drop out of RCU in return_reval
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
211 *
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
215 */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 int ret;
220
221 /*
222 * Do the basic POSIX ACL permission checks.
223 */
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
227
228 /*
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
231 */
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
235
236 /*
237 * Searching includes executable on directories, else just read.
238 */
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
243
244 return -EACCES;
245 }
246
247 /**
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251 *
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
256 */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 int retval;
260
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
263
264 /*
265 * Nobody gets write access to a read-only fs.
266 */
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
270
271 /*
272 * Nobody gets write access to an immutable file.
273 */
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
276 }
277
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
283
284 if (retval)
285 return retval;
286
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
290
291 return security_inode_permission(inode, mask);
292 }
293
294 /**
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298 *
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
301 *
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
305 */
306 int file_permission(struct file *file, int mask)
307 {
308 return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310
311 /*
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
321 *
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
327 */
328
329 int get_write_access(struct inode * inode)
330 {
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
335 }
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
338
339 return 0;
340 }
341
342 int deny_write_access(struct file * file)
343 {
344 struct inode *inode = file->f_path.dentry->d_inode;
345
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
350 }
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
353
354 return 0;
355 }
356
357 /**
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
360 *
361 * Given a path increment the reference count to the dentry and the vfsmount.
362 */
363 void path_get(struct path *path)
364 {
365 mntget(path->mnt);
366 dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369
370 /**
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
373 *
374 * Given a path decrement the reference count to the dentry and the vfsmount.
375 */
376 void path_put(struct path *path)
377 {
378 dput(path->dentry);
379 mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382
383 /**
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
387 *
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
396 *
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
399 */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
404
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
411 }
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
420 }
421 mntget(nd->path.mnt);
422
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
433 }
434
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
441 }
442
443 /**
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
452 */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457
458 /*
459 * It can be possible to revalidate the dentry that we started
460 * the path walk with. force_reval_path may also revalidate the
461 * dentry already committed to the nameidata.
462 */
463 if (unlikely(parent == dentry))
464 return nameidata_drop_rcu(nd);
465
466 BUG_ON(!(nd->flags & LOOKUP_RCU));
467 if (nd->root.mnt) {
468 spin_lock(&fs->lock);
469 if (nd->root.mnt != fs->root.mnt ||
470 nd->root.dentry != fs->root.dentry)
471 goto err_root;
472 }
473 spin_lock(&parent->d_lock);
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err;
477 /*
478 * If the sequence check on the child dentry passed, then the child has
479 * not been removed from its parent. This means the parent dentry must
480 * be valid and able to take a reference at this point.
481 */
482 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
483 BUG_ON(!parent->d_count);
484 parent->d_count++;
485 spin_unlock(&dentry->d_lock);
486 spin_unlock(&parent->d_lock);
487 if (nd->root.mnt) {
488 path_get(&nd->root);
489 spin_unlock(&fs->lock);
490 }
491 mntget(nd->path.mnt);
492
493 rcu_read_unlock();
494 br_read_unlock(vfsmount_lock);
495 nd->flags &= ~LOOKUP_RCU;
496 return 0;
497 err:
498 spin_unlock(&dentry->d_lock);
499 spin_unlock(&parent->d_lock);
500 err_root:
501 if (nd->root.mnt)
502 spin_unlock(&fs->lock);
503 return -ECHILD;
504 }
505
506 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
507 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
508 {
509 if (nd->flags & LOOKUP_RCU)
510 return nameidata_dentry_drop_rcu(nd, dentry);
511 return 0;
512 }
513
514 /**
515 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
516 * @nd: nameidata pathwalk data to drop
517 * Returns: 0 on success, -ECHILD on failure
518 *
519 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
520 * nd->path should be the final element of the lookup, so nd->root is discarded.
521 * Must be called from rcu-walk context.
522 */
523 static int nameidata_drop_rcu_last(struct nameidata *nd)
524 {
525 struct dentry *dentry = nd->path.dentry;
526
527 BUG_ON(!(nd->flags & LOOKUP_RCU));
528 nd->flags &= ~LOOKUP_RCU;
529 nd->root.mnt = NULL;
530 spin_lock(&dentry->d_lock);
531 if (!__d_rcu_to_refcount(dentry, nd->seq))
532 goto err_unlock;
533 BUG_ON(nd->inode != dentry->d_inode);
534 spin_unlock(&dentry->d_lock);
535
536 mntget(nd->path.mnt);
537
538 rcu_read_unlock();
539 br_read_unlock(vfsmount_lock);
540
541 return 0;
542
543 err_unlock:
544 spin_unlock(&dentry->d_lock);
545 rcu_read_unlock();
546 br_read_unlock(vfsmount_lock);
547 return -ECHILD;
548 }
549
550 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
551 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
552 {
553 if (likely(nd->flags & LOOKUP_RCU))
554 return nameidata_drop_rcu_last(nd);
555 return 0;
556 }
557
558 /**
559 * release_open_intent - free up open intent resources
560 * @nd: pointer to nameidata
561 */
562 void release_open_intent(struct nameidata *nd)
563 {
564 struct file *file = nd->intent.open.file;
565
566 if (file && !IS_ERR(file)) {
567 if (file->f_path.dentry == NULL)
568 put_filp(file);
569 else
570 fput(file);
571 }
572 }
573
574 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
575 {
576 return dentry->d_op->d_revalidate(dentry, nd);
577 }
578
579 static struct dentry *
580 do_revalidate(struct dentry *dentry, struct nameidata *nd)
581 {
582 int status = d_revalidate(dentry, nd);
583 if (unlikely(status <= 0)) {
584 /*
585 * The dentry failed validation.
586 * If d_revalidate returned 0 attempt to invalidate
587 * the dentry otherwise d_revalidate is asking us
588 * to return a fail status.
589 */
590 if (status < 0) {
591 dput(dentry);
592 dentry = ERR_PTR(status);
593 } else if (!d_invalidate(dentry)) {
594 dput(dentry);
595 dentry = NULL;
596 }
597 }
598 return dentry;
599 }
600
601 static inline struct dentry *
602 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
603 {
604 int status = d_revalidate(dentry, nd);
605 if (likely(status > 0))
606 return dentry;
607 if (status == -ECHILD) {
608 if (nameidata_dentry_drop_rcu(nd, dentry))
609 return ERR_PTR(-ECHILD);
610 return do_revalidate(dentry, nd);
611 }
612 if (status < 0)
613 return ERR_PTR(status);
614 /* Don't d_invalidate in rcu-walk mode */
615 if (nameidata_dentry_drop_rcu(nd, dentry))
616 return ERR_PTR(-ECHILD);
617 if (!d_invalidate(dentry)) {
618 dput(dentry);
619 dentry = NULL;
620 }
621 return dentry;
622 }
623
624 static inline int need_reval_dot(struct dentry *dentry)
625 {
626 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
627 return 0;
628
629 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
630 return 0;
631
632 return 1;
633 }
634
635 /*
636 * force_reval_path - force revalidation of a dentry
637 *
638 * In some situations the path walking code will trust dentries without
639 * revalidating them. This causes problems for filesystems that depend on
640 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
641 * (which indicates that it's possible for the dentry to go stale), force
642 * a d_revalidate call before proceeding.
643 *
644 * Returns 0 if the revalidation was successful. If the revalidation fails,
645 * either return the error returned by d_revalidate or -ESTALE if the
646 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
647 * invalidate the dentry. It's up to the caller to handle putting references
648 * to the path if necessary.
649 */
650 static int
651 force_reval_path(struct path *path, struct nameidata *nd)
652 {
653 int status;
654 struct dentry *dentry = path->dentry;
655
656 /*
657 * only check on filesystems where it's possible for the dentry to
658 * become stale.
659 */
660 if (!need_reval_dot(dentry))
661 return 0;
662
663 status = d_revalidate(dentry, nd);
664 if (status > 0)
665 return 0;
666
667 if (!status) {
668 d_invalidate(dentry);
669 status = -ESTALE;
670 }
671 return status;
672 }
673
674 /*
675 * Short-cut version of permission(), for calling on directories
676 * during pathname resolution. Combines parts of permission()
677 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
678 *
679 * If appropriate, check DAC only. If not appropriate, or
680 * short-cut DAC fails, then call ->permission() to do more
681 * complete permission check.
682 */
683 static inline int exec_permission(struct inode *inode, unsigned int flags)
684 {
685 int ret;
686
687 if (inode->i_op->permission) {
688 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
689 } else {
690 ret = acl_permission_check(inode, MAY_EXEC, flags,
691 inode->i_op->check_acl);
692 }
693 if (likely(!ret))
694 goto ok;
695 if (ret == -ECHILD)
696 return ret;
697
698 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
699 goto ok;
700
701 return ret;
702 ok:
703 return security_inode_exec_permission(inode, flags);
704 }
705
706 static __always_inline void set_root(struct nameidata *nd)
707 {
708 if (!nd->root.mnt)
709 get_fs_root(current->fs, &nd->root);
710 }
711
712 static int link_path_walk(const char *, struct nameidata *);
713
714 static __always_inline void set_root_rcu(struct nameidata *nd)
715 {
716 if (!nd->root.mnt) {
717 struct fs_struct *fs = current->fs;
718 unsigned seq;
719
720 do {
721 seq = read_seqcount_begin(&fs->seq);
722 nd->root = fs->root;
723 } while (read_seqcount_retry(&fs->seq, seq));
724 }
725 }
726
727 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
728 {
729 int ret;
730
731 if (IS_ERR(link))
732 goto fail;
733
734 if (*link == '/') {
735 set_root(nd);
736 path_put(&nd->path);
737 nd->path = nd->root;
738 path_get(&nd->root);
739 }
740 nd->inode = nd->path.dentry->d_inode;
741
742 ret = link_path_walk(link, nd);
743 return ret;
744 fail:
745 path_put(&nd->path);
746 return PTR_ERR(link);
747 }
748
749 static void path_put_conditional(struct path *path, struct nameidata *nd)
750 {
751 dput(path->dentry);
752 if (path->mnt != nd->path.mnt)
753 mntput(path->mnt);
754 }
755
756 static inline void path_to_nameidata(const struct path *path,
757 struct nameidata *nd)
758 {
759 if (!(nd->flags & LOOKUP_RCU)) {
760 dput(nd->path.dentry);
761 if (nd->path.mnt != path->mnt)
762 mntput(nd->path.mnt);
763 }
764 nd->path.mnt = path->mnt;
765 nd->path.dentry = path->dentry;
766 }
767
768 static __always_inline int
769 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
770 {
771 int error;
772 struct dentry *dentry = link->dentry;
773
774 BUG_ON(nd->flags & LOOKUP_RCU);
775
776 touch_atime(link->mnt, dentry);
777 nd_set_link(nd, NULL);
778
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
781
782 nd->last_type = LAST_BIND;
783 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
784 error = PTR_ERR(*p);
785 if (!IS_ERR(*p)) {
786 char *s = nd_get_link(nd);
787 error = 0;
788 if (s)
789 error = __vfs_follow_link(nd, s);
790 else if (nd->last_type == LAST_BIND) {
791 error = force_reval_path(&nd->path, nd);
792 if (error)
793 path_put(&nd->path);
794 }
795 }
796 return error;
797 }
798
799 /*
800 * This limits recursive symlink follows to 8, while
801 * limiting consecutive symlinks to 40.
802 *
803 * Without that kind of total limit, nasty chains of consecutive
804 * symlinks can cause almost arbitrarily long lookups.
805 */
806 static inline int do_follow_link(struct path *path, struct nameidata *nd)
807 {
808 void *cookie;
809 int err = -ELOOP;
810
811 /* We drop rcu-walk here */
812 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
813 return -ECHILD;
814
815 if (current->link_count >= MAX_NESTED_LINKS)
816 goto loop;
817 if (current->total_link_count >= 40)
818 goto loop;
819 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
820 cond_resched();
821 err = security_inode_follow_link(path->dentry, nd);
822 if (err)
823 goto loop;
824 current->link_count++;
825 current->total_link_count++;
826 nd->depth++;
827 err = __do_follow_link(path, nd, &cookie);
828 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
829 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
830 path_put(path);
831 current->link_count--;
832 nd->depth--;
833 return err;
834 loop:
835 path_put_conditional(path, nd);
836 path_put(&nd->path);
837 return err;
838 }
839
840 static int follow_up_rcu(struct path *path)
841 {
842 struct vfsmount *parent;
843 struct dentry *mountpoint;
844
845 parent = path->mnt->mnt_parent;
846 if (parent == path->mnt)
847 return 0;
848 mountpoint = path->mnt->mnt_mountpoint;
849 path->dentry = mountpoint;
850 path->mnt = parent;
851 return 1;
852 }
853
854 int follow_up(struct path *path)
855 {
856 struct vfsmount *parent;
857 struct dentry *mountpoint;
858
859 br_read_lock(vfsmount_lock);
860 parent = path->mnt->mnt_parent;
861 if (parent == path->mnt) {
862 br_read_unlock(vfsmount_lock);
863 return 0;
864 }
865 mntget(parent);
866 mountpoint = dget(path->mnt->mnt_mountpoint);
867 br_read_unlock(vfsmount_lock);
868 dput(path->dentry);
869 path->dentry = mountpoint;
870 mntput(path->mnt);
871 path->mnt = parent;
872 return 1;
873 }
874
875 /*
876 * Perform an automount
877 * - return -EISDIR to tell follow_managed() to stop and return the path we
878 * were called with.
879 */
880 static int follow_automount(struct path *path, unsigned flags,
881 bool *need_mntput)
882 {
883 struct vfsmount *mnt;
884 int err;
885
886 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
887 return -EREMOTE;
888
889 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
890 * and this is the terminal part of the path.
891 */
892 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
893 return -EISDIR; /* we actually want to stop here */
894
895 /* We want to mount if someone is trying to open/create a file of any
896 * type under the mountpoint, wants to traverse through the mountpoint
897 * or wants to open the mounted directory.
898 *
899 * We don't want to mount if someone's just doing a stat and they've
900 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
901 * appended a '/' to the name.
902 */
903 if (!(flags & LOOKUP_FOLLOW) &&
904 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
905 LOOKUP_OPEN | LOOKUP_CREATE)))
906 return -EISDIR;
907
908 current->total_link_count++;
909 if (current->total_link_count >= 40)
910 return -ELOOP;
911
912 mnt = path->dentry->d_op->d_automount(path);
913 if (IS_ERR(mnt)) {
914 /*
915 * The filesystem is allowed to return -EISDIR here to indicate
916 * it doesn't want to automount. For instance, autofs would do
917 * this so that its userspace daemon can mount on this dentry.
918 *
919 * However, we can only permit this if it's a terminal point in
920 * the path being looked up; if it wasn't then the remainder of
921 * the path is inaccessible and we should say so.
922 */
923 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
924 return -EREMOTE;
925 return PTR_ERR(mnt);
926 }
927
928 if (!mnt) /* mount collision */
929 return 0;
930
931 err = finish_automount(mnt, path);
932
933 switch (err) {
934 case -EBUSY:
935 /* Someone else made a mount here whilst we were busy */
936 return 0;
937 case 0:
938 dput(path->dentry);
939 if (*need_mntput)
940 mntput(path->mnt);
941 path->mnt = mnt;
942 path->dentry = dget(mnt->mnt_root);
943 *need_mntput = true;
944 return 0;
945 default:
946 return err;
947 }
948
949 }
950
951 /*
952 * Handle a dentry that is managed in some way.
953 * - Flagged for transit management (autofs)
954 * - Flagged as mountpoint
955 * - Flagged as automount point
956 *
957 * This may only be called in refwalk mode.
958 *
959 * Serialization is taken care of in namespace.c
960 */
961 static int follow_managed(struct path *path, unsigned flags)
962 {
963 unsigned managed;
964 bool need_mntput = false;
965 int ret;
966
967 /* Given that we're not holding a lock here, we retain the value in a
968 * local variable for each dentry as we look at it so that we don't see
969 * the components of that value change under us */
970 while (managed = ACCESS_ONCE(path->dentry->d_flags),
971 managed &= DCACHE_MANAGED_DENTRY,
972 unlikely(managed != 0)) {
973 /* Allow the filesystem to manage the transit without i_mutex
974 * being held. */
975 if (managed & DCACHE_MANAGE_TRANSIT) {
976 BUG_ON(!path->dentry->d_op);
977 BUG_ON(!path->dentry->d_op->d_manage);
978 ret = path->dentry->d_op->d_manage(path->dentry,
979 false, false);
980 if (ret < 0)
981 return ret == -EISDIR ? 0 : ret;
982 }
983
984 /* Transit to a mounted filesystem. */
985 if (managed & DCACHE_MOUNTED) {
986 struct vfsmount *mounted = lookup_mnt(path);
987 if (mounted) {
988 dput(path->dentry);
989 if (need_mntput)
990 mntput(path->mnt);
991 path->mnt = mounted;
992 path->dentry = dget(mounted->mnt_root);
993 need_mntput = true;
994 continue;
995 }
996
997 /* Something is mounted on this dentry in another
998 * namespace and/or whatever was mounted there in this
999 * namespace got unmounted before we managed to get the
1000 * vfsmount_lock */
1001 }
1002
1003 /* Handle an automount point */
1004 if (managed & DCACHE_NEED_AUTOMOUNT) {
1005 ret = follow_automount(path, flags, &need_mntput);
1006 if (ret < 0)
1007 return ret == -EISDIR ? 0 : ret;
1008 continue;
1009 }
1010
1011 /* We didn't change the current path point */
1012 break;
1013 }
1014 return 0;
1015 }
1016
1017 int follow_down_one(struct path *path)
1018 {
1019 struct vfsmount *mounted;
1020
1021 mounted = lookup_mnt(path);
1022 if (mounted) {
1023 dput(path->dentry);
1024 mntput(path->mnt);
1025 path->mnt = mounted;
1026 path->dentry = dget(mounted->mnt_root);
1027 return 1;
1028 }
1029 return 0;
1030 }
1031
1032 /*
1033 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1034 * meet a managed dentry and we're not walking to "..". True is returned to
1035 * continue, false to abort.
1036 */
1037 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1038 struct inode **inode, bool reverse_transit)
1039 {
1040 while (d_mountpoint(path->dentry)) {
1041 struct vfsmount *mounted;
1042 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1043 !reverse_transit &&
1044 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1045 return false;
1046 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1047 if (!mounted)
1048 break;
1049 path->mnt = mounted;
1050 path->dentry = mounted->mnt_root;
1051 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1052 *inode = path->dentry->d_inode;
1053 }
1054
1055 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1056 return reverse_transit;
1057 return true;
1058 }
1059
1060 static int follow_dotdot_rcu(struct nameidata *nd)
1061 {
1062 struct inode *inode = nd->inode;
1063
1064 set_root_rcu(nd);
1065
1066 while (1) {
1067 if (nd->path.dentry == nd->root.dentry &&
1068 nd->path.mnt == nd->root.mnt) {
1069 break;
1070 }
1071 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1072 struct dentry *old = nd->path.dentry;
1073 struct dentry *parent = old->d_parent;
1074 unsigned seq;
1075
1076 seq = read_seqcount_begin(&parent->d_seq);
1077 if (read_seqcount_retry(&old->d_seq, nd->seq))
1078 return -ECHILD;
1079 inode = parent->d_inode;
1080 nd->path.dentry = parent;
1081 nd->seq = seq;
1082 break;
1083 }
1084 if (!follow_up_rcu(&nd->path))
1085 break;
1086 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1087 inode = nd->path.dentry->d_inode;
1088 }
1089 __follow_mount_rcu(nd, &nd->path, &inode, true);
1090 nd->inode = inode;
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * Follow down to the covering mount currently visible to userspace. At each
1097 * point, the filesystem owning that dentry may be queried as to whether the
1098 * caller is permitted to proceed or not.
1099 *
1100 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1101 * being true).
1102 */
1103 int follow_down(struct path *path, bool mounting_here)
1104 {
1105 unsigned managed;
1106 int ret;
1107
1108 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1109 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1110 /* Allow the filesystem to manage the transit without i_mutex
1111 * being held.
1112 *
1113 * We indicate to the filesystem if someone is trying to mount
1114 * something here. This gives autofs the chance to deny anyone
1115 * other than its daemon the right to mount on its
1116 * superstructure.
1117 *
1118 * The filesystem may sleep at this point.
1119 */
1120 if (managed & DCACHE_MANAGE_TRANSIT) {
1121 BUG_ON(!path->dentry->d_op);
1122 BUG_ON(!path->dentry->d_op->d_manage);
1123 ret = path->dentry->d_op->d_manage(
1124 path->dentry, mounting_here, false);
1125 if (ret < 0)
1126 return ret == -EISDIR ? 0 : ret;
1127 }
1128
1129 /* Transit to a mounted filesystem. */
1130 if (managed & DCACHE_MOUNTED) {
1131 struct vfsmount *mounted = lookup_mnt(path);
1132 if (!mounted)
1133 break;
1134 dput(path->dentry);
1135 mntput(path->mnt);
1136 path->mnt = mounted;
1137 path->dentry = dget(mounted->mnt_root);
1138 continue;
1139 }
1140
1141 /* Don't handle automount points here */
1142 break;
1143 }
1144 return 0;
1145 }
1146
1147 /*
1148 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1149 */
1150 static void follow_mount(struct path *path)
1151 {
1152 while (d_mountpoint(path->dentry)) {
1153 struct vfsmount *mounted = lookup_mnt(path);
1154 if (!mounted)
1155 break;
1156 dput(path->dentry);
1157 mntput(path->mnt);
1158 path->mnt = mounted;
1159 path->dentry = dget(mounted->mnt_root);
1160 }
1161 }
1162
1163 static void follow_dotdot(struct nameidata *nd)
1164 {
1165 set_root(nd);
1166
1167 while(1) {
1168 struct dentry *old = nd->path.dentry;
1169
1170 if (nd->path.dentry == nd->root.dentry &&
1171 nd->path.mnt == nd->root.mnt) {
1172 break;
1173 }
1174 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1175 /* rare case of legitimate dget_parent()... */
1176 nd->path.dentry = dget_parent(nd->path.dentry);
1177 dput(old);
1178 break;
1179 }
1180 if (!follow_up(&nd->path))
1181 break;
1182 }
1183 follow_mount(&nd->path);
1184 nd->inode = nd->path.dentry->d_inode;
1185 }
1186
1187 /*
1188 * Allocate a dentry with name and parent, and perform a parent
1189 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1190 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1191 * have verified that no child exists while under i_mutex.
1192 */
1193 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1194 struct qstr *name, struct nameidata *nd)
1195 {
1196 struct inode *inode = parent->d_inode;
1197 struct dentry *dentry;
1198 struct dentry *old;
1199
1200 /* Don't create child dentry for a dead directory. */
1201 if (unlikely(IS_DEADDIR(inode)))
1202 return ERR_PTR(-ENOENT);
1203
1204 dentry = d_alloc(parent, name);
1205 if (unlikely(!dentry))
1206 return ERR_PTR(-ENOMEM);
1207
1208 old = inode->i_op->lookup(inode, dentry, nd);
1209 if (unlikely(old)) {
1210 dput(dentry);
1211 dentry = old;
1212 }
1213 return dentry;
1214 }
1215
1216 /*
1217 * It's more convoluted than I'd like it to be, but... it's still fairly
1218 * small and for now I'd prefer to have fast path as straight as possible.
1219 * It _is_ time-critical.
1220 */
1221 static int do_lookup(struct nameidata *nd, struct qstr *name,
1222 struct path *path, struct inode **inode)
1223 {
1224 struct vfsmount *mnt = nd->path.mnt;
1225 struct dentry *dentry, *parent = nd->path.dentry;
1226 struct inode *dir;
1227 int err;
1228
1229 /*
1230 * See if the low-level filesystem might want
1231 * to use its own hash..
1232 */
1233 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1234 err = parent->d_op->d_hash(parent, nd->inode, name);
1235 if (err < 0)
1236 return err;
1237 }
1238
1239 /*
1240 * Rename seqlock is not required here because in the off chance
1241 * of a false negative due to a concurrent rename, we're going to
1242 * do the non-racy lookup, below.
1243 */
1244 if (nd->flags & LOOKUP_RCU) {
1245 unsigned seq;
1246
1247 *inode = nd->inode;
1248 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1249 if (!dentry) {
1250 if (nameidata_drop_rcu(nd))
1251 return -ECHILD;
1252 goto need_lookup;
1253 }
1254 /* Memory barrier in read_seqcount_begin of child is enough */
1255 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1256 return -ECHILD;
1257
1258 nd->seq = seq;
1259 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1260 dentry = do_revalidate_rcu(dentry, nd);
1261 if (!dentry)
1262 goto need_lookup;
1263 if (IS_ERR(dentry))
1264 goto fail;
1265 if (!(nd->flags & LOOKUP_RCU))
1266 goto done;
1267 }
1268 path->mnt = mnt;
1269 path->dentry = dentry;
1270 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1271 return 0;
1272 if (nameidata_drop_rcu(nd))
1273 return -ECHILD;
1274 /* fallthru */
1275 }
1276 dentry = __d_lookup(parent, name);
1277 if (!dentry)
1278 goto need_lookup;
1279 found:
1280 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1281 dentry = do_revalidate(dentry, nd);
1282 if (!dentry)
1283 goto need_lookup;
1284 if (IS_ERR(dentry))
1285 goto fail;
1286 }
1287 done:
1288 path->mnt = mnt;
1289 path->dentry = dentry;
1290 err = follow_managed(path, nd->flags);
1291 if (unlikely(err < 0)) {
1292 path_put_conditional(path, nd);
1293 return err;
1294 }
1295 *inode = path->dentry->d_inode;
1296 return 0;
1297
1298 need_lookup:
1299 dir = parent->d_inode;
1300 BUG_ON(nd->inode != dir);
1301
1302 mutex_lock(&dir->i_mutex);
1303 /*
1304 * First re-do the cached lookup just in case it was created
1305 * while we waited for the directory semaphore, or the first
1306 * lookup failed due to an unrelated rename.
1307 *
1308 * This could use version numbering or similar to avoid unnecessary
1309 * cache lookups, but then we'd have to do the first lookup in the
1310 * non-racy way. However in the common case here, everything should
1311 * be hot in cache, so would it be a big win?
1312 */
1313 dentry = d_lookup(parent, name);
1314 if (likely(!dentry)) {
1315 dentry = d_alloc_and_lookup(parent, name, nd);
1316 mutex_unlock(&dir->i_mutex);
1317 if (IS_ERR(dentry))
1318 goto fail;
1319 goto done;
1320 }
1321 /*
1322 * Uhhuh! Nasty case: the cache was re-populated while
1323 * we waited on the semaphore. Need to revalidate.
1324 */
1325 mutex_unlock(&dir->i_mutex);
1326 goto found;
1327
1328 fail:
1329 return PTR_ERR(dentry);
1330 }
1331
1332 /*
1333 * Name resolution.
1334 * This is the basic name resolution function, turning a pathname into
1335 * the final dentry. We expect 'base' to be positive and a directory.
1336 *
1337 * Returns 0 and nd will have valid dentry and mnt on success.
1338 * Returns error and drops reference to input namei data on failure.
1339 */
1340 static int link_path_walk(const char *name, struct nameidata *nd)
1341 {
1342 struct path next;
1343 int err;
1344 unsigned int lookup_flags = nd->flags;
1345
1346 while (*name=='/')
1347 name++;
1348 if (!*name)
1349 goto return_reval;
1350
1351 if (nd->depth)
1352 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1353
1354 /* At this point we know we have a real path component. */
1355 for(;;) {
1356 struct inode *inode;
1357 unsigned long hash;
1358 struct qstr this;
1359 unsigned int c;
1360
1361 nd->flags |= LOOKUP_CONTINUE;
1362 if (nd->flags & LOOKUP_RCU) {
1363 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1364 if (err == -ECHILD) {
1365 if (nameidata_drop_rcu(nd))
1366 return -ECHILD;
1367 goto exec_again;
1368 }
1369 } else {
1370 exec_again:
1371 err = exec_permission(nd->inode, 0);
1372 }
1373 if (err)
1374 break;
1375
1376 this.name = name;
1377 c = *(const unsigned char *)name;
1378
1379 hash = init_name_hash();
1380 do {
1381 name++;
1382 hash = partial_name_hash(c, hash);
1383 c = *(const unsigned char *)name;
1384 } while (c && (c != '/'));
1385 this.len = name - (const char *) this.name;
1386 this.hash = end_name_hash(hash);
1387
1388 /* remove trailing slashes? */
1389 if (!c)
1390 goto last_component;
1391 while (*++name == '/');
1392 if (!*name)
1393 goto last_with_slashes;
1394
1395 /*
1396 * "." and ".." are special - ".." especially so because it has
1397 * to be able to know about the current root directory and
1398 * parent relationships.
1399 */
1400 if (this.name[0] == '.') switch (this.len) {
1401 default:
1402 break;
1403 case 2:
1404 if (this.name[1] != '.')
1405 break;
1406 if (nd->flags & LOOKUP_RCU) {
1407 if (follow_dotdot_rcu(nd))
1408 return -ECHILD;
1409 } else
1410 follow_dotdot(nd);
1411 /* fallthrough */
1412 case 1:
1413 continue;
1414 }
1415 /* This does the actual lookups.. */
1416 err = do_lookup(nd, &this, &next, &inode);
1417 if (err)
1418 break;
1419 err = -ENOENT;
1420 if (!inode)
1421 goto out_dput;
1422
1423 if (inode->i_op->follow_link) {
1424 BUG_ON(inode != next.dentry->d_inode);
1425 err = do_follow_link(&next, nd);
1426 if (err)
1427 goto return_err;
1428 nd->inode = nd->path.dentry->d_inode;
1429 err = -ENOENT;
1430 if (!nd->inode)
1431 break;
1432 } else {
1433 path_to_nameidata(&next, nd);
1434 nd->inode = inode;
1435 }
1436 err = -ENOTDIR;
1437 if (!nd->inode->i_op->lookup)
1438 break;
1439 continue;
1440 /* here ends the main loop */
1441
1442 last_with_slashes:
1443 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1444 last_component:
1445 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1446 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1447 if (lookup_flags & LOOKUP_PARENT)
1448 goto lookup_parent;
1449 if (this.name[0] == '.') switch (this.len) {
1450 default:
1451 break;
1452 case 2:
1453 if (this.name[1] != '.')
1454 break;
1455 if (nd->flags & LOOKUP_RCU) {
1456 if (follow_dotdot_rcu(nd))
1457 return -ECHILD;
1458 } else
1459 follow_dotdot(nd);
1460 /* fallthrough */
1461 case 1:
1462 goto return_reval;
1463 }
1464 err = do_lookup(nd, &this, &next, &inode);
1465 if (err)
1466 break;
1467 if (inode && unlikely(inode->i_op->follow_link) &&
1468 (lookup_flags & LOOKUP_FOLLOW)) {
1469 BUG_ON(inode != next.dentry->d_inode);
1470 err = do_follow_link(&next, nd);
1471 if (err)
1472 goto return_err;
1473 nd->inode = nd->path.dentry->d_inode;
1474 } else {
1475 path_to_nameidata(&next, nd);
1476 nd->inode = inode;
1477 }
1478 err = -ENOENT;
1479 if (!nd->inode)
1480 break;
1481 if (lookup_flags & LOOKUP_DIRECTORY) {
1482 err = -ENOTDIR;
1483 if (!nd->inode->i_op->lookup)
1484 break;
1485 }
1486 goto return_base;
1487 lookup_parent:
1488 nd->last = this;
1489 nd->last_type = LAST_NORM;
1490 if (this.name[0] != '.')
1491 goto return_base;
1492 if (this.len == 1)
1493 nd->last_type = LAST_DOT;
1494 else if (this.len == 2 && this.name[1] == '.')
1495 nd->last_type = LAST_DOTDOT;
1496 else
1497 goto return_base;
1498 return_reval:
1499 /*
1500 * We bypassed the ordinary revalidation routines.
1501 * We may need to check the cached dentry for staleness.
1502 */
1503 if (need_reval_dot(nd->path.dentry)) {
1504 if (nameidata_drop_rcu_last_maybe(nd))
1505 return -ECHILD;
1506 /* Note: we do not d_invalidate() */
1507 err = d_revalidate(nd->path.dentry, nd);
1508 if (!err)
1509 err = -ESTALE;
1510 if (err < 0)
1511 break;
1512 return 0;
1513 }
1514 return_base:
1515 if (nameidata_drop_rcu_last_maybe(nd))
1516 return -ECHILD;
1517 return 0;
1518 out_dput:
1519 if (!(nd->flags & LOOKUP_RCU))
1520 path_put_conditional(&next, nd);
1521 break;
1522 }
1523 if (!(nd->flags & LOOKUP_RCU))
1524 path_put(&nd->path);
1525 return_err:
1526 return err;
1527 }
1528
1529 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1530 {
1531 current->total_link_count = 0;
1532
1533 return link_path_walk(name, nd);
1534 }
1535
1536 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1537 {
1538 current->total_link_count = 0;
1539
1540 return link_path_walk(name, nd);
1541 }
1542
1543 static int path_walk(const char *name, struct nameidata *nd)
1544 {
1545 struct path save = nd->path;
1546 int result;
1547
1548 current->total_link_count = 0;
1549
1550 /* make sure the stuff we saved doesn't go away */
1551 path_get(&save);
1552
1553 result = link_path_walk(name, nd);
1554 if (result == -ESTALE) {
1555 /* nd->path had been dropped */
1556 current->total_link_count = 0;
1557 nd->path = save;
1558 path_get(&nd->path);
1559 nd->flags |= LOOKUP_REVAL;
1560 result = link_path_walk(name, nd);
1561 }
1562
1563 path_put(&save);
1564
1565 return result;
1566 }
1567
1568 static void path_finish_rcu(struct nameidata *nd)
1569 {
1570 if (nd->flags & LOOKUP_RCU) {
1571 /* RCU dangling. Cancel it. */
1572 nd->flags &= ~LOOKUP_RCU;
1573 nd->root.mnt = NULL;
1574 rcu_read_unlock();
1575 br_read_unlock(vfsmount_lock);
1576 }
1577 if (nd->file)
1578 fput(nd->file);
1579 }
1580
1581 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1582 {
1583 int retval = 0;
1584 int fput_needed;
1585 struct file *file;
1586
1587 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1588 nd->flags = flags | LOOKUP_RCU;
1589 nd->depth = 0;
1590 nd->root.mnt = NULL;
1591 nd->file = NULL;
1592
1593 if (*name=='/') {
1594 struct fs_struct *fs = current->fs;
1595 unsigned seq;
1596
1597 br_read_lock(vfsmount_lock);
1598 rcu_read_lock();
1599
1600 do {
1601 seq = read_seqcount_begin(&fs->seq);
1602 nd->root = fs->root;
1603 nd->path = nd->root;
1604 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1605 } while (read_seqcount_retry(&fs->seq, seq));
1606
1607 } else if (dfd == AT_FDCWD) {
1608 struct fs_struct *fs = current->fs;
1609 unsigned seq;
1610
1611 br_read_lock(vfsmount_lock);
1612 rcu_read_lock();
1613
1614 do {
1615 seq = read_seqcount_begin(&fs->seq);
1616 nd->path = fs->pwd;
1617 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1618 } while (read_seqcount_retry(&fs->seq, seq));
1619
1620 } else {
1621 struct dentry *dentry;
1622
1623 file = fget_light(dfd, &fput_needed);
1624 retval = -EBADF;
1625 if (!file)
1626 goto out_fail;
1627
1628 dentry = file->f_path.dentry;
1629
1630 retval = -ENOTDIR;
1631 if (!S_ISDIR(dentry->d_inode->i_mode))
1632 goto fput_fail;
1633
1634 retval = file_permission(file, MAY_EXEC);
1635 if (retval)
1636 goto fput_fail;
1637
1638 nd->path = file->f_path;
1639 if (fput_needed)
1640 nd->file = file;
1641
1642 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1643 br_read_lock(vfsmount_lock);
1644 rcu_read_lock();
1645 }
1646 nd->inode = nd->path.dentry->d_inode;
1647 return 0;
1648
1649 fput_fail:
1650 fput_light(file, fput_needed);
1651 out_fail:
1652 return retval;
1653 }
1654
1655 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1656 {
1657 int retval = 0;
1658 int fput_needed;
1659 struct file *file;
1660
1661 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1662 nd->flags = flags;
1663 nd->depth = 0;
1664 nd->root.mnt = NULL;
1665
1666 if (*name=='/') {
1667 set_root(nd);
1668 nd->path = nd->root;
1669 path_get(&nd->root);
1670 } else if (dfd == AT_FDCWD) {
1671 get_fs_pwd(current->fs, &nd->path);
1672 } else {
1673 struct dentry *dentry;
1674
1675 file = fget_light(dfd, &fput_needed);
1676 retval = -EBADF;
1677 if (!file)
1678 goto out_fail;
1679
1680 dentry = file->f_path.dentry;
1681
1682 retval = -ENOTDIR;
1683 if (!S_ISDIR(dentry->d_inode->i_mode))
1684 goto fput_fail;
1685
1686 retval = file_permission(file, MAY_EXEC);
1687 if (retval)
1688 goto fput_fail;
1689
1690 nd->path = file->f_path;
1691 path_get(&file->f_path);
1692
1693 fput_light(file, fput_needed);
1694 }
1695 nd->inode = nd->path.dentry->d_inode;
1696 return 0;
1697
1698 fput_fail:
1699 fput_light(file, fput_needed);
1700 out_fail:
1701 return retval;
1702 }
1703
1704 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1705 static int do_path_lookup(int dfd, const char *name,
1706 unsigned int flags, struct nameidata *nd)
1707 {
1708 int retval;
1709
1710 /*
1711 * Path walking is largely split up into 2 different synchronisation
1712 * schemes, rcu-walk and ref-walk (explained in
1713 * Documentation/filesystems/path-lookup.txt). These share much of the
1714 * path walk code, but some things particularly setup, cleanup, and
1715 * following mounts are sufficiently divergent that functions are
1716 * duplicated. Typically there is a function foo(), and its RCU
1717 * analogue, foo_rcu().
1718 *
1719 * -ECHILD is the error number of choice (just to avoid clashes) that
1720 * is returned if some aspect of an rcu-walk fails. Such an error must
1721 * be handled by restarting a traditional ref-walk (which will always
1722 * be able to complete).
1723 */
1724 retval = path_init_rcu(dfd, name, flags, nd);
1725 if (unlikely(retval))
1726 return retval;
1727 retval = path_walk_rcu(name, nd);
1728 path_finish_rcu(nd);
1729 if (nd->root.mnt) {
1730 path_put(&nd->root);
1731 nd->root.mnt = NULL;
1732 }
1733
1734 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1735 /* slower, locked walk */
1736 if (retval == -ESTALE)
1737 flags |= LOOKUP_REVAL;
1738 retval = path_init(dfd, name, flags, nd);
1739 if (unlikely(retval))
1740 return retval;
1741 retval = path_walk(name, nd);
1742 if (nd->root.mnt) {
1743 path_put(&nd->root);
1744 nd->root.mnt = NULL;
1745 }
1746 }
1747
1748 if (likely(!retval)) {
1749 if (unlikely(!audit_dummy_context())) {
1750 if (nd->path.dentry && nd->inode)
1751 audit_inode(name, nd->path.dentry);
1752 }
1753 }
1754
1755 return retval;
1756 }
1757
1758 int path_lookup(const char *name, unsigned int flags,
1759 struct nameidata *nd)
1760 {
1761 return do_path_lookup(AT_FDCWD, name, flags, nd);
1762 }
1763
1764 int kern_path(const char *name, unsigned int flags, struct path *path)
1765 {
1766 struct nameidata nd;
1767 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1768 if (!res)
1769 *path = nd.path;
1770 return res;
1771 }
1772
1773 /**
1774 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1775 * @dentry: pointer to dentry of the base directory
1776 * @mnt: pointer to vfs mount of the base directory
1777 * @name: pointer to file name
1778 * @flags: lookup flags
1779 * @nd: pointer to nameidata
1780 */
1781 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1782 const char *name, unsigned int flags,
1783 struct nameidata *nd)
1784 {
1785 int retval;
1786
1787 /* same as do_path_lookup */
1788 nd->last_type = LAST_ROOT;
1789 nd->flags = flags;
1790 nd->depth = 0;
1791
1792 nd->path.dentry = dentry;
1793 nd->path.mnt = mnt;
1794 path_get(&nd->path);
1795 nd->root = nd->path;
1796 path_get(&nd->root);
1797 nd->inode = nd->path.dentry->d_inode;
1798
1799 retval = path_walk(name, nd);
1800 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1801 nd->inode))
1802 audit_inode(name, nd->path.dentry);
1803
1804 path_put(&nd->root);
1805 nd->root.mnt = NULL;
1806
1807 return retval;
1808 }
1809
1810 static struct dentry *__lookup_hash(struct qstr *name,
1811 struct dentry *base, struct nameidata *nd)
1812 {
1813 struct inode *inode = base->d_inode;
1814 struct dentry *dentry;
1815 int err;
1816
1817 err = exec_permission(inode, 0);
1818 if (err)
1819 return ERR_PTR(err);
1820
1821 /*
1822 * See if the low-level filesystem might want
1823 * to use its own hash..
1824 */
1825 if (base->d_flags & DCACHE_OP_HASH) {
1826 err = base->d_op->d_hash(base, inode, name);
1827 dentry = ERR_PTR(err);
1828 if (err < 0)
1829 goto out;
1830 }
1831
1832 /*
1833 * Don't bother with __d_lookup: callers are for creat as
1834 * well as unlink, so a lot of the time it would cost
1835 * a double lookup.
1836 */
1837 dentry = d_lookup(base, name);
1838
1839 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1840 dentry = do_revalidate(dentry, nd);
1841
1842 if (!dentry)
1843 dentry = d_alloc_and_lookup(base, name, nd);
1844 out:
1845 return dentry;
1846 }
1847
1848 /*
1849 * Restricted form of lookup. Doesn't follow links, single-component only,
1850 * needs parent already locked. Doesn't follow mounts.
1851 * SMP-safe.
1852 */
1853 static struct dentry *lookup_hash(struct nameidata *nd)
1854 {
1855 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1856 }
1857
1858 static int __lookup_one_len(const char *name, struct qstr *this,
1859 struct dentry *base, int len)
1860 {
1861 unsigned long hash;
1862 unsigned int c;
1863
1864 this->name = name;
1865 this->len = len;
1866 if (!len)
1867 return -EACCES;
1868
1869 hash = init_name_hash();
1870 while (len--) {
1871 c = *(const unsigned char *)name++;
1872 if (c == '/' || c == '\0')
1873 return -EACCES;
1874 hash = partial_name_hash(c, hash);
1875 }
1876 this->hash = end_name_hash(hash);
1877 return 0;
1878 }
1879
1880 /**
1881 * lookup_one_len - filesystem helper to lookup single pathname component
1882 * @name: pathname component to lookup
1883 * @base: base directory to lookup from
1884 * @len: maximum length @len should be interpreted to
1885 *
1886 * Note that this routine is purely a helper for filesystem usage and should
1887 * not be called by generic code. Also note that by using this function the
1888 * nameidata argument is passed to the filesystem methods and a filesystem
1889 * using this helper needs to be prepared for that.
1890 */
1891 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1892 {
1893 int err;
1894 struct qstr this;
1895
1896 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1897
1898 err = __lookup_one_len(name, &this, base, len);
1899 if (err)
1900 return ERR_PTR(err);
1901
1902 return __lookup_hash(&this, base, NULL);
1903 }
1904
1905 int user_path_at(int dfd, const char __user *name, unsigned flags,
1906 struct path *path)
1907 {
1908 struct nameidata nd;
1909 char *tmp = getname(name);
1910 int err = PTR_ERR(tmp);
1911 if (!IS_ERR(tmp)) {
1912
1913 BUG_ON(flags & LOOKUP_PARENT);
1914
1915 err = do_path_lookup(dfd, tmp, flags, &nd);
1916 putname(tmp);
1917 if (!err)
1918 *path = nd.path;
1919 }
1920 return err;
1921 }
1922
1923 static int user_path_parent(int dfd, const char __user *path,
1924 struct nameidata *nd, char **name)
1925 {
1926 char *s = getname(path);
1927 int error;
1928
1929 if (IS_ERR(s))
1930 return PTR_ERR(s);
1931
1932 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1933 if (error)
1934 putname(s);
1935 else
1936 *name = s;
1937
1938 return error;
1939 }
1940
1941 /*
1942 * It's inline, so penalty for filesystems that don't use sticky bit is
1943 * minimal.
1944 */
1945 static inline int check_sticky(struct inode *dir, struct inode *inode)
1946 {
1947 uid_t fsuid = current_fsuid();
1948
1949 if (!(dir->i_mode & S_ISVTX))
1950 return 0;
1951 if (inode->i_uid == fsuid)
1952 return 0;
1953 if (dir->i_uid == fsuid)
1954 return 0;
1955 return !capable(CAP_FOWNER);
1956 }
1957
1958 /*
1959 * Check whether we can remove a link victim from directory dir, check
1960 * whether the type of victim is right.
1961 * 1. We can't do it if dir is read-only (done in permission())
1962 * 2. We should have write and exec permissions on dir
1963 * 3. We can't remove anything from append-only dir
1964 * 4. We can't do anything with immutable dir (done in permission())
1965 * 5. If the sticky bit on dir is set we should either
1966 * a. be owner of dir, or
1967 * b. be owner of victim, or
1968 * c. have CAP_FOWNER capability
1969 * 6. If the victim is append-only or immutable we can't do antyhing with
1970 * links pointing to it.
1971 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1972 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1973 * 9. We can't remove a root or mountpoint.
1974 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1975 * nfs_async_unlink().
1976 */
1977 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1978 {
1979 int error;
1980
1981 if (!victim->d_inode)
1982 return -ENOENT;
1983
1984 BUG_ON(victim->d_parent->d_inode != dir);
1985 audit_inode_child(victim, dir);
1986
1987 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1988 if (error)
1989 return error;
1990 if (IS_APPEND(dir))
1991 return -EPERM;
1992 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1993 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1994 return -EPERM;
1995 if (isdir) {
1996 if (!S_ISDIR(victim->d_inode->i_mode))
1997 return -ENOTDIR;
1998 if (IS_ROOT(victim))
1999 return -EBUSY;
2000 } else if (S_ISDIR(victim->d_inode->i_mode))
2001 return -EISDIR;
2002 if (IS_DEADDIR(dir))
2003 return -ENOENT;
2004 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2005 return -EBUSY;
2006 return 0;
2007 }
2008
2009 /* Check whether we can create an object with dentry child in directory
2010 * dir.
2011 * 1. We can't do it if child already exists (open has special treatment for
2012 * this case, but since we are inlined it's OK)
2013 * 2. We can't do it if dir is read-only (done in permission())
2014 * 3. We should have write and exec permissions on dir
2015 * 4. We can't do it if dir is immutable (done in permission())
2016 */
2017 static inline int may_create(struct inode *dir, struct dentry *child)
2018 {
2019 if (child->d_inode)
2020 return -EEXIST;
2021 if (IS_DEADDIR(dir))
2022 return -ENOENT;
2023 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2024 }
2025
2026 /*
2027 * p1 and p2 should be directories on the same fs.
2028 */
2029 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2030 {
2031 struct dentry *p;
2032
2033 if (p1 == p2) {
2034 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2035 return NULL;
2036 }
2037
2038 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2039
2040 p = d_ancestor(p2, p1);
2041 if (p) {
2042 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2043 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2044 return p;
2045 }
2046
2047 p = d_ancestor(p1, p2);
2048 if (p) {
2049 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2050 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2051 return p;
2052 }
2053
2054 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2055 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2056 return NULL;
2057 }
2058
2059 void unlock_rename(struct dentry *p1, struct dentry *p2)
2060 {
2061 mutex_unlock(&p1->d_inode->i_mutex);
2062 if (p1 != p2) {
2063 mutex_unlock(&p2->d_inode->i_mutex);
2064 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2065 }
2066 }
2067
2068 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2069 struct nameidata *nd)
2070 {
2071 int error = may_create(dir, dentry);
2072
2073 if (error)
2074 return error;
2075
2076 if (!dir->i_op->create)
2077 return -EACCES; /* shouldn't it be ENOSYS? */
2078 mode &= S_IALLUGO;
2079 mode |= S_IFREG;
2080 error = security_inode_create(dir, dentry, mode);
2081 if (error)
2082 return error;
2083 error = dir->i_op->create(dir, dentry, mode, nd);
2084 if (!error)
2085 fsnotify_create(dir, dentry);
2086 return error;
2087 }
2088
2089 int may_open(struct path *path, int acc_mode, int flag)
2090 {
2091 struct dentry *dentry = path->dentry;
2092 struct inode *inode = dentry->d_inode;
2093 int error;
2094
2095 if (!inode)
2096 return -ENOENT;
2097
2098 switch (inode->i_mode & S_IFMT) {
2099 case S_IFLNK:
2100 return -ELOOP;
2101 case S_IFDIR:
2102 if (acc_mode & MAY_WRITE)
2103 return -EISDIR;
2104 break;
2105 case S_IFBLK:
2106 case S_IFCHR:
2107 if (path->mnt->mnt_flags & MNT_NODEV)
2108 return -EACCES;
2109 /*FALLTHRU*/
2110 case S_IFIFO:
2111 case S_IFSOCK:
2112 flag &= ~O_TRUNC;
2113 break;
2114 }
2115
2116 error = inode_permission(inode, acc_mode);
2117 if (error)
2118 return error;
2119
2120 /*
2121 * An append-only file must be opened in append mode for writing.
2122 */
2123 if (IS_APPEND(inode)) {
2124 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2125 return -EPERM;
2126 if (flag & O_TRUNC)
2127 return -EPERM;
2128 }
2129
2130 /* O_NOATIME can only be set by the owner or superuser */
2131 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2132 return -EPERM;
2133
2134 /*
2135 * Ensure there are no outstanding leases on the file.
2136 */
2137 return break_lease(inode, flag);
2138 }
2139
2140 static int handle_truncate(struct file *filp)
2141 {
2142 struct path *path = &filp->f_path;
2143 struct inode *inode = path->dentry->d_inode;
2144 int error = get_write_access(inode);
2145 if (error)
2146 return error;
2147 /*
2148 * Refuse to truncate files with mandatory locks held on them.
2149 */
2150 error = locks_verify_locked(inode);
2151 if (!error)
2152 error = security_path_truncate(path);
2153 if (!error) {
2154 error = do_truncate(path->dentry, 0,
2155 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2156 filp);
2157 }
2158 put_write_access(inode);
2159 return error;
2160 }
2161
2162 /*
2163 * Be careful about ever adding any more callers of this
2164 * function. Its flags must be in the namei format, not
2165 * what get passed to sys_open().
2166 */
2167 static int __open_namei_create(struct nameidata *nd, struct path *path,
2168 int open_flag, int mode)
2169 {
2170 int error;
2171 struct dentry *dir = nd->path.dentry;
2172
2173 if (!IS_POSIXACL(dir->d_inode))
2174 mode &= ~current_umask();
2175 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2176 if (error)
2177 goto out_unlock;
2178 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2179 out_unlock:
2180 mutex_unlock(&dir->d_inode->i_mutex);
2181 dput(nd->path.dentry);
2182 nd->path.dentry = path->dentry;
2183
2184 if (error)
2185 return error;
2186 /* Don't check for write permission, don't truncate */
2187 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2188 }
2189
2190 /*
2191 * Note that while the flag value (low two bits) for sys_open means:
2192 * 00 - read-only
2193 * 01 - write-only
2194 * 10 - read-write
2195 * 11 - special
2196 * it is changed into
2197 * 00 - no permissions needed
2198 * 01 - read-permission
2199 * 10 - write-permission
2200 * 11 - read-write
2201 * for the internal routines (ie open_namei()/follow_link() etc)
2202 * This is more logical, and also allows the 00 "no perm needed"
2203 * to be used for symlinks (where the permissions are checked
2204 * later).
2205 *
2206 */
2207 static inline int open_to_namei_flags(int flag)
2208 {
2209 if ((flag+1) & O_ACCMODE)
2210 flag++;
2211 return flag;
2212 }
2213
2214 static int open_will_truncate(int flag, struct inode *inode)
2215 {
2216 /*
2217 * We'll never write to the fs underlying
2218 * a device file.
2219 */
2220 if (special_file(inode->i_mode))
2221 return 0;
2222 return (flag & O_TRUNC);
2223 }
2224
2225 static struct file *finish_open(struct nameidata *nd,
2226 int open_flag, int acc_mode)
2227 {
2228 struct file *filp;
2229 int will_truncate;
2230 int error;
2231
2232 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2233 if (will_truncate) {
2234 error = mnt_want_write(nd->path.mnt);
2235 if (error)
2236 goto exit;
2237 }
2238 error = may_open(&nd->path, acc_mode, open_flag);
2239 if (error) {
2240 if (will_truncate)
2241 mnt_drop_write(nd->path.mnt);
2242 goto exit;
2243 }
2244 filp = nameidata_to_filp(nd);
2245 if (!IS_ERR(filp)) {
2246 error = ima_file_check(filp, acc_mode);
2247 if (error) {
2248 fput(filp);
2249 filp = ERR_PTR(error);
2250 }
2251 }
2252 if (!IS_ERR(filp)) {
2253 if (will_truncate) {
2254 error = handle_truncate(filp);
2255 if (error) {
2256 fput(filp);
2257 filp = ERR_PTR(error);
2258 }
2259 }
2260 }
2261 /*
2262 * It is now safe to drop the mnt write
2263 * because the filp has had a write taken
2264 * on its behalf.
2265 */
2266 if (will_truncate)
2267 mnt_drop_write(nd->path.mnt);
2268 path_put(&nd->path);
2269 return filp;
2270
2271 exit:
2272 path_put(&nd->path);
2273 return ERR_PTR(error);
2274 }
2275
2276 /*
2277 * Handle O_CREAT case for do_filp_open
2278 */
2279 static struct file *do_last(struct nameidata *nd, struct path *path,
2280 int open_flag, int acc_mode,
2281 int mode, const char *pathname)
2282 {
2283 struct dentry *dir = nd->path.dentry;
2284 struct file *filp;
2285 int error = -EISDIR;
2286
2287 switch (nd->last_type) {
2288 case LAST_DOTDOT:
2289 follow_dotdot(nd);
2290 dir = nd->path.dentry;
2291 case LAST_DOT:
2292 if (need_reval_dot(dir)) {
2293 int status = d_revalidate(nd->path.dentry, nd);
2294 if (!status)
2295 status = -ESTALE;
2296 if (status < 0) {
2297 error = status;
2298 goto exit;
2299 }
2300 }
2301 /* fallthrough */
2302 case LAST_ROOT:
2303 goto exit;
2304 case LAST_BIND:
2305 audit_inode(pathname, dir);
2306 goto ok;
2307 }
2308
2309 /* trailing slashes? */
2310 if (nd->last.name[nd->last.len])
2311 goto exit;
2312
2313 mutex_lock(&dir->d_inode->i_mutex);
2314
2315 path->dentry = lookup_hash(nd);
2316 path->mnt = nd->path.mnt;
2317
2318 error = PTR_ERR(path->dentry);
2319 if (IS_ERR(path->dentry)) {
2320 mutex_unlock(&dir->d_inode->i_mutex);
2321 goto exit;
2322 }
2323
2324 if (IS_ERR(nd->intent.open.file)) {
2325 error = PTR_ERR(nd->intent.open.file);
2326 goto exit_mutex_unlock;
2327 }
2328
2329 /* Negative dentry, just create the file */
2330 if (!path->dentry->d_inode) {
2331 /*
2332 * This write is needed to ensure that a
2333 * ro->rw transition does not occur between
2334 * the time when the file is created and when
2335 * a permanent write count is taken through
2336 * the 'struct file' in nameidata_to_filp().
2337 */
2338 error = mnt_want_write(nd->path.mnt);
2339 if (error)
2340 goto exit_mutex_unlock;
2341 error = __open_namei_create(nd, path, open_flag, mode);
2342 if (error) {
2343 mnt_drop_write(nd->path.mnt);
2344 goto exit;
2345 }
2346 filp = nameidata_to_filp(nd);
2347 mnt_drop_write(nd->path.mnt);
2348 path_put(&nd->path);
2349 if (!IS_ERR(filp)) {
2350 error = ima_file_check(filp, acc_mode);
2351 if (error) {
2352 fput(filp);
2353 filp = ERR_PTR(error);
2354 }
2355 }
2356 return filp;
2357 }
2358
2359 /*
2360 * It already exists.
2361 */
2362 mutex_unlock(&dir->d_inode->i_mutex);
2363 audit_inode(pathname, path->dentry);
2364
2365 error = -EEXIST;
2366 if (open_flag & O_EXCL)
2367 goto exit_dput;
2368
2369 error = follow_managed(path, nd->flags);
2370 if (error < 0)
2371 goto exit_dput;
2372
2373 error = -ENOENT;
2374 if (!path->dentry->d_inode)
2375 goto exit_dput;
2376
2377 if (path->dentry->d_inode->i_op->follow_link)
2378 return NULL;
2379
2380 path_to_nameidata(path, nd);
2381 nd->inode = path->dentry->d_inode;
2382 error = -EISDIR;
2383 if (S_ISDIR(nd->inode->i_mode))
2384 goto exit;
2385 ok:
2386 filp = finish_open(nd, open_flag, acc_mode);
2387 return filp;
2388
2389 exit_mutex_unlock:
2390 mutex_unlock(&dir->d_inode->i_mutex);
2391 exit_dput:
2392 path_put_conditional(path, nd);
2393 exit:
2394 path_put(&nd->path);
2395 return ERR_PTR(error);
2396 }
2397
2398 /*
2399 * Note that the low bits of the passed in "open_flag"
2400 * are not the same as in the local variable "flag". See
2401 * open_to_namei_flags() for more details.
2402 */
2403 struct file *do_filp_open(int dfd, const char *pathname,
2404 int open_flag, int mode, int acc_mode)
2405 {
2406 struct file *filp;
2407 struct nameidata nd;
2408 int error;
2409 struct path path;
2410 int count = 0;
2411 int flag = open_to_namei_flags(open_flag);
2412 int flags;
2413
2414 if (!(open_flag & O_CREAT))
2415 mode = 0;
2416
2417 /* Must never be set by userspace */
2418 open_flag &= ~FMODE_NONOTIFY;
2419
2420 /*
2421 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2422 * check for O_DSYNC if the need any syncing at all we enforce it's
2423 * always set instead of having to deal with possibly weird behaviour
2424 * for malicious applications setting only __O_SYNC.
2425 */
2426 if (open_flag & __O_SYNC)
2427 open_flag |= O_DSYNC;
2428
2429 if (!acc_mode)
2430 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2431
2432 /* O_TRUNC implies we need access checks for write permissions */
2433 if (open_flag & O_TRUNC)
2434 acc_mode |= MAY_WRITE;
2435
2436 /* Allow the LSM permission hook to distinguish append
2437 access from general write access. */
2438 if (open_flag & O_APPEND)
2439 acc_mode |= MAY_APPEND;
2440
2441 flags = LOOKUP_OPEN;
2442 if (open_flag & O_CREAT) {
2443 flags |= LOOKUP_CREATE;
2444 if (open_flag & O_EXCL)
2445 flags |= LOOKUP_EXCL;
2446 }
2447 if (open_flag & O_DIRECTORY)
2448 flags |= LOOKUP_DIRECTORY;
2449 if (!(open_flag & O_NOFOLLOW))
2450 flags |= LOOKUP_FOLLOW;
2451
2452 filp = get_empty_filp();
2453 if (!filp)
2454 return ERR_PTR(-ENFILE);
2455
2456 filp->f_flags = open_flag;
2457 nd.intent.open.file = filp;
2458 nd.intent.open.flags = flag;
2459 nd.intent.open.create_mode = mode;
2460
2461 if (open_flag & O_CREAT)
2462 goto creat;
2463
2464 /* !O_CREAT, simple open */
2465 error = do_path_lookup(dfd, pathname, flags, &nd);
2466 if (unlikely(error))
2467 goto out_filp;
2468 error = -ELOOP;
2469 if (!(nd.flags & LOOKUP_FOLLOW)) {
2470 if (nd.inode->i_op->follow_link)
2471 goto out_path;
2472 }
2473 error = -ENOTDIR;
2474 if (nd.flags & LOOKUP_DIRECTORY) {
2475 if (!nd.inode->i_op->lookup)
2476 goto out_path;
2477 }
2478 audit_inode(pathname, nd.path.dentry);
2479 filp = finish_open(&nd, open_flag, acc_mode);
2480 release_open_intent(&nd);
2481 return filp;
2482
2483 creat:
2484 /* OK, have to create the file. Find the parent. */
2485 error = path_init_rcu(dfd, pathname,
2486 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2487 if (error)
2488 goto out_filp;
2489 error = path_walk_rcu(pathname, &nd);
2490 path_finish_rcu(&nd);
2491 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2492 /* slower, locked walk */
2493 if (error == -ESTALE) {
2494 reval:
2495 flags |= LOOKUP_REVAL;
2496 }
2497 error = path_init(dfd, pathname,
2498 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2499 if (error)
2500 goto out_filp;
2501
2502 error = path_walk_simple(pathname, &nd);
2503 }
2504 if (unlikely(error))
2505 goto out_filp;
2506 if (unlikely(!audit_dummy_context()))
2507 audit_inode(pathname, nd.path.dentry);
2508
2509 /*
2510 * We have the parent and last component.
2511 */
2512 nd.flags = flags;
2513 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2514 while (unlikely(!filp)) { /* trailing symlink */
2515 struct path link = path;
2516 struct inode *linki = link.dentry->d_inode;
2517 void *cookie;
2518 error = -ELOOP;
2519 if (!(nd.flags & LOOKUP_FOLLOW))
2520 goto exit_dput;
2521 if (count++ == 32)
2522 goto exit_dput;
2523 /*
2524 * This is subtle. Instead of calling do_follow_link() we do
2525 * the thing by hands. The reason is that this way we have zero
2526 * link_count and path_walk() (called from ->follow_link)
2527 * honoring LOOKUP_PARENT. After that we have the parent and
2528 * last component, i.e. we are in the same situation as after
2529 * the first path_walk(). Well, almost - if the last component
2530 * is normal we get its copy stored in nd->last.name and we will
2531 * have to putname() it when we are done. Procfs-like symlinks
2532 * just set LAST_BIND.
2533 */
2534 nd.flags |= LOOKUP_PARENT;
2535 error = security_inode_follow_link(link.dentry, &nd);
2536 if (error)
2537 goto exit_dput;
2538 error = __do_follow_link(&link, &nd, &cookie);
2539 if (unlikely(error)) {
2540 if (!IS_ERR(cookie) && linki->i_op->put_link)
2541 linki->i_op->put_link(link.dentry, &nd, cookie);
2542 /* nd.path had been dropped */
2543 nd.path = link;
2544 goto out_path;
2545 }
2546 nd.flags &= ~LOOKUP_PARENT;
2547 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2548 if (linki->i_op->put_link)
2549 linki->i_op->put_link(link.dentry, &nd, cookie);
2550 path_put(&link);
2551 }
2552 out:
2553 if (nd.root.mnt)
2554 path_put(&nd.root);
2555 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2556 goto reval;
2557 release_open_intent(&nd);
2558 return filp;
2559
2560 exit_dput:
2561 path_put_conditional(&path, &nd);
2562 out_path:
2563 path_put(&nd.path);
2564 out_filp:
2565 filp = ERR_PTR(error);
2566 goto out;
2567 }
2568
2569 /**
2570 * filp_open - open file and return file pointer
2571 *
2572 * @filename: path to open
2573 * @flags: open flags as per the open(2) second argument
2574 * @mode: mode for the new file if O_CREAT is set, else ignored
2575 *
2576 * This is the helper to open a file from kernelspace if you really
2577 * have to. But in generally you should not do this, so please move
2578 * along, nothing to see here..
2579 */
2580 struct file *filp_open(const char *filename, int flags, int mode)
2581 {
2582 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2583 }
2584 EXPORT_SYMBOL(filp_open);
2585
2586 /**
2587 * lookup_create - lookup a dentry, creating it if it doesn't exist
2588 * @nd: nameidata info
2589 * @is_dir: directory flag
2590 *
2591 * Simple function to lookup and return a dentry and create it
2592 * if it doesn't exist. Is SMP-safe.
2593 *
2594 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2595 */
2596 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2597 {
2598 struct dentry *dentry = ERR_PTR(-EEXIST);
2599
2600 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2601 /*
2602 * Yucky last component or no last component at all?
2603 * (foo/., foo/.., /////)
2604 */
2605 if (nd->last_type != LAST_NORM)
2606 goto fail;
2607 nd->flags &= ~LOOKUP_PARENT;
2608 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2609 nd->intent.open.flags = O_EXCL;
2610
2611 /*
2612 * Do the final lookup.
2613 */
2614 dentry = lookup_hash(nd);
2615 if (IS_ERR(dentry))
2616 goto fail;
2617
2618 if (dentry->d_inode)
2619 goto eexist;
2620 /*
2621 * Special case - lookup gave negative, but... we had foo/bar/
2622 * From the vfs_mknod() POV we just have a negative dentry -
2623 * all is fine. Let's be bastards - you had / on the end, you've
2624 * been asking for (non-existent) directory. -ENOENT for you.
2625 */
2626 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2627 dput(dentry);
2628 dentry = ERR_PTR(-ENOENT);
2629 }
2630 return dentry;
2631 eexist:
2632 dput(dentry);
2633 dentry = ERR_PTR(-EEXIST);
2634 fail:
2635 return dentry;
2636 }
2637 EXPORT_SYMBOL_GPL(lookup_create);
2638
2639 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2640 {
2641 int error = may_create(dir, dentry);
2642
2643 if (error)
2644 return error;
2645
2646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2647 return -EPERM;
2648
2649 if (!dir->i_op->mknod)
2650 return -EPERM;
2651
2652 error = devcgroup_inode_mknod(mode, dev);
2653 if (error)
2654 return error;
2655
2656 error = security_inode_mknod(dir, dentry, mode, dev);
2657 if (error)
2658 return error;
2659
2660 error = dir->i_op->mknod(dir, dentry, mode, dev);
2661 if (!error)
2662 fsnotify_create(dir, dentry);
2663 return error;
2664 }
2665
2666 static int may_mknod(mode_t mode)
2667 {
2668 switch (mode & S_IFMT) {
2669 case S_IFREG:
2670 case S_IFCHR:
2671 case S_IFBLK:
2672 case S_IFIFO:
2673 case S_IFSOCK:
2674 case 0: /* zero mode translates to S_IFREG */
2675 return 0;
2676 case S_IFDIR:
2677 return -EPERM;
2678 default:
2679 return -EINVAL;
2680 }
2681 }
2682
2683 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2684 unsigned, dev)
2685 {
2686 int error;
2687 char *tmp;
2688 struct dentry *dentry;
2689 struct nameidata nd;
2690
2691 if (S_ISDIR(mode))
2692 return -EPERM;
2693
2694 error = user_path_parent(dfd, filename, &nd, &tmp);
2695 if (error)
2696 return error;
2697
2698 dentry = lookup_create(&nd, 0);
2699 if (IS_ERR(dentry)) {
2700 error = PTR_ERR(dentry);
2701 goto out_unlock;
2702 }
2703 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2704 mode &= ~current_umask();
2705 error = may_mknod(mode);
2706 if (error)
2707 goto out_dput;
2708 error = mnt_want_write(nd.path.mnt);
2709 if (error)
2710 goto out_dput;
2711 error = security_path_mknod(&nd.path, dentry, mode, dev);
2712 if (error)
2713 goto out_drop_write;
2714 switch (mode & S_IFMT) {
2715 case 0: case S_IFREG:
2716 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2717 break;
2718 case S_IFCHR: case S_IFBLK:
2719 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2720 new_decode_dev(dev));
2721 break;
2722 case S_IFIFO: case S_IFSOCK:
2723 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2724 break;
2725 }
2726 out_drop_write:
2727 mnt_drop_write(nd.path.mnt);
2728 out_dput:
2729 dput(dentry);
2730 out_unlock:
2731 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2732 path_put(&nd.path);
2733 putname(tmp);
2734
2735 return error;
2736 }
2737
2738 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2739 {
2740 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2741 }
2742
2743 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2744 {
2745 int error = may_create(dir, dentry);
2746
2747 if (error)
2748 return error;
2749
2750 if (!dir->i_op->mkdir)
2751 return -EPERM;
2752
2753 mode &= (S_IRWXUGO|S_ISVTX);
2754 error = security_inode_mkdir(dir, dentry, mode);
2755 if (error)
2756 return error;
2757
2758 error = dir->i_op->mkdir(dir, dentry, mode);
2759 if (!error)
2760 fsnotify_mkdir(dir, dentry);
2761 return error;
2762 }
2763
2764 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2765 {
2766 int error = 0;
2767 char * tmp;
2768 struct dentry *dentry;
2769 struct nameidata nd;
2770
2771 error = user_path_parent(dfd, pathname, &nd, &tmp);
2772 if (error)
2773 goto out_err;
2774
2775 dentry = lookup_create(&nd, 1);
2776 error = PTR_ERR(dentry);
2777 if (IS_ERR(dentry))
2778 goto out_unlock;
2779
2780 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2781 mode &= ~current_umask();
2782 error = mnt_want_write(nd.path.mnt);
2783 if (error)
2784 goto out_dput;
2785 error = security_path_mkdir(&nd.path, dentry, mode);
2786 if (error)
2787 goto out_drop_write;
2788 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2789 out_drop_write:
2790 mnt_drop_write(nd.path.mnt);
2791 out_dput:
2792 dput(dentry);
2793 out_unlock:
2794 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2795 path_put(&nd.path);
2796 putname(tmp);
2797 out_err:
2798 return error;
2799 }
2800
2801 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2802 {
2803 return sys_mkdirat(AT_FDCWD, pathname, mode);
2804 }
2805
2806 /*
2807 * We try to drop the dentry early: we should have
2808 * a usage count of 2 if we're the only user of this
2809 * dentry, and if that is true (possibly after pruning
2810 * the dcache), then we drop the dentry now.
2811 *
2812 * A low-level filesystem can, if it choses, legally
2813 * do a
2814 *
2815 * if (!d_unhashed(dentry))
2816 * return -EBUSY;
2817 *
2818 * if it cannot handle the case of removing a directory
2819 * that is still in use by something else..
2820 */
2821 void dentry_unhash(struct dentry *dentry)
2822 {
2823 dget(dentry);
2824 shrink_dcache_parent(dentry);
2825 spin_lock(&dentry->d_lock);
2826 if (dentry->d_count == 2)
2827 __d_drop(dentry);
2828 spin_unlock(&dentry->d_lock);
2829 }
2830
2831 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2832 {
2833 int error = may_delete(dir, dentry, 1);
2834
2835 if (error)
2836 return error;
2837
2838 if (!dir->i_op->rmdir)
2839 return -EPERM;
2840
2841 mutex_lock(&dentry->d_inode->i_mutex);
2842 dentry_unhash(dentry);
2843 if (d_mountpoint(dentry))
2844 error = -EBUSY;
2845 else {
2846 error = security_inode_rmdir(dir, dentry);
2847 if (!error) {
2848 error = dir->i_op->rmdir(dir, dentry);
2849 if (!error) {
2850 dentry->d_inode->i_flags |= S_DEAD;
2851 dont_mount(dentry);
2852 }
2853 }
2854 }
2855 mutex_unlock(&dentry->d_inode->i_mutex);
2856 if (!error) {
2857 d_delete(dentry);
2858 }
2859 dput(dentry);
2860
2861 return error;
2862 }
2863
2864 static long do_rmdir(int dfd, const char __user *pathname)
2865 {
2866 int error = 0;
2867 char * name;
2868 struct dentry *dentry;
2869 struct nameidata nd;
2870
2871 error = user_path_parent(dfd, pathname, &nd, &name);
2872 if (error)
2873 return error;
2874
2875 switch(nd.last_type) {
2876 case LAST_DOTDOT:
2877 error = -ENOTEMPTY;
2878 goto exit1;
2879 case LAST_DOT:
2880 error = -EINVAL;
2881 goto exit1;
2882 case LAST_ROOT:
2883 error = -EBUSY;
2884 goto exit1;
2885 }
2886
2887 nd.flags &= ~LOOKUP_PARENT;
2888
2889 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2890 dentry = lookup_hash(&nd);
2891 error = PTR_ERR(dentry);
2892 if (IS_ERR(dentry))
2893 goto exit2;
2894 error = mnt_want_write(nd.path.mnt);
2895 if (error)
2896 goto exit3;
2897 error = security_path_rmdir(&nd.path, dentry);
2898 if (error)
2899 goto exit4;
2900 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2901 exit4:
2902 mnt_drop_write(nd.path.mnt);
2903 exit3:
2904 dput(dentry);
2905 exit2:
2906 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2907 exit1:
2908 path_put(&nd.path);
2909 putname(name);
2910 return error;
2911 }
2912
2913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2914 {
2915 return do_rmdir(AT_FDCWD, pathname);
2916 }
2917
2918 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2919 {
2920 int error = may_delete(dir, dentry, 0);
2921
2922 if (error)
2923 return error;
2924
2925 if (!dir->i_op->unlink)
2926 return -EPERM;
2927
2928 mutex_lock(&dentry->d_inode->i_mutex);
2929 if (d_mountpoint(dentry))
2930 error = -EBUSY;
2931 else {
2932 error = security_inode_unlink(dir, dentry);
2933 if (!error) {
2934 error = dir->i_op->unlink(dir, dentry);
2935 if (!error)
2936 dont_mount(dentry);
2937 }
2938 }
2939 mutex_unlock(&dentry->d_inode->i_mutex);
2940
2941 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2942 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2943 fsnotify_link_count(dentry->d_inode);
2944 d_delete(dentry);
2945 }
2946
2947 return error;
2948 }
2949
2950 /*
2951 * Make sure that the actual truncation of the file will occur outside its
2952 * directory's i_mutex. Truncate can take a long time if there is a lot of
2953 * writeout happening, and we don't want to prevent access to the directory
2954 * while waiting on the I/O.
2955 */
2956 static long do_unlinkat(int dfd, const char __user *pathname)
2957 {
2958 int error;
2959 char *name;
2960 struct dentry *dentry;
2961 struct nameidata nd;
2962 struct inode *inode = NULL;
2963
2964 error = user_path_parent(dfd, pathname, &nd, &name);
2965 if (error)
2966 return error;
2967
2968 error = -EISDIR;
2969 if (nd.last_type != LAST_NORM)
2970 goto exit1;
2971
2972 nd.flags &= ~LOOKUP_PARENT;
2973
2974 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2975 dentry = lookup_hash(&nd);
2976 error = PTR_ERR(dentry);
2977 if (!IS_ERR(dentry)) {
2978 /* Why not before? Because we want correct error value */
2979 if (nd.last.name[nd.last.len])
2980 goto slashes;
2981 inode = dentry->d_inode;
2982 if (inode)
2983 ihold(inode);
2984 error = mnt_want_write(nd.path.mnt);
2985 if (error)
2986 goto exit2;
2987 error = security_path_unlink(&nd.path, dentry);
2988 if (error)
2989 goto exit3;
2990 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2991 exit3:
2992 mnt_drop_write(nd.path.mnt);
2993 exit2:
2994 dput(dentry);
2995 }
2996 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2997 if (inode)
2998 iput(inode); /* truncate the inode here */
2999 exit1:
3000 path_put(&nd.path);
3001 putname(name);
3002 return error;
3003
3004 slashes:
3005 error = !dentry->d_inode ? -ENOENT :
3006 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3007 goto exit2;
3008 }
3009
3010 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3011 {
3012 if ((flag & ~AT_REMOVEDIR) != 0)
3013 return -EINVAL;
3014
3015 if (flag & AT_REMOVEDIR)
3016 return do_rmdir(dfd, pathname);
3017
3018 return do_unlinkat(dfd, pathname);
3019 }
3020
3021 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3022 {
3023 return do_unlinkat(AT_FDCWD, pathname);
3024 }
3025
3026 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3027 {
3028 int error = may_create(dir, dentry);
3029
3030 if (error)
3031 return error;
3032
3033 if (!dir->i_op->symlink)
3034 return -EPERM;
3035
3036 error = security_inode_symlink(dir, dentry, oldname);
3037 if (error)
3038 return error;
3039
3040 error = dir->i_op->symlink(dir, dentry, oldname);
3041 if (!error)
3042 fsnotify_create(dir, dentry);
3043 return error;
3044 }
3045
3046 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3047 int, newdfd, const char __user *, newname)
3048 {
3049 int error;
3050 char *from;
3051 char *to;
3052 struct dentry *dentry;
3053 struct nameidata nd;
3054
3055 from = getname(oldname);
3056 if (IS_ERR(from))
3057 return PTR_ERR(from);
3058
3059 error = user_path_parent(newdfd, newname, &nd, &to);
3060 if (error)
3061 goto out_putname;
3062
3063 dentry = lookup_create(&nd, 0);
3064 error = PTR_ERR(dentry);
3065 if (IS_ERR(dentry))
3066 goto out_unlock;
3067
3068 error = mnt_want_write(nd.path.mnt);
3069 if (error)
3070 goto out_dput;
3071 error = security_path_symlink(&nd.path, dentry, from);
3072 if (error)
3073 goto out_drop_write;
3074 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3075 out_drop_write:
3076 mnt_drop_write(nd.path.mnt);
3077 out_dput:
3078 dput(dentry);
3079 out_unlock:
3080 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3081 path_put(&nd.path);
3082 putname(to);
3083 out_putname:
3084 putname(from);
3085 return error;
3086 }
3087
3088 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3089 {
3090 return sys_symlinkat(oldname, AT_FDCWD, newname);
3091 }
3092
3093 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3094 {
3095 struct inode *inode = old_dentry->d_inode;
3096 int error;
3097
3098 if (!inode)
3099 return -ENOENT;
3100
3101 error = may_create(dir, new_dentry);
3102 if (error)
3103 return error;
3104
3105 if (dir->i_sb != inode->i_sb)
3106 return -EXDEV;
3107
3108 /*
3109 * A link to an append-only or immutable file cannot be created.
3110 */
3111 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3112 return -EPERM;
3113 if (!dir->i_op->link)
3114 return -EPERM;
3115 if (S_ISDIR(inode->i_mode))
3116 return -EPERM;
3117
3118 error = security_inode_link(old_dentry, dir, new_dentry);
3119 if (error)
3120 return error;
3121
3122 mutex_lock(&inode->i_mutex);
3123 error = dir->i_op->link(old_dentry, dir, new_dentry);
3124 mutex_unlock(&inode->i_mutex);
3125 if (!error)
3126 fsnotify_link(dir, inode, new_dentry);
3127 return error;
3128 }
3129
3130 /*
3131 * Hardlinks are often used in delicate situations. We avoid
3132 * security-related surprises by not following symlinks on the
3133 * newname. --KAB
3134 *
3135 * We don't follow them on the oldname either to be compatible
3136 * with linux 2.0, and to avoid hard-linking to directories
3137 * and other special files. --ADM
3138 */
3139 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3140 int, newdfd, const char __user *, newname, int, flags)
3141 {
3142 struct dentry *new_dentry;
3143 struct nameidata nd;
3144 struct path old_path;
3145 int error;
3146 char *to;
3147
3148 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3149 return -EINVAL;
3150
3151 error = user_path_at(olddfd, oldname,
3152 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3153 &old_path);
3154 if (error)
3155 return error;
3156
3157 error = user_path_parent(newdfd, newname, &nd, &to);
3158 if (error)
3159 goto out;
3160 error = -EXDEV;
3161 if (old_path.mnt != nd.path.mnt)
3162 goto out_release;
3163 new_dentry = lookup_create(&nd, 0);
3164 error = PTR_ERR(new_dentry);
3165 if (IS_ERR(new_dentry))
3166 goto out_unlock;
3167 error = mnt_want_write(nd.path.mnt);
3168 if (error)
3169 goto out_dput;
3170 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3171 if (error)
3172 goto out_drop_write;
3173 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3174 out_drop_write:
3175 mnt_drop_write(nd.path.mnt);
3176 out_dput:
3177 dput(new_dentry);
3178 out_unlock:
3179 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3180 out_release:
3181 path_put(&nd.path);
3182 putname(to);
3183 out:
3184 path_put(&old_path);
3185
3186 return error;
3187 }
3188
3189 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3190 {
3191 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3192 }
3193
3194 /*
3195 * The worst of all namespace operations - renaming directory. "Perverted"
3196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3197 * Problems:
3198 * a) we can get into loop creation. Check is done in is_subdir().
3199 * b) race potential - two innocent renames can create a loop together.
3200 * That's where 4.4 screws up. Current fix: serialization on
3201 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3202 * story.
3203 * c) we have to lock _three_ objects - parents and victim (if it exists).
3204 * And that - after we got ->i_mutex on parents (until then we don't know
3205 * whether the target exists). Solution: try to be smart with locking
3206 * order for inodes. We rely on the fact that tree topology may change
3207 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3208 * move will be locked. Thus we can rank directories by the tree
3209 * (ancestors first) and rank all non-directories after them.
3210 * That works since everybody except rename does "lock parent, lookup,
3211 * lock child" and rename is under ->s_vfs_rename_mutex.
3212 * HOWEVER, it relies on the assumption that any object with ->lookup()
3213 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3214 * we'd better make sure that there's no link(2) for them.
3215 * d) some filesystems don't support opened-but-unlinked directories,
3216 * either because of layout or because they are not ready to deal with
3217 * all cases correctly. The latter will be fixed (taking this sort of
3218 * stuff into VFS), but the former is not going away. Solution: the same
3219 * trick as in rmdir().
3220 * e) conversion from fhandle to dentry may come in the wrong moment - when
3221 * we are removing the target. Solution: we will have to grab ->i_mutex
3222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3223 * ->i_mutex on parents, which works but leads to some truly excessive
3224 * locking].
3225 */
3226 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3227 struct inode *new_dir, struct dentry *new_dentry)
3228 {
3229 int error = 0;
3230 struct inode *target;
3231
3232 /*
3233 * If we are going to change the parent - check write permissions,
3234 * we'll need to flip '..'.
3235 */
3236 if (new_dir != old_dir) {
3237 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3238 if (error)
3239 return error;
3240 }
3241
3242 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3243 if (error)
3244 return error;
3245
3246 target = new_dentry->d_inode;
3247 if (target)
3248 mutex_lock(&target->i_mutex);
3249 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3250 error = -EBUSY;
3251 else {
3252 if (target)
3253 dentry_unhash(new_dentry);
3254 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3255 }
3256 if (target) {
3257 if (!error) {
3258 target->i_flags |= S_DEAD;
3259 dont_mount(new_dentry);
3260 }
3261 mutex_unlock(&target->i_mutex);
3262 if (d_unhashed(new_dentry))
3263 d_rehash(new_dentry);
3264 dput(new_dentry);
3265 }
3266 if (!error)
3267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3268 d_move(old_dentry,new_dentry);
3269 return error;
3270 }
3271
3272 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3273 struct inode *new_dir, struct dentry *new_dentry)
3274 {
3275 struct inode *target;
3276 int error;
3277
3278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3279 if (error)
3280 return error;
3281
3282 dget(new_dentry);
3283 target = new_dentry->d_inode;
3284 if (target)
3285 mutex_lock(&target->i_mutex);
3286 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3287 error = -EBUSY;
3288 else
3289 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3290 if (!error) {
3291 if (target)
3292 dont_mount(new_dentry);
3293 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3294 d_move(old_dentry, new_dentry);
3295 }
3296 if (target)
3297 mutex_unlock(&target->i_mutex);
3298 dput(new_dentry);
3299 return error;
3300 }
3301
3302 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3303 struct inode *new_dir, struct dentry *new_dentry)
3304 {
3305 int error;
3306 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3307 const unsigned char *old_name;
3308
3309 if (old_dentry->d_inode == new_dentry->d_inode)
3310 return 0;
3311
3312 error = may_delete(old_dir, old_dentry, is_dir);
3313 if (error)
3314 return error;
3315
3316 if (!new_dentry->d_inode)
3317 error = may_create(new_dir, new_dentry);
3318 else
3319 error = may_delete(new_dir, new_dentry, is_dir);
3320 if (error)
3321 return error;
3322
3323 if (!old_dir->i_op->rename)
3324 return -EPERM;
3325
3326 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3327
3328 if (is_dir)
3329 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3330 else
3331 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3332 if (!error)
3333 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3334 new_dentry->d_inode, old_dentry);
3335 fsnotify_oldname_free(old_name);
3336
3337 return error;
3338 }
3339
3340 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3341 int, newdfd, const char __user *, newname)
3342 {
3343 struct dentry *old_dir, *new_dir;
3344 struct dentry *old_dentry, *new_dentry;
3345 struct dentry *trap;
3346 struct nameidata oldnd, newnd;
3347 char *from;
3348 char *to;
3349 int error;
3350
3351 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3352 if (error)
3353 goto exit;
3354
3355 error = user_path_parent(newdfd, newname, &newnd, &to);
3356 if (error)
3357 goto exit1;
3358
3359 error = -EXDEV;
3360 if (oldnd.path.mnt != newnd.path.mnt)
3361 goto exit2;
3362
3363 old_dir = oldnd.path.dentry;
3364 error = -EBUSY;
3365 if (oldnd.last_type != LAST_NORM)
3366 goto exit2;
3367
3368 new_dir = newnd.path.dentry;
3369 if (newnd.last_type != LAST_NORM)
3370 goto exit2;
3371
3372 oldnd.flags &= ~LOOKUP_PARENT;
3373 newnd.flags &= ~LOOKUP_PARENT;
3374 newnd.flags |= LOOKUP_RENAME_TARGET;
3375
3376 trap = lock_rename(new_dir, old_dir);
3377
3378 old_dentry = lookup_hash(&oldnd);
3379 error = PTR_ERR(old_dentry);
3380 if (IS_ERR(old_dentry))
3381 goto exit3;
3382 /* source must exist */
3383 error = -ENOENT;
3384 if (!old_dentry->d_inode)
3385 goto exit4;
3386 /* unless the source is a directory trailing slashes give -ENOTDIR */
3387 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3388 error = -ENOTDIR;
3389 if (oldnd.last.name[oldnd.last.len])
3390 goto exit4;
3391 if (newnd.last.name[newnd.last.len])
3392 goto exit4;
3393 }
3394 /* source should not be ancestor of target */
3395 error = -EINVAL;
3396 if (old_dentry == trap)
3397 goto exit4;
3398 new_dentry = lookup_hash(&newnd);
3399 error = PTR_ERR(new_dentry);
3400 if (IS_ERR(new_dentry))
3401 goto exit4;
3402 /* target should not be an ancestor of source */
3403 error = -ENOTEMPTY;
3404 if (new_dentry == trap)
3405 goto exit5;
3406
3407 error = mnt_want_write(oldnd.path.mnt);
3408 if (error)
3409 goto exit5;
3410 error = security_path_rename(&oldnd.path, old_dentry,
3411 &newnd.path, new_dentry);
3412 if (error)
3413 goto exit6;
3414 error = vfs_rename(old_dir->d_inode, old_dentry,
3415 new_dir->d_inode, new_dentry);
3416 exit6:
3417 mnt_drop_write(oldnd.path.mnt);
3418 exit5:
3419 dput(new_dentry);
3420 exit4:
3421 dput(old_dentry);
3422 exit3:
3423 unlock_rename(new_dir, old_dir);
3424 exit2:
3425 path_put(&newnd.path);
3426 putname(to);
3427 exit1:
3428 path_put(&oldnd.path);
3429 putname(from);
3430 exit:
3431 return error;
3432 }
3433
3434 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3435 {
3436 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3437 }
3438
3439 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3440 {
3441 int len;
3442
3443 len = PTR_ERR(link);
3444 if (IS_ERR(link))
3445 goto out;
3446
3447 len = strlen(link);
3448 if (len > (unsigned) buflen)
3449 len = buflen;
3450 if (copy_to_user(buffer, link, len))
3451 len = -EFAULT;
3452 out:
3453 return len;
3454 }
3455
3456 /*
3457 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3458 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3459 * using) it for any given inode is up to filesystem.
3460 */
3461 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3462 {
3463 struct nameidata nd;
3464 void *cookie;
3465 int res;
3466
3467 nd.depth = 0;
3468 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3469 if (IS_ERR(cookie))
3470 return PTR_ERR(cookie);
3471
3472 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3473 if (dentry->d_inode->i_op->put_link)
3474 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3475 return res;
3476 }
3477
3478 int vfs_follow_link(struct nameidata *nd, const char *link)
3479 {
3480 return __vfs_follow_link(nd, link);
3481 }
3482
3483 /* get the link contents into pagecache */
3484 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3485 {
3486 char *kaddr;
3487 struct page *page;
3488 struct address_space *mapping = dentry->d_inode->i_mapping;
3489 page = read_mapping_page(mapping, 0, NULL);
3490 if (IS_ERR(page))
3491 return (char*)page;
3492 *ppage = page;
3493 kaddr = kmap(page);
3494 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3495 return kaddr;
3496 }
3497
3498 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3499 {
3500 struct page *page = NULL;
3501 char *s = page_getlink(dentry, &page);
3502 int res = vfs_readlink(dentry,buffer,buflen,s);
3503 if (page) {
3504 kunmap(page);
3505 page_cache_release(page);
3506 }
3507 return res;
3508 }
3509
3510 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3511 {
3512 struct page *page = NULL;
3513 nd_set_link(nd, page_getlink(dentry, &page));
3514 return page;
3515 }
3516
3517 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3518 {
3519 struct page *page = cookie;
3520
3521 if (page) {
3522 kunmap(page);
3523 page_cache_release(page);
3524 }
3525 }
3526
3527 /*
3528 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3529 */
3530 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3531 {
3532 struct address_space *mapping = inode->i_mapping;
3533 struct page *page;
3534 void *fsdata;
3535 int err;
3536 char *kaddr;
3537 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3538 if (nofs)
3539 flags |= AOP_FLAG_NOFS;
3540
3541 retry:
3542 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3543 flags, &page, &fsdata);
3544 if (err)
3545 goto fail;
3546
3547 kaddr = kmap_atomic(page, KM_USER0);
3548 memcpy(kaddr, symname, len-1);
3549 kunmap_atomic(kaddr, KM_USER0);
3550
3551 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3552 page, fsdata);
3553 if (err < 0)
3554 goto fail;
3555 if (err < len-1)
3556 goto retry;
3557
3558 mark_inode_dirty(inode);
3559 return 0;
3560 fail:
3561 return err;
3562 }
3563
3564 int page_symlink(struct inode *inode, const char *symname, int len)
3565 {
3566 return __page_symlink(inode, symname, len,
3567 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3568 }
3569
3570 const struct inode_operations page_symlink_inode_operations = {
3571 .readlink = generic_readlink,
3572 .follow_link = page_follow_link_light,
3573 .put_link = page_put_link,
3574 };
3575
3576 EXPORT_SYMBOL(user_path_at);
3577 EXPORT_SYMBOL(follow_down_one);
3578 EXPORT_SYMBOL(follow_down);
3579 EXPORT_SYMBOL(follow_up);
3580 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3581 EXPORT_SYMBOL(getname);
3582 EXPORT_SYMBOL(lock_rename);
3583 EXPORT_SYMBOL(lookup_one_len);
3584 EXPORT_SYMBOL(page_follow_link_light);
3585 EXPORT_SYMBOL(page_put_link);
3586 EXPORT_SYMBOL(page_readlink);
3587 EXPORT_SYMBOL(__page_symlink);
3588 EXPORT_SYMBOL(page_symlink);
3589 EXPORT_SYMBOL(page_symlink_inode_operations);
3590 EXPORT_SYMBOL(path_lookup);
3591 EXPORT_SYMBOL(kern_path);
3592 EXPORT_SYMBOL(vfs_path_lookup);
3593 EXPORT_SYMBOL(inode_permission);
3594 EXPORT_SYMBOL(file_permission);
3595 EXPORT_SYMBOL(unlock_rename);
3596 EXPORT_SYMBOL(vfs_create);
3597 EXPORT_SYMBOL(vfs_follow_link);
3598 EXPORT_SYMBOL(vfs_link);
3599 EXPORT_SYMBOL(vfs_mkdir);
3600 EXPORT_SYMBOL(vfs_mknod);
3601 EXPORT_SYMBOL(generic_permission);
3602 EXPORT_SYMBOL(vfs_readlink);
3603 EXPORT_SYMBOL(vfs_rename);
3604 EXPORT_SYMBOL(vfs_rmdir);
3605 EXPORT_SYMBOL(vfs_symlink);
3606 EXPORT_SYMBOL(vfs_unlink);
3607 EXPORT_SYMBOL(dentry_unhash);
3608 EXPORT_SYMBOL(generic_readlink);
This page took 0.153 seconds and 6 git commands to generate.