Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (is_uncached_acl(acl))
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1607 struct inode *inode = dir->d_inode;
1608 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1609
1610 inode_lock_shared(inode);
1611 /* Don't go there if it's already dead */
1612 if (unlikely(IS_DEADDIR(inode)))
1613 goto out;
1614 again:
1615 dentry = d_alloc_parallel(dir, name, &wq);
1616 if (IS_ERR(dentry))
1617 goto out;
1618 if (unlikely(!d_in_lookup(dentry))) {
1619 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1620 !(flags & LOOKUP_NO_REVAL)) {
1621 int error = d_revalidate(dentry, flags);
1622 if (unlikely(error <= 0)) {
1623 if (!error) {
1624 d_invalidate(dentry);
1625 dput(dentry);
1626 goto again;
1627 }
1628 dput(dentry);
1629 dentry = ERR_PTR(error);
1630 }
1631 }
1632 } else {
1633 old = inode->i_op->lookup(inode, dentry, flags);
1634 d_lookup_done(dentry);
1635 if (unlikely(old)) {
1636 dput(dentry);
1637 dentry = old;
1638 }
1639 }
1640 out:
1641 inode_unlock_shared(inode);
1642 return dentry;
1643 }
1644
1645 static inline int may_lookup(struct nameidata *nd)
1646 {
1647 if (nd->flags & LOOKUP_RCU) {
1648 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1649 if (err != -ECHILD)
1650 return err;
1651 if (unlazy_walk(nd, NULL, 0))
1652 return -ECHILD;
1653 }
1654 return inode_permission(nd->inode, MAY_EXEC);
1655 }
1656
1657 static inline int handle_dots(struct nameidata *nd, int type)
1658 {
1659 if (type == LAST_DOTDOT) {
1660 if (!nd->root.mnt)
1661 set_root(nd);
1662 if (nd->flags & LOOKUP_RCU) {
1663 return follow_dotdot_rcu(nd);
1664 } else
1665 return follow_dotdot(nd);
1666 }
1667 return 0;
1668 }
1669
1670 static int pick_link(struct nameidata *nd, struct path *link,
1671 struct inode *inode, unsigned seq)
1672 {
1673 int error;
1674 struct saved *last;
1675 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1676 path_to_nameidata(link, nd);
1677 return -ELOOP;
1678 }
1679 if (!(nd->flags & LOOKUP_RCU)) {
1680 if (link->mnt == nd->path.mnt)
1681 mntget(link->mnt);
1682 }
1683 error = nd_alloc_stack(nd);
1684 if (unlikely(error)) {
1685 if (error == -ECHILD) {
1686 if (unlikely(unlazy_link(nd, link, seq)))
1687 return -ECHILD;
1688 error = nd_alloc_stack(nd);
1689 }
1690 if (error) {
1691 path_put(link);
1692 return error;
1693 }
1694 }
1695
1696 last = nd->stack + nd->depth++;
1697 last->link = *link;
1698 clear_delayed_call(&last->done);
1699 nd->link_inode = inode;
1700 last->seq = seq;
1701 return 1;
1702 }
1703
1704 /*
1705 * Do we need to follow links? We _really_ want to be able
1706 * to do this check without having to look at inode->i_op,
1707 * so we keep a cache of "no, this doesn't need follow_link"
1708 * for the common case.
1709 */
1710 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1711 int follow,
1712 struct inode *inode, unsigned seq)
1713 {
1714 if (likely(!d_is_symlink(link->dentry)))
1715 return 0;
1716 if (!follow)
1717 return 0;
1718 /* make sure that d_is_symlink above matches inode */
1719 if (nd->flags & LOOKUP_RCU) {
1720 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1721 return -ECHILD;
1722 }
1723 return pick_link(nd, link, inode, seq);
1724 }
1725
1726 enum {WALK_GET = 1, WALK_PUT = 2};
1727
1728 static int walk_component(struct nameidata *nd, int flags)
1729 {
1730 struct path path;
1731 struct inode *inode;
1732 unsigned seq;
1733 int err;
1734 /*
1735 * "." and ".." are special - ".." especially so because it has
1736 * to be able to know about the current root directory and
1737 * parent relationships.
1738 */
1739 if (unlikely(nd->last_type != LAST_NORM)) {
1740 err = handle_dots(nd, nd->last_type);
1741 if (flags & WALK_PUT)
1742 put_link(nd);
1743 return err;
1744 }
1745 err = lookup_fast(nd, &path, &inode, &seq);
1746 if (unlikely(err <= 0)) {
1747 if (err < 0)
1748 return err;
1749 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1750 nd->flags);
1751 if (IS_ERR(path.dentry))
1752 return PTR_ERR(path.dentry);
1753
1754 path.mnt = nd->path.mnt;
1755 err = follow_managed(&path, nd);
1756 if (unlikely(err < 0))
1757 return err;
1758
1759 if (unlikely(d_is_negative(path.dentry))) {
1760 path_to_nameidata(&path, nd);
1761 return -ENOENT;
1762 }
1763
1764 seq = 0; /* we are already out of RCU mode */
1765 inode = d_backing_inode(path.dentry);
1766 }
1767
1768 if (flags & WALK_PUT)
1769 put_link(nd);
1770 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1771 if (unlikely(err))
1772 return err;
1773 path_to_nameidata(&path, nd);
1774 nd->inode = inode;
1775 nd->seq = seq;
1776 return 0;
1777 }
1778
1779 /*
1780 * We can do the critical dentry name comparison and hashing
1781 * operations one word at a time, but we are limited to:
1782 *
1783 * - Architectures with fast unaligned word accesses. We could
1784 * do a "get_unaligned()" if this helps and is sufficiently
1785 * fast.
1786 *
1787 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1788 * do not trap on the (extremely unlikely) case of a page
1789 * crossing operation.
1790 *
1791 * - Furthermore, we need an efficient 64-bit compile for the
1792 * 64-bit case in order to generate the "number of bytes in
1793 * the final mask". Again, that could be replaced with a
1794 * efficient population count instruction or similar.
1795 */
1796 #ifdef CONFIG_DCACHE_WORD_ACCESS
1797
1798 #include <asm/word-at-a-time.h>
1799
1800 #ifdef CONFIG_64BIT
1801
1802 static inline unsigned int fold_hash(unsigned long hash)
1803 {
1804 return hash_64(hash, 32);
1805 }
1806
1807 /*
1808 * This is George Marsaglia's XORSHIFT generator.
1809 * It implements a maximum-period LFSR in only a few
1810 * instructions. It also has the property (required
1811 * by hash_name()) that mix_hash(0) = 0.
1812 */
1813 static inline unsigned long mix_hash(unsigned long hash)
1814 {
1815 hash ^= hash << 13;
1816 hash ^= hash >> 7;
1817 hash ^= hash << 17;
1818 return hash;
1819 }
1820
1821 #else /* 32-bit case */
1822
1823 #define fold_hash(x) (x)
1824
1825 static inline unsigned long mix_hash(unsigned long hash)
1826 {
1827 hash ^= hash << 13;
1828 hash ^= hash >> 17;
1829 hash ^= hash << 5;
1830 return hash;
1831 }
1832
1833 #endif
1834
1835 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1836 {
1837 unsigned long a, hash = 0;
1838
1839 for (;;) {
1840 a = load_unaligned_zeropad(name);
1841 if (len < sizeof(unsigned long))
1842 break;
1843 hash = mix_hash(hash + a);
1844 name += sizeof(unsigned long);
1845 len -= sizeof(unsigned long);
1846 if (!len)
1847 goto done;
1848 }
1849 hash += a & bytemask_from_count(len);
1850 done:
1851 return fold_hash(hash);
1852 }
1853 EXPORT_SYMBOL(full_name_hash);
1854
1855 /*
1856 * Calculate the length and hash of the path component, and
1857 * return the "hash_len" as the result.
1858 */
1859 static inline u64 hash_name(const char *name)
1860 {
1861 unsigned long a, b, adata, bdata, mask, hash, len;
1862 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1863
1864 hash = a = 0;
1865 len = -sizeof(unsigned long);
1866 do {
1867 hash = mix_hash(hash + a);
1868 len += sizeof(unsigned long);
1869 a = load_unaligned_zeropad(name+len);
1870 b = a ^ REPEAT_BYTE('/');
1871 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1872
1873 adata = prep_zero_mask(a, adata, &constants);
1874 bdata = prep_zero_mask(b, bdata, &constants);
1875
1876 mask = create_zero_mask(adata | bdata);
1877
1878 hash += a & zero_bytemask(mask);
1879 len += find_zero(mask);
1880 return hashlen_create(fold_hash(hash), len);
1881 }
1882
1883 #else
1884
1885 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1886 {
1887 unsigned long hash = init_name_hash();
1888 while (len--)
1889 hash = partial_name_hash(*name++, hash);
1890 return end_name_hash(hash);
1891 }
1892 EXPORT_SYMBOL(full_name_hash);
1893
1894 /*
1895 * We know there's a real path component here of at least
1896 * one character.
1897 */
1898 static inline u64 hash_name(const char *name)
1899 {
1900 unsigned long hash = init_name_hash();
1901 unsigned long len = 0, c;
1902
1903 c = (unsigned char)*name;
1904 do {
1905 len++;
1906 hash = partial_name_hash(c, hash);
1907 c = (unsigned char)name[len];
1908 } while (c && c != '/');
1909 return hashlen_create(end_name_hash(hash), len);
1910 }
1911
1912 #endif
1913
1914 /*
1915 * Name resolution.
1916 * This is the basic name resolution function, turning a pathname into
1917 * the final dentry. We expect 'base' to be positive and a directory.
1918 *
1919 * Returns 0 and nd will have valid dentry and mnt on success.
1920 * Returns error and drops reference to input namei data on failure.
1921 */
1922 static int link_path_walk(const char *name, struct nameidata *nd)
1923 {
1924 int err;
1925
1926 while (*name=='/')
1927 name++;
1928 if (!*name)
1929 return 0;
1930
1931 /* At this point we know we have a real path component. */
1932 for(;;) {
1933 u64 hash_len;
1934 int type;
1935
1936 err = may_lookup(nd);
1937 if (err)
1938 return err;
1939
1940 hash_len = hash_name(name);
1941
1942 type = LAST_NORM;
1943 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1944 case 2:
1945 if (name[1] == '.') {
1946 type = LAST_DOTDOT;
1947 nd->flags |= LOOKUP_JUMPED;
1948 }
1949 break;
1950 case 1:
1951 type = LAST_DOT;
1952 }
1953 if (likely(type == LAST_NORM)) {
1954 struct dentry *parent = nd->path.dentry;
1955 nd->flags &= ~LOOKUP_JUMPED;
1956 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1957 struct qstr this = { { .hash_len = hash_len }, .name = name };
1958 err = parent->d_op->d_hash(parent, &this);
1959 if (err < 0)
1960 return err;
1961 hash_len = this.hash_len;
1962 name = this.name;
1963 }
1964 }
1965
1966 nd->last.hash_len = hash_len;
1967 nd->last.name = name;
1968 nd->last_type = type;
1969
1970 name += hashlen_len(hash_len);
1971 if (!*name)
1972 goto OK;
1973 /*
1974 * If it wasn't NUL, we know it was '/'. Skip that
1975 * slash, and continue until no more slashes.
1976 */
1977 do {
1978 name++;
1979 } while (unlikely(*name == '/'));
1980 if (unlikely(!*name)) {
1981 OK:
1982 /* pathname body, done */
1983 if (!nd->depth)
1984 return 0;
1985 name = nd->stack[nd->depth - 1].name;
1986 /* trailing symlink, done */
1987 if (!name)
1988 return 0;
1989 /* last component of nested symlink */
1990 err = walk_component(nd, WALK_GET | WALK_PUT);
1991 } else {
1992 err = walk_component(nd, WALK_GET);
1993 }
1994 if (err < 0)
1995 return err;
1996
1997 if (err) {
1998 const char *s = get_link(nd);
1999
2000 if (IS_ERR(s))
2001 return PTR_ERR(s);
2002 err = 0;
2003 if (unlikely(!s)) {
2004 /* jumped */
2005 put_link(nd);
2006 } else {
2007 nd->stack[nd->depth - 1].name = name;
2008 name = s;
2009 continue;
2010 }
2011 }
2012 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2013 if (nd->flags & LOOKUP_RCU) {
2014 if (unlazy_walk(nd, NULL, 0))
2015 return -ECHILD;
2016 }
2017 return -ENOTDIR;
2018 }
2019 }
2020 }
2021
2022 static const char *path_init(struct nameidata *nd, unsigned flags)
2023 {
2024 int retval = 0;
2025 const char *s = nd->name->name;
2026
2027 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2028 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2029 nd->depth = 0;
2030 if (flags & LOOKUP_ROOT) {
2031 struct dentry *root = nd->root.dentry;
2032 struct inode *inode = root->d_inode;
2033 if (*s) {
2034 if (!d_can_lookup(root))
2035 return ERR_PTR(-ENOTDIR);
2036 retval = inode_permission(inode, MAY_EXEC);
2037 if (retval)
2038 return ERR_PTR(retval);
2039 }
2040 nd->path = nd->root;
2041 nd->inode = inode;
2042 if (flags & LOOKUP_RCU) {
2043 rcu_read_lock();
2044 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2045 nd->root_seq = nd->seq;
2046 nd->m_seq = read_seqbegin(&mount_lock);
2047 } else {
2048 path_get(&nd->path);
2049 }
2050 return s;
2051 }
2052
2053 nd->root.mnt = NULL;
2054 nd->path.mnt = NULL;
2055 nd->path.dentry = NULL;
2056
2057 nd->m_seq = read_seqbegin(&mount_lock);
2058 if (*s == '/') {
2059 if (flags & LOOKUP_RCU)
2060 rcu_read_lock();
2061 set_root(nd);
2062 if (likely(!nd_jump_root(nd)))
2063 return s;
2064 nd->root.mnt = NULL;
2065 rcu_read_unlock();
2066 return ERR_PTR(-ECHILD);
2067 } else if (nd->dfd == AT_FDCWD) {
2068 if (flags & LOOKUP_RCU) {
2069 struct fs_struct *fs = current->fs;
2070 unsigned seq;
2071
2072 rcu_read_lock();
2073
2074 do {
2075 seq = read_seqcount_begin(&fs->seq);
2076 nd->path = fs->pwd;
2077 nd->inode = nd->path.dentry->d_inode;
2078 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2079 } while (read_seqcount_retry(&fs->seq, seq));
2080 } else {
2081 get_fs_pwd(current->fs, &nd->path);
2082 nd->inode = nd->path.dentry->d_inode;
2083 }
2084 return s;
2085 } else {
2086 /* Caller must check execute permissions on the starting path component */
2087 struct fd f = fdget_raw(nd->dfd);
2088 struct dentry *dentry;
2089
2090 if (!f.file)
2091 return ERR_PTR(-EBADF);
2092
2093 dentry = f.file->f_path.dentry;
2094
2095 if (*s) {
2096 if (!d_can_lookup(dentry)) {
2097 fdput(f);
2098 return ERR_PTR(-ENOTDIR);
2099 }
2100 }
2101
2102 nd->path = f.file->f_path;
2103 if (flags & LOOKUP_RCU) {
2104 rcu_read_lock();
2105 nd->inode = nd->path.dentry->d_inode;
2106 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2107 } else {
2108 path_get(&nd->path);
2109 nd->inode = nd->path.dentry->d_inode;
2110 }
2111 fdput(f);
2112 return s;
2113 }
2114 }
2115
2116 static const char *trailing_symlink(struct nameidata *nd)
2117 {
2118 const char *s;
2119 int error = may_follow_link(nd);
2120 if (unlikely(error))
2121 return ERR_PTR(error);
2122 nd->flags |= LOOKUP_PARENT;
2123 nd->stack[0].name = NULL;
2124 s = get_link(nd);
2125 return s ? s : "";
2126 }
2127
2128 static inline int lookup_last(struct nameidata *nd)
2129 {
2130 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2131 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2132
2133 nd->flags &= ~LOOKUP_PARENT;
2134 return walk_component(nd,
2135 nd->flags & LOOKUP_FOLLOW
2136 ? nd->depth
2137 ? WALK_PUT | WALK_GET
2138 : WALK_GET
2139 : 0);
2140 }
2141
2142 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2143 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2144 {
2145 const char *s = path_init(nd, flags);
2146 int err;
2147
2148 if (IS_ERR(s))
2149 return PTR_ERR(s);
2150 while (!(err = link_path_walk(s, nd))
2151 && ((err = lookup_last(nd)) > 0)) {
2152 s = trailing_symlink(nd);
2153 if (IS_ERR(s)) {
2154 err = PTR_ERR(s);
2155 break;
2156 }
2157 }
2158 if (!err)
2159 err = complete_walk(nd);
2160
2161 if (!err && nd->flags & LOOKUP_DIRECTORY)
2162 if (!d_can_lookup(nd->path.dentry))
2163 err = -ENOTDIR;
2164 if (!err) {
2165 *path = nd->path;
2166 nd->path.mnt = NULL;
2167 nd->path.dentry = NULL;
2168 }
2169 terminate_walk(nd);
2170 return err;
2171 }
2172
2173 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2174 struct path *path, struct path *root)
2175 {
2176 int retval;
2177 struct nameidata nd;
2178 if (IS_ERR(name))
2179 return PTR_ERR(name);
2180 if (unlikely(root)) {
2181 nd.root = *root;
2182 flags |= LOOKUP_ROOT;
2183 }
2184 set_nameidata(&nd, dfd, name);
2185 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2186 if (unlikely(retval == -ECHILD))
2187 retval = path_lookupat(&nd, flags, path);
2188 if (unlikely(retval == -ESTALE))
2189 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2190
2191 if (likely(!retval))
2192 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2193 restore_nameidata();
2194 putname(name);
2195 return retval;
2196 }
2197
2198 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2199 static int path_parentat(struct nameidata *nd, unsigned flags,
2200 struct path *parent)
2201 {
2202 const char *s = path_init(nd, flags);
2203 int err;
2204 if (IS_ERR(s))
2205 return PTR_ERR(s);
2206 err = link_path_walk(s, nd);
2207 if (!err)
2208 err = complete_walk(nd);
2209 if (!err) {
2210 *parent = nd->path;
2211 nd->path.mnt = NULL;
2212 nd->path.dentry = NULL;
2213 }
2214 terminate_walk(nd);
2215 return err;
2216 }
2217
2218 static struct filename *filename_parentat(int dfd, struct filename *name,
2219 unsigned int flags, struct path *parent,
2220 struct qstr *last, int *type)
2221 {
2222 int retval;
2223 struct nameidata nd;
2224
2225 if (IS_ERR(name))
2226 return name;
2227 set_nameidata(&nd, dfd, name);
2228 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2229 if (unlikely(retval == -ECHILD))
2230 retval = path_parentat(&nd, flags, parent);
2231 if (unlikely(retval == -ESTALE))
2232 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2233 if (likely(!retval)) {
2234 *last = nd.last;
2235 *type = nd.last_type;
2236 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2237 } else {
2238 putname(name);
2239 name = ERR_PTR(retval);
2240 }
2241 restore_nameidata();
2242 return name;
2243 }
2244
2245 /* does lookup, returns the object with parent locked */
2246 struct dentry *kern_path_locked(const char *name, struct path *path)
2247 {
2248 struct filename *filename;
2249 struct dentry *d;
2250 struct qstr last;
2251 int type;
2252
2253 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2254 &last, &type);
2255 if (IS_ERR(filename))
2256 return ERR_CAST(filename);
2257 if (unlikely(type != LAST_NORM)) {
2258 path_put(path);
2259 putname(filename);
2260 return ERR_PTR(-EINVAL);
2261 }
2262 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2263 d = __lookup_hash(&last, path->dentry, 0);
2264 if (IS_ERR(d)) {
2265 inode_unlock(path->dentry->d_inode);
2266 path_put(path);
2267 }
2268 putname(filename);
2269 return d;
2270 }
2271
2272 int kern_path(const char *name, unsigned int flags, struct path *path)
2273 {
2274 return filename_lookup(AT_FDCWD, getname_kernel(name),
2275 flags, path, NULL);
2276 }
2277 EXPORT_SYMBOL(kern_path);
2278
2279 /**
2280 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2281 * @dentry: pointer to dentry of the base directory
2282 * @mnt: pointer to vfs mount of the base directory
2283 * @name: pointer to file name
2284 * @flags: lookup flags
2285 * @path: pointer to struct path to fill
2286 */
2287 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2288 const char *name, unsigned int flags,
2289 struct path *path)
2290 {
2291 struct path root = {.mnt = mnt, .dentry = dentry};
2292 /* the first argument of filename_lookup() is ignored with root */
2293 return filename_lookup(AT_FDCWD, getname_kernel(name),
2294 flags , path, &root);
2295 }
2296 EXPORT_SYMBOL(vfs_path_lookup);
2297
2298 /**
2299 * lookup_hash - lookup single pathname component on already hashed name
2300 * @name: name and hash to lookup
2301 * @base: base directory to lookup from
2302 *
2303 * The name must have been verified and hashed (see lookup_one_len()). Using
2304 * this after just full_name_hash() is unsafe.
2305 *
2306 * This function also doesn't check for search permission on base directory.
2307 *
2308 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2309 * doing.
2310 *
2311 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2312 */
2313 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2314 {
2315 struct dentry *ret;
2316
2317 ret = lookup_dcache(name, base, 0);
2318 if (!ret)
2319 ret = lookup_slow(name, base, 0);
2320
2321 return ret;
2322 }
2323 EXPORT_SYMBOL(lookup_hash);
2324
2325 /**
2326 * lookup_one_len - filesystem helper to lookup single pathname component
2327 * @name: pathname component to lookup
2328 * @base: base directory to lookup from
2329 * @len: maximum length @len should be interpreted to
2330 *
2331 * Note that this routine is purely a helper for filesystem usage and should
2332 * not be called by generic code.
2333 *
2334 * The caller must hold base->i_mutex.
2335 */
2336 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2337 {
2338 struct qstr this;
2339 unsigned int c;
2340 int err;
2341
2342 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2343
2344 this.name = name;
2345 this.len = len;
2346 this.hash = full_name_hash(name, len);
2347 if (!len)
2348 return ERR_PTR(-EACCES);
2349
2350 if (unlikely(name[0] == '.')) {
2351 if (len < 2 || (len == 2 && name[1] == '.'))
2352 return ERR_PTR(-EACCES);
2353 }
2354
2355 while (len--) {
2356 c = *(const unsigned char *)name++;
2357 if (c == '/' || c == '\0')
2358 return ERR_PTR(-EACCES);
2359 }
2360 /*
2361 * See if the low-level filesystem might want
2362 * to use its own hash..
2363 */
2364 if (base->d_flags & DCACHE_OP_HASH) {
2365 int err = base->d_op->d_hash(base, &this);
2366 if (err < 0)
2367 return ERR_PTR(err);
2368 }
2369
2370 err = inode_permission(base->d_inode, MAY_EXEC);
2371 if (err)
2372 return ERR_PTR(err);
2373
2374 return __lookup_hash(&this, base, 0);
2375 }
2376 EXPORT_SYMBOL(lookup_one_len);
2377
2378 /**
2379 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2380 * @name: pathname component to lookup
2381 * @base: base directory to lookup from
2382 * @len: maximum length @len should be interpreted to
2383 *
2384 * Note that this routine is purely a helper for filesystem usage and should
2385 * not be called by generic code.
2386 *
2387 * Unlike lookup_one_len, it should be called without the parent
2388 * i_mutex held, and will take the i_mutex itself if necessary.
2389 */
2390 struct dentry *lookup_one_len_unlocked(const char *name,
2391 struct dentry *base, int len)
2392 {
2393 struct qstr this;
2394 unsigned int c;
2395 int err;
2396
2397 this.name = name;
2398 this.len = len;
2399 this.hash = full_name_hash(name, len);
2400 if (!len)
2401 return ERR_PTR(-EACCES);
2402
2403 if (unlikely(name[0] == '.')) {
2404 if (len < 2 || (len == 2 && name[1] == '.'))
2405 return ERR_PTR(-EACCES);
2406 }
2407
2408 while (len--) {
2409 c = *(const unsigned char *)name++;
2410 if (c == '/' || c == '\0')
2411 return ERR_PTR(-EACCES);
2412 }
2413 /*
2414 * See if the low-level filesystem might want
2415 * to use its own hash..
2416 */
2417 if (base->d_flags & DCACHE_OP_HASH) {
2418 int err = base->d_op->d_hash(base, &this);
2419 if (err < 0)
2420 return ERR_PTR(err);
2421 }
2422
2423 err = inode_permission(base->d_inode, MAY_EXEC);
2424 if (err)
2425 return ERR_PTR(err);
2426
2427 return lookup_hash(&this, base);
2428 }
2429 EXPORT_SYMBOL(lookup_one_len_unlocked);
2430
2431 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2432 struct path *path, int *empty)
2433 {
2434 return filename_lookup(dfd, getname_flags(name, flags, empty),
2435 flags, path, NULL);
2436 }
2437 EXPORT_SYMBOL(user_path_at_empty);
2438
2439 /*
2440 * NB: most callers don't do anything directly with the reference to the
2441 * to struct filename, but the nd->last pointer points into the name string
2442 * allocated by getname. So we must hold the reference to it until all
2443 * path-walking is complete.
2444 */
2445 static inline struct filename *
2446 user_path_parent(int dfd, const char __user *path,
2447 struct path *parent,
2448 struct qstr *last,
2449 int *type,
2450 unsigned int flags)
2451 {
2452 /* only LOOKUP_REVAL is allowed in extra flags */
2453 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2454 parent, last, type);
2455 }
2456
2457 /**
2458 * mountpoint_last - look up last component for umount
2459 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2460 * @path: pointer to container for result
2461 *
2462 * This is a special lookup_last function just for umount. In this case, we
2463 * need to resolve the path without doing any revalidation.
2464 *
2465 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2466 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2467 * in almost all cases, this lookup will be served out of the dcache. The only
2468 * cases where it won't are if nd->last refers to a symlink or the path is
2469 * bogus and it doesn't exist.
2470 *
2471 * Returns:
2472 * -error: if there was an error during lookup. This includes -ENOENT if the
2473 * lookup found a negative dentry. The nd->path reference will also be
2474 * put in this case.
2475 *
2476 * 0: if we successfully resolved nd->path and found it to not to be a
2477 * symlink that needs to be followed. "path" will also be populated.
2478 * The nd->path reference will also be put.
2479 *
2480 * 1: if we successfully resolved nd->last and found it to be a symlink
2481 * that needs to be followed. "path" will be populated with the path
2482 * to the link, and nd->path will *not* be put.
2483 */
2484 static int
2485 mountpoint_last(struct nameidata *nd, struct path *path)
2486 {
2487 int error = 0;
2488 struct dentry *dentry;
2489 struct dentry *dir = nd->path.dentry;
2490
2491 /* If we're in rcuwalk, drop out of it to handle last component */
2492 if (nd->flags & LOOKUP_RCU) {
2493 if (unlazy_walk(nd, NULL, 0))
2494 return -ECHILD;
2495 }
2496
2497 nd->flags &= ~LOOKUP_PARENT;
2498
2499 if (unlikely(nd->last_type != LAST_NORM)) {
2500 error = handle_dots(nd, nd->last_type);
2501 if (error)
2502 return error;
2503 dentry = dget(nd->path.dentry);
2504 } else {
2505 dentry = d_lookup(dir, &nd->last);
2506 if (!dentry) {
2507 /*
2508 * No cached dentry. Mounted dentries are pinned in the
2509 * cache, so that means that this dentry is probably
2510 * a symlink or the path doesn't actually point
2511 * to a mounted dentry.
2512 */
2513 dentry = lookup_slow(&nd->last, dir,
2514 nd->flags | LOOKUP_NO_REVAL);
2515 if (IS_ERR(dentry))
2516 return PTR_ERR(dentry);
2517 }
2518 }
2519 if (d_is_negative(dentry)) {
2520 dput(dentry);
2521 return -ENOENT;
2522 }
2523 if (nd->depth)
2524 put_link(nd);
2525 path->dentry = dentry;
2526 path->mnt = nd->path.mnt;
2527 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2528 d_backing_inode(dentry), 0);
2529 if (unlikely(error))
2530 return error;
2531 mntget(path->mnt);
2532 follow_mount(path);
2533 return 0;
2534 }
2535
2536 /**
2537 * path_mountpoint - look up a path to be umounted
2538 * @nd: lookup context
2539 * @flags: lookup flags
2540 * @path: pointer to container for result
2541 *
2542 * Look up the given name, but don't attempt to revalidate the last component.
2543 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2544 */
2545 static int
2546 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2547 {
2548 const char *s = path_init(nd, flags);
2549 int err;
2550 if (IS_ERR(s))
2551 return PTR_ERR(s);
2552 while (!(err = link_path_walk(s, nd)) &&
2553 (err = mountpoint_last(nd, path)) > 0) {
2554 s = trailing_symlink(nd);
2555 if (IS_ERR(s)) {
2556 err = PTR_ERR(s);
2557 break;
2558 }
2559 }
2560 terminate_walk(nd);
2561 return err;
2562 }
2563
2564 static int
2565 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2566 unsigned int flags)
2567 {
2568 struct nameidata nd;
2569 int error;
2570 if (IS_ERR(name))
2571 return PTR_ERR(name);
2572 set_nameidata(&nd, dfd, name);
2573 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2574 if (unlikely(error == -ECHILD))
2575 error = path_mountpoint(&nd, flags, path);
2576 if (unlikely(error == -ESTALE))
2577 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2578 if (likely(!error))
2579 audit_inode(name, path->dentry, 0);
2580 restore_nameidata();
2581 putname(name);
2582 return error;
2583 }
2584
2585 /**
2586 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2587 * @dfd: directory file descriptor
2588 * @name: pathname from userland
2589 * @flags: lookup flags
2590 * @path: pointer to container to hold result
2591 *
2592 * A umount is a special case for path walking. We're not actually interested
2593 * in the inode in this situation, and ESTALE errors can be a problem. We
2594 * simply want track down the dentry and vfsmount attached at the mountpoint
2595 * and avoid revalidating the last component.
2596 *
2597 * Returns 0 and populates "path" on success.
2598 */
2599 int
2600 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2601 struct path *path)
2602 {
2603 return filename_mountpoint(dfd, getname(name), path, flags);
2604 }
2605
2606 int
2607 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2608 unsigned int flags)
2609 {
2610 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2611 }
2612 EXPORT_SYMBOL(kern_path_mountpoint);
2613
2614 int __check_sticky(struct inode *dir, struct inode *inode)
2615 {
2616 kuid_t fsuid = current_fsuid();
2617
2618 if (uid_eq(inode->i_uid, fsuid))
2619 return 0;
2620 if (uid_eq(dir->i_uid, fsuid))
2621 return 0;
2622 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2623 }
2624 EXPORT_SYMBOL(__check_sticky);
2625
2626 /*
2627 * Check whether we can remove a link victim from directory dir, check
2628 * whether the type of victim is right.
2629 * 1. We can't do it if dir is read-only (done in permission())
2630 * 2. We should have write and exec permissions on dir
2631 * 3. We can't remove anything from append-only dir
2632 * 4. We can't do anything with immutable dir (done in permission())
2633 * 5. If the sticky bit on dir is set we should either
2634 * a. be owner of dir, or
2635 * b. be owner of victim, or
2636 * c. have CAP_FOWNER capability
2637 * 6. If the victim is append-only or immutable we can't do antyhing with
2638 * links pointing to it.
2639 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2640 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2641 * 9. We can't remove a root or mountpoint.
2642 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2643 * nfs_async_unlink().
2644 */
2645 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2646 {
2647 struct inode *inode = d_backing_inode(victim);
2648 int error;
2649
2650 if (d_is_negative(victim))
2651 return -ENOENT;
2652 BUG_ON(!inode);
2653
2654 BUG_ON(victim->d_parent->d_inode != dir);
2655 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2656
2657 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2658 if (error)
2659 return error;
2660 if (IS_APPEND(dir))
2661 return -EPERM;
2662
2663 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2664 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2665 return -EPERM;
2666 if (isdir) {
2667 if (!d_is_dir(victim))
2668 return -ENOTDIR;
2669 if (IS_ROOT(victim))
2670 return -EBUSY;
2671 } else if (d_is_dir(victim))
2672 return -EISDIR;
2673 if (IS_DEADDIR(dir))
2674 return -ENOENT;
2675 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2676 return -EBUSY;
2677 return 0;
2678 }
2679
2680 /* Check whether we can create an object with dentry child in directory
2681 * dir.
2682 * 1. We can't do it if child already exists (open has special treatment for
2683 * this case, but since we are inlined it's OK)
2684 * 2. We can't do it if dir is read-only (done in permission())
2685 * 3. We should have write and exec permissions on dir
2686 * 4. We can't do it if dir is immutable (done in permission())
2687 */
2688 static inline int may_create(struct inode *dir, struct dentry *child)
2689 {
2690 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2691 if (child->d_inode)
2692 return -EEXIST;
2693 if (IS_DEADDIR(dir))
2694 return -ENOENT;
2695 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2696 }
2697
2698 /*
2699 * p1 and p2 should be directories on the same fs.
2700 */
2701 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2702 {
2703 struct dentry *p;
2704
2705 if (p1 == p2) {
2706 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2707 return NULL;
2708 }
2709
2710 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2711
2712 p = d_ancestor(p2, p1);
2713 if (p) {
2714 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2715 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2716 return p;
2717 }
2718
2719 p = d_ancestor(p1, p2);
2720 if (p) {
2721 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2722 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2723 return p;
2724 }
2725
2726 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2727 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2728 return NULL;
2729 }
2730 EXPORT_SYMBOL(lock_rename);
2731
2732 void unlock_rename(struct dentry *p1, struct dentry *p2)
2733 {
2734 inode_unlock(p1->d_inode);
2735 if (p1 != p2) {
2736 inode_unlock(p2->d_inode);
2737 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2738 }
2739 }
2740 EXPORT_SYMBOL(unlock_rename);
2741
2742 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2743 bool want_excl)
2744 {
2745 int error = may_create(dir, dentry);
2746 if (error)
2747 return error;
2748
2749 if (!dir->i_op->create)
2750 return -EACCES; /* shouldn't it be ENOSYS? */
2751 mode &= S_IALLUGO;
2752 mode |= S_IFREG;
2753 error = security_inode_create(dir, dentry, mode);
2754 if (error)
2755 return error;
2756 error = dir->i_op->create(dir, dentry, mode, want_excl);
2757 if (!error)
2758 fsnotify_create(dir, dentry);
2759 return error;
2760 }
2761 EXPORT_SYMBOL(vfs_create);
2762
2763 static int may_open(struct path *path, int acc_mode, int flag)
2764 {
2765 struct dentry *dentry = path->dentry;
2766 struct inode *inode = dentry->d_inode;
2767 int error;
2768
2769 if (!inode)
2770 return -ENOENT;
2771
2772 switch (inode->i_mode & S_IFMT) {
2773 case S_IFLNK:
2774 return -ELOOP;
2775 case S_IFDIR:
2776 if (acc_mode & MAY_WRITE)
2777 return -EISDIR;
2778 break;
2779 case S_IFBLK:
2780 case S_IFCHR:
2781 if (path->mnt->mnt_flags & MNT_NODEV)
2782 return -EACCES;
2783 /*FALLTHRU*/
2784 case S_IFIFO:
2785 case S_IFSOCK:
2786 flag &= ~O_TRUNC;
2787 break;
2788 }
2789
2790 error = inode_permission(inode, MAY_OPEN | acc_mode);
2791 if (error)
2792 return error;
2793
2794 /*
2795 * An append-only file must be opened in append mode for writing.
2796 */
2797 if (IS_APPEND(inode)) {
2798 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2799 return -EPERM;
2800 if (flag & O_TRUNC)
2801 return -EPERM;
2802 }
2803
2804 /* O_NOATIME can only be set by the owner or superuser */
2805 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2806 return -EPERM;
2807
2808 return 0;
2809 }
2810
2811 static int handle_truncate(struct file *filp)
2812 {
2813 struct path *path = &filp->f_path;
2814 struct inode *inode = path->dentry->d_inode;
2815 int error = get_write_access(inode);
2816 if (error)
2817 return error;
2818 /*
2819 * Refuse to truncate files with mandatory locks held on them.
2820 */
2821 error = locks_verify_locked(filp);
2822 if (!error)
2823 error = security_path_truncate(path);
2824 if (!error) {
2825 error = do_truncate(path->dentry, 0,
2826 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2827 filp);
2828 }
2829 put_write_access(inode);
2830 return error;
2831 }
2832
2833 static inline int open_to_namei_flags(int flag)
2834 {
2835 if ((flag & O_ACCMODE) == 3)
2836 flag--;
2837 return flag;
2838 }
2839
2840 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2841 {
2842 int error = security_path_mknod(dir, dentry, mode, 0);
2843 if (error)
2844 return error;
2845
2846 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2847 if (error)
2848 return error;
2849
2850 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2851 }
2852
2853 /*
2854 * Attempt to atomically look up, create and open a file from a negative
2855 * dentry.
2856 *
2857 * Returns 0 if successful. The file will have been created and attached to
2858 * @file by the filesystem calling finish_open().
2859 *
2860 * Returns 1 if the file was looked up only or didn't need creating. The
2861 * caller will need to perform the open themselves. @path will have been
2862 * updated to point to the new dentry. This may be negative.
2863 *
2864 * Returns an error code otherwise.
2865 */
2866 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2867 struct path *path, struct file *file,
2868 const struct open_flags *op,
2869 int open_flag, umode_t mode,
2870 int *opened)
2871 {
2872 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2873 struct inode *dir = nd->path.dentry->d_inode;
2874 int error;
2875
2876 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2877 open_flag &= ~O_TRUNC;
2878
2879 if (nd->flags & LOOKUP_DIRECTORY)
2880 open_flag |= O_DIRECTORY;
2881
2882 file->f_path.dentry = DENTRY_NOT_SET;
2883 file->f_path.mnt = nd->path.mnt;
2884 error = dir->i_op->atomic_open(dir, dentry, file,
2885 open_to_namei_flags(open_flag),
2886 mode, opened);
2887 d_lookup_done(dentry);
2888 if (!error) {
2889 /*
2890 * We didn't have the inode before the open, so check open
2891 * permission here.
2892 */
2893 int acc_mode = op->acc_mode;
2894 if (*opened & FILE_CREATED) {
2895 WARN_ON(!(open_flag & O_CREAT));
2896 fsnotify_create(dir, dentry);
2897 acc_mode = 0;
2898 }
2899 error = may_open(&file->f_path, acc_mode, open_flag);
2900 if (WARN_ON(error > 0))
2901 error = -EINVAL;
2902 } else if (error > 0) {
2903 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2904 error = -EIO;
2905 } else {
2906 if (file->f_path.dentry) {
2907 dput(dentry);
2908 dentry = file->f_path.dentry;
2909 }
2910 if (*opened & FILE_CREATED)
2911 fsnotify_create(dir, dentry);
2912 path->dentry = dentry;
2913 path->mnt = nd->path.mnt;
2914 return 1;
2915 }
2916 }
2917 dput(dentry);
2918 return error;
2919 }
2920
2921 /*
2922 * Look up and maybe create and open the last component.
2923 *
2924 * Must be called with i_mutex held on parent.
2925 *
2926 * Returns 0 if the file was successfully atomically created (if necessary) and
2927 * opened. In this case the file will be returned attached to @file.
2928 *
2929 * Returns 1 if the file was not completely opened at this time, though lookups
2930 * and creations will have been performed and the dentry returned in @path will
2931 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2932 * specified then a negative dentry may be returned.
2933 *
2934 * An error code is returned otherwise.
2935 *
2936 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2937 * cleared otherwise prior to returning.
2938 */
2939 static int lookup_open(struct nameidata *nd, struct path *path,
2940 struct file *file,
2941 const struct open_flags *op,
2942 bool got_write, int *opened)
2943 {
2944 struct dentry *dir = nd->path.dentry;
2945 struct inode *dir_inode = dir->d_inode;
2946 int open_flag = op->open_flag;
2947 struct dentry *dentry;
2948 int error, create_error = 0;
2949 umode_t mode = op->mode;
2950 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2951
2952 if (unlikely(IS_DEADDIR(dir_inode)))
2953 return -ENOENT;
2954
2955 *opened &= ~FILE_CREATED;
2956 dentry = d_lookup(dir, &nd->last);
2957 for (;;) {
2958 if (!dentry) {
2959 dentry = d_alloc_parallel(dir, &nd->last, &wq);
2960 if (IS_ERR(dentry))
2961 return PTR_ERR(dentry);
2962 }
2963 if (d_in_lookup(dentry))
2964 break;
2965
2966 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
2967 break;
2968
2969 error = d_revalidate(dentry, nd->flags);
2970 if (likely(error > 0))
2971 break;
2972 if (error)
2973 goto out_dput;
2974 d_invalidate(dentry);
2975 dput(dentry);
2976 dentry = NULL;
2977 }
2978 if (dentry->d_inode) {
2979 /* Cached positive dentry: will open in f_op->open */
2980 goto out_no_open;
2981 }
2982
2983 /*
2984 * Checking write permission is tricky, bacuse we don't know if we are
2985 * going to actually need it: O_CREAT opens should work as long as the
2986 * file exists. But checking existence breaks atomicity. The trick is
2987 * to check access and if not granted clear O_CREAT from the flags.
2988 *
2989 * Another problem is returing the "right" error value (e.g. for an
2990 * O_EXCL open we want to return EEXIST not EROFS).
2991 */
2992 if (open_flag & O_CREAT) {
2993 if (!IS_POSIXACL(dir->d_inode))
2994 mode &= ~current_umask();
2995 if (unlikely(!got_write)) {
2996 create_error = -EROFS;
2997 open_flag &= ~O_CREAT;
2998 if (open_flag & (O_EXCL | O_TRUNC))
2999 goto no_open;
3000 /* No side effects, safe to clear O_CREAT */
3001 } else {
3002 create_error = may_o_create(&nd->path, dentry, mode);
3003 if (create_error) {
3004 open_flag &= ~O_CREAT;
3005 if (open_flag & O_EXCL)
3006 goto no_open;
3007 }
3008 }
3009 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3010 unlikely(!got_write)) {
3011 /*
3012 * No O_CREATE -> atomicity not a requirement -> fall
3013 * back to lookup + open
3014 */
3015 goto no_open;
3016 }
3017
3018 if (dir_inode->i_op->atomic_open) {
3019 error = atomic_open(nd, dentry, path, file, op, open_flag,
3020 mode, opened);
3021 if (unlikely(error == -ENOENT) && create_error)
3022 error = create_error;
3023 return error;
3024 }
3025
3026 no_open:
3027 if (d_in_lookup(dentry)) {
3028 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3029 nd->flags);
3030 d_lookup_done(dentry);
3031 if (unlikely(res)) {
3032 if (IS_ERR(res)) {
3033 error = PTR_ERR(res);
3034 goto out_dput;
3035 }
3036 dput(dentry);
3037 dentry = res;
3038 }
3039 }
3040
3041 /* Negative dentry, just create the file */
3042 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3043 *opened |= FILE_CREATED;
3044 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3045 if (!dir_inode->i_op->create) {
3046 error = -EACCES;
3047 goto out_dput;
3048 }
3049 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3050 open_flag & O_EXCL);
3051 if (error)
3052 goto out_dput;
3053 fsnotify_create(dir_inode, dentry);
3054 }
3055 if (unlikely(create_error) && !dentry->d_inode) {
3056 error = create_error;
3057 goto out_dput;
3058 }
3059 out_no_open:
3060 path->dentry = dentry;
3061 path->mnt = nd->path.mnt;
3062 return 1;
3063
3064 out_dput:
3065 dput(dentry);
3066 return error;
3067 }
3068
3069 /*
3070 * Handle the last step of open()
3071 */
3072 static int do_last(struct nameidata *nd,
3073 struct file *file, const struct open_flags *op,
3074 int *opened)
3075 {
3076 struct dentry *dir = nd->path.dentry;
3077 int open_flag = op->open_flag;
3078 bool will_truncate = (open_flag & O_TRUNC) != 0;
3079 bool got_write = false;
3080 int acc_mode = op->acc_mode;
3081 unsigned seq;
3082 struct inode *inode;
3083 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3084 struct path path;
3085 bool retried = false;
3086 int error;
3087
3088 nd->flags &= ~LOOKUP_PARENT;
3089 nd->flags |= op->intent;
3090
3091 if (nd->last_type != LAST_NORM) {
3092 error = handle_dots(nd, nd->last_type);
3093 if (unlikely(error))
3094 return error;
3095 goto finish_open;
3096 }
3097
3098 if (!(open_flag & O_CREAT)) {
3099 if (nd->last.name[nd->last.len])
3100 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3101 /* we _can_ be in RCU mode here */
3102 error = lookup_fast(nd, &path, &inode, &seq);
3103 if (likely(error > 0))
3104 goto finish_lookup;
3105
3106 if (error < 0)
3107 return error;
3108
3109 BUG_ON(nd->inode != dir->d_inode);
3110 BUG_ON(nd->flags & LOOKUP_RCU);
3111 } else {
3112 /* create side of things */
3113 /*
3114 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3115 * has been cleared when we got to the last component we are
3116 * about to look up
3117 */
3118 error = complete_walk(nd);
3119 if (error)
3120 return error;
3121
3122 audit_inode(nd->name, dir, LOOKUP_PARENT);
3123 /* trailing slashes? */
3124 if (unlikely(nd->last.name[nd->last.len]))
3125 return -EISDIR;
3126 }
3127
3128 retry_lookup:
3129 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3130 error = mnt_want_write(nd->path.mnt);
3131 if (!error)
3132 got_write = true;
3133 /*
3134 * do _not_ fail yet - we might not need that or fail with
3135 * a different error; let lookup_open() decide; we'll be
3136 * dropping this one anyway.
3137 */
3138 }
3139 if (open_flag & O_CREAT)
3140 inode_lock(dir->d_inode);
3141 else
3142 inode_lock_shared(dir->d_inode);
3143 error = lookup_open(nd, &path, file, op, got_write, opened);
3144 if (open_flag & O_CREAT)
3145 inode_unlock(dir->d_inode);
3146 else
3147 inode_unlock_shared(dir->d_inode);
3148
3149 if (error <= 0) {
3150 if (error)
3151 goto out;
3152
3153 if ((*opened & FILE_CREATED) ||
3154 !S_ISREG(file_inode(file)->i_mode))
3155 will_truncate = false;
3156
3157 audit_inode(nd->name, file->f_path.dentry, 0);
3158 goto opened;
3159 }
3160
3161 if (*opened & FILE_CREATED) {
3162 /* Don't check for write permission, don't truncate */
3163 open_flag &= ~O_TRUNC;
3164 will_truncate = false;
3165 acc_mode = 0;
3166 path_to_nameidata(&path, nd);
3167 goto finish_open_created;
3168 }
3169
3170 /*
3171 * If atomic_open() acquired write access it is dropped now due to
3172 * possible mount and symlink following (this might be optimized away if
3173 * necessary...)
3174 */
3175 if (got_write) {
3176 mnt_drop_write(nd->path.mnt);
3177 got_write = false;
3178 }
3179
3180 if (unlikely(d_is_negative(path.dentry))) {
3181 path_to_nameidata(&path, nd);
3182 return -ENOENT;
3183 }
3184
3185 /*
3186 * create/update audit record if it already exists.
3187 */
3188 audit_inode(nd->name, path.dentry, 0);
3189
3190 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3191 path_to_nameidata(&path, nd);
3192 return -EEXIST;
3193 }
3194
3195 error = follow_managed(&path, nd);
3196 if (unlikely(error < 0))
3197 return error;
3198
3199 seq = 0; /* out of RCU mode, so the value doesn't matter */
3200 inode = d_backing_inode(path.dentry);
3201 finish_lookup:
3202 if (nd->depth)
3203 put_link(nd);
3204 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3205 inode, seq);
3206 if (unlikely(error))
3207 return error;
3208
3209 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3210 path_to_nameidata(&path, nd);
3211 } else {
3212 save_parent.dentry = nd->path.dentry;
3213 save_parent.mnt = mntget(path.mnt);
3214 nd->path.dentry = path.dentry;
3215
3216 }
3217 nd->inode = inode;
3218 nd->seq = seq;
3219 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3220 finish_open:
3221 error = complete_walk(nd);
3222 if (error) {
3223 path_put(&save_parent);
3224 return error;
3225 }
3226 audit_inode(nd->name, nd->path.dentry, 0);
3227 error = -EISDIR;
3228 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3229 goto out;
3230 error = -ENOTDIR;
3231 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3232 goto out;
3233 if (!d_is_reg(nd->path.dentry))
3234 will_truncate = false;
3235
3236 if (will_truncate) {
3237 error = mnt_want_write(nd->path.mnt);
3238 if (error)
3239 goto out;
3240 got_write = true;
3241 }
3242 finish_open_created:
3243 error = may_open(&nd->path, acc_mode, open_flag);
3244 if (error)
3245 goto out;
3246 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3247 error = vfs_open(&nd->path, file, current_cred());
3248 if (!error) {
3249 *opened |= FILE_OPENED;
3250 } else {
3251 if (error == -EOPENSTALE)
3252 goto stale_open;
3253 goto out;
3254 }
3255 opened:
3256 error = open_check_o_direct(file);
3257 if (!error)
3258 error = ima_file_check(file, op->acc_mode, *opened);
3259 if (!error && will_truncate)
3260 error = handle_truncate(file);
3261 out:
3262 if (unlikely(error) && (*opened & FILE_OPENED))
3263 fput(file);
3264 if (unlikely(error > 0)) {
3265 WARN_ON(1);
3266 error = -EINVAL;
3267 }
3268 if (got_write)
3269 mnt_drop_write(nd->path.mnt);
3270 path_put(&save_parent);
3271 return error;
3272
3273 stale_open:
3274 /* If no saved parent or already retried then can't retry */
3275 if (!save_parent.dentry || retried)
3276 goto out;
3277
3278 BUG_ON(save_parent.dentry != dir);
3279 path_put(&nd->path);
3280 nd->path = save_parent;
3281 nd->inode = dir->d_inode;
3282 save_parent.mnt = NULL;
3283 save_parent.dentry = NULL;
3284 if (got_write) {
3285 mnt_drop_write(nd->path.mnt);
3286 got_write = false;
3287 }
3288 retried = true;
3289 goto retry_lookup;
3290 }
3291
3292 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3293 const struct open_flags *op,
3294 struct file *file, int *opened)
3295 {
3296 static const struct qstr name = QSTR_INIT("/", 1);
3297 struct dentry *child;
3298 struct inode *dir;
3299 struct path path;
3300 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3301 if (unlikely(error))
3302 return error;
3303 error = mnt_want_write(path.mnt);
3304 if (unlikely(error))
3305 goto out;
3306 dir = path.dentry->d_inode;
3307 /* we want directory to be writable */
3308 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3309 if (error)
3310 goto out2;
3311 if (!dir->i_op->tmpfile) {
3312 error = -EOPNOTSUPP;
3313 goto out2;
3314 }
3315 child = d_alloc(path.dentry, &name);
3316 if (unlikely(!child)) {
3317 error = -ENOMEM;
3318 goto out2;
3319 }
3320 dput(path.dentry);
3321 path.dentry = child;
3322 error = dir->i_op->tmpfile(dir, child, op->mode);
3323 if (error)
3324 goto out2;
3325 audit_inode(nd->name, child, 0);
3326 /* Don't check for other permissions, the inode was just created */
3327 error = may_open(&path, 0, op->open_flag);
3328 if (error)
3329 goto out2;
3330 file->f_path.mnt = path.mnt;
3331 error = finish_open(file, child, NULL, opened);
3332 if (error)
3333 goto out2;
3334 error = open_check_o_direct(file);
3335 if (error) {
3336 fput(file);
3337 } else if (!(op->open_flag & O_EXCL)) {
3338 struct inode *inode = file_inode(file);
3339 spin_lock(&inode->i_lock);
3340 inode->i_state |= I_LINKABLE;
3341 spin_unlock(&inode->i_lock);
3342 }
3343 out2:
3344 mnt_drop_write(path.mnt);
3345 out:
3346 path_put(&path);
3347 return error;
3348 }
3349
3350 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3351 {
3352 struct path path;
3353 int error = path_lookupat(nd, flags, &path);
3354 if (!error) {
3355 audit_inode(nd->name, path.dentry, 0);
3356 error = vfs_open(&path, file, current_cred());
3357 path_put(&path);
3358 }
3359 return error;
3360 }
3361
3362 static struct file *path_openat(struct nameidata *nd,
3363 const struct open_flags *op, unsigned flags)
3364 {
3365 const char *s;
3366 struct file *file;
3367 int opened = 0;
3368 int error;
3369
3370 file = get_empty_filp();
3371 if (IS_ERR(file))
3372 return file;
3373
3374 file->f_flags = op->open_flag;
3375
3376 if (unlikely(file->f_flags & __O_TMPFILE)) {
3377 error = do_tmpfile(nd, flags, op, file, &opened);
3378 goto out2;
3379 }
3380
3381 if (unlikely(file->f_flags & O_PATH)) {
3382 error = do_o_path(nd, flags, file);
3383 if (!error)
3384 opened |= FILE_OPENED;
3385 goto out2;
3386 }
3387
3388 s = path_init(nd, flags);
3389 if (IS_ERR(s)) {
3390 put_filp(file);
3391 return ERR_CAST(s);
3392 }
3393 while (!(error = link_path_walk(s, nd)) &&
3394 (error = do_last(nd, file, op, &opened)) > 0) {
3395 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3396 s = trailing_symlink(nd);
3397 if (IS_ERR(s)) {
3398 error = PTR_ERR(s);
3399 break;
3400 }
3401 }
3402 terminate_walk(nd);
3403 out2:
3404 if (!(opened & FILE_OPENED)) {
3405 BUG_ON(!error);
3406 put_filp(file);
3407 }
3408 if (unlikely(error)) {
3409 if (error == -EOPENSTALE) {
3410 if (flags & LOOKUP_RCU)
3411 error = -ECHILD;
3412 else
3413 error = -ESTALE;
3414 }
3415 file = ERR_PTR(error);
3416 }
3417 return file;
3418 }
3419
3420 struct file *do_filp_open(int dfd, struct filename *pathname,
3421 const struct open_flags *op)
3422 {
3423 struct nameidata nd;
3424 int flags = op->lookup_flags;
3425 struct file *filp;
3426
3427 set_nameidata(&nd, dfd, pathname);
3428 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3429 if (unlikely(filp == ERR_PTR(-ECHILD)))
3430 filp = path_openat(&nd, op, flags);
3431 if (unlikely(filp == ERR_PTR(-ESTALE)))
3432 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3433 restore_nameidata();
3434 return filp;
3435 }
3436
3437 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3438 const char *name, const struct open_flags *op)
3439 {
3440 struct nameidata nd;
3441 struct file *file;
3442 struct filename *filename;
3443 int flags = op->lookup_flags | LOOKUP_ROOT;
3444
3445 nd.root.mnt = mnt;
3446 nd.root.dentry = dentry;
3447
3448 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3449 return ERR_PTR(-ELOOP);
3450
3451 filename = getname_kernel(name);
3452 if (IS_ERR(filename))
3453 return ERR_CAST(filename);
3454
3455 set_nameidata(&nd, -1, filename);
3456 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3457 if (unlikely(file == ERR_PTR(-ECHILD)))
3458 file = path_openat(&nd, op, flags);
3459 if (unlikely(file == ERR_PTR(-ESTALE)))
3460 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3461 restore_nameidata();
3462 putname(filename);
3463 return file;
3464 }
3465
3466 static struct dentry *filename_create(int dfd, struct filename *name,
3467 struct path *path, unsigned int lookup_flags)
3468 {
3469 struct dentry *dentry = ERR_PTR(-EEXIST);
3470 struct qstr last;
3471 int type;
3472 int err2;
3473 int error;
3474 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3475
3476 /*
3477 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3478 * other flags passed in are ignored!
3479 */
3480 lookup_flags &= LOOKUP_REVAL;
3481
3482 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3483 if (IS_ERR(name))
3484 return ERR_CAST(name);
3485
3486 /*
3487 * Yucky last component or no last component at all?
3488 * (foo/., foo/.., /////)
3489 */
3490 if (unlikely(type != LAST_NORM))
3491 goto out;
3492
3493 /* don't fail immediately if it's r/o, at least try to report other errors */
3494 err2 = mnt_want_write(path->mnt);
3495 /*
3496 * Do the final lookup.
3497 */
3498 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3499 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3500 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3501 if (IS_ERR(dentry))
3502 goto unlock;
3503
3504 error = -EEXIST;
3505 if (d_is_positive(dentry))
3506 goto fail;
3507
3508 /*
3509 * Special case - lookup gave negative, but... we had foo/bar/
3510 * From the vfs_mknod() POV we just have a negative dentry -
3511 * all is fine. Let's be bastards - you had / on the end, you've
3512 * been asking for (non-existent) directory. -ENOENT for you.
3513 */
3514 if (unlikely(!is_dir && last.name[last.len])) {
3515 error = -ENOENT;
3516 goto fail;
3517 }
3518 if (unlikely(err2)) {
3519 error = err2;
3520 goto fail;
3521 }
3522 putname(name);
3523 return dentry;
3524 fail:
3525 dput(dentry);
3526 dentry = ERR_PTR(error);
3527 unlock:
3528 inode_unlock(path->dentry->d_inode);
3529 if (!err2)
3530 mnt_drop_write(path->mnt);
3531 out:
3532 path_put(path);
3533 putname(name);
3534 return dentry;
3535 }
3536
3537 struct dentry *kern_path_create(int dfd, const char *pathname,
3538 struct path *path, unsigned int lookup_flags)
3539 {
3540 return filename_create(dfd, getname_kernel(pathname),
3541 path, lookup_flags);
3542 }
3543 EXPORT_SYMBOL(kern_path_create);
3544
3545 void done_path_create(struct path *path, struct dentry *dentry)
3546 {
3547 dput(dentry);
3548 inode_unlock(path->dentry->d_inode);
3549 mnt_drop_write(path->mnt);
3550 path_put(path);
3551 }
3552 EXPORT_SYMBOL(done_path_create);
3553
3554 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3555 struct path *path, unsigned int lookup_flags)
3556 {
3557 return filename_create(dfd, getname(pathname), path, lookup_flags);
3558 }
3559 EXPORT_SYMBOL(user_path_create);
3560
3561 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3562 {
3563 int error = may_create(dir, dentry);
3564
3565 if (error)
3566 return error;
3567
3568 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3569 return -EPERM;
3570
3571 if (!dir->i_op->mknod)
3572 return -EPERM;
3573
3574 error = devcgroup_inode_mknod(mode, dev);
3575 if (error)
3576 return error;
3577
3578 error = security_inode_mknod(dir, dentry, mode, dev);
3579 if (error)
3580 return error;
3581
3582 error = dir->i_op->mknod(dir, dentry, mode, dev);
3583 if (!error)
3584 fsnotify_create(dir, dentry);
3585 return error;
3586 }
3587 EXPORT_SYMBOL(vfs_mknod);
3588
3589 static int may_mknod(umode_t mode)
3590 {
3591 switch (mode & S_IFMT) {
3592 case S_IFREG:
3593 case S_IFCHR:
3594 case S_IFBLK:
3595 case S_IFIFO:
3596 case S_IFSOCK:
3597 case 0: /* zero mode translates to S_IFREG */
3598 return 0;
3599 case S_IFDIR:
3600 return -EPERM;
3601 default:
3602 return -EINVAL;
3603 }
3604 }
3605
3606 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3607 unsigned, dev)
3608 {
3609 struct dentry *dentry;
3610 struct path path;
3611 int error;
3612 unsigned int lookup_flags = 0;
3613
3614 error = may_mknod(mode);
3615 if (error)
3616 return error;
3617 retry:
3618 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3619 if (IS_ERR(dentry))
3620 return PTR_ERR(dentry);
3621
3622 if (!IS_POSIXACL(path.dentry->d_inode))
3623 mode &= ~current_umask();
3624 error = security_path_mknod(&path, dentry, mode, dev);
3625 if (error)
3626 goto out;
3627 switch (mode & S_IFMT) {
3628 case 0: case S_IFREG:
3629 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3630 if (!error)
3631 ima_post_path_mknod(dentry);
3632 break;
3633 case S_IFCHR: case S_IFBLK:
3634 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3635 new_decode_dev(dev));
3636 break;
3637 case S_IFIFO: case S_IFSOCK:
3638 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3639 break;
3640 }
3641 out:
3642 done_path_create(&path, dentry);
3643 if (retry_estale(error, lookup_flags)) {
3644 lookup_flags |= LOOKUP_REVAL;
3645 goto retry;
3646 }
3647 return error;
3648 }
3649
3650 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3651 {
3652 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3653 }
3654
3655 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3656 {
3657 int error = may_create(dir, dentry);
3658 unsigned max_links = dir->i_sb->s_max_links;
3659
3660 if (error)
3661 return error;
3662
3663 if (!dir->i_op->mkdir)
3664 return -EPERM;
3665
3666 mode &= (S_IRWXUGO|S_ISVTX);
3667 error = security_inode_mkdir(dir, dentry, mode);
3668 if (error)
3669 return error;
3670
3671 if (max_links && dir->i_nlink >= max_links)
3672 return -EMLINK;
3673
3674 error = dir->i_op->mkdir(dir, dentry, mode);
3675 if (!error)
3676 fsnotify_mkdir(dir, dentry);
3677 return error;
3678 }
3679 EXPORT_SYMBOL(vfs_mkdir);
3680
3681 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3682 {
3683 struct dentry *dentry;
3684 struct path path;
3685 int error;
3686 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3687
3688 retry:
3689 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3690 if (IS_ERR(dentry))
3691 return PTR_ERR(dentry);
3692
3693 if (!IS_POSIXACL(path.dentry->d_inode))
3694 mode &= ~current_umask();
3695 error = security_path_mkdir(&path, dentry, mode);
3696 if (!error)
3697 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3698 done_path_create(&path, dentry);
3699 if (retry_estale(error, lookup_flags)) {
3700 lookup_flags |= LOOKUP_REVAL;
3701 goto retry;
3702 }
3703 return error;
3704 }
3705
3706 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3707 {
3708 return sys_mkdirat(AT_FDCWD, pathname, mode);
3709 }
3710
3711 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3712 {
3713 int error = may_delete(dir, dentry, 1);
3714
3715 if (error)
3716 return error;
3717
3718 if (!dir->i_op->rmdir)
3719 return -EPERM;
3720
3721 dget(dentry);
3722 inode_lock(dentry->d_inode);
3723
3724 error = -EBUSY;
3725 if (is_local_mountpoint(dentry))
3726 goto out;
3727
3728 error = security_inode_rmdir(dir, dentry);
3729 if (error)
3730 goto out;
3731
3732 shrink_dcache_parent(dentry);
3733 error = dir->i_op->rmdir(dir, dentry);
3734 if (error)
3735 goto out;
3736
3737 dentry->d_inode->i_flags |= S_DEAD;
3738 dont_mount(dentry);
3739 detach_mounts(dentry);
3740
3741 out:
3742 inode_unlock(dentry->d_inode);
3743 dput(dentry);
3744 if (!error)
3745 d_delete(dentry);
3746 return error;
3747 }
3748 EXPORT_SYMBOL(vfs_rmdir);
3749
3750 static long do_rmdir(int dfd, const char __user *pathname)
3751 {
3752 int error = 0;
3753 struct filename *name;
3754 struct dentry *dentry;
3755 struct path path;
3756 struct qstr last;
3757 int type;
3758 unsigned int lookup_flags = 0;
3759 retry:
3760 name = user_path_parent(dfd, pathname,
3761 &path, &last, &type, lookup_flags);
3762 if (IS_ERR(name))
3763 return PTR_ERR(name);
3764
3765 switch (type) {
3766 case LAST_DOTDOT:
3767 error = -ENOTEMPTY;
3768 goto exit1;
3769 case LAST_DOT:
3770 error = -EINVAL;
3771 goto exit1;
3772 case LAST_ROOT:
3773 error = -EBUSY;
3774 goto exit1;
3775 }
3776
3777 error = mnt_want_write(path.mnt);
3778 if (error)
3779 goto exit1;
3780
3781 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3782 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3783 error = PTR_ERR(dentry);
3784 if (IS_ERR(dentry))
3785 goto exit2;
3786 if (!dentry->d_inode) {
3787 error = -ENOENT;
3788 goto exit3;
3789 }
3790 error = security_path_rmdir(&path, dentry);
3791 if (error)
3792 goto exit3;
3793 error = vfs_rmdir(path.dentry->d_inode, dentry);
3794 exit3:
3795 dput(dentry);
3796 exit2:
3797 inode_unlock(path.dentry->d_inode);
3798 mnt_drop_write(path.mnt);
3799 exit1:
3800 path_put(&path);
3801 putname(name);
3802 if (retry_estale(error, lookup_flags)) {
3803 lookup_flags |= LOOKUP_REVAL;
3804 goto retry;
3805 }
3806 return error;
3807 }
3808
3809 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3810 {
3811 return do_rmdir(AT_FDCWD, pathname);
3812 }
3813
3814 /**
3815 * vfs_unlink - unlink a filesystem object
3816 * @dir: parent directory
3817 * @dentry: victim
3818 * @delegated_inode: returns victim inode, if the inode is delegated.
3819 *
3820 * The caller must hold dir->i_mutex.
3821 *
3822 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3823 * return a reference to the inode in delegated_inode. The caller
3824 * should then break the delegation on that inode and retry. Because
3825 * breaking a delegation may take a long time, the caller should drop
3826 * dir->i_mutex before doing so.
3827 *
3828 * Alternatively, a caller may pass NULL for delegated_inode. This may
3829 * be appropriate for callers that expect the underlying filesystem not
3830 * to be NFS exported.
3831 */
3832 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3833 {
3834 struct inode *target = dentry->d_inode;
3835 int error = may_delete(dir, dentry, 0);
3836
3837 if (error)
3838 return error;
3839
3840 if (!dir->i_op->unlink)
3841 return -EPERM;
3842
3843 inode_lock(target);
3844 if (is_local_mountpoint(dentry))
3845 error = -EBUSY;
3846 else {
3847 error = security_inode_unlink(dir, dentry);
3848 if (!error) {
3849 error = try_break_deleg(target, delegated_inode);
3850 if (error)
3851 goto out;
3852 error = dir->i_op->unlink(dir, dentry);
3853 if (!error) {
3854 dont_mount(dentry);
3855 detach_mounts(dentry);
3856 }
3857 }
3858 }
3859 out:
3860 inode_unlock(target);
3861
3862 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3863 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3864 fsnotify_link_count(target);
3865 d_delete(dentry);
3866 }
3867
3868 return error;
3869 }
3870 EXPORT_SYMBOL(vfs_unlink);
3871
3872 /*
3873 * Make sure that the actual truncation of the file will occur outside its
3874 * directory's i_mutex. Truncate can take a long time if there is a lot of
3875 * writeout happening, and we don't want to prevent access to the directory
3876 * while waiting on the I/O.
3877 */
3878 static long do_unlinkat(int dfd, const char __user *pathname)
3879 {
3880 int error;
3881 struct filename *name;
3882 struct dentry *dentry;
3883 struct path path;
3884 struct qstr last;
3885 int type;
3886 struct inode *inode = NULL;
3887 struct inode *delegated_inode = NULL;
3888 unsigned int lookup_flags = 0;
3889 retry:
3890 name = user_path_parent(dfd, pathname,
3891 &path, &last, &type, lookup_flags);
3892 if (IS_ERR(name))
3893 return PTR_ERR(name);
3894
3895 error = -EISDIR;
3896 if (type != LAST_NORM)
3897 goto exit1;
3898
3899 error = mnt_want_write(path.mnt);
3900 if (error)
3901 goto exit1;
3902 retry_deleg:
3903 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3904 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3905 error = PTR_ERR(dentry);
3906 if (!IS_ERR(dentry)) {
3907 /* Why not before? Because we want correct error value */
3908 if (last.name[last.len])
3909 goto slashes;
3910 inode = dentry->d_inode;
3911 if (d_is_negative(dentry))
3912 goto slashes;
3913 ihold(inode);
3914 error = security_path_unlink(&path, dentry);
3915 if (error)
3916 goto exit2;
3917 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3918 exit2:
3919 dput(dentry);
3920 }
3921 inode_unlock(path.dentry->d_inode);
3922 if (inode)
3923 iput(inode); /* truncate the inode here */
3924 inode = NULL;
3925 if (delegated_inode) {
3926 error = break_deleg_wait(&delegated_inode);
3927 if (!error)
3928 goto retry_deleg;
3929 }
3930 mnt_drop_write(path.mnt);
3931 exit1:
3932 path_put(&path);
3933 putname(name);
3934 if (retry_estale(error, lookup_flags)) {
3935 lookup_flags |= LOOKUP_REVAL;
3936 inode = NULL;
3937 goto retry;
3938 }
3939 return error;
3940
3941 slashes:
3942 if (d_is_negative(dentry))
3943 error = -ENOENT;
3944 else if (d_is_dir(dentry))
3945 error = -EISDIR;
3946 else
3947 error = -ENOTDIR;
3948 goto exit2;
3949 }
3950
3951 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3952 {
3953 if ((flag & ~AT_REMOVEDIR) != 0)
3954 return -EINVAL;
3955
3956 if (flag & AT_REMOVEDIR)
3957 return do_rmdir(dfd, pathname);
3958
3959 return do_unlinkat(dfd, pathname);
3960 }
3961
3962 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3963 {
3964 return do_unlinkat(AT_FDCWD, pathname);
3965 }
3966
3967 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3968 {
3969 int error = may_create(dir, dentry);
3970
3971 if (error)
3972 return error;
3973
3974 if (!dir->i_op->symlink)
3975 return -EPERM;
3976
3977 error = security_inode_symlink(dir, dentry, oldname);
3978 if (error)
3979 return error;
3980
3981 error = dir->i_op->symlink(dir, dentry, oldname);
3982 if (!error)
3983 fsnotify_create(dir, dentry);
3984 return error;
3985 }
3986 EXPORT_SYMBOL(vfs_symlink);
3987
3988 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3989 int, newdfd, const char __user *, newname)
3990 {
3991 int error;
3992 struct filename *from;
3993 struct dentry *dentry;
3994 struct path path;
3995 unsigned int lookup_flags = 0;
3996
3997 from = getname(oldname);
3998 if (IS_ERR(from))
3999 return PTR_ERR(from);
4000 retry:
4001 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4002 error = PTR_ERR(dentry);
4003 if (IS_ERR(dentry))
4004 goto out_putname;
4005
4006 error = security_path_symlink(&path, dentry, from->name);
4007 if (!error)
4008 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4009 done_path_create(&path, dentry);
4010 if (retry_estale(error, lookup_flags)) {
4011 lookup_flags |= LOOKUP_REVAL;
4012 goto retry;
4013 }
4014 out_putname:
4015 putname(from);
4016 return error;
4017 }
4018
4019 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4020 {
4021 return sys_symlinkat(oldname, AT_FDCWD, newname);
4022 }
4023
4024 /**
4025 * vfs_link - create a new link
4026 * @old_dentry: object to be linked
4027 * @dir: new parent
4028 * @new_dentry: where to create the new link
4029 * @delegated_inode: returns inode needing a delegation break
4030 *
4031 * The caller must hold dir->i_mutex
4032 *
4033 * If vfs_link discovers a delegation on the to-be-linked file in need
4034 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4035 * inode in delegated_inode. The caller should then break the delegation
4036 * and retry. Because breaking a delegation may take a long time, the
4037 * caller should drop the i_mutex before doing so.
4038 *
4039 * Alternatively, a caller may pass NULL for delegated_inode. This may
4040 * be appropriate for callers that expect the underlying filesystem not
4041 * to be NFS exported.
4042 */
4043 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4044 {
4045 struct inode *inode = old_dentry->d_inode;
4046 unsigned max_links = dir->i_sb->s_max_links;
4047 int error;
4048
4049 if (!inode)
4050 return -ENOENT;
4051
4052 error = may_create(dir, new_dentry);
4053 if (error)
4054 return error;
4055
4056 if (dir->i_sb != inode->i_sb)
4057 return -EXDEV;
4058
4059 /*
4060 * A link to an append-only or immutable file cannot be created.
4061 */
4062 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4063 return -EPERM;
4064 if (!dir->i_op->link)
4065 return -EPERM;
4066 if (S_ISDIR(inode->i_mode))
4067 return -EPERM;
4068
4069 error = security_inode_link(old_dentry, dir, new_dentry);
4070 if (error)
4071 return error;
4072
4073 inode_lock(inode);
4074 /* Make sure we don't allow creating hardlink to an unlinked file */
4075 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4076 error = -ENOENT;
4077 else if (max_links && inode->i_nlink >= max_links)
4078 error = -EMLINK;
4079 else {
4080 error = try_break_deleg(inode, delegated_inode);
4081 if (!error)
4082 error = dir->i_op->link(old_dentry, dir, new_dentry);
4083 }
4084
4085 if (!error && (inode->i_state & I_LINKABLE)) {
4086 spin_lock(&inode->i_lock);
4087 inode->i_state &= ~I_LINKABLE;
4088 spin_unlock(&inode->i_lock);
4089 }
4090 inode_unlock(inode);
4091 if (!error)
4092 fsnotify_link(dir, inode, new_dentry);
4093 return error;
4094 }
4095 EXPORT_SYMBOL(vfs_link);
4096
4097 /*
4098 * Hardlinks are often used in delicate situations. We avoid
4099 * security-related surprises by not following symlinks on the
4100 * newname. --KAB
4101 *
4102 * We don't follow them on the oldname either to be compatible
4103 * with linux 2.0, and to avoid hard-linking to directories
4104 * and other special files. --ADM
4105 */
4106 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4107 int, newdfd, const char __user *, newname, int, flags)
4108 {
4109 struct dentry *new_dentry;
4110 struct path old_path, new_path;
4111 struct inode *delegated_inode = NULL;
4112 int how = 0;
4113 int error;
4114
4115 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4116 return -EINVAL;
4117 /*
4118 * To use null names we require CAP_DAC_READ_SEARCH
4119 * This ensures that not everyone will be able to create
4120 * handlink using the passed filedescriptor.
4121 */
4122 if (flags & AT_EMPTY_PATH) {
4123 if (!capable(CAP_DAC_READ_SEARCH))
4124 return -ENOENT;
4125 how = LOOKUP_EMPTY;
4126 }
4127
4128 if (flags & AT_SYMLINK_FOLLOW)
4129 how |= LOOKUP_FOLLOW;
4130 retry:
4131 error = user_path_at(olddfd, oldname, how, &old_path);
4132 if (error)
4133 return error;
4134
4135 new_dentry = user_path_create(newdfd, newname, &new_path,
4136 (how & LOOKUP_REVAL));
4137 error = PTR_ERR(new_dentry);
4138 if (IS_ERR(new_dentry))
4139 goto out;
4140
4141 error = -EXDEV;
4142 if (old_path.mnt != new_path.mnt)
4143 goto out_dput;
4144 error = may_linkat(&old_path);
4145 if (unlikely(error))
4146 goto out_dput;
4147 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4148 if (error)
4149 goto out_dput;
4150 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4151 out_dput:
4152 done_path_create(&new_path, new_dentry);
4153 if (delegated_inode) {
4154 error = break_deleg_wait(&delegated_inode);
4155 if (!error) {
4156 path_put(&old_path);
4157 goto retry;
4158 }
4159 }
4160 if (retry_estale(error, how)) {
4161 path_put(&old_path);
4162 how |= LOOKUP_REVAL;
4163 goto retry;
4164 }
4165 out:
4166 path_put(&old_path);
4167
4168 return error;
4169 }
4170
4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4172 {
4173 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4174 }
4175
4176 /**
4177 * vfs_rename - rename a filesystem object
4178 * @old_dir: parent of source
4179 * @old_dentry: source
4180 * @new_dir: parent of destination
4181 * @new_dentry: destination
4182 * @delegated_inode: returns an inode needing a delegation break
4183 * @flags: rename flags
4184 *
4185 * The caller must hold multiple mutexes--see lock_rename()).
4186 *
4187 * If vfs_rename discovers a delegation in need of breaking at either
4188 * the source or destination, it will return -EWOULDBLOCK and return a
4189 * reference to the inode in delegated_inode. The caller should then
4190 * break the delegation and retry. Because breaking a delegation may
4191 * take a long time, the caller should drop all locks before doing
4192 * so.
4193 *
4194 * Alternatively, a caller may pass NULL for delegated_inode. This may
4195 * be appropriate for callers that expect the underlying filesystem not
4196 * to be NFS exported.
4197 *
4198 * The worst of all namespace operations - renaming directory. "Perverted"
4199 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4200 * Problems:
4201 * a) we can get into loop creation.
4202 * b) race potential - two innocent renames can create a loop together.
4203 * That's where 4.4 screws up. Current fix: serialization on
4204 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4205 * story.
4206 * c) we have to lock _four_ objects - parents and victim (if it exists),
4207 * and source (if it is not a directory).
4208 * And that - after we got ->i_mutex on parents (until then we don't know
4209 * whether the target exists). Solution: try to be smart with locking
4210 * order for inodes. We rely on the fact that tree topology may change
4211 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4212 * move will be locked. Thus we can rank directories by the tree
4213 * (ancestors first) and rank all non-directories after them.
4214 * That works since everybody except rename does "lock parent, lookup,
4215 * lock child" and rename is under ->s_vfs_rename_mutex.
4216 * HOWEVER, it relies on the assumption that any object with ->lookup()
4217 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4218 * we'd better make sure that there's no link(2) for them.
4219 * d) conversion from fhandle to dentry may come in the wrong moment - when
4220 * we are removing the target. Solution: we will have to grab ->i_mutex
4221 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4222 * ->i_mutex on parents, which works but leads to some truly excessive
4223 * locking].
4224 */
4225 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4226 struct inode *new_dir, struct dentry *new_dentry,
4227 struct inode **delegated_inode, unsigned int flags)
4228 {
4229 int error;
4230 bool is_dir = d_is_dir(old_dentry);
4231 const unsigned char *old_name;
4232 struct inode *source = old_dentry->d_inode;
4233 struct inode *target = new_dentry->d_inode;
4234 bool new_is_dir = false;
4235 unsigned max_links = new_dir->i_sb->s_max_links;
4236
4237 /*
4238 * Check source == target.
4239 * On overlayfs need to look at underlying inodes.
4240 */
4241 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4242 return 0;
4243
4244 error = may_delete(old_dir, old_dentry, is_dir);
4245 if (error)
4246 return error;
4247
4248 if (!target) {
4249 error = may_create(new_dir, new_dentry);
4250 } else {
4251 new_is_dir = d_is_dir(new_dentry);
4252
4253 if (!(flags & RENAME_EXCHANGE))
4254 error = may_delete(new_dir, new_dentry, is_dir);
4255 else
4256 error = may_delete(new_dir, new_dentry, new_is_dir);
4257 }
4258 if (error)
4259 return error;
4260
4261 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4262 return -EPERM;
4263
4264 if (flags && !old_dir->i_op->rename2)
4265 return -EINVAL;
4266
4267 /*
4268 * If we are going to change the parent - check write permissions,
4269 * we'll need to flip '..'.
4270 */
4271 if (new_dir != old_dir) {
4272 if (is_dir) {
4273 error = inode_permission(source, MAY_WRITE);
4274 if (error)
4275 return error;
4276 }
4277 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4278 error = inode_permission(target, MAY_WRITE);
4279 if (error)
4280 return error;
4281 }
4282 }
4283
4284 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4285 flags);
4286 if (error)
4287 return error;
4288
4289 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4290 dget(new_dentry);
4291 if (!is_dir || (flags & RENAME_EXCHANGE))
4292 lock_two_nondirectories(source, target);
4293 else if (target)
4294 inode_lock(target);
4295
4296 error = -EBUSY;
4297 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4298 goto out;
4299
4300 if (max_links && new_dir != old_dir) {
4301 error = -EMLINK;
4302 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4303 goto out;
4304 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4305 old_dir->i_nlink >= max_links)
4306 goto out;
4307 }
4308 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4309 shrink_dcache_parent(new_dentry);
4310 if (!is_dir) {
4311 error = try_break_deleg(source, delegated_inode);
4312 if (error)
4313 goto out;
4314 }
4315 if (target && !new_is_dir) {
4316 error = try_break_deleg(target, delegated_inode);
4317 if (error)
4318 goto out;
4319 }
4320 if (!old_dir->i_op->rename2) {
4321 error = old_dir->i_op->rename(old_dir, old_dentry,
4322 new_dir, new_dentry);
4323 } else {
4324 WARN_ON(old_dir->i_op->rename != NULL);
4325 error = old_dir->i_op->rename2(old_dir, old_dentry,
4326 new_dir, new_dentry, flags);
4327 }
4328 if (error)
4329 goto out;
4330
4331 if (!(flags & RENAME_EXCHANGE) && target) {
4332 if (is_dir)
4333 target->i_flags |= S_DEAD;
4334 dont_mount(new_dentry);
4335 detach_mounts(new_dentry);
4336 }
4337 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4338 if (!(flags & RENAME_EXCHANGE))
4339 d_move(old_dentry, new_dentry);
4340 else
4341 d_exchange(old_dentry, new_dentry);
4342 }
4343 out:
4344 if (!is_dir || (flags & RENAME_EXCHANGE))
4345 unlock_two_nondirectories(source, target);
4346 else if (target)
4347 inode_unlock(target);
4348 dput(new_dentry);
4349 if (!error) {
4350 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4351 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4352 if (flags & RENAME_EXCHANGE) {
4353 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4354 new_is_dir, NULL, new_dentry);
4355 }
4356 }
4357 fsnotify_oldname_free(old_name);
4358
4359 return error;
4360 }
4361 EXPORT_SYMBOL(vfs_rename);
4362
4363 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4364 int, newdfd, const char __user *, newname, unsigned int, flags)
4365 {
4366 struct dentry *old_dentry, *new_dentry;
4367 struct dentry *trap;
4368 struct path old_path, new_path;
4369 struct qstr old_last, new_last;
4370 int old_type, new_type;
4371 struct inode *delegated_inode = NULL;
4372 struct filename *from;
4373 struct filename *to;
4374 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4375 bool should_retry = false;
4376 int error;
4377
4378 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4379 return -EINVAL;
4380
4381 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4382 (flags & RENAME_EXCHANGE))
4383 return -EINVAL;
4384
4385 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4386 return -EPERM;
4387
4388 if (flags & RENAME_EXCHANGE)
4389 target_flags = 0;
4390
4391 retry:
4392 from = user_path_parent(olddfd, oldname,
4393 &old_path, &old_last, &old_type, lookup_flags);
4394 if (IS_ERR(from)) {
4395 error = PTR_ERR(from);
4396 goto exit;
4397 }
4398
4399 to = user_path_parent(newdfd, newname,
4400 &new_path, &new_last, &new_type, lookup_flags);
4401 if (IS_ERR(to)) {
4402 error = PTR_ERR(to);
4403 goto exit1;
4404 }
4405
4406 error = -EXDEV;
4407 if (old_path.mnt != new_path.mnt)
4408 goto exit2;
4409
4410 error = -EBUSY;
4411 if (old_type != LAST_NORM)
4412 goto exit2;
4413
4414 if (flags & RENAME_NOREPLACE)
4415 error = -EEXIST;
4416 if (new_type != LAST_NORM)
4417 goto exit2;
4418
4419 error = mnt_want_write(old_path.mnt);
4420 if (error)
4421 goto exit2;
4422
4423 retry_deleg:
4424 trap = lock_rename(new_path.dentry, old_path.dentry);
4425
4426 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4427 error = PTR_ERR(old_dentry);
4428 if (IS_ERR(old_dentry))
4429 goto exit3;
4430 /* source must exist */
4431 error = -ENOENT;
4432 if (d_is_negative(old_dentry))
4433 goto exit4;
4434 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4435 error = PTR_ERR(new_dentry);
4436 if (IS_ERR(new_dentry))
4437 goto exit4;
4438 error = -EEXIST;
4439 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4440 goto exit5;
4441 if (flags & RENAME_EXCHANGE) {
4442 error = -ENOENT;
4443 if (d_is_negative(new_dentry))
4444 goto exit5;
4445
4446 if (!d_is_dir(new_dentry)) {
4447 error = -ENOTDIR;
4448 if (new_last.name[new_last.len])
4449 goto exit5;
4450 }
4451 }
4452 /* unless the source is a directory trailing slashes give -ENOTDIR */
4453 if (!d_is_dir(old_dentry)) {
4454 error = -ENOTDIR;
4455 if (old_last.name[old_last.len])
4456 goto exit5;
4457 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4458 goto exit5;
4459 }
4460 /* source should not be ancestor of target */
4461 error = -EINVAL;
4462 if (old_dentry == trap)
4463 goto exit5;
4464 /* target should not be an ancestor of source */
4465 if (!(flags & RENAME_EXCHANGE))
4466 error = -ENOTEMPTY;
4467 if (new_dentry == trap)
4468 goto exit5;
4469
4470 error = security_path_rename(&old_path, old_dentry,
4471 &new_path, new_dentry, flags);
4472 if (error)
4473 goto exit5;
4474 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4475 new_path.dentry->d_inode, new_dentry,
4476 &delegated_inode, flags);
4477 exit5:
4478 dput(new_dentry);
4479 exit4:
4480 dput(old_dentry);
4481 exit3:
4482 unlock_rename(new_path.dentry, old_path.dentry);
4483 if (delegated_inode) {
4484 error = break_deleg_wait(&delegated_inode);
4485 if (!error)
4486 goto retry_deleg;
4487 }
4488 mnt_drop_write(old_path.mnt);
4489 exit2:
4490 if (retry_estale(error, lookup_flags))
4491 should_retry = true;
4492 path_put(&new_path);
4493 putname(to);
4494 exit1:
4495 path_put(&old_path);
4496 putname(from);
4497 if (should_retry) {
4498 should_retry = false;
4499 lookup_flags |= LOOKUP_REVAL;
4500 goto retry;
4501 }
4502 exit:
4503 return error;
4504 }
4505
4506 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4507 int, newdfd, const char __user *, newname)
4508 {
4509 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4510 }
4511
4512 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4513 {
4514 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4515 }
4516
4517 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4518 {
4519 int error = may_create(dir, dentry);
4520 if (error)
4521 return error;
4522
4523 if (!dir->i_op->mknod)
4524 return -EPERM;
4525
4526 return dir->i_op->mknod(dir, dentry,
4527 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4528 }
4529 EXPORT_SYMBOL(vfs_whiteout);
4530
4531 int readlink_copy(char __user *buffer, int buflen, const char *link)
4532 {
4533 int len = PTR_ERR(link);
4534 if (IS_ERR(link))
4535 goto out;
4536
4537 len = strlen(link);
4538 if (len > (unsigned) buflen)
4539 len = buflen;
4540 if (copy_to_user(buffer, link, len))
4541 len = -EFAULT;
4542 out:
4543 return len;
4544 }
4545
4546 /*
4547 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4548 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4549 * for any given inode is up to filesystem.
4550 */
4551 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4552 {
4553 DEFINE_DELAYED_CALL(done);
4554 struct inode *inode = d_inode(dentry);
4555 const char *link = inode->i_link;
4556 int res;
4557
4558 if (!link) {
4559 link = inode->i_op->get_link(dentry, inode, &done);
4560 if (IS_ERR(link))
4561 return PTR_ERR(link);
4562 }
4563 res = readlink_copy(buffer, buflen, link);
4564 do_delayed_call(&done);
4565 return res;
4566 }
4567 EXPORT_SYMBOL(generic_readlink);
4568
4569 /* get the link contents into pagecache */
4570 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4571 struct delayed_call *callback)
4572 {
4573 char *kaddr;
4574 struct page *page;
4575 struct address_space *mapping = inode->i_mapping;
4576
4577 if (!dentry) {
4578 page = find_get_page(mapping, 0);
4579 if (!page)
4580 return ERR_PTR(-ECHILD);
4581 if (!PageUptodate(page)) {
4582 put_page(page);
4583 return ERR_PTR(-ECHILD);
4584 }
4585 } else {
4586 page = read_mapping_page(mapping, 0, NULL);
4587 if (IS_ERR(page))
4588 return (char*)page;
4589 }
4590 set_delayed_call(callback, page_put_link, page);
4591 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4592 kaddr = page_address(page);
4593 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4594 return kaddr;
4595 }
4596
4597 EXPORT_SYMBOL(page_get_link);
4598
4599 void page_put_link(void *arg)
4600 {
4601 put_page(arg);
4602 }
4603 EXPORT_SYMBOL(page_put_link);
4604
4605 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4606 {
4607 DEFINE_DELAYED_CALL(done);
4608 int res = readlink_copy(buffer, buflen,
4609 page_get_link(dentry, d_inode(dentry),
4610 &done));
4611 do_delayed_call(&done);
4612 return res;
4613 }
4614 EXPORT_SYMBOL(page_readlink);
4615
4616 /*
4617 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4618 */
4619 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4620 {
4621 struct address_space *mapping = inode->i_mapping;
4622 struct page *page;
4623 void *fsdata;
4624 int err;
4625 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4626 if (nofs)
4627 flags |= AOP_FLAG_NOFS;
4628
4629 retry:
4630 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4631 flags, &page, &fsdata);
4632 if (err)
4633 goto fail;
4634
4635 memcpy(page_address(page), symname, len-1);
4636
4637 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4638 page, fsdata);
4639 if (err < 0)
4640 goto fail;
4641 if (err < len-1)
4642 goto retry;
4643
4644 mark_inode_dirty(inode);
4645 return 0;
4646 fail:
4647 return err;
4648 }
4649 EXPORT_SYMBOL(__page_symlink);
4650
4651 int page_symlink(struct inode *inode, const char *symname, int len)
4652 {
4653 return __page_symlink(inode, symname, len,
4654 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4655 }
4656 EXPORT_SYMBOL(page_symlink);
4657
4658 const struct inode_operations page_symlink_inode_operations = {
4659 .readlink = generic_readlink,
4660 .get_link = page_get_link,
4661 };
4662 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.183508 seconds and 6 git commands to generate.