1028 path_put(path);
1029 path->mnt = mnt;
1030 path->dentry = dget(mnt->mnt_root);
1031 return 0;
1032 default:
1033 return err;
1034 }
1035
1036 }
1037
1038 /*
1039 * Handle a dentry that is managed in some way.
1040 * - Flagged for transit management (autofs)
1041 * - Flagged as mountpoint
1042 * - Flagged as automount point
1043 *
1044 * This may only be called in refwalk mode.
1045 *
1046 * Serialization is taken care of in namespace.c
1047 */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 unsigned managed;
1052 bool need_mntput = false;
1053 int ret = 0;
1054
1055 /* Given that we're not holding a lock here, we retain the value in a
1056 * local variable for each dentry as we look at it so that we don't see
1057 * the components of that value change under us */
1058 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 managed &= DCACHE_MANAGED_DENTRY,
1060 unlikely(managed != 0)) {
1061 /* Allow the filesystem to manage the transit without i_mutex
1062 * being held. */
1063 if (managed & DCACHE_MANAGE_TRANSIT) {
1064 BUG_ON(!path->dentry->d_op);
1065 BUG_ON(!path->dentry->d_op->d_manage);
1066 ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 if (ret < 0)
1068 break;
1069 }
1070
1071 /* Transit to a mounted filesystem. */
1072 if (managed & DCACHE_MOUNTED) {
1073 struct vfsmount *mounted = lookup_mnt(path);
1074 if (mounted) {
1075 dput(path->dentry);
1076 if (need_mntput)
1077 mntput(path->mnt);
1078 path->mnt = mounted;
1079 path->dentry = dget(mounted->mnt_root);
1080 need_mntput = true;
1081 continue;
1082 }
1083
1084 /* Something is mounted on this dentry in another
1085 * namespace and/or whatever was mounted there in this
1086 * namespace got unmounted before lookup_mnt() could
1087 * get it */
1088 }
1089
1090 /* Handle an automount point */
1091 if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 ret = follow_automount(path, flags, &need_mntput);
1093 if (ret < 0)
1094 break;
1095 continue;
1096 }
1097
1098 /* We didn't change the current path point */
1099 break;
1100 }
1101
1102 if (need_mntput && path->mnt == mnt)
1103 mntput(path->mnt);
1104 if (ret == -EISDIR)
1105 ret = 0;
1106 return ret < 0 ? ret : need_mntput;
1107 }
1108
1109 int follow_down_one(struct path *path)
1110 {
1111 struct vfsmount *mounted;
1112
1113 mounted = lookup_mnt(path);
1114 if (mounted) {
1115 dput(path->dentry);
1116 mntput(path->mnt);
1117 path->mnt = mounted;
1118 path->dentry = dget(mounted->mnt_root);
1119 return 1;
1120 }
1121 return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130
1131 /*
1132 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1133 * we meet a managed dentry that would need blocking.
1134 */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 struct inode **inode)
1137 {
1138 for (;;) {
1139 struct mount *mounted;
1140 /*
1141 * Don't forget we might have a non-mountpoint managed dentry
1142 * that wants to block transit.
1143 */
1144 switch (managed_dentry_rcu(path->dentry)) {
1145 case -ECHILD:
1146 default:
1147 return false;
1148 case -EISDIR:
1149 return true;
1150 case 0:
1151 break;
1152 }
1153
1154 if (!d_mountpoint(path->dentry))
1155 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156
1157 mounted = __lookup_mnt(path->mnt, path->dentry);
1158 if (!mounted)
1159 break;
1160 path->mnt = &mounted->mnt;
1161 path->dentry = mounted->mnt.mnt_root;
1162 nd->flags |= LOOKUP_JUMPED;
1163 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 /*
1165 * Update the inode too. We don't need to re-check the
1166 * dentry sequence number here after this d_inode read,
1167 * because a mount-point is always pinned.
1168 */
1169 *inode = path->dentry->d_inode;
1170 }
1171 return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 struct inode *inode = nd->inode;
1178 if (!nd->root.mnt)
1179 set_root_rcu(nd);
1180
1181 while (1) {
1182 if (nd->path.dentry == nd->root.dentry &&
1183 nd->path.mnt == nd->root.mnt) {
1184 break;
1185 }
1186 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 struct dentry *old = nd->path.dentry;
1188 struct dentry *parent = old->d_parent;
1189 unsigned seq;
1190
1191 inode = parent->d_inode;
1192 seq = read_seqcount_begin(&parent->d_seq);
1193 if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 goto failed;
1195 nd->path.dentry = parent;
1196 nd->seq = seq;
1197 break;
1198 }
1199 if (!follow_up_rcu(&nd->path))
1200 break;
1201 inode = nd->path.dentry->d_inode;
1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 }
1204 while (d_mountpoint(nd->path.dentry)) {
1205 struct mount *mounted;
1206 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 if (!mounted)
1208 break;
1209 nd->path.mnt = &mounted->mnt;
1210 nd->path.dentry = mounted->mnt.mnt_root;
1211 inode = nd->path.dentry->d_inode;
1212 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 if (read_seqretry(&mount_lock, nd->m_seq))
1214 goto failed;
1215 }
1216 nd->inode = inode;
1217 return 0;
1218
1219 failed:
1220 nd->flags &= ~LOOKUP_RCU;
1221 if (!(nd->flags & LOOKUP_ROOT))
1222 nd->root.mnt = NULL;
1223 rcu_read_unlock();
1224 return -ECHILD;
1225 }
1226
1227 /*
1228 * Follow down to the covering mount currently visible to userspace. At each
1229 * point, the filesystem owning that dentry may be queried as to whether the
1230 * caller is permitted to proceed or not.
1231 */
1232 int follow_down(struct path *path)
1233 {
1234 unsigned managed;
1235 int ret;
1236
1237 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 /* Allow the filesystem to manage the transit without i_mutex
1240 * being held.
1241 *
1242 * We indicate to the filesystem if someone is trying to mount
1243 * something here. This gives autofs the chance to deny anyone
1244 * other than its daemon the right to mount on its
1245 * superstructure.
1246 *
1247 * The filesystem may sleep at this point.
1248 */
1249 if (managed & DCACHE_MANAGE_TRANSIT) {
1250 BUG_ON(!path->dentry->d_op);
1251 BUG_ON(!path->dentry->d_op->d_manage);
1252 ret = path->dentry->d_op->d_manage(
1253 path->dentry, false);
1254 if (ret < 0)
1255 return ret == -EISDIR ? 0 : ret;
1256 }
1257
1258 /* Transit to a mounted filesystem. */
1259 if (managed & DCACHE_MOUNTED) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 continue;
1268 }
1269
1270 /* Don't handle automount points here */
1271 break;
1272 }
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276
1277 /*
1278 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279 */
1280 static void follow_mount(struct path *path)
1281 {
1282 while (d_mountpoint(path->dentry)) {
1283 struct vfsmount *mounted = lookup_mnt(path);
1284 if (!mounted)
1285 break;
1286 dput(path->dentry);
1287 mntput(path->mnt);
1288 path->mnt = mounted;
1289 path->dentry = dget(mounted->mnt_root);
1290 }
1291 }
1292
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 if (!nd->root.mnt)
1296 set_root(nd);
1297
1298 while(1) {
1299 struct dentry *old = nd->path.dentry;
1300
1301 if (nd->path.dentry == nd->root.dentry &&
1302 nd->path.mnt == nd->root.mnt) {
1303 break;
1304 }
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 /* rare case of legitimate dget_parent()... */
1307 nd->path.dentry = dget_parent(nd->path.dentry);
1308 dput(old);
1309 break;
1310 }
1311 if (!follow_up(&nd->path))
1312 break;
1313 }
1314 follow_mount(&nd->path);
1315 nd->inode = nd->path.dentry->d_inode;
1316 }
1317
1318 /*
1319 * This looks up the name in dcache, possibly revalidates the old dentry and
1320 * allocates a new one if not found or not valid. In the need_lookup argument
1321 * returns whether i_op->lookup is necessary.
1322 *
1323 * dir->d_inode->i_mutex must be held
1324 */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 unsigned int flags, bool *need_lookup)
1327 {
1328 struct dentry *dentry;
1329 int error;
1330
1331 *need_lookup = false;
1332 dentry = d_lookup(dir, name);
1333 if (dentry) {
1334 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 error = d_revalidate(dentry, flags);
1336 if (unlikely(error <= 0)) {
1337 if (error < 0) {
1338 dput(dentry);
1339 return ERR_PTR(error);
1340 } else {
1341 d_invalidate(dentry);
1342 dput(dentry);
1343 dentry = NULL;
1344 }
1345 }
1346 }
1347 }
1348
1349 if (!dentry) {
1350 dentry = d_alloc(dir, name);
1351 if (unlikely(!dentry))
1352 return ERR_PTR(-ENOMEM);
1353
1354 *need_lookup = true;
1355 }
1356 return dentry;
1357 }
1358
1359 /*
1360 * Call i_op->lookup on the dentry. The dentry must be negative and
1361 * unhashed.
1362 *
1363 * dir->d_inode->i_mutex must be held
1364 */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 unsigned int flags)
1367 {
1368 struct dentry *old;
1369
1370 /* Don't create child dentry for a dead directory. */
1371 if (unlikely(IS_DEADDIR(dir))) {
1372 dput(dentry);
1373 return ERR_PTR(-ENOENT);
1374 }
1375
1376 old = dir->i_op->lookup(dir, dentry, flags);
1377 if (unlikely(old)) {
1378 dput(dentry);
1379 dentry = old;
1380 }
1381 return dentry;
1382 }
1383
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 struct dentry *base, unsigned int flags)
1386 {
1387 bool need_lookup;
1388 struct dentry *dentry;
1389
1390 dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 if (!need_lookup)
1392 return dentry;
1393
1394 return lookup_real(base->d_inode, dentry, flags);
1395 }
1396
1397 /*
1398 * It's more convoluted than I'd like it to be, but... it's still fairly
1399 * small and for now I'd prefer to have fast path as straight as possible.
1400 * It _is_ time-critical.
1401 */
1402 static int lookup_fast(struct nameidata *nd,
1403 struct path *path, struct inode **inode)
1404 {
1405 struct vfsmount *mnt = nd->path.mnt;
1406 struct dentry *dentry, *parent = nd->path.dentry;
1407 int need_reval = 1;
1408 int status = 1;
1409 int err;
1410
1411 /*
1412 * Rename seqlock is not required here because in the off chance
1413 * of a false negative due to a concurrent rename, we're going to
1414 * do the non-racy lookup, below.
1415 */
1416 if (nd->flags & LOOKUP_RCU) {
1417 unsigned seq;
1418 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1419 if (!dentry)
1420 goto unlazy;
1421
1422 /*
1423 * This sequence count validates that the inode matches
1424 * the dentry name information from lookup.
1425 */
1426 *inode = dentry->d_inode;
1427 if (read_seqcount_retry(&dentry->d_seq, seq))
1428 return -ECHILD;
1429
1430 /*
1431 * This sequence count validates that the parent had no
1432 * changes while we did the lookup of the dentry above.
1433 *
1434 * The memory barrier in read_seqcount_begin of child is
1435 * enough, we can use __read_seqcount_retry here.
1436 */
1437 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1438 return -ECHILD;
1439 nd->seq = seq;
1440
1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1442 status = d_revalidate(dentry, nd->flags);
1443 if (unlikely(status <= 0)) {
1444 if (status != -ECHILD)
1445 need_reval = 0;
1446 goto unlazy;
1447 }
1448 }
1449 path->mnt = mnt;
1450 path->dentry = dentry;
1451 if (likely(__follow_mount_rcu(nd, path, inode)))
1452 return 0;
1453 unlazy:
1454 if (unlazy_walk(nd, dentry))
1455 return -ECHILD;
1456 } else {
1457 dentry = __d_lookup(parent, &nd->last);
1458 }
1459
1460 if (unlikely(!dentry))
1461 goto need_lookup;
1462
1463 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1464 status = d_revalidate(dentry, nd->flags);
1465 if (unlikely(status <= 0)) {
1466 if (status < 0) {
1467 dput(dentry);
1468 return status;
1469 }
1470 d_invalidate(dentry);
1471 dput(dentry);
1472 goto need_lookup;
1473 }
1474
1475 path->mnt = mnt;
1476 path->dentry = dentry;
1477 err = follow_managed(path, nd->flags);
1478 if (unlikely(err < 0)) {
1479 path_put_conditional(path, nd);
1480 return err;
1481 }
1482 if (err)
1483 nd->flags |= LOOKUP_JUMPED;
1484 *inode = path->dentry->d_inode;
1485 return 0;
1486
1487 need_lookup:
1488 return 1;
1489 }
1490
1491 /* Fast lookup failed, do it the slow way */
1492 static int lookup_slow(struct nameidata *nd, struct path *path)
1493 {
1494 struct dentry *dentry, *parent;
1495 int err;
1496
1497 parent = nd->path.dentry;
1498 BUG_ON(nd->inode != parent->d_inode);
1499
1500 mutex_lock(&parent->d_inode->i_mutex);
1501 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1502 mutex_unlock(&parent->d_inode->i_mutex);
1503 if (IS_ERR(dentry))
1504 return PTR_ERR(dentry);
1505 path->mnt = nd->path.mnt;
1506 path->dentry = dentry;
1507 err = follow_managed(path, nd->flags);
1508 if (unlikely(err < 0)) {
1509 path_put_conditional(path, nd);
1510 return err;
1511 }
1512 if (err)
1513 nd->flags |= LOOKUP_JUMPED;
1514 return 0;
1515 }
1516
1517 static inline int may_lookup(struct nameidata *nd)
1518 {
1519 if (nd->flags & LOOKUP_RCU) {
1520 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1521 if (err != -ECHILD)
1522 return err;
1523 if (unlazy_walk(nd, NULL))
1524 return -ECHILD;
1525 }
1526 return inode_permission(nd->inode, MAY_EXEC);
1527 }
1528
1529 static inline int handle_dots(struct nameidata *nd, int type)
1530 {
1531 if (type == LAST_DOTDOT) {
1532 if (nd->flags & LOOKUP_RCU) {
1533 if (follow_dotdot_rcu(nd))
1534 return -ECHILD;
1535 } else
1536 follow_dotdot(nd);
1537 }
1538 return 0;
1539 }
1540
1541 static void terminate_walk(struct nameidata *nd)
1542 {
1543 if (!(nd->flags & LOOKUP_RCU)) {
1544 path_put(&nd->path);
1545 } else {
1546 nd->flags &= ~LOOKUP_RCU;
1547 if (!(nd->flags & LOOKUP_ROOT))
1548 nd->root.mnt = NULL;
1549 rcu_read_unlock();
1550 }
1551 }
1552
1553 /*
1554 * Do we need to follow links? We _really_ want to be able
1555 * to do this check without having to look at inode->i_op,
1556 * so we keep a cache of "no, this doesn't need follow_link"
1557 * for the common case.
1558 */
1559 static inline int should_follow_link(struct dentry *dentry, int follow)
1560 {
1561 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1562 }
1563
1564 static inline int walk_component(struct nameidata *nd, struct path *path,
1565 int follow)
1566 {
1567 struct inode *inode;
1568 int err;
1569 /*
1570 * "." and ".." are special - ".." especially so because it has
1571 * to be able to know about the current root directory and
1572 * parent relationships.
1573 */
1574 if (unlikely(nd->last_type != LAST_NORM))
1575 return handle_dots(nd, nd->last_type);
1576 err = lookup_fast(nd, path, &inode);
1577 if (unlikely(err)) {
1578 if (err < 0)
1579 goto out_err;
1580
1581 err = lookup_slow(nd, path);
1582 if (err < 0)
1583 goto out_err;
1584
1585 inode = path->dentry->d_inode;
1586 }
1587 err = -ENOENT;
1588 if (d_is_negative(path->dentry))
1589 goto out_path_put;
1590
1591 if (should_follow_link(path->dentry, follow)) {
1592 if (nd->flags & LOOKUP_RCU) {
1593 if (unlikely(unlazy_walk(nd, path->dentry))) {
1594 err = -ECHILD;
1595 goto out_err;
1596 }
1597 }
1598 BUG_ON(inode != path->dentry->d_inode);
1599 return 1;
1600 }
1601 path_to_nameidata(path, nd);
1602 nd->inode = inode;
1603 return 0;
1604
1605 out_path_put:
1606 path_to_nameidata(path, nd);
1607 out_err:
1608 terminate_walk(nd);
1609 return err;
1610 }
1611
1612 /*
1613 * This limits recursive symlink follows to 8, while
1614 * limiting consecutive symlinks to 40.
1615 *
1616 * Without that kind of total limit, nasty chains of consecutive
1617 * symlinks can cause almost arbitrarily long lookups.
1618 */
1619 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1620 {
1621 int res;
1622
1623 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1624 path_put_conditional(path, nd);
1625 path_put(&nd->path);
1626 return -ELOOP;
1627 }
1628 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1629
1630 nd->depth++;
1631 current->link_count++;
1632
1633 do {
1634 struct path link = *path;
1635 void *cookie;
1636
1637 res = follow_link(&link, nd, &cookie);
1638 if (res)
1639 break;
1640 res = walk_component(nd, path, LOOKUP_FOLLOW);
1641 put_link(nd, &link, cookie);
1642 } while (res > 0);
1643
1644 current->link_count--;
1645 nd->depth--;
1646 return res;
1647 }
1648
1649 /*
1650 * We can do the critical dentry name comparison and hashing
1651 * operations one word at a time, but we are limited to:
1652 *
1653 * - Architectures with fast unaligned word accesses. We could
1654 * do a "get_unaligned()" if this helps and is sufficiently
1655 * fast.
1656 *
1657 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1658 * do not trap on the (extremely unlikely) case of a page
1659 * crossing operation.
1660 *
1661 * - Furthermore, we need an efficient 64-bit compile for the
1662 * 64-bit case in order to generate the "number of bytes in
1663 * the final mask". Again, that could be replaced with a
1664 * efficient population count instruction or similar.
1665 */
1666 #ifdef CONFIG_DCACHE_WORD_ACCESS
1667
1668 #include <asm/word-at-a-time.h>
1669
1670 #ifdef CONFIG_64BIT
1671
1672 static inline unsigned int fold_hash(unsigned long hash)
1673 {
1674 return hash_64(hash, 32);
1675 }
1676
1677 #else /* 32-bit case */
1678
1679 #define fold_hash(x) (x)
1680
1681 #endif
1682
1683 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1684 {
1685 unsigned long a, mask;
1686 unsigned long hash = 0;
1687
1688 for (;;) {
1689 a = load_unaligned_zeropad(name);
1690 if (len < sizeof(unsigned long))
1691 break;
1692 hash += a;
1693 hash *= 9;
1694 name += sizeof(unsigned long);
1695 len -= sizeof(unsigned long);
1696 if (!len)
1697 goto done;
1698 }
1699 mask = bytemask_from_count(len);
1700 hash += mask & a;
1701 done:
1702 return fold_hash(hash);
1703 }
1704 EXPORT_SYMBOL(full_name_hash);
1705
1706 /*
1707 * Calculate the length and hash of the path component, and
1708 * return the "hash_len" as the result.
1709 */
1710 static inline u64 hash_name(const char *name)
1711 {
1712 unsigned long a, b, adata, bdata, mask, hash, len;
1713 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1714
1715 hash = a = 0;
1716 len = -sizeof(unsigned long);
1717 do {
1718 hash = (hash + a) * 9;
1719 len += sizeof(unsigned long);
1720 a = load_unaligned_zeropad(name+len);
1721 b = a ^ REPEAT_BYTE('/');
1722 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1723
1724 adata = prep_zero_mask(a, adata, &constants);
1725 bdata = prep_zero_mask(b, bdata, &constants);
1726
1727 mask = create_zero_mask(adata | bdata);
1728
1729 hash += a & zero_bytemask(mask);
1730 len += find_zero(mask);
1731 return hashlen_create(fold_hash(hash), len);
1732 }
1733
1734 #else
1735
1736 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1737 {
1738 unsigned long hash = init_name_hash();
1739 while (len--)
1740 hash = partial_name_hash(*name++, hash);
1741 return end_name_hash(hash);
1742 }
1743 EXPORT_SYMBOL(full_name_hash);
1744
1745 /*
1746 * We know there's a real path component here of at least
1747 * one character.
1748 */
1749 static inline u64 hash_name(const char *name)
1750 {
1751 unsigned long hash = init_name_hash();
1752 unsigned long len = 0, c;
1753
1754 c = (unsigned char)*name;
1755 do {
1756 len++;
1757 hash = partial_name_hash(c, hash);
1758 c = (unsigned char)name[len];
1759 } while (c && c != '/');
1760 return hashlen_create(end_name_hash(hash), len);
1761 }
1762
1763 #endif
1764
1765 /*
1766 * Name resolution.
1767 * This is the basic name resolution function, turning a pathname into
1768 * the final dentry. We expect 'base' to be positive and a directory.
1769 *
1770 * Returns 0 and nd will have valid dentry and mnt on success.
1771 * Returns error and drops reference to input namei data on failure.
1772 */
1773 static int link_path_walk(const char *name, struct nameidata *nd)
1774 {
1775 struct path next;
1776 int err;
1777
1778 while (*name=='/')
1779 name++;
1780 if (!*name)
1781 return 0;
1782
1783 /* At this point we know we have a real path component. */
1784 for(;;) {
1785 u64 hash_len;
1786 int type;
1787
1788 err = may_lookup(nd);
1789 if (err)
1790 break;
1791
1792 hash_len = hash_name(name);
1793
1794 type = LAST_NORM;
1795 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1796 case 2:
1797 if (name[1] == '.') {
1798 type = LAST_DOTDOT;
1799 nd->flags |= LOOKUP_JUMPED;
1800 }
1801 break;
1802 case 1:
1803 type = LAST_DOT;
1804 }
1805 if (likely(type == LAST_NORM)) {
1806 struct dentry *parent = nd->path.dentry;
1807 nd->flags &= ~LOOKUP_JUMPED;
1808 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1809 struct qstr this = { { .hash_len = hash_len }, .name = name };
1810 err = parent->d_op->d_hash(parent, &this);
1811 if (err < 0)
1812 break;
1813 hash_len = this.hash_len;
1814 name = this.name;
1815 }
1816 }
1817
1818 nd->last.hash_len = hash_len;
1819 nd->last.name = name;
1820 nd->last_type = type;
1821
1822 name += hashlen_len(hash_len);
1823 if (!*name)
1824 return 0;
1825 /*
1826 * If it wasn't NUL, we know it was '/'. Skip that
1827 * slash, and continue until no more slashes.
1828 */
1829 do {
1830 name++;
1831 } while (unlikely(*name == '/'));
1832 if (!*name)
1833 return 0;
1834
1835 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1836 if (err < 0)
1837 return err;
1838
1839 if (err) {
1840 err = nested_symlink(&next, nd);
1841 if (err)
1842 return err;
1843 }
1844 if (!d_can_lookup(nd->path.dentry)) {
1845 err = -ENOTDIR;
1846 break;
1847 }
1848 }
1849 terminate_walk(nd);
1850 return err;
1851 }
1852
1853 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1854 struct nameidata *nd)
1855 {
1856 int retval = 0;
1857 const char *s = name->name;
1858
1859 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1860 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1861 nd->depth = 0;
1862 nd->base = NULL;
1863 if (flags & LOOKUP_ROOT) {
1864 struct dentry *root = nd->root.dentry;
1865 struct inode *inode = root->d_inode;
1866 if (*s) {
1867 if (!d_can_lookup(root))
1868 return -ENOTDIR;
1869 retval = inode_permission(inode, MAY_EXEC);
1870 if (retval)
1871 return retval;
1872 }
1873 nd->path = nd->root;
1874 nd->inode = inode;
1875 if (flags & LOOKUP_RCU) {
1876 rcu_read_lock();
1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 nd->m_seq = read_seqbegin(&mount_lock);
1879 } else {
1880 path_get(&nd->path);
1881 }
1882 goto done;
1883 }
1884
1885 nd->root.mnt = NULL;
1886
1887 nd->m_seq = read_seqbegin(&mount_lock);
1888 if (*s == '/') {
1889 if (flags & LOOKUP_RCU) {
1890 rcu_read_lock();
1891 nd->seq = set_root_rcu(nd);
1892 } else {
1893 set_root(nd);
1894 path_get(&nd->root);
1895 }
1896 nd->path = nd->root;
1897 } else if (dfd == AT_FDCWD) {
1898 if (flags & LOOKUP_RCU) {
1899 struct fs_struct *fs = current->fs;
1900 unsigned seq;
1901
1902 rcu_read_lock();
1903
1904 do {
1905 seq = read_seqcount_begin(&fs->seq);
1906 nd->path = fs->pwd;
1907 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1908 } while (read_seqcount_retry(&fs->seq, seq));
1909 } else {
1910 get_fs_pwd(current->fs, &nd->path);
1911 }
1912 } else {
1913 /* Caller must check execute permissions on the starting path component */
1914 struct fd f = fdget_raw(dfd);
1915 struct dentry *dentry;
1916
1917 if (!f.file)
1918 return -EBADF;
1919
1920 dentry = f.file->f_path.dentry;
1921
1922 if (*s) {
1923 if (!d_can_lookup(dentry)) {
1924 fdput(f);
1925 return -ENOTDIR;
1926 }
1927 }
1928
1929 nd->path = f.file->f_path;
1930 if (flags & LOOKUP_RCU) {
1931 if (f.flags & FDPUT_FPUT)
1932 nd->base = f.file;
1933 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1934 rcu_read_lock();
1935 } else {
1936 path_get(&nd->path);
1937 fdput(f);
1938 }
1939 }
1940
1941 nd->inode = nd->path.dentry->d_inode;
1942 if (!(flags & LOOKUP_RCU))
1943 goto done;
1944 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1945 goto done;
1946 if (!(nd->flags & LOOKUP_ROOT))
1947 nd->root.mnt = NULL;
1948 rcu_read_unlock();
1949 return -ECHILD;
1950 done:
1951 current->total_link_count = 0;
1952 return link_path_walk(s, nd);
1953 }
1954
1955 static void path_cleanup(struct nameidata *nd)
1956 {
1957 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1958 path_put(&nd->root);
1959 nd->root.mnt = NULL;
1960 }
1961 if (unlikely(nd->base))
1962 fput(nd->base);
1963 }
1964
1965 static inline int lookup_last(struct nameidata *nd, struct path *path)
1966 {
1967 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1968 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1969
1970 nd->flags &= ~LOOKUP_PARENT;
1971 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1972 }
1973
1974 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1975 static int path_lookupat(int dfd, const struct filename *name,
1976 unsigned int flags, struct nameidata *nd)
1977 {
1978 struct path path;
1979 int err;
1980
1981 /*
1982 * Path walking is largely split up into 2 different synchronisation
1983 * schemes, rcu-walk and ref-walk (explained in
1984 * Documentation/filesystems/path-lookup.txt). These share much of the
1985 * path walk code, but some things particularly setup, cleanup, and
1986 * following mounts are sufficiently divergent that functions are
1987 * duplicated. Typically there is a function foo(), and its RCU
1988 * analogue, foo_rcu().
1989 *
1990 * -ECHILD is the error number of choice (just to avoid clashes) that
1991 * is returned if some aspect of an rcu-walk fails. Such an error must
1992 * be handled by restarting a traditional ref-walk (which will always
1993 * be able to complete).
1994 */
1995 err = path_init(dfd, name, flags, nd);
1996 if (!err && !(flags & LOOKUP_PARENT)) {
1997 err = lookup_last(nd, &path);
1998 while (err > 0) {
1999 void *cookie;
2000 struct path link = path;
2001 err = may_follow_link(&link, nd);
2002 if (unlikely(err))
2003 break;
2004 nd->flags |= LOOKUP_PARENT;
2005 err = follow_link(&link, nd, &cookie);
2006 if (err)
2007 break;
2008 err = lookup_last(nd, &path);
2009 put_link(nd, &link, cookie);
2010 }
2011 }
2012
2013 if (!err)
2014 err = complete_walk(nd);
2015
2016 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2017 if (!d_can_lookup(nd->path.dentry)) {
2018 path_put(&nd->path);
2019 err = -ENOTDIR;
2020 }
2021 }
2022
2023 path_cleanup(nd);
2024 return err;
2025 }
2026
2027 static int filename_lookup(int dfd, struct filename *name,
2028 unsigned int flags, struct nameidata *nd)
2029 {
2030 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2031 if (unlikely(retval == -ECHILD))
2032 retval = path_lookupat(dfd, name, flags, nd);
2033 if (unlikely(retval == -ESTALE))
2034 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2035
2036 if (likely(!retval))
2037 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2038 return retval;
2039 }
2040
2041 /* does lookup, returns the object with parent locked */
2042 struct dentry *kern_path_locked(const char *name, struct path *path)
2043 {
2044 struct filename *filename = getname_kernel(name);
2045 struct nameidata nd;
2046 struct dentry *d;
2047 int err;
2048
2049 if (IS_ERR(filename))
2050 return ERR_CAST(filename);
2051
2052 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2053 if (err) {
2054 d = ERR_PTR(err);
2055 goto out;
2056 }
2057 if (nd.last_type != LAST_NORM) {
2058 path_put(&nd.path);
2059 d = ERR_PTR(-EINVAL);
2060 goto out;
2061 }
2062 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2063 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2064 if (IS_ERR(d)) {
2065 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2066 path_put(&nd.path);
2067 goto out;
2068 }
2069 *path = nd.path;
2070 out:
2071 putname(filename);
2072 return d;
2073 }
2074
2075 int kern_path(const char *name, unsigned int flags, struct path *path)
2076 {
2077 struct nameidata nd;
2078 struct filename *filename = getname_kernel(name);
2079 int res = PTR_ERR(filename);
2080
2081 if (!IS_ERR(filename)) {
2082 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2083 putname(filename);
2084 if (!res)
2085 *path = nd.path;
2086 }
2087 return res;
2088 }
2089 EXPORT_SYMBOL(kern_path);
2090
2091 /**
2092 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2093 * @dentry: pointer to dentry of the base directory
2094 * @mnt: pointer to vfs mount of the base directory
2095 * @name: pointer to file name
2096 * @flags: lookup flags
2097 * @path: pointer to struct path to fill
2098 */
2099 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2100 const char *name, unsigned int flags,
2101 struct path *path)
2102 {
2103 struct filename *filename = getname_kernel(name);
2104 int err = PTR_ERR(filename);
2105
2106 BUG_ON(flags & LOOKUP_PARENT);
2107
2108 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2109 if (!IS_ERR(filename)) {
2110 struct nameidata nd;
2111 nd.root.dentry = dentry;
2112 nd.root.mnt = mnt;
2113 err = filename_lookup(AT_FDCWD, filename,
2114 flags | LOOKUP_ROOT, &nd);
2115 if (!err)
2116 *path = nd.path;
2117 putname(filename);
2118 }
2119 return err;
2120 }
2121 EXPORT_SYMBOL(vfs_path_lookup);
2122
2123 /*
2124 * Restricted form of lookup. Doesn't follow links, single-component only,
2125 * needs parent already locked. Doesn't follow mounts.
2126 * SMP-safe.
2127 */
2128 static struct dentry *lookup_hash(struct nameidata *nd)
2129 {
2130 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2131 }
2132
2133 /**
2134 * lookup_one_len - filesystem helper to lookup single pathname component
2135 * @name: pathname component to lookup
2136 * @base: base directory to lookup from
2137 * @len: maximum length @len should be interpreted to
2138 *
2139 * Note that this routine is purely a helper for filesystem usage and should
2140 * not be called by generic code.
2141 */
2142 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2143 {
2144 struct qstr this;
2145 unsigned int c;
2146 int err;
2147
2148 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2149
2150 this.name = name;
2151 this.len = len;
2152 this.hash = full_name_hash(name, len);
2153 if (!len)
2154 return ERR_PTR(-EACCES);
2155
2156 if (unlikely(name[0] == '.')) {
2157 if (len < 2 || (len == 2 && name[1] == '.'))
2158 return ERR_PTR(-EACCES);
2159 }
2160
2161 while (len--) {
2162 c = *(const unsigned char *)name++;
2163 if (c == '/' || c == '\0')
2164 return ERR_PTR(-EACCES);
2165 }
2166 /*
2167 * See if the low-level filesystem might want
2168 * to use its own hash..
2169 */
2170 if (base->d_flags & DCACHE_OP_HASH) {
2171 int err = base->d_op->d_hash(base, &this);
2172 if (err < 0)
2173 return ERR_PTR(err);
2174 }
2175
2176 err = inode_permission(base->d_inode, MAY_EXEC);
2177 if (err)
2178 return ERR_PTR(err);
2179
2180 return __lookup_hash(&this, base, 0);
2181 }
2182 EXPORT_SYMBOL(lookup_one_len);
2183
2184 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2185 struct path *path, int *empty)
2186 {
2187 struct nameidata nd;
2188 struct filename *tmp = getname_flags(name, flags, empty);
2189 int err = PTR_ERR(tmp);
2190 if (!IS_ERR(tmp)) {
2191
2192 BUG_ON(flags & LOOKUP_PARENT);
2193
2194 err = filename_lookup(dfd, tmp, flags, &nd);
2195 putname(tmp);
2196 if (!err)
2197 *path = nd.path;
2198 }
2199 return err;
2200 }
2201
2202 int user_path_at(int dfd, const char __user *name, unsigned flags,
2203 struct path *path)
2204 {
2205 return user_path_at_empty(dfd, name, flags, path, NULL);
2206 }
2207 EXPORT_SYMBOL(user_path_at);
2208
2209 /*
2210 * NB: most callers don't do anything directly with the reference to the
2211 * to struct filename, but the nd->last pointer points into the name string
2212 * allocated by getname. So we must hold the reference to it until all
2213 * path-walking is complete.
2214 */
2215 static struct filename *
2216 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2217 unsigned int flags)
2218 {
2219 struct filename *s = getname(path);
2220 int error;
2221
2222 /* only LOOKUP_REVAL is allowed in extra flags */
2223 flags &= LOOKUP_REVAL;
2224
2225 if (IS_ERR(s))
2226 return s;
2227
2228 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2229 if (error) {
2230 putname(s);
2231 return ERR_PTR(error);
2232 }
2233
2234 return s;
2235 }
2236
2237 /**
2238 * mountpoint_last - look up last component for umount
2239 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2240 * @path: pointer to container for result
2241 *
2242 * This is a special lookup_last function just for umount. In this case, we
2243 * need to resolve the path without doing any revalidation.
2244 *
2245 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2246 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2247 * in almost all cases, this lookup will be served out of the dcache. The only
2248 * cases where it won't are if nd->last refers to a symlink or the path is
2249 * bogus and it doesn't exist.
2250 *
2251 * Returns:
2252 * -error: if there was an error during lookup. This includes -ENOENT if the
2253 * lookup found a negative dentry. The nd->path reference will also be
2254 * put in this case.
2255 *
2256 * 0: if we successfully resolved nd->path and found it to not to be a
2257 * symlink that needs to be followed. "path" will also be populated.
2258 * The nd->path reference will also be put.
2259 *
2260 * 1: if we successfully resolved nd->last and found it to be a symlink
2261 * that needs to be followed. "path" will be populated with the path
2262 * to the link, and nd->path will *not* be put.
2263 */
2264 static int
2265 mountpoint_last(struct nameidata *nd, struct path *path)
2266 {
2267 int error = 0;
2268 struct dentry *dentry;
2269 struct dentry *dir = nd->path.dentry;
2270
2271 /* If we're in rcuwalk, drop out of it to handle last component */
2272 if (nd->flags & LOOKUP_RCU) {
2273 if (unlazy_walk(nd, NULL)) {
2274 error = -ECHILD;
2275 goto out;
2276 }
2277 }
2278
2279 nd->flags &= ~LOOKUP_PARENT;
2280
2281 if (unlikely(nd->last_type != LAST_NORM)) {
2282 error = handle_dots(nd, nd->last_type);
2283 if (error)
2284 goto out;
2285 dentry = dget(nd->path.dentry);
2286 goto done;
2287 }
2288
2289 mutex_lock(&dir->d_inode->i_mutex);
2290 dentry = d_lookup(dir, &nd->last);
2291 if (!dentry) {
2292 /*
2293 * No cached dentry. Mounted dentries are pinned in the cache,
2294 * so that means that this dentry is probably a symlink or the
2295 * path doesn't actually point to a mounted dentry.
2296 */
2297 dentry = d_alloc(dir, &nd->last);
2298 if (!dentry) {
2299 error = -ENOMEM;
2300 mutex_unlock(&dir->d_inode->i_mutex);
2301 goto out;
2302 }
2303 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2304 error = PTR_ERR(dentry);
2305 if (IS_ERR(dentry)) {
2306 mutex_unlock(&dir->d_inode->i_mutex);
2307 goto out;
2308 }
2309 }
2310 mutex_unlock(&dir->d_inode->i_mutex);
2311
2312 done:
2313 if (d_is_negative(dentry)) {
2314 error = -ENOENT;
2315 dput(dentry);
2316 goto out;
2317 }
2318 path->dentry = dentry;
2319 path->mnt = nd->path.mnt;
2320 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2321 return 1;
2322 mntget(path->mnt);
2323 follow_mount(path);
2324 error = 0;
2325 out:
2326 terminate_walk(nd);
2327 return error;
2328 }
2329
2330 /**
2331 * path_mountpoint - look up a path to be umounted
2332 * @dfd: directory file descriptor to start walk from
2333 * @name: full pathname to walk
2334 * @path: pointer to container for result
2335 * @flags: lookup flags
2336 *
2337 * Look up the given name, but don't attempt to revalidate the last component.
2338 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2339 */
2340 static int
2341 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2342 unsigned int flags)
2343 {
2344 struct nameidata nd;
2345 int err;
2346
2347 err = path_init(dfd, name, flags, &nd);
2348 if (unlikely(err))
2349 goto out;
2350
2351 err = mountpoint_last(&nd, path);
2352 while (err > 0) {
2353 void *cookie;
2354 struct path link = *path;
2355 err = may_follow_link(&link, &nd);
2356 if (unlikely(err))
2357 break;
2358 nd.flags |= LOOKUP_PARENT;
2359 err = follow_link(&link, &nd, &cookie);
2360 if (err)
2361 break;
2362 err = mountpoint_last(&nd, path);
2363 put_link(&nd, &link, cookie);
2364 }
2365 out:
2366 path_cleanup(&nd);
2367 return err;
2368 }
2369
2370 static int
2371 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2372 unsigned int flags)
2373 {
2374 int error;
2375 if (IS_ERR(name))
2376 return PTR_ERR(name);
2377 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2378 if (unlikely(error == -ECHILD))
2379 error = path_mountpoint(dfd, name, path, flags);
2380 if (unlikely(error == -ESTALE))
2381 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2382 if (likely(!error))
2383 audit_inode(name, path->dentry, 0);
2384 putname(name);
2385 return error;
2386 }
2387
2388 /**
2389 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2390 * @dfd: directory file descriptor
2391 * @name: pathname from userland
2392 * @flags: lookup flags
2393 * @path: pointer to container to hold result
2394 *
2395 * A umount is a special case for path walking. We're not actually interested
2396 * in the inode in this situation, and ESTALE errors can be a problem. We
2397 * simply want track down the dentry and vfsmount attached at the mountpoint
2398 * and avoid revalidating the last component.
2399 *
2400 * Returns 0 and populates "path" on success.
2401 */
2402 int
2403 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2404 struct path *path)
2405 {
2406 return filename_mountpoint(dfd, getname(name), path, flags);
2407 }
2408
2409 int
2410 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2411 unsigned int flags)
2412 {
2413 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2414 }
2415 EXPORT_SYMBOL(kern_path_mountpoint);
2416
2417 int __check_sticky(struct inode *dir, struct inode *inode)
2418 {
2419 kuid_t fsuid = current_fsuid();
2420
2421 if (uid_eq(inode->i_uid, fsuid))
2422 return 0;
2423 if (uid_eq(dir->i_uid, fsuid))
2424 return 0;
2425 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2426 }
2427 EXPORT_SYMBOL(__check_sticky);
2428
2429 /*
2430 * Check whether we can remove a link victim from directory dir, check
2431 * whether the type of victim is right.
2432 * 1. We can't do it if dir is read-only (done in permission())
2433 * 2. We should have write and exec permissions on dir
2434 * 3. We can't remove anything from append-only dir
2435 * 4. We can't do anything with immutable dir (done in permission())
2436 * 5. If the sticky bit on dir is set we should either
2437 * a. be owner of dir, or
2438 * b. be owner of victim, or
2439 * c. have CAP_FOWNER capability
2440 * 6. If the victim is append-only or immutable we can't do antyhing with
2441 * links pointing to it.
2442 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2443 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2444 * 9. We can't remove a root or mountpoint.
2445 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2446 * nfs_async_unlink().
2447 */
2448 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2449 {
2450 struct inode *inode = victim->d_inode;
2451 int error;
2452
2453 if (d_is_negative(victim))
2454 return -ENOENT;
2455 BUG_ON(!inode);
2456
2457 BUG_ON(victim->d_parent->d_inode != dir);
2458 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2459
2460 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2461 if (error)
2462 return error;
2463 if (IS_APPEND(dir))
2464 return -EPERM;
2465
2466 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2467 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2468 return -EPERM;
2469 if (isdir) {
2470 if (!d_is_dir(victim))
2471 return -ENOTDIR;
2472 if (IS_ROOT(victim))
2473 return -EBUSY;
2474 } else if (d_is_dir(victim))
2475 return -EISDIR;
2476 if (IS_DEADDIR(dir))
2477 return -ENOENT;
2478 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2479 return -EBUSY;
2480 return 0;
2481 }
2482
2483 /* Check whether we can create an object with dentry child in directory
2484 * dir.
2485 * 1. We can't do it if child already exists (open has special treatment for
2486 * this case, but since we are inlined it's OK)
2487 * 2. We can't do it if dir is read-only (done in permission())
2488 * 3. We should have write and exec permissions on dir
2489 * 4. We can't do it if dir is immutable (done in permission())
2490 */
2491 static inline int may_create(struct inode *dir, struct dentry *child)
2492 {
2493 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2494 if (child->d_inode)
2495 return -EEXIST;
2496 if (IS_DEADDIR(dir))
2497 return -ENOENT;
2498 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2499 }
2500
2501 /*
2502 * p1 and p2 should be directories on the same fs.
2503 */
2504 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2505 {
2506 struct dentry *p;
2507
2508 if (p1 == p2) {
2509 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2510 return NULL;
2511 }
2512
2513 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2514
2515 p = d_ancestor(p2, p1);
2516 if (p) {
2517 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2518 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2519 return p;
2520 }
2521
2522 p = d_ancestor(p1, p2);
2523 if (p) {
2524 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2525 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2526 return p;
2527 }
2528
2529 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2530 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2531 return NULL;
2532 }
2533 EXPORT_SYMBOL(lock_rename);
2534
2535 void unlock_rename(struct dentry *p1, struct dentry *p2)
2536 {
2537 mutex_unlock(&p1->d_inode->i_mutex);
2538 if (p1 != p2) {
2539 mutex_unlock(&p2->d_inode->i_mutex);
2540 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2541 }
2542 }
2543 EXPORT_SYMBOL(unlock_rename);
2544
2545 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2546 bool want_excl)
2547 {
2548 int error = may_create(dir, dentry);
2549 if (error)
2550 return error;
2551
2552 if (!dir->i_op->create)
2553 return -EACCES; /* shouldn't it be ENOSYS? */
2554 mode &= S_IALLUGO;
2555 mode |= S_IFREG;
2556 error = security_inode_create(dir, dentry, mode);
2557 if (error)
2558 return error;
2559 error = dir->i_op->create(dir, dentry, mode, want_excl);
2560 if (!error)
2561 fsnotify_create(dir, dentry);
2562 return error;
2563 }
2564 EXPORT_SYMBOL(vfs_create);
2565
2566 static int may_open(struct path *path, int acc_mode, int flag)
2567 {
2568 struct dentry *dentry = path->dentry;
2569 struct inode *inode = dentry->d_inode;
2570 int error;
2571
2572 /* O_PATH? */
2573 if (!acc_mode)
2574 return 0;
2575
2576 if (!inode)
2577 return -ENOENT;
2578
2579 switch (inode->i_mode & S_IFMT) {
2580 case S_IFLNK:
2581 return -ELOOP;
2582 case S_IFDIR:
2583 if (acc_mode & MAY_WRITE)
2584 return -EISDIR;
2585 break;
2586 case S_IFBLK:
2587 case S_IFCHR:
2588 if (path->mnt->mnt_flags & MNT_NODEV)
2589 return -EACCES;
2590 /*FALLTHRU*/
2591 case S_IFIFO:
2592 case S_IFSOCK:
2593 flag &= ~O_TRUNC;
2594 break;
2595 }
2596
2597 error = inode_permission(inode, acc_mode);
2598 if (error)
2599 return error;
2600
2601 /*
2602 * An append-only file must be opened in append mode for writing.
2603 */
2604 if (IS_APPEND(inode)) {
2605 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2606 return -EPERM;
2607 if (flag & O_TRUNC)
2608 return -EPERM;
2609 }
2610
2611 /* O_NOATIME can only be set by the owner or superuser */
2612 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2613 return -EPERM;
2614
2615 return 0;
2616 }
2617
2618 static int handle_truncate(struct file *filp)
2619 {
2620 struct path *path = &filp->f_path;
2621 struct inode *inode = path->dentry->d_inode;
2622 int error = get_write_access(inode);
2623 if (error)
2624 return error;
2625 /*
2626 * Refuse to truncate files with mandatory locks held on them.
2627 */
2628 error = locks_verify_locked(filp);
2629 if (!error)
2630 error = security_path_truncate(path);
2631 if (!error) {
2632 error = do_truncate(path->dentry, 0,
2633 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2634 filp);
2635 }
2636 put_write_access(inode);
2637 return error;
2638 }
2639
2640 static inline int open_to_namei_flags(int flag)
2641 {
2642 if ((flag & O_ACCMODE) == 3)
2643 flag--;
2644 return flag;
2645 }
2646
2647 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2648 {
2649 int error = security_path_mknod(dir, dentry, mode, 0);
2650 if (error)
2651 return error;
2652
2653 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2654 if (error)
2655 return error;
2656
2657 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2658 }
2659
2660 /*
2661 * Attempt to atomically look up, create and open a file from a negative
2662 * dentry.
2663 *
2664 * Returns 0 if successful. The file will have been created and attached to
2665 * @file by the filesystem calling finish_open().
2666 *
2667 * Returns 1 if the file was looked up only or didn't need creating. The
2668 * caller will need to perform the open themselves. @path will have been
2669 * updated to point to the new dentry. This may be negative.
2670 *
2671 * Returns an error code otherwise.
2672 */
2673 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2674 struct path *path, struct file *file,
2675 const struct open_flags *op,
2676 bool got_write, bool need_lookup,
2677 int *opened)
2678 {
2679 struct inode *dir = nd->path.dentry->d_inode;
2680 unsigned open_flag = open_to_namei_flags(op->open_flag);
2681 umode_t mode;
2682 int error;
2683 int acc_mode;
2684 int create_error = 0;
2685 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2686 bool excl;
2687
2688 BUG_ON(dentry->d_inode);
2689
2690 /* Don't create child dentry for a dead directory. */
2691 if (unlikely(IS_DEADDIR(dir))) {
2692 error = -ENOENT;
2693 goto out;
2694 }
2695
2696 mode = op->mode;
2697 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2698 mode &= ~current_umask();
2699
2700 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2701 if (excl)
2702 open_flag &= ~O_TRUNC;
2703
2704 /*
2705 * Checking write permission is tricky, bacuse we don't know if we are
2706 * going to actually need it: O_CREAT opens should work as long as the
2707 * file exists. But checking existence breaks atomicity. The trick is
2708 * to check access and if not granted clear O_CREAT from the flags.
2709 *
2710 * Another problem is returing the "right" error value (e.g. for an
2711 * O_EXCL open we want to return EEXIST not EROFS).
2712 */
2713 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2714 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2715 if (!(open_flag & O_CREAT)) {
2716 /*
2717 * No O_CREATE -> atomicity not a requirement -> fall
2718 * back to lookup + open
2719 */
2720 goto no_open;
2721 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2722 /* Fall back and fail with the right error */
2723 create_error = -EROFS;
2724 goto no_open;
2725 } else {
2726 /* No side effects, safe to clear O_CREAT */
2727 create_error = -EROFS;
2728 open_flag &= ~O_CREAT;
2729 }
2730 }
2731
2732 if (open_flag & O_CREAT) {
2733 error = may_o_create(&nd->path, dentry, mode);
2734 if (error) {
2735 create_error = error;
2736 if (open_flag & O_EXCL)
2737 goto no_open;
2738 open_flag &= ~O_CREAT;
2739 }
2740 }
2741
2742 if (nd->flags & LOOKUP_DIRECTORY)
2743 open_flag |= O_DIRECTORY;
2744
2745 file->f_path.dentry = DENTRY_NOT_SET;
2746 file->f_path.mnt = nd->path.mnt;
2747 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2748 opened);
2749 if (error < 0) {
2750 if (create_error && error == -ENOENT)
2751 error = create_error;
2752 goto out;
2753 }
2754
2755 if (error) { /* returned 1, that is */
2756 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2757 error = -EIO;
2758 goto out;
2759 }
2760 if (file->f_path.dentry) {
2761 dput(dentry);
2762 dentry = file->f_path.dentry;
2763 }
2764 if (*opened & FILE_CREATED)
2765 fsnotify_create(dir, dentry);
2766 if (!dentry->d_inode) {
2767 WARN_ON(*opened & FILE_CREATED);
2768 if (create_error) {
2769 error = create_error;
2770 goto out;
2771 }
2772 } else {
2773 if (excl && !(*opened & FILE_CREATED)) {
2774 error = -EEXIST;
2775 goto out;
2776 }
2777 }
2778 goto looked_up;
2779 }
2780
2781 /*
2782 * We didn't have the inode before the open, so check open permission
2783 * here.
2784 */
2785 acc_mode = op->acc_mode;
2786 if (*opened & FILE_CREATED) {
2787 WARN_ON(!(open_flag & O_CREAT));
2788 fsnotify_create(dir, dentry);
2789 acc_mode = MAY_OPEN;
2790 }
2791 error = may_open(&file->f_path, acc_mode, open_flag);
2792 if (error)
2793 fput(file);
2794
2795 out:
2796 dput(dentry);
2797 return error;
2798
2799 no_open:
2800 if (need_lookup) {
2801 dentry = lookup_real(dir, dentry, nd->flags);
2802 if (IS_ERR(dentry))
2803 return PTR_ERR(dentry);
2804
2805 if (create_error) {
2806 int open_flag = op->open_flag;
2807
2808 error = create_error;
2809 if ((open_flag & O_EXCL)) {
2810 if (!dentry->d_inode)
2811 goto out;
2812 } else if (!dentry->d_inode) {
2813 goto out;
2814 } else if ((open_flag & O_TRUNC) &&
2815 d_is_reg(dentry)) {
2816 goto out;
2817 }
2818 /* will fail later, go on to get the right error */
2819 }
2820 }
2821 looked_up:
2822 path->dentry = dentry;
2823 path->mnt = nd->path.mnt;
2824 return 1;
2825 }
2826
2827 /*
2828 * Look up and maybe create and open the last component.
2829 *
2830 * Must be called with i_mutex held on parent.
2831 *
2832 * Returns 0 if the file was successfully atomically created (if necessary) and
2833 * opened. In this case the file will be returned attached to @file.
2834 *
2835 * Returns 1 if the file was not completely opened at this time, though lookups
2836 * and creations will have been performed and the dentry returned in @path will
2837 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2838 * specified then a negative dentry may be returned.
2839 *
2840 * An error code is returned otherwise.
2841 *
2842 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2843 * cleared otherwise prior to returning.
2844 */
2845 static int lookup_open(struct nameidata *nd, struct path *path,
2846 struct file *file,
2847 const struct open_flags *op,
2848 bool got_write, int *opened)
2849 {
2850 struct dentry *dir = nd->path.dentry;
2851 struct inode *dir_inode = dir->d_inode;
2852 struct dentry *dentry;
2853 int error;
2854 bool need_lookup;
2855
2856 *opened &= ~FILE_CREATED;
2857 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2858 if (IS_ERR(dentry))
2859 return PTR_ERR(dentry);
2860
2861 /* Cached positive dentry: will open in f_op->open */
2862 if (!need_lookup && dentry->d_inode)
2863 goto out_no_open;
2864
2865 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2866 return atomic_open(nd, dentry, path, file, op, got_write,
2867 need_lookup, opened);
2868 }
2869
2870 if (need_lookup) {
2871 BUG_ON(dentry->d_inode);
2872
2873 dentry = lookup_real(dir_inode, dentry, nd->flags);
2874 if (IS_ERR(dentry))
2875 return PTR_ERR(dentry);
2876 }
2877
2878 /* Negative dentry, just create the file */
2879 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2880 umode_t mode = op->mode;
2881 if (!IS_POSIXACL(dir->d_inode))
2882 mode &= ~current_umask();
2883 /*
2884 * This write is needed to ensure that a
2885 * rw->ro transition does not occur between
2886 * the time when the file is created and when
2887 * a permanent write count is taken through
2888 * the 'struct file' in finish_open().
2889 */
2890 if (!got_write) {
2891 error = -EROFS;
2892 goto out_dput;
2893 }
2894 *opened |= FILE_CREATED;
2895 error = security_path_mknod(&nd->path, dentry, mode, 0);
2896 if (error)
2897 goto out_dput;
2898 error = vfs_create(dir->d_inode, dentry, mode,
2899 nd->flags & LOOKUP_EXCL);
2900 if (error)
2901 goto out_dput;
2902 }
2903 out_no_open:
2904 path->dentry = dentry;
2905 path->mnt = nd->path.mnt;
2906 return 1;
2907
2908 out_dput:
2909 dput(dentry);
2910 return error;
2911 }
2912
2913 /*
2914 * Handle the last step of open()
2915 */
2916 static int do_last(struct nameidata *nd, struct path *path,
2917 struct file *file, const struct open_flags *op,
2918 int *opened, struct filename *name)
2919 {
2920 struct dentry *dir = nd->path.dentry;
2921 int open_flag = op->open_flag;
2922 bool will_truncate = (open_flag & O_TRUNC) != 0;
2923 bool got_write = false;
2924 int acc_mode = op->acc_mode;
2925 struct inode *inode;
2926 bool symlink_ok = false;
2927 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2928 bool retried = false;
2929 int error;
2930
2931 nd->flags &= ~LOOKUP_PARENT;
2932 nd->flags |= op->intent;
2933
2934 if (nd->last_type != LAST_NORM) {
2935 error = handle_dots(nd, nd->last_type);
2936 if (error)
2937 return error;
2938 goto finish_open;
2939 }
2940
2941 if (!(open_flag & O_CREAT)) {
2942 if (nd->last.name[nd->last.len])
2943 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2944 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2945 symlink_ok = true;
2946 /* we _can_ be in RCU mode here */
2947 error = lookup_fast(nd, path, &inode);
2948 if (likely(!error))
2949 goto finish_lookup;
2950
2951 if (error < 0)
2952 goto out;
2953
2954 BUG_ON(nd->inode != dir->d_inode);
2955 } else {
2956 /* create side of things */
2957 /*
2958 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2959 * has been cleared when we got to the last component we are
2960 * about to look up
2961 */
2962 error = complete_walk(nd);
2963 if (error)
2964 return error;
2965
2966 audit_inode(name, dir, LOOKUP_PARENT);
2967 error = -EISDIR;
2968 /* trailing slashes? */
2969 if (nd->last.name[nd->last.len])
2970 goto out;
2971 }
2972
2973 retry_lookup:
2974 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2975 error = mnt_want_write(nd->path.mnt);
2976 if (!error)
2977 got_write = true;
2978 /*
2979 * do _not_ fail yet - we might not need that or fail with
2980 * a different error; let lookup_open() decide; we'll be
2981 * dropping this one anyway.
2982 */
2983 }
2984 mutex_lock(&dir->d_inode->i_mutex);
2985 error = lookup_open(nd, path, file, op, got_write, opened);
2986 mutex_unlock(&dir->d_inode->i_mutex);
2987
2988 if (error <= 0) {
2989 if (error)
2990 goto out;
2991
2992 if ((*opened & FILE_CREATED) ||
2993 !S_ISREG(file_inode(file)->i_mode))
2994 will_truncate = false;
2995
2996 audit_inode(name, file->f_path.dentry, 0);
2997 goto opened;
2998 }
2999
3000 if (*opened & FILE_CREATED) {
3001 /* Don't check for write permission, don't truncate */
3002 open_flag &= ~O_TRUNC;
3003 will_truncate = false;
3004 acc_mode = MAY_OPEN;
3005 path_to_nameidata(path, nd);
3006 goto finish_open_created;
3007 }
3008
3009 /*
3010 * create/update audit record if it already exists.
3011 */
3012 if (d_is_positive(path->dentry))
3013 audit_inode(name, path->dentry, 0);
3014
3015 /*
3016 * If atomic_open() acquired write access it is dropped now due to
3017 * possible mount and symlink following (this might be optimized away if
3018 * necessary...)
3019 */
3020 if (got_write) {
3021 mnt_drop_write(nd->path.mnt);
3022 got_write = false;
3023 }
3024
3025 error = -EEXIST;
3026 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3027 goto exit_dput;
3028
3029 error = follow_managed(path, nd->flags);
3030 if (error < 0)
3031 goto exit_dput;
3032
3033 if (error)
3034 nd->flags |= LOOKUP_JUMPED;
3035
3036 BUG_ON(nd->flags & LOOKUP_RCU);
3037 inode = path->dentry->d_inode;
3038 finish_lookup:
3039 /* we _can_ be in RCU mode here */
3040 error = -ENOENT;
3041 if (d_is_negative(path->dentry)) {
3042 path_to_nameidata(path, nd);
3043 goto out;
3044 }
3045
3046 if (should_follow_link(path->dentry, !symlink_ok)) {
3047 if (nd->flags & LOOKUP_RCU) {
3048 if (unlikely(unlazy_walk(nd, path->dentry))) {
3049 error = -ECHILD;
3050 goto out;
3051 }
3052 }
3053 BUG_ON(inode != path->dentry->d_inode);
3054 return 1;
3055 }
3056
3057 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3058 path_to_nameidata(path, nd);
3059 } else {
3060 save_parent.dentry = nd->path.dentry;
3061 save_parent.mnt = mntget(path->mnt);
3062 nd->path.dentry = path->dentry;
3063
3064 }
3065 nd->inode = inode;
3066 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3067 finish_open:
3068 error = complete_walk(nd);
3069 if (error) {
3070 path_put(&save_parent);
3071 return error;
3072 }
3073 audit_inode(name, nd->path.dentry, 0);
3074 error = -EISDIR;
3075 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3076 goto out;
3077 error = -ENOTDIR;
3078 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3079 goto out;
3080 if (!d_is_reg(nd->path.dentry))
3081 will_truncate = false;
3082
3083 if (will_truncate) {
3084 error = mnt_want_write(nd->path.mnt);
3085 if (error)
3086 goto out;
3087 got_write = true;
3088 }
3089 finish_open_created:
3090 error = may_open(&nd->path, acc_mode, open_flag);
3091 if (error)
3092 goto out;
3093
3094 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3095 error = vfs_open(&nd->path, file, current_cred());
3096 if (!error) {
3097 *opened |= FILE_OPENED;
3098 } else {
3099 if (error == -EOPENSTALE)
3100 goto stale_open;
3101 goto out;
3102 }
3103 opened:
3104 error = open_check_o_direct(file);
3105 if (error)
3106 goto exit_fput;
3107 error = ima_file_check(file, op->acc_mode, *opened);
3108 if (error)
3109 goto exit_fput;
3110
3111 if (will_truncate) {
3112 error = handle_truncate(file);
3113 if (error)
3114 goto exit_fput;
3115 }
3116 out:
3117 if (got_write)
3118 mnt_drop_write(nd->path.mnt);
3119 path_put(&save_parent);
3120 terminate_walk(nd);
3121 return error;
3122
3123 exit_dput:
3124 path_put_conditional(path, nd);
3125 goto out;
3126 exit_fput:
3127 fput(file);
3128 goto out;
3129
3130 stale_open:
3131 /* If no saved parent or already retried then can't retry */
3132 if (!save_parent.dentry || retried)
3133 goto out;
3134
3135 BUG_ON(save_parent.dentry != dir);
3136 path_put(&nd->path);
3137 nd->path = save_parent;
3138 nd->inode = dir->d_inode;
3139 save_parent.mnt = NULL;
3140 save_parent.dentry = NULL;
3141 if (got_write) {
3142 mnt_drop_write(nd->path.mnt);
3143 got_write = false;
3144 }
3145 retried = true;
3146 goto retry_lookup;
3147 }
3148
3149 static int do_tmpfile(int dfd, struct filename *pathname,
3150 struct nameidata *nd, int flags,
3151 const struct open_flags *op,
3152 struct file *file, int *opened)
3153 {
3154 static const struct qstr name = QSTR_INIT("/", 1);
3155 struct dentry *dentry, *child;
3156 struct inode *dir;
3157 int error = path_lookupat(dfd, pathname,
3158 flags | LOOKUP_DIRECTORY, nd);
3159 if (unlikely(error))
3160 return error;
3161 error = mnt_want_write(nd->path.mnt);
3162 if (unlikely(error))
3163 goto out;
3164 /* we want directory to be writable */
3165 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3166 if (error)
3167 goto out2;
3168 dentry = nd->path.dentry;
3169 dir = dentry->d_inode;
3170 if (!dir->i_op->tmpfile) {
3171 error = -EOPNOTSUPP;
3172 goto out2;
3173 }
3174 child = d_alloc(dentry, &name);
3175 if (unlikely(!child)) {
3176 error = -ENOMEM;
3177 goto out2;
3178 }
3179 nd->flags &= ~LOOKUP_DIRECTORY;
3180 nd->flags |= op->intent;
3181 dput(nd->path.dentry);
3182 nd->path.dentry = child;
3183 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3184 if (error)
3185 goto out2;
3186 audit_inode(pathname, nd->path.dentry, 0);
3187 /* Don't check for other permissions, the inode was just created */
3188 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3189 if (error)
3190 goto out2;
3191 file->f_path.mnt = nd->path.mnt;
3192 error = finish_open(file, nd->path.dentry, NULL, opened);
3193 if (error)
3194 goto out2;
3195 error = open_check_o_direct(file);
3196 if (error) {
3197 fput(file);
3198 } else if (!(op->open_flag & O_EXCL)) {
3199 struct inode *inode = file_inode(file);
3200 spin_lock(&inode->i_lock);
3201 inode->i_state |= I_LINKABLE;
3202 spin_unlock(&inode->i_lock);
3203 }
3204 out2:
3205 mnt_drop_write(nd->path.mnt);
3206 out:
3207 path_put(&nd->path);
3208 return error;
3209 }
3210
3211 static struct file *path_openat(int dfd, struct filename *pathname,
3212 struct nameidata *nd, const struct open_flags *op, int flags)
3213 {
3214 struct file *file;
3215 struct path path;
3216 int opened = 0;
3217 int error;
3218
3219 file = get_empty_filp();
3220 if (IS_ERR(file))
3221 return file;
3222
3223 file->f_flags = op->open_flag;
3224
3225 if (unlikely(file->f_flags & __O_TMPFILE)) {
3226 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3227 goto out;
3228 }
3229
3230 error = path_init(dfd, pathname, flags, nd);
3231 if (unlikely(error))
3232 goto out;
3233
3234 error = do_last(nd, &path, file, op, &opened, pathname);
3235 while (unlikely(error > 0)) { /* trailing symlink */
3236 struct path link = path;
3237 void *cookie;
3238 if (!(nd->flags & LOOKUP_FOLLOW)) {
3239 path_put_conditional(&path, nd);
3240 path_put(&nd->path);
3241 error = -ELOOP;
3242 break;
3243 }
3244 error = may_follow_link(&link, nd);
3245 if (unlikely(error))
3246 break;
3247 nd->flags |= LOOKUP_PARENT;
3248 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3249 error = follow_link(&link, nd, &cookie);
3250 if (unlikely(error))
3251 break;
3252 error = do_last(nd, &path, file, op, &opened, pathname);
3253 put_link(nd, &link, cookie);
3254 }
3255 out:
3256 path_cleanup(nd);
3257 if (!(opened & FILE_OPENED)) {
3258 BUG_ON(!error);
3259 put_filp(file);
3260 }
3261 if (unlikely(error)) {
3262 if (error == -EOPENSTALE) {
3263 if (flags & LOOKUP_RCU)
3264 error = -ECHILD;
3265 else
3266 error = -ESTALE;
3267 }
3268 file = ERR_PTR(error);
3269 }
3270 return file;
3271 }
3272
3273 struct file *do_filp_open(int dfd, struct filename *pathname,
3274 const struct open_flags *op)
3275 {
3276 struct nameidata nd;
3277 int flags = op->lookup_flags;
3278 struct file *filp;
3279
3280 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3281 if (unlikely(filp == ERR_PTR(-ECHILD)))
3282 filp = path_openat(dfd, pathname, &nd, op, flags);
3283 if (unlikely(filp == ERR_PTR(-ESTALE)))
3284 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3285 return filp;
3286 }
3287
3288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3289 const char *name, const struct open_flags *op)
3290 {
3291 struct nameidata nd;
3292 struct file *file;
3293 struct filename *filename;
3294 int flags = op->lookup_flags | LOOKUP_ROOT;
3295
3296 nd.root.mnt = mnt;
3297 nd.root.dentry = dentry;
3298
3299 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3300 return ERR_PTR(-ELOOP);
3301
3302 filename = getname_kernel(name);
3303 if (unlikely(IS_ERR(filename)))
3304 return ERR_CAST(filename);
3305
3306 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3307 if (unlikely(file == ERR_PTR(-ECHILD)))
3308 file = path_openat(-1, filename, &nd, op, flags);
3309 if (unlikely(file == ERR_PTR(-ESTALE)))
3310 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3311 putname(filename);
3312 return file;
3313 }
3314
3315 static struct dentry *filename_create(int dfd, struct filename *name,
3316 struct path *path, unsigned int lookup_flags)
3317 {
3318 struct dentry *dentry = ERR_PTR(-EEXIST);
3319 struct nameidata nd;
3320 int err2;
3321 int error;
3322 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3323
3324 /*
3325 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3326 * other flags passed in are ignored!
3327 */
3328 lookup_flags &= LOOKUP_REVAL;
3329
3330 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3331 if (error)
3332 return ERR_PTR(error);
3333
3334 /*
3335 * Yucky last component or no last component at all?
3336 * (foo/., foo/.., /////)
3337 */
3338 if (nd.last_type != LAST_NORM)
3339 goto out;
3340 nd.flags &= ~LOOKUP_PARENT;
3341 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3342
3343 /* don't fail immediately if it's r/o, at least try to report other errors */
3344 err2 = mnt_want_write(nd.path.mnt);
3345 /*
3346 * Do the final lookup.
3347 */
3348 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3349 dentry = lookup_hash(&nd);
3350 if (IS_ERR(dentry))
3351 goto unlock;
3352
3353 error = -EEXIST;
3354 if (d_is_positive(dentry))
3355 goto fail;
3356
3357 /*
3358 * Special case - lookup gave negative, but... we had foo/bar/
3359 * From the vfs_mknod() POV we just have a negative dentry -
3360 * all is fine. Let's be bastards - you had / on the end, you've
3361 * been asking for (non-existent) directory. -ENOENT for you.
3362 */
3363 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3364 error = -ENOENT;
3365 goto fail;
3366 }
3367 if (unlikely(err2)) {
3368 error = err2;
3369 goto fail;
3370 }
3371 *path = nd.path;
3372 return dentry;
3373 fail:
3374 dput(dentry);
3375 dentry = ERR_PTR(error);
3376 unlock:
3377 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3378 if (!err2)
3379 mnt_drop_write(nd.path.mnt);
3380 out:
3381 path_put(&nd.path);
3382 return dentry;
3383 }
3384
3385 struct dentry *kern_path_create(int dfd, const char *pathname,
3386 struct path *path, unsigned int lookup_flags)
3387 {
3388 struct filename *filename = getname_kernel(pathname);
3389 struct dentry *res;
3390
3391 if (IS_ERR(filename))
3392 return ERR_CAST(filename);
3393 res = filename_create(dfd, filename, path, lookup_flags);
3394 putname(filename);
3395 return res;
3396 }
3397 EXPORT_SYMBOL(kern_path_create);
3398
3399 void done_path_create(struct path *path, struct dentry *dentry)
3400 {
3401 dput(dentry);
3402 mutex_unlock(&path->dentry->d_inode->i_mutex);
3403 mnt_drop_write(path->mnt);
3404 path_put(path);
3405 }
3406 EXPORT_SYMBOL(done_path_create);
3407
3408 struct dentry *user_path_create(int dfd, const char __user *pathname,
3409 struct path *path, unsigned int lookup_flags)
3410 {
3411 struct filename *tmp = getname(pathname);
3412 struct dentry *res;
3413 if (IS_ERR(tmp))
3414 return ERR_CAST(tmp);
3415 res = filename_create(dfd, tmp, path, lookup_flags);
3416 putname(tmp);
3417 return res;
3418 }
3419 EXPORT_SYMBOL(user_path_create);
3420
3421 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3422 {
3423 int error = may_create(dir, dentry);
3424
3425 if (error)
3426 return error;
3427
3428 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3429 return -EPERM;
3430
3431 if (!dir->i_op->mknod)
3432 return -EPERM;
3433
3434 error = devcgroup_inode_mknod(mode, dev);
3435 if (error)
3436 return error;
3437
3438 error = security_inode_mknod(dir, dentry, mode, dev);
3439 if (error)
3440 return error;
3441
3442 error = dir->i_op->mknod(dir, dentry, mode, dev);
3443 if (!error)
3444 fsnotify_create(dir, dentry);
3445 return error;
3446 }
3447 EXPORT_SYMBOL(vfs_mknod);
3448
3449 static int may_mknod(umode_t mode)
3450 {
3451 switch (mode & S_IFMT) {
3452 case S_IFREG:
3453 case S_IFCHR:
3454 case S_IFBLK:
3455 case S_IFIFO:
3456 case S_IFSOCK:
3457 case 0: /* zero mode translates to S_IFREG */
3458 return 0;
3459 case S_IFDIR:
3460 return -EPERM;
3461 default:
3462 return -EINVAL;
3463 }
3464 }
3465
3466 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3467 unsigned, dev)
3468 {
3469 struct dentry *dentry;
3470 struct path path;
3471 int error;
3472 unsigned int lookup_flags = 0;
3473
3474 error = may_mknod(mode);
3475 if (error)
3476 return error;
3477 retry:
3478 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3479 if (IS_ERR(dentry))
3480 return PTR_ERR(dentry);
3481
3482 if (!IS_POSIXACL(path.dentry->d_inode))
3483 mode &= ~current_umask();
3484 error = security_path_mknod(&path, dentry, mode, dev);
3485 if (error)
3486 goto out;
3487 switch (mode & S_IFMT) {
3488 case 0: case S_IFREG:
3489 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3490 break;
3491 case S_IFCHR: case S_IFBLK:
3492 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3493 new_decode_dev(dev));
3494 break;
3495 case S_IFIFO: case S_IFSOCK:
3496 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3497 break;
3498 }
3499 out:
3500 done_path_create(&path, dentry);
3501 if (retry_estale(error, lookup_flags)) {
3502 lookup_flags |= LOOKUP_REVAL;
3503 goto retry;
3504 }
3505 return error;
3506 }
3507
3508 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3509 {
3510 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3511 }
3512
3513 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3514 {
3515 int error = may_create(dir, dentry);
3516 unsigned max_links = dir->i_sb->s_max_links;
3517
3518 if (error)
3519 return error;
3520
3521 if (!dir->i_op->mkdir)
3522 return -EPERM;
3523
3524 mode &= (S_IRWXUGO|S_ISVTX);
3525 error = security_inode_mkdir(dir, dentry, mode);
3526 if (error)
3527 return error;
3528
3529 if (max_links && dir->i_nlink >= max_links)
3530 return -EMLINK;
3531
3532 error = dir->i_op->mkdir(dir, dentry, mode);
3533 if (!error)
3534 fsnotify_mkdir(dir, dentry);
3535 return error;
3536 }
3537 EXPORT_SYMBOL(vfs_mkdir);
3538
3539 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3540 {
3541 struct dentry *dentry;
3542 struct path path;
3543 int error;
3544 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3545
3546 retry:
3547 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3548 if (IS_ERR(dentry))
3549 return PTR_ERR(dentry);
3550
3551 if (!IS_POSIXACL(path.dentry->d_inode))
3552 mode &= ~current_umask();
3553 error = security_path_mkdir(&path, dentry, mode);
3554 if (!error)
3555 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3556 done_path_create(&path, dentry);
3557 if (retry_estale(error, lookup_flags)) {
3558 lookup_flags |= LOOKUP_REVAL;
3559 goto retry;
3560 }
3561 return error;
3562 }
3563
3564 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3565 {
3566 return sys_mkdirat(AT_FDCWD, pathname, mode);
3567 }
3568
3569 /*
3570 * The dentry_unhash() helper will try to drop the dentry early: we
3571 * should have a usage count of 1 if we're the only user of this
3572 * dentry, and if that is true (possibly after pruning the dcache),
3573 * then we drop the dentry now.
3574 *
3575 * A low-level filesystem can, if it choses, legally
3576 * do a
3577 *
3578 * if (!d_unhashed(dentry))
3579 * return -EBUSY;
3580 *
3581 * if it cannot handle the case of removing a directory
3582 * that is still in use by something else..
3583 */
3584 void dentry_unhash(struct dentry *dentry)
3585 {
3586 shrink_dcache_parent(dentry);
3587 spin_lock(&dentry->d_lock);
3588 if (dentry->d_lockref.count == 1)
3589 __d_drop(dentry);
3590 spin_unlock(&dentry->d_lock);
3591 }
3592 EXPORT_SYMBOL(dentry_unhash);
3593
3594 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3595 {
3596 int error = may_delete(dir, dentry, 1);
3597
3598 if (error)
3599 return error;
3600
3601 if (!dir->i_op->rmdir)
3602 return -EPERM;
3603
3604 dget(dentry);
3605 mutex_lock(&dentry->d_inode->i_mutex);
3606
3607 error = -EBUSY;
3608 if (is_local_mountpoint(dentry))
3609 goto out;
3610
3611 error = security_inode_rmdir(dir, dentry);
3612 if (error)
3613 goto out;
3614
3615 shrink_dcache_parent(dentry);
3616 error = dir->i_op->rmdir(dir, dentry);
3617 if (error)
3618 goto out;
3619
3620 dentry->d_inode->i_flags |= S_DEAD;
3621 dont_mount(dentry);
3622 detach_mounts(dentry);
3623
3624 out:
3625 mutex_unlock(&dentry->d_inode->i_mutex);
3626 dput(dentry);
3627 if (!error)
3628 d_delete(dentry);
3629 return error;
3630 }
3631 EXPORT_SYMBOL(vfs_rmdir);
3632
3633 static long do_rmdir(int dfd, const char __user *pathname)
3634 {
3635 int error = 0;
3636 struct filename *name;
3637 struct dentry *dentry;
3638 struct nameidata nd;
3639 unsigned int lookup_flags = 0;
3640 retry:
3641 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3642 if (IS_ERR(name))
3643 return PTR_ERR(name);
3644
3645 switch(nd.last_type) {
3646 case LAST_DOTDOT:
3647 error = -ENOTEMPTY;
3648 goto exit1;
3649 case LAST_DOT:
3650 error = -EINVAL;
3651 goto exit1;
3652 case LAST_ROOT:
3653 error = -EBUSY;
3654 goto exit1;
3655 }
3656
3657 nd.flags &= ~LOOKUP_PARENT;
3658 error = mnt_want_write(nd.path.mnt);
3659 if (error)
3660 goto exit1;
3661
3662 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3663 dentry = lookup_hash(&nd);
3664 error = PTR_ERR(dentry);
3665 if (IS_ERR(dentry))
3666 goto exit2;
3667 if (!dentry->d_inode) {
3668 error = -ENOENT;
3669 goto exit3;
3670 }
3671 error = security_path_rmdir(&nd.path, dentry);
3672 if (error)
3673 goto exit3;
3674 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3675 exit3:
3676 dput(dentry);
3677 exit2:
3678 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3679 mnt_drop_write(nd.path.mnt);
3680 exit1:
3681 path_put(&nd.path);
3682 putname(name);
3683 if (retry_estale(error, lookup_flags)) {
3684 lookup_flags |= LOOKUP_REVAL;
3685 goto retry;
3686 }
3687 return error;
3688 }
3689
3690 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3691 {
3692 return do_rmdir(AT_FDCWD, pathname);
3693 }
3694
3695 /**
3696 * vfs_unlink - unlink a filesystem object
3697 * @dir: parent directory
3698 * @dentry: victim
3699 * @delegated_inode: returns victim inode, if the inode is delegated.
3700 *
3701 * The caller must hold dir->i_mutex.
3702 *
3703 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3704 * return a reference to the inode in delegated_inode. The caller
3705 * should then break the delegation on that inode and retry. Because
3706 * breaking a delegation may take a long time, the caller should drop
3707 * dir->i_mutex before doing so.
3708 *
3709 * Alternatively, a caller may pass NULL for delegated_inode. This may
3710 * be appropriate for callers that expect the underlying filesystem not
3711 * to be NFS exported.
3712 */
3713 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3714 {
3715 struct inode *target = dentry->d_inode;
3716 int error = may_delete(dir, dentry, 0);
3717
3718 if (error)
3719 return error;
3720
3721 if (!dir->i_op->unlink)
3722 return -EPERM;
3723
3724 mutex_lock(&target->i_mutex);
3725 if (is_local_mountpoint(dentry))
3726 error = -EBUSY;
3727 else {
3728 error = security_inode_unlink(dir, dentry);
3729 if (!error) {
3730 error = try_break_deleg(target, delegated_inode);
3731 if (error)
3732 goto out;
3733 error = dir->i_op->unlink(dir, dentry);
3734 if (!error) {
3735 dont_mount(dentry);
3736 detach_mounts(dentry);
3737 }
3738 }
3739 }
3740 out:
3741 mutex_unlock(&target->i_mutex);
3742
3743 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3744 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3745 fsnotify_link_count(target);
3746 d_delete(dentry);
3747 }
3748
3749 return error;
3750 }
3751 EXPORT_SYMBOL(vfs_unlink);
3752
3753 /*
3754 * Make sure that the actual truncation of the file will occur outside its
3755 * directory's i_mutex. Truncate can take a long time if there is a lot of
3756 * writeout happening, and we don't want to prevent access to the directory
3757 * while waiting on the I/O.
3758 */
3759 static long do_unlinkat(int dfd, const char __user *pathname)
3760 {
3761 int error;
3762 struct filename *name;
3763 struct dentry *dentry;
3764 struct nameidata nd;
3765 struct inode *inode = NULL;
3766 struct inode *delegated_inode = NULL;
3767 unsigned int lookup_flags = 0;
3768 retry:
3769 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3770 if (IS_ERR(name))
3771 return PTR_ERR(name);
3772
3773 error = -EISDIR;
3774 if (nd.last_type != LAST_NORM)
3775 goto exit1;
3776
3777 nd.flags &= ~LOOKUP_PARENT;
3778 error = mnt_want_write(nd.path.mnt);
3779 if (error)
3780 goto exit1;
3781 retry_deleg:
3782 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3783 dentry = lookup_hash(&nd);
3784 error = PTR_ERR(dentry);
3785 if (!IS_ERR(dentry)) {
3786 /* Why not before? Because we want correct error value */
3787 if (nd.last.name[nd.last.len])
3788 goto slashes;
3789 inode = dentry->d_inode;
3790 if (d_is_negative(dentry))
3791 goto slashes;
3792 ihold(inode);
3793 error = security_path_unlink(&nd.path, dentry);
3794 if (error)
3795 goto exit2;
3796 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3797 exit2:
3798 dput(dentry);
3799 }
3800 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3801 if (inode)
3802 iput(inode); /* truncate the inode here */
3803 inode = NULL;
3804 if (delegated_inode) {
3805 error = break_deleg_wait(&delegated_inode);
3806 if (!error)
3807 goto retry_deleg;
3808 }
3809 mnt_drop_write(nd.path.mnt);
3810 exit1:
3811 path_put(&nd.path);
3812 putname(name);
3813 if (retry_estale(error, lookup_flags)) {
3814 lookup_flags |= LOOKUP_REVAL;
3815 inode = NULL;
3816 goto retry;
3817 }
3818 return error;
3819
3820 slashes:
3821 if (d_is_negative(dentry))
3822 error = -ENOENT;
3823 else if (d_is_dir(dentry))
3824 error = -EISDIR;
3825 else
3826 error = -ENOTDIR;
3827 goto exit2;
3828 }
3829
3830 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3831 {
3832 if ((flag & ~AT_REMOVEDIR) != 0)
3833 return -EINVAL;
3834
3835 if (flag & AT_REMOVEDIR)
3836 return do_rmdir(dfd, pathname);
3837
3838 return do_unlinkat(dfd, pathname);
3839 }
3840
3841 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3842 {
3843 return do_unlinkat(AT_FDCWD, pathname);
3844 }
3845
3846 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3847 {
3848 int error = may_create(dir, dentry);
3849
3850 if (error)
3851 return error;
3852
3853 if (!dir->i_op->symlink)
3854 return -EPERM;
3855
3856 error = security_inode_symlink(dir, dentry, oldname);
3857 if (error)
3858 return error;
3859
3860 error = dir->i_op->symlink(dir, dentry, oldname);
3861 if (!error)
3862 fsnotify_create(dir, dentry);
3863 return error;
3864 }
3865 EXPORT_SYMBOL(vfs_symlink);
3866
3867 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3868 int, newdfd, const char __user *, newname)
3869 {
3870 int error;
3871 struct filename *from;
3872 struct dentry *dentry;
3873 struct path path;
3874 unsigned int lookup_flags = 0;
3875
3876 from = getname(oldname);
3877 if (IS_ERR(from))
3878 return PTR_ERR(from);
3879 retry:
3880 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3881 error = PTR_ERR(dentry);
3882 if (IS_ERR(dentry))
3883 goto out_putname;
3884
3885 error = security_path_symlink(&path, dentry, from->name);
3886 if (!error)
3887 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3888 done_path_create(&path, dentry);
3889 if (retry_estale(error, lookup_flags)) {
3890 lookup_flags |= LOOKUP_REVAL;
3891 goto retry;
3892 }
3893 out_putname:
3894 putname(from);
3895 return error;
3896 }
3897
3898 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3899 {
3900 return sys_symlinkat(oldname, AT_FDCWD, newname);
3901 }
3902
3903 /**
3904 * vfs_link - create a new link
3905 * @old_dentry: object to be linked
3906 * @dir: new parent
3907 * @new_dentry: where to create the new link
3908 * @delegated_inode: returns inode needing a delegation break
3909 *
3910 * The caller must hold dir->i_mutex
3911 *
3912 * If vfs_link discovers a delegation on the to-be-linked file in need
3913 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3914 * inode in delegated_inode. The caller should then break the delegation
3915 * and retry. Because breaking a delegation may take a long time, the
3916 * caller should drop the i_mutex before doing so.
3917 *
3918 * Alternatively, a caller may pass NULL for delegated_inode. This may
3919 * be appropriate for callers that expect the underlying filesystem not
3920 * to be NFS exported.
3921 */
3922 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3923 {
3924 struct inode *inode = old_dentry->d_inode;
3925 unsigned max_links = dir->i_sb->s_max_links;
3926 int error;
3927
3928 if (!inode)
3929 return -ENOENT;
3930
3931 error = may_create(dir, new_dentry);
3932 if (error)
3933 return error;
3934
3935 if (dir->i_sb != inode->i_sb)
3936 return -EXDEV;
3937
3938 /*
3939 * A link to an append-only or immutable file cannot be created.
3940 */
3941 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3942 return -EPERM;
3943 if (!dir->i_op->link)
3944 return -EPERM;
3945 if (S_ISDIR(inode->i_mode))
3946 return -EPERM;
3947
3948 error = security_inode_link(old_dentry, dir, new_dentry);
3949 if (error)
3950 return error;
3951
3952 mutex_lock(&inode->i_mutex);
3953 /* Make sure we don't allow creating hardlink to an unlinked file */
3954 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3955 error = -ENOENT;
3956 else if (max_links && inode->i_nlink >= max_links)
3957 error = -EMLINK;
3958 else {
3959 error = try_break_deleg(inode, delegated_inode);
3960 if (!error)
3961 error = dir->i_op->link(old_dentry, dir, new_dentry);
3962 }
3963
3964 if (!error && (inode->i_state & I_LINKABLE)) {
3965 spin_lock(&inode->i_lock);
3966 inode->i_state &= ~I_LINKABLE;
3967 spin_unlock(&inode->i_lock);
3968 }
3969 mutex_unlock(&inode->i_mutex);
3970 if (!error)
3971 fsnotify_link(dir, inode, new_dentry);
3972 return error;
3973 }
3974 EXPORT_SYMBOL(vfs_link);
3975
3976 /*
3977 * Hardlinks are often used in delicate situations. We avoid
3978 * security-related surprises by not following symlinks on the
3979 * newname. --KAB
3980 *
3981 * We don't follow them on the oldname either to be compatible
3982 * with linux 2.0, and to avoid hard-linking to directories
3983 * and other special files. --ADM
3984 */
3985 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3986 int, newdfd, const char __user *, newname, int, flags)
3987 {
3988 struct dentry *new_dentry;
3989 struct path old_path, new_path;
3990 struct inode *delegated_inode = NULL;
3991 int how = 0;
3992 int error;
3993
3994 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3995 return -EINVAL;
3996 /*
3997 * To use null names we require CAP_DAC_READ_SEARCH
3998 * This ensures that not everyone will be able to create
3999 * handlink using the passed filedescriptor.
4000 */
4001 if (flags & AT_EMPTY_PATH) {
4002 if (!capable(CAP_DAC_READ_SEARCH))
4003 return -ENOENT;
4004 how = LOOKUP_EMPTY;
4005 }
4006
4007 if (flags & AT_SYMLINK_FOLLOW)
4008 how |= LOOKUP_FOLLOW;
4009 retry:
4010 error = user_path_at(olddfd, oldname, how, &old_path);
4011 if (error)
4012 return error;
4013
4014 new_dentry = user_path_create(newdfd, newname, &new_path,
4015 (how & LOOKUP_REVAL));
4016 error = PTR_ERR(new_dentry);
4017 if (IS_ERR(new_dentry))
4018 goto out;
4019
4020 error = -EXDEV;
4021 if (old_path.mnt != new_path.mnt)
4022 goto out_dput;
4023 error = may_linkat(&old_path);
4024 if (unlikely(error))
4025 goto out_dput;
4026 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4027 if (error)
4028 goto out_dput;
4029 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4030 out_dput:
4031 done_path_create(&new_path, new_dentry);
4032 if (delegated_inode) {
4033 error = break_deleg_wait(&delegated_inode);
4034 if (!error) {
4035 path_put(&old_path);
4036 goto retry;
4037 }
4038 }
4039 if (retry_estale(error, how)) {
4040 path_put(&old_path);
4041 how |= LOOKUP_REVAL;
4042 goto retry;
4043 }
4044 out:
4045 path_put(&old_path);
4046
4047 return error;
4048 }
4049
4050 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4051 {
4052 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4053 }
4054
4055 /**
4056 * vfs_rename - rename a filesystem object
4057 * @old_dir: parent of source
4058 * @old_dentry: source
4059 * @new_dir: parent of destination
4060 * @new_dentry: destination
4061 * @delegated_inode: returns an inode needing a delegation break
4062 * @flags: rename flags
4063 *
4064 * The caller must hold multiple mutexes--see lock_rename()).
4065 *
4066 * If vfs_rename discovers a delegation in need of breaking at either
4067 * the source or destination, it will return -EWOULDBLOCK and return a
4068 * reference to the inode in delegated_inode. The caller should then
4069 * break the delegation and retry. Because breaking a delegation may
4070 * take a long time, the caller should drop all locks before doing
4071 * so.
4072 *
4073 * Alternatively, a caller may pass NULL for delegated_inode. This may
4074 * be appropriate for callers that expect the underlying filesystem not
4075 * to be NFS exported.
4076 *
4077 * The worst of all namespace operations - renaming directory. "Perverted"
4078 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4079 * Problems:
4080 * a) we can get into loop creation.
4081 * b) race potential - two innocent renames can create a loop together.
4082 * That's where 4.4 screws up. Current fix: serialization on
4083 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4084 * story.
4085 * c) we have to lock _four_ objects - parents and victim (if it exists),
4086 * and source (if it is not a directory).
4087 * And that - after we got ->i_mutex on parents (until then we don't know
4088 * whether the target exists). Solution: try to be smart with locking
4089 * order for inodes. We rely on the fact that tree topology may change
4090 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4091 * move will be locked. Thus we can rank directories by the tree
4092 * (ancestors first) and rank all non-directories after them.
4093 * That works since everybody except rename does "lock parent, lookup,
4094 * lock child" and rename is under ->s_vfs_rename_mutex.
4095 * HOWEVER, it relies on the assumption that any object with ->lookup()
4096 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4097 * we'd better make sure that there's no link(2) for them.
4098 * d) conversion from fhandle to dentry may come in the wrong moment - when
4099 * we are removing the target. Solution: we will have to grab ->i_mutex
4100 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4101 * ->i_mutex on parents, which works but leads to some truly excessive
4102 * locking].
4103 */
4104 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4105 struct inode *new_dir, struct dentry *new_dentry,
4106 struct inode **delegated_inode, unsigned int flags)
4107 {
4108 int error;
4109 bool is_dir = d_is_dir(old_dentry);
4110 const unsigned char *old_name;
4111 struct inode *source = old_dentry->d_inode;
4112 struct inode *target = new_dentry->d_inode;
4113 bool new_is_dir = false;
4114 unsigned max_links = new_dir->i_sb->s_max_links;
4115
4116 if (source == target)
4117 return 0;
4118
4119 error = may_delete(old_dir, old_dentry, is_dir);
4120 if (error)
4121 return error;
4122
4123 if (!target) {
4124 error = may_create(new_dir, new_dentry);
4125 } else {
4126 new_is_dir = d_is_dir(new_dentry);
4127
4128 if (!(flags & RENAME_EXCHANGE))
4129 error = may_delete(new_dir, new_dentry, is_dir);
4130 else
4131 error = may_delete(new_dir, new_dentry, new_is_dir);
4132 }
4133 if (error)
4134 return error;
4135
4136 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4137 return -EPERM;
4138
4139 if (flags && !old_dir->i_op->rename2)
4140 return -EINVAL;
4141
4142 /*
4143 * If we are going to change the parent - check write permissions,
4144 * we'll need to flip '..'.
4145 */
4146 if (new_dir != old_dir) {
4147 if (is_dir) {
4148 error = inode_permission(source, MAY_WRITE);
4149 if (error)
4150 return error;
4151 }
4152 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4153 error = inode_permission(target, MAY_WRITE);
4154 if (error)
4155 return error;
4156 }
4157 }
4158
4159 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4160 flags);
4161 if (error)
4162 return error;
4163
4164 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4165 dget(new_dentry);
4166 if (!is_dir || (flags & RENAME_EXCHANGE))
4167 lock_two_nondirectories(source, target);
4168 else if (target)
4169 mutex_lock(&target->i_mutex);
4170
4171 error = -EBUSY;
4172 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4173 goto out;
4174
4175 if (max_links && new_dir != old_dir) {
4176 error = -EMLINK;
4177 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4178 goto out;
4179 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4180 old_dir->i_nlink >= max_links)
4181 goto out;
4182 }
4183 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4184 shrink_dcache_parent(new_dentry);
4185 if (!is_dir) {
4186 error = try_break_deleg(source, delegated_inode);
4187 if (error)
4188 goto out;
4189 }
4190 if (target && !new_is_dir) {
4191 error = try_break_deleg(target, delegated_inode);
4192 if (error)
4193 goto out;
4194 }
4195 if (!old_dir->i_op->rename2) {
4196 error = old_dir->i_op->rename(old_dir, old_dentry,
4197 new_dir, new_dentry);
4198 } else {
4199 WARN_ON(old_dir->i_op->rename != NULL);
4200 error = old_dir->i_op->rename2(old_dir, old_dentry,
4201 new_dir, new_dentry, flags);
4202 }
4203 if (error)
4204 goto out;
4205
4206 if (!(flags & RENAME_EXCHANGE) && target) {
4207 if (is_dir)
4208 target->i_flags |= S_DEAD;
4209 dont_mount(new_dentry);
4210 detach_mounts(new_dentry);
4211 }
4212 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4213 if (!(flags & RENAME_EXCHANGE))
4214 d_move(old_dentry, new_dentry);
4215 else
4216 d_exchange(old_dentry, new_dentry);
4217 }
4218 out:
4219 if (!is_dir || (flags & RENAME_EXCHANGE))
4220 unlock_two_nondirectories(source, target);
4221 else if (target)
4222 mutex_unlock(&target->i_mutex);
4223 dput(new_dentry);
4224 if (!error) {
4225 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4226 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4227 if (flags & RENAME_EXCHANGE) {
4228 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4229 new_is_dir, NULL, new_dentry);
4230 }
4231 }
4232 fsnotify_oldname_free(old_name);
4233
4234 return error;
4235 }
4236 EXPORT_SYMBOL(vfs_rename);
4237
4238 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4239 int, newdfd, const char __user *, newname, unsigned int, flags)
4240 {
4241 struct dentry *old_dir, *new_dir;
4242 struct dentry *old_dentry, *new_dentry;
4243 struct dentry *trap;
4244 struct nameidata oldnd, newnd;
4245 struct inode *delegated_inode = NULL;
4246 struct filename *from;
4247 struct filename *to;
4248 unsigned int lookup_flags = 0;
4249 bool should_retry = false;
4250 int error;
4251
4252 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4253 return -EINVAL;
4254
4255 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4256 (flags & RENAME_EXCHANGE))
4257 return -EINVAL;
4258
4259 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4260 return -EPERM;
4261
4262 retry:
4263 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4264 if (IS_ERR(from)) {
4265 error = PTR_ERR(from);
4266 goto exit;
4267 }
4268
4269 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4270 if (IS_ERR(to)) {
4271 error = PTR_ERR(to);
4272 goto exit1;
4273 }
4274
4275 error = -EXDEV;
4276 if (oldnd.path.mnt != newnd.path.mnt)
4277 goto exit2;
4278
4279 old_dir = oldnd.path.dentry;
4280 error = -EBUSY;
4281 if (oldnd.last_type != LAST_NORM)
4282 goto exit2;
4283
4284 new_dir = newnd.path.dentry;
4285 if (flags & RENAME_NOREPLACE)
4286 error = -EEXIST;
4287 if (newnd.last_type != LAST_NORM)
4288 goto exit2;
4289
4290 error = mnt_want_write(oldnd.path.mnt);
4291 if (error)
4292 goto exit2;
4293
4294 oldnd.flags &= ~LOOKUP_PARENT;
4295 newnd.flags &= ~LOOKUP_PARENT;
4296 if (!(flags & RENAME_EXCHANGE))
4297 newnd.flags |= LOOKUP_RENAME_TARGET;
4298
4299 retry_deleg:
4300 trap = lock_rename(new_dir, old_dir);
4301
4302 old_dentry = lookup_hash(&oldnd);
4303 error = PTR_ERR(old_dentry);
4304 if (IS_ERR(old_dentry))
4305 goto exit3;
4306 /* source must exist */
4307 error = -ENOENT;
4308 if (d_is_negative(old_dentry))
4309 goto exit4;
4310 new_dentry = lookup_hash(&newnd);
4311 error = PTR_ERR(new_dentry);
4312 if (IS_ERR(new_dentry))
4313 goto exit4;
4314 error = -EEXIST;
4315 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4316 goto exit5;
4317 if (flags & RENAME_EXCHANGE) {
4318 error = -ENOENT;
4319 if (d_is_negative(new_dentry))
4320 goto exit5;
4321
4322 if (!d_is_dir(new_dentry)) {
4323 error = -ENOTDIR;
4324 if (newnd.last.name[newnd.last.len])
4325 goto exit5;
4326 }
4327 }
4328 /* unless the source is a directory trailing slashes give -ENOTDIR */
4329 if (!d_is_dir(old_dentry)) {
4330 error = -ENOTDIR;
4331 if (oldnd.last.name[oldnd.last.len])
4332 goto exit5;
4333 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4334 goto exit5;
4335 }
4336 /* source should not be ancestor of target */
4337 error = -EINVAL;
4338 if (old_dentry == trap)
4339 goto exit5;
4340 /* target should not be an ancestor of source */
4341 if (!(flags & RENAME_EXCHANGE))
4342 error = -ENOTEMPTY;
4343 if (new_dentry == trap)
4344 goto exit5;
4345
4346 error = security_path_rename(&oldnd.path, old_dentry,
4347 &newnd.path, new_dentry, flags);
4348 if (error)
4349 goto exit5;
4350 error = vfs_rename(old_dir->d_inode, old_dentry,
4351 new_dir->d_inode, new_dentry,
4352 &delegated_inode, flags);
4353 exit5:
4354 dput(new_dentry);
4355 exit4:
4356 dput(old_dentry);
4357 exit3:
4358 unlock_rename(new_dir, old_dir);
4359 if (delegated_inode) {
4360 error = break_deleg_wait(&delegated_inode);
4361 if (!error)
4362 goto retry_deleg;
4363 }
4364 mnt_drop_write(oldnd.path.mnt);
4365 exit2:
4366 if (retry_estale(error, lookup_flags))
4367 should_retry = true;
4368 path_put(&newnd.path);
4369 putname(to);
4370 exit1:
4371 path_put(&oldnd.path);
4372 putname(from);
4373 if (should_retry) {
4374 should_retry = false;
4375 lookup_flags |= LOOKUP_REVAL;
4376 goto retry;
4377 }
4378 exit:
4379 return error;
4380 }
4381
4382 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4383 int, newdfd, const char __user *, newname)
4384 {
4385 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4386 }
4387
4388 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4389 {
4390 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4391 }
4392
4393 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4394 {
4395 int error = may_create(dir, dentry);
4396 if (error)
4397 return error;
4398
4399 if (!dir->i_op->mknod)
4400 return -EPERM;
4401
4402 return dir->i_op->mknod(dir, dentry,
4403 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4404 }
4405 EXPORT_SYMBOL(vfs_whiteout);
4406
4407 int readlink_copy(char __user *buffer, int buflen, const char *link)
4408 {
4409 int len = PTR_ERR(link);
4410 if (IS_ERR(link))
4411 goto out;
4412
4413 len = strlen(link);
4414 if (len > (unsigned) buflen)
4415 len = buflen;
4416 if (copy_to_user(buffer, link, len))
4417 len = -EFAULT;
4418 out:
4419 return len;
4420 }
4421 EXPORT_SYMBOL(readlink_copy);
4422
4423 /*
4424 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4425 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4426 * using) it for any given inode is up to filesystem.
4427 */
4428 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4429 {
4430 struct nameidata nd;
4431 void *cookie;
4432 int res;
4433
4434 nd.depth = 0;
4435 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4436 if (IS_ERR(cookie))
4437 return PTR_ERR(cookie);
4438
4439 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4440 if (dentry->d_inode->i_op->put_link)
4441 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4442 return res;
4443 }
4444 EXPORT_SYMBOL(generic_readlink);
4445
4446 /* get the link contents into pagecache */
4447 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4448 {
4449 char *kaddr;
4450 struct page *page;
4451 struct address_space *mapping = dentry->d_inode->i_mapping;
4452 page = read_mapping_page(mapping, 0, NULL);
4453 if (IS_ERR(page))
4454 return (char*)page;
4455 *ppage = page;
4456 kaddr = kmap(page);
4457 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4458 return kaddr;
4459 }
4460
4461 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4462 {
4463 struct page *page = NULL;
4464 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4465 if (page) {
4466 kunmap(page);
4467 page_cache_release(page);
4468 }
4469 return res;
4470 }
4471 EXPORT_SYMBOL(page_readlink);
4472
4473 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4474 {
4475 struct page *page = NULL;
4476 nd_set_link(nd, page_getlink(dentry, &page));
4477 return page;
4478 }
4479 EXPORT_SYMBOL(page_follow_link_light);
4480
4481 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4482 {
4483 struct page *page = cookie;
4484
4485 if (page) {
4486 kunmap(page);
4487 page_cache_release(page);
4488 }
4489 }
4490 EXPORT_SYMBOL(page_put_link);
4491
4492 /*
4493 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4494 */
4495 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4496 {
4497 struct address_space *mapping = inode->i_mapping;
4498 struct page *page;
4499 void *fsdata;
4500 int err;
4501 char *kaddr;
4502 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4503 if (nofs)
4504 flags |= AOP_FLAG_NOFS;
4505
4506 retry:
4507 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4508 flags, &page, &fsdata);
4509 if (err)
4510 goto fail;
4511
4512 kaddr = kmap_atomic(page);
4513 memcpy(kaddr, symname, len-1);
4514 kunmap_atomic(kaddr);
4515
4516 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4517 page, fsdata);
4518 if (err < 0)
4519 goto fail;
4520 if (err < len-1)
4521 goto retry;
4522
4523 mark_inode_dirty(inode);
4524 return 0;
4525 fail:
4526 return err;
4527 }
4528 EXPORT_SYMBOL(__page_symlink);
4529
4530 int page_symlink(struct inode *inode, const char *symname, int len)
4531 {
4532 return __page_symlink(inode, symname, len,
4533 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4534 }
4535 EXPORT_SYMBOL(page_symlink);
4536
4537 const struct inode_operations page_symlink_inode_operations = {
4538 .readlink = generic_readlink,
4539 .follow_link = page_follow_link_light,
4540 .put_link = page_put_link,
4541 };
4542 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.138007 seconds and 6 git commands to generate.