[PATCH] kill nameidata passing to permission(), rename to inode_permission()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188
189 if (current->fsuid == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
198 }
199
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
202 }
203
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode) == 0)
208 return 0;
209
210 check_capabilities:
211 /*
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
214 */
215 if (!(mask & MAY_EXEC) ||
216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
217 if (capable(CAP_DAC_OVERRIDE))
218 return 0;
219
220 /*
221 * Searching includes executable on directories, else just read.
222 */
223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 if (capable(CAP_DAC_READ_SEARCH))
225 return 0;
226
227 return -EACCES;
228 }
229
230 int inode_permission(struct inode *inode, int mask)
231 {
232 int retval;
233
234 if (mask & MAY_WRITE) {
235 umode_t mode = inode->i_mode;
236
237 /*
238 * Nobody gets write access to a read-only fs.
239 */
240 if (IS_RDONLY(inode) &&
241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
242 return -EROFS;
243
244 /*
245 * Nobody gets write access to an immutable file.
246 */
247 if (IS_IMMUTABLE(inode))
248 return -EACCES;
249 }
250
251 /* Ordinary permission routines do not understand MAY_APPEND. */
252 if (inode->i_op && inode->i_op->permission) {
253 retval = inode->i_op->permission(inode, mask);
254 if (!retval) {
255 /*
256 * Exec permission on a regular file is denied if none
257 * of the execute bits are set.
258 *
259 * This check should be done by the ->permission()
260 * method.
261 */
262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
263 !(inode->i_mode & S_IXUGO))
264 return -EACCES;
265 }
266 } else {
267 retval = generic_permission(inode, mask, NULL);
268 }
269 if (retval)
270 return retval;
271
272 retval = devcgroup_inode_permission(inode, mask);
273 if (retval)
274 return retval;
275
276 return security_inode_permission(inode,
277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC));
278 }
279
280 /**
281 * vfs_permission - check for access rights to a given path
282 * @nd: lookup result that describes the path
283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
284 *
285 * Used to check for read/write/execute permissions on a path.
286 * We use "fsuid" for this, letting us set arbitrary permissions
287 * for filesystem access without changing the "normal" uids which
288 * are used for other things.
289 */
290 int vfs_permission(struct nameidata *nd, int mask)
291 {
292 return inode_permission(nd->path.dentry->d_inode, mask);
293 }
294
295 /**
296 * file_permission - check for additional access rights to a given file
297 * @file: file to check access rights for
298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299 *
300 * Used to check for read/write/execute permissions on an already opened
301 * file.
302 *
303 * Note:
304 * Do not use this function in new code. All access checks should
305 * be done using vfs_permission().
306 */
307 int file_permission(struct file *file, int mask)
308 {
309 return inode_permission(file->f_path.dentry->d_inode, mask);
310 }
311
312 /*
313 * get_write_access() gets write permission for a file.
314 * put_write_access() releases this write permission.
315 * This is used for regular files.
316 * We cannot support write (and maybe mmap read-write shared) accesses and
317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
318 * can have the following values:
319 * 0: no writers, no VM_DENYWRITE mappings
320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
321 * > 0: (i_writecount) users are writing to the file.
322 *
323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
324 * except for the cases where we don't hold i_writecount yet. Then we need to
325 * use {get,deny}_write_access() - these functions check the sign and refuse
326 * to do the change if sign is wrong. Exclusion between them is provided by
327 * the inode->i_lock spinlock.
328 */
329
330 int get_write_access(struct inode * inode)
331 {
332 spin_lock(&inode->i_lock);
333 if (atomic_read(&inode->i_writecount) < 0) {
334 spin_unlock(&inode->i_lock);
335 return -ETXTBSY;
336 }
337 atomic_inc(&inode->i_writecount);
338 spin_unlock(&inode->i_lock);
339
340 return 0;
341 }
342
343 int deny_write_access(struct file * file)
344 {
345 struct inode *inode = file->f_path.dentry->d_inode;
346
347 spin_lock(&inode->i_lock);
348 if (atomic_read(&inode->i_writecount) > 0) {
349 spin_unlock(&inode->i_lock);
350 return -ETXTBSY;
351 }
352 atomic_dec(&inode->i_writecount);
353 spin_unlock(&inode->i_lock);
354
355 return 0;
356 }
357
358 /**
359 * path_get - get a reference to a path
360 * @path: path to get the reference to
361 *
362 * Given a path increment the reference count to the dentry and the vfsmount.
363 */
364 void path_get(struct path *path)
365 {
366 mntget(path->mnt);
367 dget(path->dentry);
368 }
369 EXPORT_SYMBOL(path_get);
370
371 /**
372 * path_put - put a reference to a path
373 * @path: path to put the reference to
374 *
375 * Given a path decrement the reference count to the dentry and the vfsmount.
376 */
377 void path_put(struct path *path)
378 {
379 dput(path->dentry);
380 mntput(path->mnt);
381 }
382 EXPORT_SYMBOL(path_put);
383
384 /**
385 * release_open_intent - free up open intent resources
386 * @nd: pointer to nameidata
387 */
388 void release_open_intent(struct nameidata *nd)
389 {
390 if (nd->intent.open.file->f_path.dentry == NULL)
391 put_filp(nd->intent.open.file);
392 else
393 fput(nd->intent.open.file);
394 }
395
396 static inline struct dentry *
397 do_revalidate(struct dentry *dentry, struct nameidata *nd)
398 {
399 int status = dentry->d_op->d_revalidate(dentry, nd);
400 if (unlikely(status <= 0)) {
401 /*
402 * The dentry failed validation.
403 * If d_revalidate returned 0 attempt to invalidate
404 * the dentry otherwise d_revalidate is asking us
405 * to return a fail status.
406 */
407 if (!status) {
408 if (!d_invalidate(dentry)) {
409 dput(dentry);
410 dentry = NULL;
411 }
412 } else {
413 dput(dentry);
414 dentry = ERR_PTR(status);
415 }
416 }
417 return dentry;
418 }
419
420 /*
421 * Internal lookup() using the new generic dcache.
422 * SMP-safe
423 */
424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
425 {
426 struct dentry * dentry = __d_lookup(parent, name);
427
428 /* lockess __d_lookup may fail due to concurrent d_move()
429 * in some unrelated directory, so try with d_lookup
430 */
431 if (!dentry)
432 dentry = d_lookup(parent, name);
433
434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
435 dentry = do_revalidate(dentry, nd);
436
437 return dentry;
438 }
439
440 /*
441 * Short-cut version of permission(), for calling by
442 * path_walk(), when dcache lock is held. Combines parts
443 * of permission() and generic_permission(), and tests ONLY for
444 * MAY_EXEC permission.
445 *
446 * If appropriate, check DAC only. If not appropriate, or
447 * short-cut DAC fails, then call permission() to do more
448 * complete permission check.
449 */
450 static int exec_permission_lite(struct inode *inode)
451 {
452 umode_t mode = inode->i_mode;
453
454 if (inode->i_op && inode->i_op->permission)
455 return -EAGAIN;
456
457 if (current->fsuid == inode->i_uid)
458 mode >>= 6;
459 else if (in_group_p(inode->i_gid))
460 mode >>= 3;
461
462 if (mode & MAY_EXEC)
463 goto ok;
464
465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
466 goto ok;
467
468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
469 goto ok;
470
471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
472 goto ok;
473
474 return -EACCES;
475 ok:
476 return security_inode_permission(inode, MAY_EXEC);
477 }
478
479 /*
480 * This is called when everything else fails, and we actually have
481 * to go to the low-level filesystem to find out what we should do..
482 *
483 * We get the directory semaphore, and after getting that we also
484 * make sure that nobody added the entry to the dcache in the meantime..
485 * SMP-safe
486 */
487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
488 {
489 struct dentry * result;
490 struct inode *dir = parent->d_inode;
491
492 mutex_lock(&dir->i_mutex);
493 /*
494 * First re-do the cached lookup just in case it was created
495 * while we waited for the directory semaphore..
496 *
497 * FIXME! This could use version numbering or similar to
498 * avoid unnecessary cache lookups.
499 *
500 * The "dcache_lock" is purely to protect the RCU list walker
501 * from concurrent renames at this point (we mustn't get false
502 * negatives from the RCU list walk here, unlike the optimistic
503 * fast walk).
504 *
505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
506 */
507 result = d_lookup(parent, name);
508 if (!result) {
509 struct dentry *dentry;
510
511 /* Don't create child dentry for a dead directory. */
512 result = ERR_PTR(-ENOENT);
513 if (IS_DEADDIR(dir))
514 goto out_unlock;
515
516 dentry = d_alloc(parent, name);
517 result = ERR_PTR(-ENOMEM);
518 if (dentry) {
519 result = dir->i_op->lookup(dir, dentry, nd);
520 if (result)
521 dput(dentry);
522 else
523 result = dentry;
524 }
525 out_unlock:
526 mutex_unlock(&dir->i_mutex);
527 return result;
528 }
529
530 /*
531 * Uhhuh! Nasty case: the cache was re-populated while
532 * we waited on the semaphore. Need to revalidate.
533 */
534 mutex_unlock(&dir->i_mutex);
535 if (result->d_op && result->d_op->d_revalidate) {
536 result = do_revalidate(result, nd);
537 if (!result)
538 result = ERR_PTR(-ENOENT);
539 }
540 return result;
541 }
542
543 /* SMP-safe */
544 static __always_inline void
545 walk_init_root(const char *name, struct nameidata *nd)
546 {
547 struct fs_struct *fs = current->fs;
548
549 read_lock(&fs->lock);
550 nd->path = fs->root;
551 path_get(&fs->root);
552 read_unlock(&fs->lock);
553 }
554
555 /*
556 * Wrapper to retry pathname resolution whenever the underlying
557 * file system returns an ESTALE.
558 *
559 * Retry the whole path once, forcing real lookup requests
560 * instead of relying on the dcache.
561 */
562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
563 {
564 struct path save = nd->path;
565 int result;
566
567 /* make sure the stuff we saved doesn't go away */
568 path_get(&save);
569
570 result = __link_path_walk(name, nd);
571 if (result == -ESTALE) {
572 /* nd->path had been dropped */
573 nd->path = save;
574 path_get(&nd->path);
575 nd->flags |= LOOKUP_REVAL;
576 result = __link_path_walk(name, nd);
577 }
578
579 path_put(&save);
580
581 return result;
582 }
583
584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
585 {
586 int res = 0;
587 char *name;
588 if (IS_ERR(link))
589 goto fail;
590
591 if (*link == '/') {
592 path_put(&nd->path);
593 walk_init_root(link, nd);
594 }
595 res = link_path_walk(link, nd);
596 if (nd->depth || res || nd->last_type!=LAST_NORM)
597 return res;
598 /*
599 * If it is an iterative symlinks resolution in open_namei() we
600 * have to copy the last component. And all that crap because of
601 * bloody create() on broken symlinks. Furrfu...
602 */
603 name = __getname();
604 if (unlikely(!name)) {
605 path_put(&nd->path);
606 return -ENOMEM;
607 }
608 strcpy(name, nd->last.name);
609 nd->last.name = name;
610 return 0;
611 fail:
612 path_put(&nd->path);
613 return PTR_ERR(link);
614 }
615
616 static void path_put_conditional(struct path *path, struct nameidata *nd)
617 {
618 dput(path->dentry);
619 if (path->mnt != nd->path.mnt)
620 mntput(path->mnt);
621 }
622
623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
624 {
625 dput(nd->path.dentry);
626 if (nd->path.mnt != path->mnt)
627 mntput(nd->path.mnt);
628 nd->path.mnt = path->mnt;
629 nd->path.dentry = path->dentry;
630 }
631
632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
633 {
634 int error;
635 void *cookie;
636 struct dentry *dentry = path->dentry;
637
638 touch_atime(path->mnt, dentry);
639 nd_set_link(nd, NULL);
640
641 if (path->mnt != nd->path.mnt) {
642 path_to_nameidata(path, nd);
643 dget(dentry);
644 }
645 mntget(path->mnt);
646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
647 error = PTR_ERR(cookie);
648 if (!IS_ERR(cookie)) {
649 char *s = nd_get_link(nd);
650 error = 0;
651 if (s)
652 error = __vfs_follow_link(nd, s);
653 if (dentry->d_inode->i_op->put_link)
654 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
655 }
656 path_put(path);
657
658 return error;
659 }
660
661 /*
662 * This limits recursive symlink follows to 8, while
663 * limiting consecutive symlinks to 40.
664 *
665 * Without that kind of total limit, nasty chains of consecutive
666 * symlinks can cause almost arbitrarily long lookups.
667 */
668 static inline int do_follow_link(struct path *path, struct nameidata *nd)
669 {
670 int err = -ELOOP;
671 if (current->link_count >= MAX_NESTED_LINKS)
672 goto loop;
673 if (current->total_link_count >= 40)
674 goto loop;
675 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
676 cond_resched();
677 err = security_inode_follow_link(path->dentry, nd);
678 if (err)
679 goto loop;
680 current->link_count++;
681 current->total_link_count++;
682 nd->depth++;
683 err = __do_follow_link(path, nd);
684 current->link_count--;
685 nd->depth--;
686 return err;
687 loop:
688 path_put_conditional(path, nd);
689 path_put(&nd->path);
690 return err;
691 }
692
693 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
694 {
695 struct vfsmount *parent;
696 struct dentry *mountpoint;
697 spin_lock(&vfsmount_lock);
698 parent=(*mnt)->mnt_parent;
699 if (parent == *mnt) {
700 spin_unlock(&vfsmount_lock);
701 return 0;
702 }
703 mntget(parent);
704 mountpoint=dget((*mnt)->mnt_mountpoint);
705 spin_unlock(&vfsmount_lock);
706 dput(*dentry);
707 *dentry = mountpoint;
708 mntput(*mnt);
709 *mnt = parent;
710 return 1;
711 }
712
713 /* no need for dcache_lock, as serialization is taken care in
714 * namespace.c
715 */
716 static int __follow_mount(struct path *path)
717 {
718 int res = 0;
719 while (d_mountpoint(path->dentry)) {
720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
721 if (!mounted)
722 break;
723 dput(path->dentry);
724 if (res)
725 mntput(path->mnt);
726 path->mnt = mounted;
727 path->dentry = dget(mounted->mnt_root);
728 res = 1;
729 }
730 return res;
731 }
732
733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
734 {
735 while (d_mountpoint(*dentry)) {
736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
737 if (!mounted)
738 break;
739 dput(*dentry);
740 mntput(*mnt);
741 *mnt = mounted;
742 *dentry = dget(mounted->mnt_root);
743 }
744 }
745
746 /* no need for dcache_lock, as serialization is taken care in
747 * namespace.c
748 */
749 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
750 {
751 struct vfsmount *mounted;
752
753 mounted = lookup_mnt(*mnt, *dentry);
754 if (mounted) {
755 dput(*dentry);
756 mntput(*mnt);
757 *mnt = mounted;
758 *dentry = dget(mounted->mnt_root);
759 return 1;
760 }
761 return 0;
762 }
763
764 static __always_inline void follow_dotdot(struct nameidata *nd)
765 {
766 struct fs_struct *fs = current->fs;
767
768 while(1) {
769 struct vfsmount *parent;
770 struct dentry *old = nd->path.dentry;
771
772 read_lock(&fs->lock);
773 if (nd->path.dentry == fs->root.dentry &&
774 nd->path.mnt == fs->root.mnt) {
775 read_unlock(&fs->lock);
776 break;
777 }
778 read_unlock(&fs->lock);
779 spin_lock(&dcache_lock);
780 if (nd->path.dentry != nd->path.mnt->mnt_root) {
781 nd->path.dentry = dget(nd->path.dentry->d_parent);
782 spin_unlock(&dcache_lock);
783 dput(old);
784 break;
785 }
786 spin_unlock(&dcache_lock);
787 spin_lock(&vfsmount_lock);
788 parent = nd->path.mnt->mnt_parent;
789 if (parent == nd->path.mnt) {
790 spin_unlock(&vfsmount_lock);
791 break;
792 }
793 mntget(parent);
794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
795 spin_unlock(&vfsmount_lock);
796 dput(old);
797 mntput(nd->path.mnt);
798 nd->path.mnt = parent;
799 }
800 follow_mount(&nd->path.mnt, &nd->path.dentry);
801 }
802
803 /*
804 * It's more convoluted than I'd like it to be, but... it's still fairly
805 * small and for now I'd prefer to have fast path as straight as possible.
806 * It _is_ time-critical.
807 */
808 static int do_lookup(struct nameidata *nd, struct qstr *name,
809 struct path *path)
810 {
811 struct vfsmount *mnt = nd->path.mnt;
812 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
813
814 if (!dentry)
815 goto need_lookup;
816 if (dentry->d_op && dentry->d_op->d_revalidate)
817 goto need_revalidate;
818 done:
819 path->mnt = mnt;
820 path->dentry = dentry;
821 __follow_mount(path);
822 return 0;
823
824 need_lookup:
825 dentry = real_lookup(nd->path.dentry, name, nd);
826 if (IS_ERR(dentry))
827 goto fail;
828 goto done;
829
830 need_revalidate:
831 dentry = do_revalidate(dentry, nd);
832 if (!dentry)
833 goto need_lookup;
834 if (IS_ERR(dentry))
835 goto fail;
836 goto done;
837
838 fail:
839 return PTR_ERR(dentry);
840 }
841
842 /*
843 * Name resolution.
844 * This is the basic name resolution function, turning a pathname into
845 * the final dentry. We expect 'base' to be positive and a directory.
846 *
847 * Returns 0 and nd will have valid dentry and mnt on success.
848 * Returns error and drops reference to input namei data on failure.
849 */
850 static int __link_path_walk(const char *name, struct nameidata *nd)
851 {
852 struct path next;
853 struct inode *inode;
854 int err;
855 unsigned int lookup_flags = nd->flags;
856
857 while (*name=='/')
858 name++;
859 if (!*name)
860 goto return_reval;
861
862 inode = nd->path.dentry->d_inode;
863 if (nd->depth)
864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
865
866 /* At this point we know we have a real path component. */
867 for(;;) {
868 unsigned long hash;
869 struct qstr this;
870 unsigned int c;
871
872 nd->flags |= LOOKUP_CONTINUE;
873 err = exec_permission_lite(inode);
874 if (err == -EAGAIN)
875 err = vfs_permission(nd, MAY_EXEC);
876 if (err)
877 break;
878
879 this.name = name;
880 c = *(const unsigned char *)name;
881
882 hash = init_name_hash();
883 do {
884 name++;
885 hash = partial_name_hash(c, hash);
886 c = *(const unsigned char *)name;
887 } while (c && (c != '/'));
888 this.len = name - (const char *) this.name;
889 this.hash = end_name_hash(hash);
890
891 /* remove trailing slashes? */
892 if (!c)
893 goto last_component;
894 while (*++name == '/');
895 if (!*name)
896 goto last_with_slashes;
897
898 /*
899 * "." and ".." are special - ".." especially so because it has
900 * to be able to know about the current root directory and
901 * parent relationships.
902 */
903 if (this.name[0] == '.') switch (this.len) {
904 default:
905 break;
906 case 2:
907 if (this.name[1] != '.')
908 break;
909 follow_dotdot(nd);
910 inode = nd->path.dentry->d_inode;
911 /* fallthrough */
912 case 1:
913 continue;
914 }
915 /*
916 * See if the low-level filesystem might want
917 * to use its own hash..
918 */
919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
921 &this);
922 if (err < 0)
923 break;
924 }
925 /* This does the actual lookups.. */
926 err = do_lookup(nd, &this, &next);
927 if (err)
928 break;
929
930 err = -ENOENT;
931 inode = next.dentry->d_inode;
932 if (!inode)
933 goto out_dput;
934 err = -ENOTDIR;
935 if (!inode->i_op)
936 goto out_dput;
937
938 if (inode->i_op->follow_link) {
939 err = do_follow_link(&next, nd);
940 if (err)
941 goto return_err;
942 err = -ENOENT;
943 inode = nd->path.dentry->d_inode;
944 if (!inode)
945 break;
946 err = -ENOTDIR;
947 if (!inode->i_op)
948 break;
949 } else
950 path_to_nameidata(&next, nd);
951 err = -ENOTDIR;
952 if (!inode->i_op->lookup)
953 break;
954 continue;
955 /* here ends the main loop */
956
957 last_with_slashes:
958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
959 last_component:
960 /* Clear LOOKUP_CONTINUE iff it was previously unset */
961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
962 if (lookup_flags & LOOKUP_PARENT)
963 goto lookup_parent;
964 if (this.name[0] == '.') switch (this.len) {
965 default:
966 break;
967 case 2:
968 if (this.name[1] != '.')
969 break;
970 follow_dotdot(nd);
971 inode = nd->path.dentry->d_inode;
972 /* fallthrough */
973 case 1:
974 goto return_reval;
975 }
976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
978 &this);
979 if (err < 0)
980 break;
981 }
982 err = do_lookup(nd, &this, &next);
983 if (err)
984 break;
985 inode = next.dentry->d_inode;
986 if ((lookup_flags & LOOKUP_FOLLOW)
987 && inode && inode->i_op && inode->i_op->follow_link) {
988 err = do_follow_link(&next, nd);
989 if (err)
990 goto return_err;
991 inode = nd->path.dentry->d_inode;
992 } else
993 path_to_nameidata(&next, nd);
994 err = -ENOENT;
995 if (!inode)
996 break;
997 if (lookup_flags & LOOKUP_DIRECTORY) {
998 err = -ENOTDIR;
999 if (!inode->i_op || !inode->i_op->lookup)
1000 break;
1001 }
1002 goto return_base;
1003 lookup_parent:
1004 nd->last = this;
1005 nd->last_type = LAST_NORM;
1006 if (this.name[0] != '.')
1007 goto return_base;
1008 if (this.len == 1)
1009 nd->last_type = LAST_DOT;
1010 else if (this.len == 2 && this.name[1] == '.')
1011 nd->last_type = LAST_DOTDOT;
1012 else
1013 goto return_base;
1014 return_reval:
1015 /*
1016 * We bypassed the ordinary revalidation routines.
1017 * We may need to check the cached dentry for staleness.
1018 */
1019 if (nd->path.dentry && nd->path.dentry->d_sb &&
1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1021 err = -ESTALE;
1022 /* Note: we do not d_invalidate() */
1023 if (!nd->path.dentry->d_op->d_revalidate(
1024 nd->path.dentry, nd))
1025 break;
1026 }
1027 return_base:
1028 return 0;
1029 out_dput:
1030 path_put_conditional(&next, nd);
1031 break;
1032 }
1033 path_put(&nd->path);
1034 return_err:
1035 return err;
1036 }
1037
1038 static int path_walk(const char *name, struct nameidata *nd)
1039 {
1040 current->total_link_count = 0;
1041 return link_path_walk(name, nd);
1042 }
1043
1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1045 static int do_path_lookup(int dfd, const char *name,
1046 unsigned int flags, struct nameidata *nd)
1047 {
1048 int retval = 0;
1049 int fput_needed;
1050 struct file *file;
1051 struct fs_struct *fs = current->fs;
1052
1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1054 nd->flags = flags;
1055 nd->depth = 0;
1056
1057 if (*name=='/') {
1058 read_lock(&fs->lock);
1059 nd->path = fs->root;
1060 path_get(&fs->root);
1061 read_unlock(&fs->lock);
1062 } else if (dfd == AT_FDCWD) {
1063 read_lock(&fs->lock);
1064 nd->path = fs->pwd;
1065 path_get(&fs->pwd);
1066 read_unlock(&fs->lock);
1067 } else {
1068 struct dentry *dentry;
1069
1070 file = fget_light(dfd, &fput_needed);
1071 retval = -EBADF;
1072 if (!file)
1073 goto out_fail;
1074
1075 dentry = file->f_path.dentry;
1076
1077 retval = -ENOTDIR;
1078 if (!S_ISDIR(dentry->d_inode->i_mode))
1079 goto fput_fail;
1080
1081 retval = file_permission(file, MAY_EXEC);
1082 if (retval)
1083 goto fput_fail;
1084
1085 nd->path = file->f_path;
1086 path_get(&file->f_path);
1087
1088 fput_light(file, fput_needed);
1089 }
1090
1091 retval = path_walk(name, nd);
1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1093 nd->path.dentry->d_inode))
1094 audit_inode(name, nd->path.dentry);
1095 out_fail:
1096 return retval;
1097
1098 fput_fail:
1099 fput_light(file, fput_needed);
1100 goto out_fail;
1101 }
1102
1103 int path_lookup(const char *name, unsigned int flags,
1104 struct nameidata *nd)
1105 {
1106 return do_path_lookup(AT_FDCWD, name, flags, nd);
1107 }
1108
1109 /**
1110 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1111 * @dentry: pointer to dentry of the base directory
1112 * @mnt: pointer to vfs mount of the base directory
1113 * @name: pointer to file name
1114 * @flags: lookup flags
1115 * @nd: pointer to nameidata
1116 */
1117 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1118 const char *name, unsigned int flags,
1119 struct nameidata *nd)
1120 {
1121 int retval;
1122
1123 /* same as do_path_lookup */
1124 nd->last_type = LAST_ROOT;
1125 nd->flags = flags;
1126 nd->depth = 0;
1127
1128 nd->path.dentry = dentry;
1129 nd->path.mnt = mnt;
1130 path_get(&nd->path);
1131
1132 retval = path_walk(name, nd);
1133 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1134 nd->path.dentry->d_inode))
1135 audit_inode(name, nd->path.dentry);
1136
1137 return retval;
1138
1139 }
1140
1141 static int __path_lookup_intent_open(int dfd, const char *name,
1142 unsigned int lookup_flags, struct nameidata *nd,
1143 int open_flags, int create_mode)
1144 {
1145 struct file *filp = get_empty_filp();
1146 int err;
1147
1148 if (filp == NULL)
1149 return -ENFILE;
1150 nd->intent.open.file = filp;
1151 nd->intent.open.flags = open_flags;
1152 nd->intent.open.create_mode = create_mode;
1153 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1154 if (IS_ERR(nd->intent.open.file)) {
1155 if (err == 0) {
1156 err = PTR_ERR(nd->intent.open.file);
1157 path_put(&nd->path);
1158 }
1159 } else if (err != 0)
1160 release_open_intent(nd);
1161 return err;
1162 }
1163
1164 /**
1165 * path_lookup_open - lookup a file path with open intent
1166 * @dfd: the directory to use as base, or AT_FDCWD
1167 * @name: pointer to file name
1168 * @lookup_flags: lookup intent flags
1169 * @nd: pointer to nameidata
1170 * @open_flags: open intent flags
1171 */
1172 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1173 struct nameidata *nd, int open_flags)
1174 {
1175 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1176 open_flags, 0);
1177 }
1178
1179 /**
1180 * path_lookup_create - lookup a file path with open + create intent
1181 * @dfd: the directory to use as base, or AT_FDCWD
1182 * @name: pointer to file name
1183 * @lookup_flags: lookup intent flags
1184 * @nd: pointer to nameidata
1185 * @open_flags: open intent flags
1186 * @create_mode: create intent flags
1187 */
1188 static int path_lookup_create(int dfd, const char *name,
1189 unsigned int lookup_flags, struct nameidata *nd,
1190 int open_flags, int create_mode)
1191 {
1192 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1193 nd, open_flags, create_mode);
1194 }
1195
1196 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1197 struct nameidata *nd, int open_flags)
1198 {
1199 char *tmp = getname(name);
1200 int err = PTR_ERR(tmp);
1201
1202 if (!IS_ERR(tmp)) {
1203 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1204 putname(tmp);
1205 }
1206 return err;
1207 }
1208
1209 static struct dentry *__lookup_hash(struct qstr *name,
1210 struct dentry *base, struct nameidata *nd)
1211 {
1212 struct dentry *dentry;
1213 struct inode *inode;
1214 int err;
1215
1216 inode = base->d_inode;
1217
1218 /*
1219 * See if the low-level filesystem might want
1220 * to use its own hash..
1221 */
1222 if (base->d_op && base->d_op->d_hash) {
1223 err = base->d_op->d_hash(base, name);
1224 dentry = ERR_PTR(err);
1225 if (err < 0)
1226 goto out;
1227 }
1228
1229 dentry = cached_lookup(base, name, nd);
1230 if (!dentry) {
1231 struct dentry *new;
1232
1233 /* Don't create child dentry for a dead directory. */
1234 dentry = ERR_PTR(-ENOENT);
1235 if (IS_DEADDIR(inode))
1236 goto out;
1237
1238 new = d_alloc(base, name);
1239 dentry = ERR_PTR(-ENOMEM);
1240 if (!new)
1241 goto out;
1242 dentry = inode->i_op->lookup(inode, new, nd);
1243 if (!dentry)
1244 dentry = new;
1245 else
1246 dput(new);
1247 }
1248 out:
1249 return dentry;
1250 }
1251
1252 /*
1253 * Restricted form of lookup. Doesn't follow links, single-component only,
1254 * needs parent already locked. Doesn't follow mounts.
1255 * SMP-safe.
1256 */
1257 static struct dentry *lookup_hash(struct nameidata *nd)
1258 {
1259 int err;
1260
1261 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1262 if (err)
1263 return ERR_PTR(err);
1264 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1265 }
1266
1267 static int __lookup_one_len(const char *name, struct qstr *this,
1268 struct dentry *base, int len)
1269 {
1270 unsigned long hash;
1271 unsigned int c;
1272
1273 this->name = name;
1274 this->len = len;
1275 if (!len)
1276 return -EACCES;
1277
1278 hash = init_name_hash();
1279 while (len--) {
1280 c = *(const unsigned char *)name++;
1281 if (c == '/' || c == '\0')
1282 return -EACCES;
1283 hash = partial_name_hash(c, hash);
1284 }
1285 this->hash = end_name_hash(hash);
1286 return 0;
1287 }
1288
1289 /**
1290 * lookup_one_len - filesystem helper to lookup single pathname component
1291 * @name: pathname component to lookup
1292 * @base: base directory to lookup from
1293 * @len: maximum length @len should be interpreted to
1294 *
1295 * Note that this routine is purely a helper for filesystem usage and should
1296 * not be called by generic code. Also note that by using this function the
1297 * nameidata argument is passed to the filesystem methods and a filesystem
1298 * using this helper needs to be prepared for that.
1299 */
1300 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1301 {
1302 int err;
1303 struct qstr this;
1304
1305 err = __lookup_one_len(name, &this, base, len);
1306 if (err)
1307 return ERR_PTR(err);
1308
1309 err = inode_permission(base->d_inode, MAY_EXEC);
1310 if (err)
1311 return ERR_PTR(err);
1312 return __lookup_hash(&this, base, NULL);
1313 }
1314
1315 /**
1316 * lookup_one_noperm - bad hack for sysfs
1317 * @name: pathname component to lookup
1318 * @base: base directory to lookup from
1319 *
1320 * This is a variant of lookup_one_len that doesn't perform any permission
1321 * checks. It's a horrible hack to work around the braindead sysfs
1322 * architecture and should not be used anywhere else.
1323 *
1324 * DON'T USE THIS FUNCTION EVER, thanks.
1325 */
1326 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1327 {
1328 int err;
1329 struct qstr this;
1330
1331 err = __lookup_one_len(name, &this, base, strlen(name));
1332 if (err)
1333 return ERR_PTR(err);
1334 return __lookup_hash(&this, base, NULL);
1335 }
1336
1337 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1338 struct nameidata *nd)
1339 {
1340 char *tmp = getname(name);
1341 int err = PTR_ERR(tmp);
1342
1343 if (!IS_ERR(tmp)) {
1344 err = do_path_lookup(dfd, tmp, flags, nd);
1345 putname(tmp);
1346 }
1347 return err;
1348 }
1349
1350 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1351 {
1352 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1353 }
1354
1355 /*
1356 * It's inline, so penalty for filesystems that don't use sticky bit is
1357 * minimal.
1358 */
1359 static inline int check_sticky(struct inode *dir, struct inode *inode)
1360 {
1361 if (!(dir->i_mode & S_ISVTX))
1362 return 0;
1363 if (inode->i_uid == current->fsuid)
1364 return 0;
1365 if (dir->i_uid == current->fsuid)
1366 return 0;
1367 return !capable(CAP_FOWNER);
1368 }
1369
1370 /*
1371 * Check whether we can remove a link victim from directory dir, check
1372 * whether the type of victim is right.
1373 * 1. We can't do it if dir is read-only (done in permission())
1374 * 2. We should have write and exec permissions on dir
1375 * 3. We can't remove anything from append-only dir
1376 * 4. We can't do anything with immutable dir (done in permission())
1377 * 5. If the sticky bit on dir is set we should either
1378 * a. be owner of dir, or
1379 * b. be owner of victim, or
1380 * c. have CAP_FOWNER capability
1381 * 6. If the victim is append-only or immutable we can't do antyhing with
1382 * links pointing to it.
1383 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1384 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1385 * 9. We can't remove a root or mountpoint.
1386 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1387 * nfs_async_unlink().
1388 */
1389 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1390 {
1391 int error;
1392
1393 if (!victim->d_inode)
1394 return -ENOENT;
1395
1396 BUG_ON(victim->d_parent->d_inode != dir);
1397 audit_inode_child(victim->d_name.name, victim, dir);
1398
1399 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1400 if (error)
1401 return error;
1402 if (IS_APPEND(dir))
1403 return -EPERM;
1404 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1405 IS_IMMUTABLE(victim->d_inode))
1406 return -EPERM;
1407 if (isdir) {
1408 if (!S_ISDIR(victim->d_inode->i_mode))
1409 return -ENOTDIR;
1410 if (IS_ROOT(victim))
1411 return -EBUSY;
1412 } else if (S_ISDIR(victim->d_inode->i_mode))
1413 return -EISDIR;
1414 if (IS_DEADDIR(dir))
1415 return -ENOENT;
1416 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1417 return -EBUSY;
1418 return 0;
1419 }
1420
1421 /* Check whether we can create an object with dentry child in directory
1422 * dir.
1423 * 1. We can't do it if child already exists (open has special treatment for
1424 * this case, but since we are inlined it's OK)
1425 * 2. We can't do it if dir is read-only (done in permission())
1426 * 3. We should have write and exec permissions on dir
1427 * 4. We can't do it if dir is immutable (done in permission())
1428 */
1429 static inline int may_create(struct inode *dir, struct dentry *child,
1430 struct nameidata *nd)
1431 {
1432 if (child->d_inode)
1433 return -EEXIST;
1434 if (IS_DEADDIR(dir))
1435 return -ENOENT;
1436 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1437 }
1438
1439 /*
1440 * O_DIRECTORY translates into forcing a directory lookup.
1441 */
1442 static inline int lookup_flags(unsigned int f)
1443 {
1444 unsigned long retval = LOOKUP_FOLLOW;
1445
1446 if (f & O_NOFOLLOW)
1447 retval &= ~LOOKUP_FOLLOW;
1448
1449 if (f & O_DIRECTORY)
1450 retval |= LOOKUP_DIRECTORY;
1451
1452 return retval;
1453 }
1454
1455 /*
1456 * p1 and p2 should be directories on the same fs.
1457 */
1458 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1459 {
1460 struct dentry *p;
1461
1462 if (p1 == p2) {
1463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1464 return NULL;
1465 }
1466
1467 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1468
1469 for (p = p1; p->d_parent != p; p = p->d_parent) {
1470 if (p->d_parent == p2) {
1471 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1472 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1473 return p;
1474 }
1475 }
1476
1477 for (p = p2; p->d_parent != p; p = p->d_parent) {
1478 if (p->d_parent == p1) {
1479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1480 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1481 return p;
1482 }
1483 }
1484
1485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1486 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1487 return NULL;
1488 }
1489
1490 void unlock_rename(struct dentry *p1, struct dentry *p2)
1491 {
1492 mutex_unlock(&p1->d_inode->i_mutex);
1493 if (p1 != p2) {
1494 mutex_unlock(&p2->d_inode->i_mutex);
1495 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1496 }
1497 }
1498
1499 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1500 struct nameidata *nd)
1501 {
1502 int error = may_create(dir, dentry, nd);
1503
1504 if (error)
1505 return error;
1506
1507 if (!dir->i_op || !dir->i_op->create)
1508 return -EACCES; /* shouldn't it be ENOSYS? */
1509 mode &= S_IALLUGO;
1510 mode |= S_IFREG;
1511 error = security_inode_create(dir, dentry, mode);
1512 if (error)
1513 return error;
1514 DQUOT_INIT(dir);
1515 error = dir->i_op->create(dir, dentry, mode, nd);
1516 if (!error)
1517 fsnotify_create(dir, dentry);
1518 return error;
1519 }
1520
1521 int may_open(struct nameidata *nd, int acc_mode, int flag)
1522 {
1523 struct dentry *dentry = nd->path.dentry;
1524 struct inode *inode = dentry->d_inode;
1525 int error;
1526
1527 if (!inode)
1528 return -ENOENT;
1529
1530 if (S_ISLNK(inode->i_mode))
1531 return -ELOOP;
1532
1533 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1534 return -EISDIR;
1535
1536 /*
1537 * FIFO's, sockets and device files are special: they don't
1538 * actually live on the filesystem itself, and as such you
1539 * can write to them even if the filesystem is read-only.
1540 */
1541 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1542 flag &= ~O_TRUNC;
1543 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1544 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1545 return -EACCES;
1546
1547 flag &= ~O_TRUNC;
1548 }
1549
1550 error = vfs_permission(nd, acc_mode);
1551 if (error)
1552 return error;
1553 /*
1554 * An append-only file must be opened in append mode for writing.
1555 */
1556 if (IS_APPEND(inode)) {
1557 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1558 return -EPERM;
1559 if (flag & O_TRUNC)
1560 return -EPERM;
1561 }
1562
1563 /* O_NOATIME can only be set by the owner or superuser */
1564 if (flag & O_NOATIME)
1565 if (!is_owner_or_cap(inode))
1566 return -EPERM;
1567
1568 /*
1569 * Ensure there are no outstanding leases on the file.
1570 */
1571 error = break_lease(inode, flag);
1572 if (error)
1573 return error;
1574
1575 if (flag & O_TRUNC) {
1576 error = get_write_access(inode);
1577 if (error)
1578 return error;
1579
1580 /*
1581 * Refuse to truncate files with mandatory locks held on them.
1582 */
1583 error = locks_verify_locked(inode);
1584 if (!error) {
1585 DQUOT_INIT(inode);
1586
1587 error = do_truncate(dentry, 0,
1588 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1589 NULL);
1590 }
1591 put_write_access(inode);
1592 if (error)
1593 return error;
1594 } else
1595 if (flag & FMODE_WRITE)
1596 DQUOT_INIT(inode);
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Be careful about ever adding any more callers of this
1603 * function. Its flags must be in the namei format, not
1604 * what get passed to sys_open().
1605 */
1606 static int __open_namei_create(struct nameidata *nd, struct path *path,
1607 int flag, int mode)
1608 {
1609 int error;
1610 struct dentry *dir = nd->path.dentry;
1611
1612 if (!IS_POSIXACL(dir->d_inode))
1613 mode &= ~current->fs->umask;
1614 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1615 mutex_unlock(&dir->d_inode->i_mutex);
1616 dput(nd->path.dentry);
1617 nd->path.dentry = path->dentry;
1618 if (error)
1619 return error;
1620 /* Don't check for write permission, don't truncate */
1621 return may_open(nd, 0, flag & ~O_TRUNC);
1622 }
1623
1624 /*
1625 * Note that while the flag value (low two bits) for sys_open means:
1626 * 00 - read-only
1627 * 01 - write-only
1628 * 10 - read-write
1629 * 11 - special
1630 * it is changed into
1631 * 00 - no permissions needed
1632 * 01 - read-permission
1633 * 10 - write-permission
1634 * 11 - read-write
1635 * for the internal routines (ie open_namei()/follow_link() etc)
1636 * This is more logical, and also allows the 00 "no perm needed"
1637 * to be used for symlinks (where the permissions are checked
1638 * later).
1639 *
1640 */
1641 static inline int open_to_namei_flags(int flag)
1642 {
1643 if ((flag+1) & O_ACCMODE)
1644 flag++;
1645 return flag;
1646 }
1647
1648 static int open_will_write_to_fs(int flag, struct inode *inode)
1649 {
1650 /*
1651 * We'll never write to the fs underlying
1652 * a device file.
1653 */
1654 if (special_file(inode->i_mode))
1655 return 0;
1656 return (flag & O_TRUNC);
1657 }
1658
1659 /*
1660 * Note that the low bits of the passed in "open_flag"
1661 * are not the same as in the local variable "flag". See
1662 * open_to_namei_flags() for more details.
1663 */
1664 struct file *do_filp_open(int dfd, const char *pathname,
1665 int open_flag, int mode)
1666 {
1667 struct file *filp;
1668 struct nameidata nd;
1669 int acc_mode, error;
1670 struct path path;
1671 struct dentry *dir;
1672 int count = 0;
1673 int will_write;
1674 int flag = open_to_namei_flags(open_flag);
1675
1676 acc_mode = MAY_OPEN | ACC_MODE(flag);
1677
1678 /* O_TRUNC implies we need access checks for write permissions */
1679 if (flag & O_TRUNC)
1680 acc_mode |= MAY_WRITE;
1681
1682 /* Allow the LSM permission hook to distinguish append
1683 access from general write access. */
1684 if (flag & O_APPEND)
1685 acc_mode |= MAY_APPEND;
1686
1687 /*
1688 * The simplest case - just a plain lookup.
1689 */
1690 if (!(flag & O_CREAT)) {
1691 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1692 &nd, flag);
1693 if (error)
1694 return ERR_PTR(error);
1695 goto ok;
1696 }
1697
1698 /*
1699 * Create - we need to know the parent.
1700 */
1701 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1702 &nd, flag, mode);
1703 if (error)
1704 return ERR_PTR(error);
1705
1706 /*
1707 * We have the parent and last component. First of all, check
1708 * that we are not asked to creat(2) an obvious directory - that
1709 * will not do.
1710 */
1711 error = -EISDIR;
1712 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1713 goto exit;
1714
1715 dir = nd.path.dentry;
1716 nd.flags &= ~LOOKUP_PARENT;
1717 mutex_lock(&dir->d_inode->i_mutex);
1718 path.dentry = lookup_hash(&nd);
1719 path.mnt = nd.path.mnt;
1720
1721 do_last:
1722 error = PTR_ERR(path.dentry);
1723 if (IS_ERR(path.dentry)) {
1724 mutex_unlock(&dir->d_inode->i_mutex);
1725 goto exit;
1726 }
1727
1728 if (IS_ERR(nd.intent.open.file)) {
1729 error = PTR_ERR(nd.intent.open.file);
1730 goto exit_mutex_unlock;
1731 }
1732
1733 /* Negative dentry, just create the file */
1734 if (!path.dentry->d_inode) {
1735 /*
1736 * This write is needed to ensure that a
1737 * ro->rw transition does not occur between
1738 * the time when the file is created and when
1739 * a permanent write count is taken through
1740 * the 'struct file' in nameidata_to_filp().
1741 */
1742 error = mnt_want_write(nd.path.mnt);
1743 if (error)
1744 goto exit_mutex_unlock;
1745 error = __open_namei_create(&nd, &path, flag, mode);
1746 if (error) {
1747 mnt_drop_write(nd.path.mnt);
1748 goto exit;
1749 }
1750 filp = nameidata_to_filp(&nd, open_flag);
1751 mnt_drop_write(nd.path.mnt);
1752 return filp;
1753 }
1754
1755 /*
1756 * It already exists.
1757 */
1758 mutex_unlock(&dir->d_inode->i_mutex);
1759 audit_inode(pathname, path.dentry);
1760
1761 error = -EEXIST;
1762 if (flag & O_EXCL)
1763 goto exit_dput;
1764
1765 if (__follow_mount(&path)) {
1766 error = -ELOOP;
1767 if (flag & O_NOFOLLOW)
1768 goto exit_dput;
1769 }
1770
1771 error = -ENOENT;
1772 if (!path.dentry->d_inode)
1773 goto exit_dput;
1774 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1775 goto do_link;
1776
1777 path_to_nameidata(&path, &nd);
1778 error = -EISDIR;
1779 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1780 goto exit;
1781 ok:
1782 /*
1783 * Consider:
1784 * 1. may_open() truncates a file
1785 * 2. a rw->ro mount transition occurs
1786 * 3. nameidata_to_filp() fails due to
1787 * the ro mount.
1788 * That would be inconsistent, and should
1789 * be avoided. Taking this mnt write here
1790 * ensures that (2) can not occur.
1791 */
1792 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1793 if (will_write) {
1794 error = mnt_want_write(nd.path.mnt);
1795 if (error)
1796 goto exit;
1797 }
1798 error = may_open(&nd, acc_mode, flag);
1799 if (error) {
1800 if (will_write)
1801 mnt_drop_write(nd.path.mnt);
1802 goto exit;
1803 }
1804 filp = nameidata_to_filp(&nd, open_flag);
1805 /*
1806 * It is now safe to drop the mnt write
1807 * because the filp has had a write taken
1808 * on its behalf.
1809 */
1810 if (will_write)
1811 mnt_drop_write(nd.path.mnt);
1812 return filp;
1813
1814 exit_mutex_unlock:
1815 mutex_unlock(&dir->d_inode->i_mutex);
1816 exit_dput:
1817 path_put_conditional(&path, &nd);
1818 exit:
1819 if (!IS_ERR(nd.intent.open.file))
1820 release_open_intent(&nd);
1821 path_put(&nd.path);
1822 return ERR_PTR(error);
1823
1824 do_link:
1825 error = -ELOOP;
1826 if (flag & O_NOFOLLOW)
1827 goto exit_dput;
1828 /*
1829 * This is subtle. Instead of calling do_follow_link() we do the
1830 * thing by hands. The reason is that this way we have zero link_count
1831 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1832 * After that we have the parent and last component, i.e.
1833 * we are in the same situation as after the first path_walk().
1834 * Well, almost - if the last component is normal we get its copy
1835 * stored in nd->last.name and we will have to putname() it when we
1836 * are done. Procfs-like symlinks just set LAST_BIND.
1837 */
1838 nd.flags |= LOOKUP_PARENT;
1839 error = security_inode_follow_link(path.dentry, &nd);
1840 if (error)
1841 goto exit_dput;
1842 error = __do_follow_link(&path, &nd);
1843 if (error) {
1844 /* Does someone understand code flow here? Or it is only
1845 * me so stupid? Anathema to whoever designed this non-sense
1846 * with "intent.open".
1847 */
1848 release_open_intent(&nd);
1849 return ERR_PTR(error);
1850 }
1851 nd.flags &= ~LOOKUP_PARENT;
1852 if (nd.last_type == LAST_BIND)
1853 goto ok;
1854 error = -EISDIR;
1855 if (nd.last_type != LAST_NORM)
1856 goto exit;
1857 if (nd.last.name[nd.last.len]) {
1858 __putname(nd.last.name);
1859 goto exit;
1860 }
1861 error = -ELOOP;
1862 if (count++==32) {
1863 __putname(nd.last.name);
1864 goto exit;
1865 }
1866 dir = nd.path.dentry;
1867 mutex_lock(&dir->d_inode->i_mutex);
1868 path.dentry = lookup_hash(&nd);
1869 path.mnt = nd.path.mnt;
1870 __putname(nd.last.name);
1871 goto do_last;
1872 }
1873
1874 /**
1875 * filp_open - open file and return file pointer
1876 *
1877 * @filename: path to open
1878 * @flags: open flags as per the open(2) second argument
1879 * @mode: mode for the new file if O_CREAT is set, else ignored
1880 *
1881 * This is the helper to open a file from kernelspace if you really
1882 * have to. But in generally you should not do this, so please move
1883 * along, nothing to see here..
1884 */
1885 struct file *filp_open(const char *filename, int flags, int mode)
1886 {
1887 return do_filp_open(AT_FDCWD, filename, flags, mode);
1888 }
1889 EXPORT_SYMBOL(filp_open);
1890
1891 /**
1892 * lookup_create - lookup a dentry, creating it if it doesn't exist
1893 * @nd: nameidata info
1894 * @is_dir: directory flag
1895 *
1896 * Simple function to lookup and return a dentry and create it
1897 * if it doesn't exist. Is SMP-safe.
1898 *
1899 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1900 */
1901 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1902 {
1903 struct dentry *dentry = ERR_PTR(-EEXIST);
1904
1905 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1906 /*
1907 * Yucky last component or no last component at all?
1908 * (foo/., foo/.., /////)
1909 */
1910 if (nd->last_type != LAST_NORM)
1911 goto fail;
1912 nd->flags &= ~LOOKUP_PARENT;
1913 nd->flags |= LOOKUP_CREATE;
1914 nd->intent.open.flags = O_EXCL;
1915
1916 /*
1917 * Do the final lookup.
1918 */
1919 dentry = lookup_hash(nd);
1920 if (IS_ERR(dentry))
1921 goto fail;
1922
1923 if (dentry->d_inode)
1924 goto eexist;
1925 /*
1926 * Special case - lookup gave negative, but... we had foo/bar/
1927 * From the vfs_mknod() POV we just have a negative dentry -
1928 * all is fine. Let's be bastards - you had / on the end, you've
1929 * been asking for (non-existent) directory. -ENOENT for you.
1930 */
1931 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1932 dput(dentry);
1933 dentry = ERR_PTR(-ENOENT);
1934 }
1935 return dentry;
1936 eexist:
1937 dput(dentry);
1938 dentry = ERR_PTR(-EEXIST);
1939 fail:
1940 return dentry;
1941 }
1942 EXPORT_SYMBOL_GPL(lookup_create);
1943
1944 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1945 {
1946 int error = may_create(dir, dentry, NULL);
1947
1948 if (error)
1949 return error;
1950
1951 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1952 return -EPERM;
1953
1954 if (!dir->i_op || !dir->i_op->mknod)
1955 return -EPERM;
1956
1957 error = devcgroup_inode_mknod(mode, dev);
1958 if (error)
1959 return error;
1960
1961 error = security_inode_mknod(dir, dentry, mode, dev);
1962 if (error)
1963 return error;
1964
1965 DQUOT_INIT(dir);
1966 error = dir->i_op->mknod(dir, dentry, mode, dev);
1967 if (!error)
1968 fsnotify_create(dir, dentry);
1969 return error;
1970 }
1971
1972 static int may_mknod(mode_t mode)
1973 {
1974 switch (mode & S_IFMT) {
1975 case S_IFREG:
1976 case S_IFCHR:
1977 case S_IFBLK:
1978 case S_IFIFO:
1979 case S_IFSOCK:
1980 case 0: /* zero mode translates to S_IFREG */
1981 return 0;
1982 case S_IFDIR:
1983 return -EPERM;
1984 default:
1985 return -EINVAL;
1986 }
1987 }
1988
1989 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1990 unsigned dev)
1991 {
1992 int error = 0;
1993 char * tmp;
1994 struct dentry * dentry;
1995 struct nameidata nd;
1996
1997 if (S_ISDIR(mode))
1998 return -EPERM;
1999 tmp = getname(filename);
2000 if (IS_ERR(tmp))
2001 return PTR_ERR(tmp);
2002
2003 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2004 if (error)
2005 goto out;
2006 dentry = lookup_create(&nd, 0);
2007 if (IS_ERR(dentry)) {
2008 error = PTR_ERR(dentry);
2009 goto out_unlock;
2010 }
2011 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2012 mode &= ~current->fs->umask;
2013 error = may_mknod(mode);
2014 if (error)
2015 goto out_dput;
2016 error = mnt_want_write(nd.path.mnt);
2017 if (error)
2018 goto out_dput;
2019 switch (mode & S_IFMT) {
2020 case 0: case S_IFREG:
2021 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2022 break;
2023 case S_IFCHR: case S_IFBLK:
2024 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2025 new_decode_dev(dev));
2026 break;
2027 case S_IFIFO: case S_IFSOCK:
2028 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2029 break;
2030 }
2031 mnt_drop_write(nd.path.mnt);
2032 out_dput:
2033 dput(dentry);
2034 out_unlock:
2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 path_put(&nd.path);
2037 out:
2038 putname(tmp);
2039
2040 return error;
2041 }
2042
2043 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2044 {
2045 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2046 }
2047
2048 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2049 {
2050 int error = may_create(dir, dentry, NULL);
2051
2052 if (error)
2053 return error;
2054
2055 if (!dir->i_op || !dir->i_op->mkdir)
2056 return -EPERM;
2057
2058 mode &= (S_IRWXUGO|S_ISVTX);
2059 error = security_inode_mkdir(dir, dentry, mode);
2060 if (error)
2061 return error;
2062
2063 DQUOT_INIT(dir);
2064 error = dir->i_op->mkdir(dir, dentry, mode);
2065 if (!error)
2066 fsnotify_mkdir(dir, dentry);
2067 return error;
2068 }
2069
2070 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2071 {
2072 int error = 0;
2073 char * tmp;
2074 struct dentry *dentry;
2075 struct nameidata nd;
2076
2077 tmp = getname(pathname);
2078 error = PTR_ERR(tmp);
2079 if (IS_ERR(tmp))
2080 goto out_err;
2081
2082 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2083 if (error)
2084 goto out;
2085 dentry = lookup_create(&nd, 1);
2086 error = PTR_ERR(dentry);
2087 if (IS_ERR(dentry))
2088 goto out_unlock;
2089
2090 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2091 mode &= ~current->fs->umask;
2092 error = mnt_want_write(nd.path.mnt);
2093 if (error)
2094 goto out_dput;
2095 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2096 mnt_drop_write(nd.path.mnt);
2097 out_dput:
2098 dput(dentry);
2099 out_unlock:
2100 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2101 path_put(&nd.path);
2102 out:
2103 putname(tmp);
2104 out_err:
2105 return error;
2106 }
2107
2108 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2109 {
2110 return sys_mkdirat(AT_FDCWD, pathname, mode);
2111 }
2112
2113 /*
2114 * We try to drop the dentry early: we should have
2115 * a usage count of 2 if we're the only user of this
2116 * dentry, and if that is true (possibly after pruning
2117 * the dcache), then we drop the dentry now.
2118 *
2119 * A low-level filesystem can, if it choses, legally
2120 * do a
2121 *
2122 * if (!d_unhashed(dentry))
2123 * return -EBUSY;
2124 *
2125 * if it cannot handle the case of removing a directory
2126 * that is still in use by something else..
2127 */
2128 void dentry_unhash(struct dentry *dentry)
2129 {
2130 dget(dentry);
2131 shrink_dcache_parent(dentry);
2132 spin_lock(&dcache_lock);
2133 spin_lock(&dentry->d_lock);
2134 if (atomic_read(&dentry->d_count) == 2)
2135 __d_drop(dentry);
2136 spin_unlock(&dentry->d_lock);
2137 spin_unlock(&dcache_lock);
2138 }
2139
2140 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2141 {
2142 int error = may_delete(dir, dentry, 1);
2143
2144 if (error)
2145 return error;
2146
2147 if (!dir->i_op || !dir->i_op->rmdir)
2148 return -EPERM;
2149
2150 DQUOT_INIT(dir);
2151
2152 mutex_lock(&dentry->d_inode->i_mutex);
2153 dentry_unhash(dentry);
2154 if (d_mountpoint(dentry))
2155 error = -EBUSY;
2156 else {
2157 error = security_inode_rmdir(dir, dentry);
2158 if (!error) {
2159 error = dir->i_op->rmdir(dir, dentry);
2160 if (!error)
2161 dentry->d_inode->i_flags |= S_DEAD;
2162 }
2163 }
2164 mutex_unlock(&dentry->d_inode->i_mutex);
2165 if (!error) {
2166 d_delete(dentry);
2167 }
2168 dput(dentry);
2169
2170 return error;
2171 }
2172
2173 static long do_rmdir(int dfd, const char __user *pathname)
2174 {
2175 int error = 0;
2176 char * name;
2177 struct dentry *dentry;
2178 struct nameidata nd;
2179
2180 name = getname(pathname);
2181 if(IS_ERR(name))
2182 return PTR_ERR(name);
2183
2184 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2185 if (error)
2186 goto exit;
2187
2188 switch(nd.last_type) {
2189 case LAST_DOTDOT:
2190 error = -ENOTEMPTY;
2191 goto exit1;
2192 case LAST_DOT:
2193 error = -EINVAL;
2194 goto exit1;
2195 case LAST_ROOT:
2196 error = -EBUSY;
2197 goto exit1;
2198 }
2199 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2200 dentry = lookup_hash(&nd);
2201 error = PTR_ERR(dentry);
2202 if (IS_ERR(dentry))
2203 goto exit2;
2204 error = mnt_want_write(nd.path.mnt);
2205 if (error)
2206 goto exit3;
2207 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2208 mnt_drop_write(nd.path.mnt);
2209 exit3:
2210 dput(dentry);
2211 exit2:
2212 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2213 exit1:
2214 path_put(&nd.path);
2215 exit:
2216 putname(name);
2217 return error;
2218 }
2219
2220 asmlinkage long sys_rmdir(const char __user *pathname)
2221 {
2222 return do_rmdir(AT_FDCWD, pathname);
2223 }
2224
2225 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2226 {
2227 int error = may_delete(dir, dentry, 0);
2228
2229 if (error)
2230 return error;
2231
2232 if (!dir->i_op || !dir->i_op->unlink)
2233 return -EPERM;
2234
2235 DQUOT_INIT(dir);
2236
2237 mutex_lock(&dentry->d_inode->i_mutex);
2238 if (d_mountpoint(dentry))
2239 error = -EBUSY;
2240 else {
2241 error = security_inode_unlink(dir, dentry);
2242 if (!error)
2243 error = dir->i_op->unlink(dir, dentry);
2244 }
2245 mutex_unlock(&dentry->d_inode->i_mutex);
2246
2247 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2248 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2249 fsnotify_link_count(dentry->d_inode);
2250 d_delete(dentry);
2251 }
2252
2253 return error;
2254 }
2255
2256 /*
2257 * Make sure that the actual truncation of the file will occur outside its
2258 * directory's i_mutex. Truncate can take a long time if there is a lot of
2259 * writeout happening, and we don't want to prevent access to the directory
2260 * while waiting on the I/O.
2261 */
2262 static long do_unlinkat(int dfd, const char __user *pathname)
2263 {
2264 int error = 0;
2265 char * name;
2266 struct dentry *dentry;
2267 struct nameidata nd;
2268 struct inode *inode = NULL;
2269
2270 name = getname(pathname);
2271 if(IS_ERR(name))
2272 return PTR_ERR(name);
2273
2274 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2275 if (error)
2276 goto exit;
2277 error = -EISDIR;
2278 if (nd.last_type != LAST_NORM)
2279 goto exit1;
2280 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2281 dentry = lookup_hash(&nd);
2282 error = PTR_ERR(dentry);
2283 if (!IS_ERR(dentry)) {
2284 /* Why not before? Because we want correct error value */
2285 if (nd.last.name[nd.last.len])
2286 goto slashes;
2287 inode = dentry->d_inode;
2288 if (inode)
2289 atomic_inc(&inode->i_count);
2290 error = mnt_want_write(nd.path.mnt);
2291 if (error)
2292 goto exit2;
2293 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2294 mnt_drop_write(nd.path.mnt);
2295 exit2:
2296 dput(dentry);
2297 }
2298 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2299 if (inode)
2300 iput(inode); /* truncate the inode here */
2301 exit1:
2302 path_put(&nd.path);
2303 exit:
2304 putname(name);
2305 return error;
2306
2307 slashes:
2308 error = !dentry->d_inode ? -ENOENT :
2309 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2310 goto exit2;
2311 }
2312
2313 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2314 {
2315 if ((flag & ~AT_REMOVEDIR) != 0)
2316 return -EINVAL;
2317
2318 if (flag & AT_REMOVEDIR)
2319 return do_rmdir(dfd, pathname);
2320
2321 return do_unlinkat(dfd, pathname);
2322 }
2323
2324 asmlinkage long sys_unlink(const char __user *pathname)
2325 {
2326 return do_unlinkat(AT_FDCWD, pathname);
2327 }
2328
2329 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2330 {
2331 int error = may_create(dir, dentry, NULL);
2332
2333 if (error)
2334 return error;
2335
2336 if (!dir->i_op || !dir->i_op->symlink)
2337 return -EPERM;
2338
2339 error = security_inode_symlink(dir, dentry, oldname);
2340 if (error)
2341 return error;
2342
2343 DQUOT_INIT(dir);
2344 error = dir->i_op->symlink(dir, dentry, oldname);
2345 if (!error)
2346 fsnotify_create(dir, dentry);
2347 return error;
2348 }
2349
2350 asmlinkage long sys_symlinkat(const char __user *oldname,
2351 int newdfd, const char __user *newname)
2352 {
2353 int error = 0;
2354 char * from;
2355 char * to;
2356 struct dentry *dentry;
2357 struct nameidata nd;
2358
2359 from = getname(oldname);
2360 if(IS_ERR(from))
2361 return PTR_ERR(from);
2362 to = getname(newname);
2363 error = PTR_ERR(to);
2364 if (IS_ERR(to))
2365 goto out_putname;
2366
2367 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2368 if (error)
2369 goto out;
2370 dentry = lookup_create(&nd, 0);
2371 error = PTR_ERR(dentry);
2372 if (IS_ERR(dentry))
2373 goto out_unlock;
2374
2375 error = mnt_want_write(nd.path.mnt);
2376 if (error)
2377 goto out_dput;
2378 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2379 mnt_drop_write(nd.path.mnt);
2380 out_dput:
2381 dput(dentry);
2382 out_unlock:
2383 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2384 path_put(&nd.path);
2385 out:
2386 putname(to);
2387 out_putname:
2388 putname(from);
2389 return error;
2390 }
2391
2392 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2393 {
2394 return sys_symlinkat(oldname, AT_FDCWD, newname);
2395 }
2396
2397 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2398 {
2399 struct inode *inode = old_dentry->d_inode;
2400 int error;
2401
2402 if (!inode)
2403 return -ENOENT;
2404
2405 error = may_create(dir, new_dentry, NULL);
2406 if (error)
2407 return error;
2408
2409 if (dir->i_sb != inode->i_sb)
2410 return -EXDEV;
2411
2412 /*
2413 * A link to an append-only or immutable file cannot be created.
2414 */
2415 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2416 return -EPERM;
2417 if (!dir->i_op || !dir->i_op->link)
2418 return -EPERM;
2419 if (S_ISDIR(inode->i_mode))
2420 return -EPERM;
2421
2422 error = security_inode_link(old_dentry, dir, new_dentry);
2423 if (error)
2424 return error;
2425
2426 mutex_lock(&inode->i_mutex);
2427 DQUOT_INIT(dir);
2428 error = dir->i_op->link(old_dentry, dir, new_dentry);
2429 mutex_unlock(&inode->i_mutex);
2430 if (!error)
2431 fsnotify_link(dir, inode, new_dentry);
2432 return error;
2433 }
2434
2435 /*
2436 * Hardlinks are often used in delicate situations. We avoid
2437 * security-related surprises by not following symlinks on the
2438 * newname. --KAB
2439 *
2440 * We don't follow them on the oldname either to be compatible
2441 * with linux 2.0, and to avoid hard-linking to directories
2442 * and other special files. --ADM
2443 */
2444 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2445 int newdfd, const char __user *newname,
2446 int flags)
2447 {
2448 struct dentry *new_dentry;
2449 struct nameidata nd, old_nd;
2450 int error;
2451 char * to;
2452
2453 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2454 return -EINVAL;
2455
2456 to = getname(newname);
2457 if (IS_ERR(to))
2458 return PTR_ERR(to);
2459
2460 error = __user_walk_fd(olddfd, oldname,
2461 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2462 &old_nd);
2463 if (error)
2464 goto exit;
2465 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2466 if (error)
2467 goto out;
2468 error = -EXDEV;
2469 if (old_nd.path.mnt != nd.path.mnt)
2470 goto out_release;
2471 new_dentry = lookup_create(&nd, 0);
2472 error = PTR_ERR(new_dentry);
2473 if (IS_ERR(new_dentry))
2474 goto out_unlock;
2475 error = mnt_want_write(nd.path.mnt);
2476 if (error)
2477 goto out_dput;
2478 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2479 mnt_drop_write(nd.path.mnt);
2480 out_dput:
2481 dput(new_dentry);
2482 out_unlock:
2483 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2484 out_release:
2485 path_put(&nd.path);
2486 out:
2487 path_put(&old_nd.path);
2488 exit:
2489 putname(to);
2490
2491 return error;
2492 }
2493
2494 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2495 {
2496 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2497 }
2498
2499 /*
2500 * The worst of all namespace operations - renaming directory. "Perverted"
2501 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2502 * Problems:
2503 * a) we can get into loop creation. Check is done in is_subdir().
2504 * b) race potential - two innocent renames can create a loop together.
2505 * That's where 4.4 screws up. Current fix: serialization on
2506 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2507 * story.
2508 * c) we have to lock _three_ objects - parents and victim (if it exists).
2509 * And that - after we got ->i_mutex on parents (until then we don't know
2510 * whether the target exists). Solution: try to be smart with locking
2511 * order for inodes. We rely on the fact that tree topology may change
2512 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2513 * move will be locked. Thus we can rank directories by the tree
2514 * (ancestors first) and rank all non-directories after them.
2515 * That works since everybody except rename does "lock parent, lookup,
2516 * lock child" and rename is under ->s_vfs_rename_mutex.
2517 * HOWEVER, it relies on the assumption that any object with ->lookup()
2518 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2519 * we'd better make sure that there's no link(2) for them.
2520 * d) some filesystems don't support opened-but-unlinked directories,
2521 * either because of layout or because they are not ready to deal with
2522 * all cases correctly. The latter will be fixed (taking this sort of
2523 * stuff into VFS), but the former is not going away. Solution: the same
2524 * trick as in rmdir().
2525 * e) conversion from fhandle to dentry may come in the wrong moment - when
2526 * we are removing the target. Solution: we will have to grab ->i_mutex
2527 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2528 * ->i_mutex on parents, which works but leads to some truely excessive
2529 * locking].
2530 */
2531 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2532 struct inode *new_dir, struct dentry *new_dentry)
2533 {
2534 int error = 0;
2535 struct inode *target;
2536
2537 /*
2538 * If we are going to change the parent - check write permissions,
2539 * we'll need to flip '..'.
2540 */
2541 if (new_dir != old_dir) {
2542 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2543 if (error)
2544 return error;
2545 }
2546
2547 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2548 if (error)
2549 return error;
2550
2551 target = new_dentry->d_inode;
2552 if (target) {
2553 mutex_lock(&target->i_mutex);
2554 dentry_unhash(new_dentry);
2555 }
2556 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2557 error = -EBUSY;
2558 else
2559 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2560 if (target) {
2561 if (!error)
2562 target->i_flags |= S_DEAD;
2563 mutex_unlock(&target->i_mutex);
2564 if (d_unhashed(new_dentry))
2565 d_rehash(new_dentry);
2566 dput(new_dentry);
2567 }
2568 if (!error)
2569 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2570 d_move(old_dentry,new_dentry);
2571 return error;
2572 }
2573
2574 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2575 struct inode *new_dir, struct dentry *new_dentry)
2576 {
2577 struct inode *target;
2578 int error;
2579
2580 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2581 if (error)
2582 return error;
2583
2584 dget(new_dentry);
2585 target = new_dentry->d_inode;
2586 if (target)
2587 mutex_lock(&target->i_mutex);
2588 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2589 error = -EBUSY;
2590 else
2591 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2592 if (!error) {
2593 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2594 d_move(old_dentry, new_dentry);
2595 }
2596 if (target)
2597 mutex_unlock(&target->i_mutex);
2598 dput(new_dentry);
2599 return error;
2600 }
2601
2602 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2603 struct inode *new_dir, struct dentry *new_dentry)
2604 {
2605 int error;
2606 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2607 const char *old_name;
2608
2609 if (old_dentry->d_inode == new_dentry->d_inode)
2610 return 0;
2611
2612 error = may_delete(old_dir, old_dentry, is_dir);
2613 if (error)
2614 return error;
2615
2616 if (!new_dentry->d_inode)
2617 error = may_create(new_dir, new_dentry, NULL);
2618 else
2619 error = may_delete(new_dir, new_dentry, is_dir);
2620 if (error)
2621 return error;
2622
2623 if (!old_dir->i_op || !old_dir->i_op->rename)
2624 return -EPERM;
2625
2626 DQUOT_INIT(old_dir);
2627 DQUOT_INIT(new_dir);
2628
2629 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2630
2631 if (is_dir)
2632 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2633 else
2634 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2635 if (!error) {
2636 const char *new_name = old_dentry->d_name.name;
2637 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2638 new_dentry->d_inode, old_dentry);
2639 }
2640 fsnotify_oldname_free(old_name);
2641
2642 return error;
2643 }
2644
2645 static int do_rename(int olddfd, const char *oldname,
2646 int newdfd, const char *newname)
2647 {
2648 int error = 0;
2649 struct dentry * old_dir, * new_dir;
2650 struct dentry * old_dentry, *new_dentry;
2651 struct dentry * trap;
2652 struct nameidata oldnd, newnd;
2653
2654 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2655 if (error)
2656 goto exit;
2657
2658 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2659 if (error)
2660 goto exit1;
2661
2662 error = -EXDEV;
2663 if (oldnd.path.mnt != newnd.path.mnt)
2664 goto exit2;
2665
2666 old_dir = oldnd.path.dentry;
2667 error = -EBUSY;
2668 if (oldnd.last_type != LAST_NORM)
2669 goto exit2;
2670
2671 new_dir = newnd.path.dentry;
2672 if (newnd.last_type != LAST_NORM)
2673 goto exit2;
2674
2675 trap = lock_rename(new_dir, old_dir);
2676
2677 old_dentry = lookup_hash(&oldnd);
2678 error = PTR_ERR(old_dentry);
2679 if (IS_ERR(old_dentry))
2680 goto exit3;
2681 /* source must exist */
2682 error = -ENOENT;
2683 if (!old_dentry->d_inode)
2684 goto exit4;
2685 /* unless the source is a directory trailing slashes give -ENOTDIR */
2686 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2687 error = -ENOTDIR;
2688 if (oldnd.last.name[oldnd.last.len])
2689 goto exit4;
2690 if (newnd.last.name[newnd.last.len])
2691 goto exit4;
2692 }
2693 /* source should not be ancestor of target */
2694 error = -EINVAL;
2695 if (old_dentry == trap)
2696 goto exit4;
2697 new_dentry = lookup_hash(&newnd);
2698 error = PTR_ERR(new_dentry);
2699 if (IS_ERR(new_dentry))
2700 goto exit4;
2701 /* target should not be an ancestor of source */
2702 error = -ENOTEMPTY;
2703 if (new_dentry == trap)
2704 goto exit5;
2705
2706 error = mnt_want_write(oldnd.path.mnt);
2707 if (error)
2708 goto exit5;
2709 error = vfs_rename(old_dir->d_inode, old_dentry,
2710 new_dir->d_inode, new_dentry);
2711 mnt_drop_write(oldnd.path.mnt);
2712 exit5:
2713 dput(new_dentry);
2714 exit4:
2715 dput(old_dentry);
2716 exit3:
2717 unlock_rename(new_dir, old_dir);
2718 exit2:
2719 path_put(&newnd.path);
2720 exit1:
2721 path_put(&oldnd.path);
2722 exit:
2723 return error;
2724 }
2725
2726 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2727 int newdfd, const char __user *newname)
2728 {
2729 int error;
2730 char * from;
2731 char * to;
2732
2733 from = getname(oldname);
2734 if(IS_ERR(from))
2735 return PTR_ERR(from);
2736 to = getname(newname);
2737 error = PTR_ERR(to);
2738 if (!IS_ERR(to)) {
2739 error = do_rename(olddfd, from, newdfd, to);
2740 putname(to);
2741 }
2742 putname(from);
2743 return error;
2744 }
2745
2746 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2747 {
2748 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2749 }
2750
2751 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2752 {
2753 int len;
2754
2755 len = PTR_ERR(link);
2756 if (IS_ERR(link))
2757 goto out;
2758
2759 len = strlen(link);
2760 if (len > (unsigned) buflen)
2761 len = buflen;
2762 if (copy_to_user(buffer, link, len))
2763 len = -EFAULT;
2764 out:
2765 return len;
2766 }
2767
2768 /*
2769 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2770 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2771 * using) it for any given inode is up to filesystem.
2772 */
2773 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2774 {
2775 struct nameidata nd;
2776 void *cookie;
2777 int res;
2778
2779 nd.depth = 0;
2780 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2781 if (IS_ERR(cookie))
2782 return PTR_ERR(cookie);
2783
2784 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2785 if (dentry->d_inode->i_op->put_link)
2786 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2787 return res;
2788 }
2789
2790 int vfs_follow_link(struct nameidata *nd, const char *link)
2791 {
2792 return __vfs_follow_link(nd, link);
2793 }
2794
2795 /* get the link contents into pagecache */
2796 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2797 {
2798 struct page * page;
2799 struct address_space *mapping = dentry->d_inode->i_mapping;
2800 page = read_mapping_page(mapping, 0, NULL);
2801 if (IS_ERR(page))
2802 return (char*)page;
2803 *ppage = page;
2804 return kmap(page);
2805 }
2806
2807 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2808 {
2809 struct page *page = NULL;
2810 char *s = page_getlink(dentry, &page);
2811 int res = vfs_readlink(dentry,buffer,buflen,s);
2812 if (page) {
2813 kunmap(page);
2814 page_cache_release(page);
2815 }
2816 return res;
2817 }
2818
2819 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2820 {
2821 struct page *page = NULL;
2822 nd_set_link(nd, page_getlink(dentry, &page));
2823 return page;
2824 }
2825
2826 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2827 {
2828 struct page *page = cookie;
2829
2830 if (page) {
2831 kunmap(page);
2832 page_cache_release(page);
2833 }
2834 }
2835
2836 int __page_symlink(struct inode *inode, const char *symname, int len,
2837 gfp_t gfp_mask)
2838 {
2839 struct address_space *mapping = inode->i_mapping;
2840 struct page *page;
2841 void *fsdata;
2842 int err;
2843 char *kaddr;
2844
2845 retry:
2846 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2847 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2848 if (err)
2849 goto fail;
2850
2851 kaddr = kmap_atomic(page, KM_USER0);
2852 memcpy(kaddr, symname, len-1);
2853 kunmap_atomic(kaddr, KM_USER0);
2854
2855 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2856 page, fsdata);
2857 if (err < 0)
2858 goto fail;
2859 if (err < len-1)
2860 goto retry;
2861
2862 mark_inode_dirty(inode);
2863 return 0;
2864 fail:
2865 return err;
2866 }
2867
2868 int page_symlink(struct inode *inode, const char *symname, int len)
2869 {
2870 return __page_symlink(inode, symname, len,
2871 mapping_gfp_mask(inode->i_mapping));
2872 }
2873
2874 const struct inode_operations page_symlink_inode_operations = {
2875 .readlink = generic_readlink,
2876 .follow_link = page_follow_link_light,
2877 .put_link = page_put_link,
2878 };
2879
2880 EXPORT_SYMBOL(__user_walk);
2881 EXPORT_SYMBOL(__user_walk_fd);
2882 EXPORT_SYMBOL(follow_down);
2883 EXPORT_SYMBOL(follow_up);
2884 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2885 EXPORT_SYMBOL(getname);
2886 EXPORT_SYMBOL(lock_rename);
2887 EXPORT_SYMBOL(lookup_one_len);
2888 EXPORT_SYMBOL(page_follow_link_light);
2889 EXPORT_SYMBOL(page_put_link);
2890 EXPORT_SYMBOL(page_readlink);
2891 EXPORT_SYMBOL(__page_symlink);
2892 EXPORT_SYMBOL(page_symlink);
2893 EXPORT_SYMBOL(page_symlink_inode_operations);
2894 EXPORT_SYMBOL(path_lookup);
2895 EXPORT_SYMBOL(vfs_path_lookup);
2896 EXPORT_SYMBOL(inode_permission);
2897 EXPORT_SYMBOL(vfs_permission);
2898 EXPORT_SYMBOL(file_permission);
2899 EXPORT_SYMBOL(unlock_rename);
2900 EXPORT_SYMBOL(vfs_create);
2901 EXPORT_SYMBOL(vfs_follow_link);
2902 EXPORT_SYMBOL(vfs_link);
2903 EXPORT_SYMBOL(vfs_mkdir);
2904 EXPORT_SYMBOL(vfs_mknod);
2905 EXPORT_SYMBOL(generic_permission);
2906 EXPORT_SYMBOL(vfs_readlink);
2907 EXPORT_SYMBOL(vfs_rename);
2908 EXPORT_SYMBOL(vfs_rmdir);
2909 EXPORT_SYMBOL(vfs_symlink);
2910 EXPORT_SYMBOL(vfs_unlink);
2911 EXPORT_SYMBOL(dentry_unhash);
2912 EXPORT_SYMBOL(generic_readlink);
This page took 0.127696 seconds and 6 git commands to generate.