Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <linux/fsnotify.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include "pnode.h"
36 #include "internal.h"
37
38 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
39 #define HASH_SIZE (1UL << HASH_SHIFT)
40
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44 static int event;
45 static DEFINE_IDA(mnt_id_ida);
46 static DEFINE_IDA(mnt_group_ida);
47 static int mnt_id_start = 0;
48 static int mnt_group_start = 1;
49
50 static struct list_head *mount_hashtable __read_mostly;
51 static struct kmem_cache *mnt_cache __read_mostly;
52 static struct rw_semaphore namespace_sem;
53
54 /* /sys/fs */
55 struct kobject *fs_kobj;
56 EXPORT_SYMBOL_GPL(fs_kobj);
57
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /* allocation is serialized by namespace_sem */
69 static int mnt_alloc_id(struct vfsmount *mnt)
70 {
71 int res;
72
73 retry:
74 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
75 spin_lock(&vfsmount_lock);
76 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
77 if (!res)
78 mnt_id_start = mnt->mnt_id + 1;
79 spin_unlock(&vfsmount_lock);
80 if (res == -EAGAIN)
81 goto retry;
82
83 return res;
84 }
85
86 static void mnt_free_id(struct vfsmount *mnt)
87 {
88 int id = mnt->mnt_id;
89 spin_lock(&vfsmount_lock);
90 ida_remove(&mnt_id_ida, id);
91 if (mnt_id_start > id)
92 mnt_id_start = id;
93 spin_unlock(&vfsmount_lock);
94 }
95
96 /*
97 * Allocate a new peer group ID
98 *
99 * mnt_group_ida is protected by namespace_sem
100 */
101 static int mnt_alloc_group_id(struct vfsmount *mnt)
102 {
103 int res;
104
105 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
106 return -ENOMEM;
107
108 res = ida_get_new_above(&mnt_group_ida,
109 mnt_group_start,
110 &mnt->mnt_group_id);
111 if (!res)
112 mnt_group_start = mnt->mnt_group_id + 1;
113
114 return res;
115 }
116
117 /*
118 * Release a peer group ID
119 */
120 void mnt_release_group_id(struct vfsmount *mnt)
121 {
122 int id = mnt->mnt_group_id;
123 ida_remove(&mnt_group_ida, id);
124 if (mnt_group_start > id)
125 mnt_group_start = id;
126 mnt->mnt_group_id = 0;
127 }
128
129 struct vfsmount *alloc_vfsmnt(const char *name)
130 {
131 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
132 if (mnt) {
133 int err;
134
135 err = mnt_alloc_id(mnt);
136 if (err)
137 goto out_free_cache;
138
139 if (name) {
140 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
141 if (!mnt->mnt_devname)
142 goto out_free_id;
143 }
144
145 atomic_set(&mnt->mnt_count, 1);
146 INIT_LIST_HEAD(&mnt->mnt_hash);
147 INIT_LIST_HEAD(&mnt->mnt_child);
148 INIT_LIST_HEAD(&mnt->mnt_mounts);
149 INIT_LIST_HEAD(&mnt->mnt_list);
150 INIT_LIST_HEAD(&mnt->mnt_expire);
151 INIT_LIST_HEAD(&mnt->mnt_share);
152 INIT_LIST_HEAD(&mnt->mnt_slave_list);
153 INIT_LIST_HEAD(&mnt->mnt_slave);
154 #ifdef CONFIG_FSNOTIFY
155 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
156 #endif
157 #ifdef CONFIG_SMP
158 mnt->mnt_writers = alloc_percpu(int);
159 if (!mnt->mnt_writers)
160 goto out_free_devname;
161 #else
162 mnt->mnt_writers = 0;
163 #endif
164 }
165 return mnt;
166
167 #ifdef CONFIG_SMP
168 out_free_devname:
169 kfree(mnt->mnt_devname);
170 #endif
171 out_free_id:
172 mnt_free_id(mnt);
173 out_free_cache:
174 kmem_cache_free(mnt_cache, mnt);
175 return NULL;
176 }
177
178 /*
179 * Most r/o checks on a fs are for operations that take
180 * discrete amounts of time, like a write() or unlink().
181 * We must keep track of when those operations start
182 * (for permission checks) and when they end, so that
183 * we can determine when writes are able to occur to
184 * a filesystem.
185 */
186 /*
187 * __mnt_is_readonly: check whether a mount is read-only
188 * @mnt: the mount to check for its write status
189 *
190 * This shouldn't be used directly ouside of the VFS.
191 * It does not guarantee that the filesystem will stay
192 * r/w, just that it is right *now*. This can not and
193 * should not be used in place of IS_RDONLY(inode).
194 * mnt_want/drop_write() will _keep_ the filesystem
195 * r/w.
196 */
197 int __mnt_is_readonly(struct vfsmount *mnt)
198 {
199 if (mnt->mnt_flags & MNT_READONLY)
200 return 1;
201 if (mnt->mnt_sb->s_flags & MS_RDONLY)
202 return 1;
203 return 0;
204 }
205 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
206
207 static inline void inc_mnt_writers(struct vfsmount *mnt)
208 {
209 #ifdef CONFIG_SMP
210 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
211 #else
212 mnt->mnt_writers++;
213 #endif
214 }
215
216 static inline void dec_mnt_writers(struct vfsmount *mnt)
217 {
218 #ifdef CONFIG_SMP
219 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
220 #else
221 mnt->mnt_writers--;
222 #endif
223 }
224
225 static unsigned int count_mnt_writers(struct vfsmount *mnt)
226 {
227 #ifdef CONFIG_SMP
228 unsigned int count = 0;
229 int cpu;
230
231 for_each_possible_cpu(cpu) {
232 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
233 }
234
235 return count;
236 #else
237 return mnt->mnt_writers;
238 #endif
239 }
240
241 /*
242 * Most r/o checks on a fs are for operations that take
243 * discrete amounts of time, like a write() or unlink().
244 * We must keep track of when those operations start
245 * (for permission checks) and when they end, so that
246 * we can determine when writes are able to occur to
247 * a filesystem.
248 */
249 /**
250 * mnt_want_write - get write access to a mount
251 * @mnt: the mount on which to take a write
252 *
253 * This tells the low-level filesystem that a write is
254 * about to be performed to it, and makes sure that
255 * writes are allowed before returning success. When
256 * the write operation is finished, mnt_drop_write()
257 * must be called. This is effectively a refcount.
258 */
259 int mnt_want_write(struct vfsmount *mnt)
260 {
261 int ret = 0;
262
263 preempt_disable();
264 inc_mnt_writers(mnt);
265 /*
266 * The store to inc_mnt_writers must be visible before we pass
267 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
268 * incremented count after it has set MNT_WRITE_HOLD.
269 */
270 smp_mb();
271 while (mnt->mnt_flags & MNT_WRITE_HOLD)
272 cpu_relax();
273 /*
274 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
275 * be set to match its requirements. So we must not load that until
276 * MNT_WRITE_HOLD is cleared.
277 */
278 smp_rmb();
279 if (__mnt_is_readonly(mnt)) {
280 dec_mnt_writers(mnt);
281 ret = -EROFS;
282 goto out;
283 }
284 out:
285 preempt_enable();
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(mnt_want_write);
289
290 /**
291 * mnt_clone_write - get write access to a mount
292 * @mnt: the mount on which to take a write
293 *
294 * This is effectively like mnt_want_write, except
295 * it must only be used to take an extra write reference
296 * on a mountpoint that we already know has a write reference
297 * on it. This allows some optimisation.
298 *
299 * After finished, mnt_drop_write must be called as usual to
300 * drop the reference.
301 */
302 int mnt_clone_write(struct vfsmount *mnt)
303 {
304 /* superblock may be r/o */
305 if (__mnt_is_readonly(mnt))
306 return -EROFS;
307 preempt_disable();
308 inc_mnt_writers(mnt);
309 preempt_enable();
310 return 0;
311 }
312 EXPORT_SYMBOL_GPL(mnt_clone_write);
313
314 /**
315 * mnt_want_write_file - get write access to a file's mount
316 * @file: the file who's mount on which to take a write
317 *
318 * This is like mnt_want_write, but it takes a file and can
319 * do some optimisations if the file is open for write already
320 */
321 int mnt_want_write_file(struct file *file)
322 {
323 struct inode *inode = file->f_dentry->d_inode;
324 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
325 return mnt_want_write(file->f_path.mnt);
326 else
327 return mnt_clone_write(file->f_path.mnt);
328 }
329 EXPORT_SYMBOL_GPL(mnt_want_write_file);
330
331 /**
332 * mnt_drop_write - give up write access to a mount
333 * @mnt: the mount on which to give up write access
334 *
335 * Tells the low-level filesystem that we are done
336 * performing writes to it. Must be matched with
337 * mnt_want_write() call above.
338 */
339 void mnt_drop_write(struct vfsmount *mnt)
340 {
341 preempt_disable();
342 dec_mnt_writers(mnt);
343 preempt_enable();
344 }
345 EXPORT_SYMBOL_GPL(mnt_drop_write);
346
347 static int mnt_make_readonly(struct vfsmount *mnt)
348 {
349 int ret = 0;
350
351 spin_lock(&vfsmount_lock);
352 mnt->mnt_flags |= MNT_WRITE_HOLD;
353 /*
354 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
355 * should be visible before we do.
356 */
357 smp_mb();
358
359 /*
360 * With writers on hold, if this value is zero, then there are
361 * definitely no active writers (although held writers may subsequently
362 * increment the count, they'll have to wait, and decrement it after
363 * seeing MNT_READONLY).
364 *
365 * It is OK to have counter incremented on one CPU and decremented on
366 * another: the sum will add up correctly. The danger would be when we
367 * sum up each counter, if we read a counter before it is incremented,
368 * but then read another CPU's count which it has been subsequently
369 * decremented from -- we would see more decrements than we should.
370 * MNT_WRITE_HOLD protects against this scenario, because
371 * mnt_want_write first increments count, then smp_mb, then spins on
372 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
373 * we're counting up here.
374 */
375 if (count_mnt_writers(mnt) > 0)
376 ret = -EBUSY;
377 else
378 mnt->mnt_flags |= MNT_READONLY;
379 /*
380 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
381 * that become unheld will see MNT_READONLY.
382 */
383 smp_wmb();
384 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
385 spin_unlock(&vfsmount_lock);
386 return ret;
387 }
388
389 static void __mnt_unmake_readonly(struct vfsmount *mnt)
390 {
391 spin_lock(&vfsmount_lock);
392 mnt->mnt_flags &= ~MNT_READONLY;
393 spin_unlock(&vfsmount_lock);
394 }
395
396 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
397 {
398 mnt->mnt_sb = sb;
399 mnt->mnt_root = dget(sb->s_root);
400 }
401
402 EXPORT_SYMBOL(simple_set_mnt);
403
404 void free_vfsmnt(struct vfsmount *mnt)
405 {
406 kfree(mnt->mnt_devname);
407 mnt_free_id(mnt);
408 #ifdef CONFIG_SMP
409 free_percpu(mnt->mnt_writers);
410 #endif
411 kmem_cache_free(mnt_cache, mnt);
412 }
413
414 /*
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
417 */
418 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
419 int dir)
420 {
421 struct list_head *head = mount_hashtable + hash(mnt, dentry);
422 struct list_head *tmp = head;
423 struct vfsmount *p, *found = NULL;
424
425 for (;;) {
426 tmp = dir ? tmp->next : tmp->prev;
427 p = NULL;
428 if (tmp == head)
429 break;
430 p = list_entry(tmp, struct vfsmount, mnt_hash);
431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
432 found = p;
433 break;
434 }
435 }
436 return found;
437 }
438
439 /*
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
442 */
443 struct vfsmount *lookup_mnt(struct path *path)
444 {
445 struct vfsmount *child_mnt;
446 spin_lock(&vfsmount_lock);
447 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
448 mntget(child_mnt);
449 spin_unlock(&vfsmount_lock);
450 return child_mnt;
451 }
452
453 static inline int check_mnt(struct vfsmount *mnt)
454 {
455 return mnt->mnt_ns == current->nsproxy->mnt_ns;
456 }
457
458 static void touch_mnt_namespace(struct mnt_namespace *ns)
459 {
460 if (ns) {
461 ns->event = ++event;
462 wake_up_interruptible(&ns->poll);
463 }
464 }
465
466 static void __touch_mnt_namespace(struct mnt_namespace *ns)
467 {
468 if (ns && ns->event != event) {
469 ns->event = event;
470 wake_up_interruptible(&ns->poll);
471 }
472 }
473
474 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
475 {
476 old_path->dentry = mnt->mnt_mountpoint;
477 old_path->mnt = mnt->mnt_parent;
478 mnt->mnt_parent = mnt;
479 mnt->mnt_mountpoint = mnt->mnt_root;
480 list_del_init(&mnt->mnt_child);
481 list_del_init(&mnt->mnt_hash);
482 old_path->dentry->d_mounted--;
483 }
484
485 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
486 struct vfsmount *child_mnt)
487 {
488 child_mnt->mnt_parent = mntget(mnt);
489 child_mnt->mnt_mountpoint = dget(dentry);
490 dentry->d_mounted++;
491 }
492
493 static void attach_mnt(struct vfsmount *mnt, struct path *path)
494 {
495 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
496 list_add_tail(&mnt->mnt_hash, mount_hashtable +
497 hash(path->mnt, path->dentry));
498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
499 }
500
501 /*
502 * the caller must hold vfsmount_lock
503 */
504 static void commit_tree(struct vfsmount *mnt)
505 {
506 struct vfsmount *parent = mnt->mnt_parent;
507 struct vfsmount *m;
508 LIST_HEAD(head);
509 struct mnt_namespace *n = parent->mnt_ns;
510
511 BUG_ON(parent == mnt);
512
513 list_add_tail(&head, &mnt->mnt_list);
514 list_for_each_entry(m, &head, mnt_list)
515 m->mnt_ns = n;
516 list_splice(&head, n->list.prev);
517
518 list_add_tail(&mnt->mnt_hash, mount_hashtable +
519 hash(parent, mnt->mnt_mountpoint));
520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
521 touch_mnt_namespace(n);
522 }
523
524 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
525 {
526 struct list_head *next = p->mnt_mounts.next;
527 if (next == &p->mnt_mounts) {
528 while (1) {
529 if (p == root)
530 return NULL;
531 next = p->mnt_child.next;
532 if (next != &p->mnt_parent->mnt_mounts)
533 break;
534 p = p->mnt_parent;
535 }
536 }
537 return list_entry(next, struct vfsmount, mnt_child);
538 }
539
540 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
541 {
542 struct list_head *prev = p->mnt_mounts.prev;
543 while (prev != &p->mnt_mounts) {
544 p = list_entry(prev, struct vfsmount, mnt_child);
545 prev = p->mnt_mounts.prev;
546 }
547 return p;
548 }
549
550 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
551 int flag)
552 {
553 struct super_block *sb = old->mnt_sb;
554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
555
556 if (mnt) {
557 if (flag & (CL_SLAVE | CL_PRIVATE))
558 mnt->mnt_group_id = 0; /* not a peer of original */
559 else
560 mnt->mnt_group_id = old->mnt_group_id;
561
562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
563 int err = mnt_alloc_group_id(mnt);
564 if (err)
565 goto out_free;
566 }
567
568 mnt->mnt_flags = old->mnt_flags;
569 atomic_inc(&sb->s_active);
570 mnt->mnt_sb = sb;
571 mnt->mnt_root = dget(root);
572 mnt->mnt_mountpoint = mnt->mnt_root;
573 mnt->mnt_parent = mnt;
574
575 if (flag & CL_SLAVE) {
576 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
577 mnt->mnt_master = old;
578 CLEAR_MNT_SHARED(mnt);
579 } else if (!(flag & CL_PRIVATE)) {
580 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
581 list_add(&mnt->mnt_share, &old->mnt_share);
582 if (IS_MNT_SLAVE(old))
583 list_add(&mnt->mnt_slave, &old->mnt_slave);
584 mnt->mnt_master = old->mnt_master;
585 }
586 if (flag & CL_MAKE_SHARED)
587 set_mnt_shared(mnt);
588
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
591 if (flag & CL_EXPIRE) {
592 if (!list_empty(&old->mnt_expire))
593 list_add(&mnt->mnt_expire, &old->mnt_expire);
594 }
595 }
596 return mnt;
597
598 out_free:
599 free_vfsmnt(mnt);
600 return NULL;
601 }
602
603 static inline void __mntput(struct vfsmount *mnt)
604 {
605 struct super_block *sb = mnt->mnt_sb;
606 /*
607 * This probably indicates that somebody messed
608 * up a mnt_want/drop_write() pair. If this
609 * happens, the filesystem was probably unable
610 * to make r/w->r/o transitions.
611 */
612 /*
613 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
614 * provides barriers, so count_mnt_writers() below is safe. AV
615 */
616 WARN_ON(count_mnt_writers(mnt));
617 fsnotify_vfsmount_delete(mnt);
618 dput(mnt->mnt_root);
619 free_vfsmnt(mnt);
620 deactivate_super(sb);
621 }
622
623 void mntput_no_expire(struct vfsmount *mnt)
624 {
625 repeat:
626 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
627 if (likely(!mnt->mnt_pinned)) {
628 spin_unlock(&vfsmount_lock);
629 __mntput(mnt);
630 return;
631 }
632 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
633 mnt->mnt_pinned = 0;
634 spin_unlock(&vfsmount_lock);
635 acct_auto_close_mnt(mnt);
636 goto repeat;
637 }
638 }
639
640 EXPORT_SYMBOL(mntput_no_expire);
641
642 void mnt_pin(struct vfsmount *mnt)
643 {
644 spin_lock(&vfsmount_lock);
645 mnt->mnt_pinned++;
646 spin_unlock(&vfsmount_lock);
647 }
648
649 EXPORT_SYMBOL(mnt_pin);
650
651 void mnt_unpin(struct vfsmount *mnt)
652 {
653 spin_lock(&vfsmount_lock);
654 if (mnt->mnt_pinned) {
655 atomic_inc(&mnt->mnt_count);
656 mnt->mnt_pinned--;
657 }
658 spin_unlock(&vfsmount_lock);
659 }
660
661 EXPORT_SYMBOL(mnt_unpin);
662
663 static inline void mangle(struct seq_file *m, const char *s)
664 {
665 seq_escape(m, s, " \t\n\\");
666 }
667
668 /*
669 * Simple .show_options callback for filesystems which don't want to
670 * implement more complex mount option showing.
671 *
672 * See also save_mount_options().
673 */
674 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
675 {
676 const char *options;
677
678 rcu_read_lock();
679 options = rcu_dereference(mnt->mnt_sb->s_options);
680
681 if (options != NULL && options[0]) {
682 seq_putc(m, ',');
683 mangle(m, options);
684 }
685 rcu_read_unlock();
686
687 return 0;
688 }
689 EXPORT_SYMBOL(generic_show_options);
690
691 /*
692 * If filesystem uses generic_show_options(), this function should be
693 * called from the fill_super() callback.
694 *
695 * The .remount_fs callback usually needs to be handled in a special
696 * way, to make sure, that previous options are not overwritten if the
697 * remount fails.
698 *
699 * Also note, that if the filesystem's .remount_fs function doesn't
700 * reset all options to their default value, but changes only newly
701 * given options, then the displayed options will not reflect reality
702 * any more.
703 */
704 void save_mount_options(struct super_block *sb, char *options)
705 {
706 BUG_ON(sb->s_options);
707 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
708 }
709 EXPORT_SYMBOL(save_mount_options);
710
711 void replace_mount_options(struct super_block *sb, char *options)
712 {
713 char *old = sb->s_options;
714 rcu_assign_pointer(sb->s_options, options);
715 if (old) {
716 synchronize_rcu();
717 kfree(old);
718 }
719 }
720 EXPORT_SYMBOL(replace_mount_options);
721
722 #ifdef CONFIG_PROC_FS
723 /* iterator */
724 static void *m_start(struct seq_file *m, loff_t *pos)
725 {
726 struct proc_mounts *p = m->private;
727
728 down_read(&namespace_sem);
729 return seq_list_start(&p->ns->list, *pos);
730 }
731
732 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
733 {
734 struct proc_mounts *p = m->private;
735
736 return seq_list_next(v, &p->ns->list, pos);
737 }
738
739 static void m_stop(struct seq_file *m, void *v)
740 {
741 up_read(&namespace_sem);
742 }
743
744 int mnt_had_events(struct proc_mounts *p)
745 {
746 struct mnt_namespace *ns = p->ns;
747 int res = 0;
748
749 spin_lock(&vfsmount_lock);
750 if (p->event != ns->event) {
751 p->event = ns->event;
752 res = 1;
753 }
754 spin_unlock(&vfsmount_lock);
755
756 return res;
757 }
758
759 struct proc_fs_info {
760 int flag;
761 const char *str;
762 };
763
764 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
765 {
766 static const struct proc_fs_info fs_info[] = {
767 { MS_SYNCHRONOUS, ",sync" },
768 { MS_DIRSYNC, ",dirsync" },
769 { MS_MANDLOCK, ",mand" },
770 { 0, NULL }
771 };
772 const struct proc_fs_info *fs_infop;
773
774 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
775 if (sb->s_flags & fs_infop->flag)
776 seq_puts(m, fs_infop->str);
777 }
778
779 return security_sb_show_options(m, sb);
780 }
781
782 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
783 {
784 static const struct proc_fs_info mnt_info[] = {
785 { MNT_NOSUID, ",nosuid" },
786 { MNT_NODEV, ",nodev" },
787 { MNT_NOEXEC, ",noexec" },
788 { MNT_NOATIME, ",noatime" },
789 { MNT_NODIRATIME, ",nodiratime" },
790 { MNT_RELATIME, ",relatime" },
791 { MNT_STRICTATIME, ",strictatime" },
792 { 0, NULL }
793 };
794 const struct proc_fs_info *fs_infop;
795
796 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
797 if (mnt->mnt_flags & fs_infop->flag)
798 seq_puts(m, fs_infop->str);
799 }
800 }
801
802 static void show_type(struct seq_file *m, struct super_block *sb)
803 {
804 mangle(m, sb->s_type->name);
805 if (sb->s_subtype && sb->s_subtype[0]) {
806 seq_putc(m, '.');
807 mangle(m, sb->s_subtype);
808 }
809 }
810
811 static int show_vfsmnt(struct seq_file *m, void *v)
812 {
813 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
814 int err = 0;
815 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
816
817 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
818 seq_putc(m, ' ');
819 seq_path(m, &mnt_path, " \t\n\\");
820 seq_putc(m, ' ');
821 show_type(m, mnt->mnt_sb);
822 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
823 err = show_sb_opts(m, mnt->mnt_sb);
824 if (err)
825 goto out;
826 show_mnt_opts(m, mnt);
827 if (mnt->mnt_sb->s_op->show_options)
828 err = mnt->mnt_sb->s_op->show_options(m, mnt);
829 seq_puts(m, " 0 0\n");
830 out:
831 return err;
832 }
833
834 const struct seq_operations mounts_op = {
835 .start = m_start,
836 .next = m_next,
837 .stop = m_stop,
838 .show = show_vfsmnt
839 };
840
841 static int show_mountinfo(struct seq_file *m, void *v)
842 {
843 struct proc_mounts *p = m->private;
844 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
845 struct super_block *sb = mnt->mnt_sb;
846 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
847 struct path root = p->root;
848 int err = 0;
849
850 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
851 MAJOR(sb->s_dev), MINOR(sb->s_dev));
852 seq_dentry(m, mnt->mnt_root, " \t\n\\");
853 seq_putc(m, ' ');
854 seq_path_root(m, &mnt_path, &root, " \t\n\\");
855 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
856 /*
857 * Mountpoint is outside root, discard that one. Ugly,
858 * but less so than trying to do that in iterator in a
859 * race-free way (due to renames).
860 */
861 return SEQ_SKIP;
862 }
863 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
864 show_mnt_opts(m, mnt);
865
866 /* Tagged fields ("foo:X" or "bar") */
867 if (IS_MNT_SHARED(mnt))
868 seq_printf(m, " shared:%i", mnt->mnt_group_id);
869 if (IS_MNT_SLAVE(mnt)) {
870 int master = mnt->mnt_master->mnt_group_id;
871 int dom = get_dominating_id(mnt, &p->root);
872 seq_printf(m, " master:%i", master);
873 if (dom && dom != master)
874 seq_printf(m, " propagate_from:%i", dom);
875 }
876 if (IS_MNT_UNBINDABLE(mnt))
877 seq_puts(m, " unbindable");
878
879 /* Filesystem specific data */
880 seq_puts(m, " - ");
881 show_type(m, sb);
882 seq_putc(m, ' ');
883 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
884 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
885 err = show_sb_opts(m, sb);
886 if (err)
887 goto out;
888 if (sb->s_op->show_options)
889 err = sb->s_op->show_options(m, mnt);
890 seq_putc(m, '\n');
891 out:
892 return err;
893 }
894
895 const struct seq_operations mountinfo_op = {
896 .start = m_start,
897 .next = m_next,
898 .stop = m_stop,
899 .show = show_mountinfo,
900 };
901
902 static int show_vfsstat(struct seq_file *m, void *v)
903 {
904 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
905 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
906 int err = 0;
907
908 /* device */
909 if (mnt->mnt_devname) {
910 seq_puts(m, "device ");
911 mangle(m, mnt->mnt_devname);
912 } else
913 seq_puts(m, "no device");
914
915 /* mount point */
916 seq_puts(m, " mounted on ");
917 seq_path(m, &mnt_path, " \t\n\\");
918 seq_putc(m, ' ');
919
920 /* file system type */
921 seq_puts(m, "with fstype ");
922 show_type(m, mnt->mnt_sb);
923
924 /* optional statistics */
925 if (mnt->mnt_sb->s_op->show_stats) {
926 seq_putc(m, ' ');
927 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
928 }
929
930 seq_putc(m, '\n');
931 return err;
932 }
933
934 const struct seq_operations mountstats_op = {
935 .start = m_start,
936 .next = m_next,
937 .stop = m_stop,
938 .show = show_vfsstat,
939 };
940 #endif /* CONFIG_PROC_FS */
941
942 /**
943 * may_umount_tree - check if a mount tree is busy
944 * @mnt: root of mount tree
945 *
946 * This is called to check if a tree of mounts has any
947 * open files, pwds, chroots or sub mounts that are
948 * busy.
949 */
950 int may_umount_tree(struct vfsmount *mnt)
951 {
952 int actual_refs = 0;
953 int minimum_refs = 0;
954 struct vfsmount *p;
955
956 spin_lock(&vfsmount_lock);
957 for (p = mnt; p; p = next_mnt(p, mnt)) {
958 actual_refs += atomic_read(&p->mnt_count);
959 minimum_refs += 2;
960 }
961 spin_unlock(&vfsmount_lock);
962
963 if (actual_refs > minimum_refs)
964 return 0;
965
966 return 1;
967 }
968
969 EXPORT_SYMBOL(may_umount_tree);
970
971 /**
972 * may_umount - check if a mount point is busy
973 * @mnt: root of mount
974 *
975 * This is called to check if a mount point has any
976 * open files, pwds, chroots or sub mounts. If the
977 * mount has sub mounts this will return busy
978 * regardless of whether the sub mounts are busy.
979 *
980 * Doesn't take quota and stuff into account. IOW, in some cases it will
981 * give false negatives. The main reason why it's here is that we need
982 * a non-destructive way to look for easily umountable filesystems.
983 */
984 int may_umount(struct vfsmount *mnt)
985 {
986 int ret = 1;
987 down_read(&namespace_sem);
988 spin_lock(&vfsmount_lock);
989 if (propagate_mount_busy(mnt, 2))
990 ret = 0;
991 spin_unlock(&vfsmount_lock);
992 up_read(&namespace_sem);
993 return ret;
994 }
995
996 EXPORT_SYMBOL(may_umount);
997
998 void release_mounts(struct list_head *head)
999 {
1000 struct vfsmount *mnt;
1001 while (!list_empty(head)) {
1002 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1003 list_del_init(&mnt->mnt_hash);
1004 if (mnt->mnt_parent != mnt) {
1005 struct dentry *dentry;
1006 struct vfsmount *m;
1007 spin_lock(&vfsmount_lock);
1008 dentry = mnt->mnt_mountpoint;
1009 m = mnt->mnt_parent;
1010 mnt->mnt_mountpoint = mnt->mnt_root;
1011 mnt->mnt_parent = mnt;
1012 m->mnt_ghosts--;
1013 spin_unlock(&vfsmount_lock);
1014 dput(dentry);
1015 mntput(m);
1016 }
1017 mntput(mnt);
1018 }
1019 }
1020
1021 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1022 {
1023 struct vfsmount *p;
1024
1025 for (p = mnt; p; p = next_mnt(p, mnt))
1026 list_move(&p->mnt_hash, kill);
1027
1028 if (propagate)
1029 propagate_umount(kill);
1030
1031 list_for_each_entry(p, kill, mnt_hash) {
1032 list_del_init(&p->mnt_expire);
1033 list_del_init(&p->mnt_list);
1034 __touch_mnt_namespace(p->mnt_ns);
1035 p->mnt_ns = NULL;
1036 list_del_init(&p->mnt_child);
1037 if (p->mnt_parent != p) {
1038 p->mnt_parent->mnt_ghosts++;
1039 p->mnt_mountpoint->d_mounted--;
1040 }
1041 change_mnt_propagation(p, MS_PRIVATE);
1042 }
1043 }
1044
1045 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1046
1047 static int do_umount(struct vfsmount *mnt, int flags)
1048 {
1049 struct super_block *sb = mnt->mnt_sb;
1050 int retval;
1051 LIST_HEAD(umount_list);
1052
1053 retval = security_sb_umount(mnt, flags);
1054 if (retval)
1055 return retval;
1056
1057 /*
1058 * Allow userspace to request a mountpoint be expired rather than
1059 * unmounting unconditionally. Unmount only happens if:
1060 * (1) the mark is already set (the mark is cleared by mntput())
1061 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1062 */
1063 if (flags & MNT_EXPIRE) {
1064 if (mnt == current->fs->root.mnt ||
1065 flags & (MNT_FORCE | MNT_DETACH))
1066 return -EINVAL;
1067
1068 if (atomic_read(&mnt->mnt_count) != 2)
1069 return -EBUSY;
1070
1071 if (!xchg(&mnt->mnt_expiry_mark, 1))
1072 return -EAGAIN;
1073 }
1074
1075 /*
1076 * If we may have to abort operations to get out of this
1077 * mount, and they will themselves hold resources we must
1078 * allow the fs to do things. In the Unix tradition of
1079 * 'Gee thats tricky lets do it in userspace' the umount_begin
1080 * might fail to complete on the first run through as other tasks
1081 * must return, and the like. Thats for the mount program to worry
1082 * about for the moment.
1083 */
1084
1085 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1086 sb->s_op->umount_begin(sb);
1087 }
1088
1089 /*
1090 * No sense to grab the lock for this test, but test itself looks
1091 * somewhat bogus. Suggestions for better replacement?
1092 * Ho-hum... In principle, we might treat that as umount + switch
1093 * to rootfs. GC would eventually take care of the old vfsmount.
1094 * Actually it makes sense, especially if rootfs would contain a
1095 * /reboot - static binary that would close all descriptors and
1096 * call reboot(9). Then init(8) could umount root and exec /reboot.
1097 */
1098 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1099 /*
1100 * Special case for "unmounting" root ...
1101 * we just try to remount it readonly.
1102 */
1103 down_write(&sb->s_umount);
1104 if (!(sb->s_flags & MS_RDONLY))
1105 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1106 up_write(&sb->s_umount);
1107 return retval;
1108 }
1109
1110 down_write(&namespace_sem);
1111 spin_lock(&vfsmount_lock);
1112 event++;
1113
1114 if (!(flags & MNT_DETACH))
1115 shrink_submounts(mnt, &umount_list);
1116
1117 retval = -EBUSY;
1118 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1119 if (!list_empty(&mnt->mnt_list))
1120 umount_tree(mnt, 1, &umount_list);
1121 retval = 0;
1122 }
1123 spin_unlock(&vfsmount_lock);
1124 up_write(&namespace_sem);
1125 release_mounts(&umount_list);
1126 return retval;
1127 }
1128
1129 /*
1130 * Now umount can handle mount points as well as block devices.
1131 * This is important for filesystems which use unnamed block devices.
1132 *
1133 * We now support a flag for forced unmount like the other 'big iron'
1134 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1135 */
1136
1137 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1138 {
1139 struct path path;
1140 int retval;
1141 int lookup_flags = 0;
1142
1143 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1144 return -EINVAL;
1145
1146 if (!(flags & UMOUNT_NOFOLLOW))
1147 lookup_flags |= LOOKUP_FOLLOW;
1148
1149 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1150 if (retval)
1151 goto out;
1152 retval = -EINVAL;
1153 if (path.dentry != path.mnt->mnt_root)
1154 goto dput_and_out;
1155 if (!check_mnt(path.mnt))
1156 goto dput_and_out;
1157
1158 retval = -EPERM;
1159 if (!capable(CAP_SYS_ADMIN))
1160 goto dput_and_out;
1161
1162 retval = do_umount(path.mnt, flags);
1163 dput_and_out:
1164 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1165 dput(path.dentry);
1166 mntput_no_expire(path.mnt);
1167 out:
1168 return retval;
1169 }
1170
1171 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1172
1173 /*
1174 * The 2.0 compatible umount. No flags.
1175 */
1176 SYSCALL_DEFINE1(oldumount, char __user *, name)
1177 {
1178 return sys_umount(name, 0);
1179 }
1180
1181 #endif
1182
1183 static int mount_is_safe(struct path *path)
1184 {
1185 if (capable(CAP_SYS_ADMIN))
1186 return 0;
1187 return -EPERM;
1188 #ifdef notyet
1189 if (S_ISLNK(path->dentry->d_inode->i_mode))
1190 return -EPERM;
1191 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1192 if (current_uid() != path->dentry->d_inode->i_uid)
1193 return -EPERM;
1194 }
1195 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1196 return -EPERM;
1197 return 0;
1198 #endif
1199 }
1200
1201 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1202 int flag)
1203 {
1204 struct vfsmount *res, *p, *q, *r, *s;
1205 struct path path;
1206
1207 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1208 return NULL;
1209
1210 res = q = clone_mnt(mnt, dentry, flag);
1211 if (!q)
1212 goto Enomem;
1213 q->mnt_mountpoint = mnt->mnt_mountpoint;
1214
1215 p = mnt;
1216 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1217 if (!is_subdir(r->mnt_mountpoint, dentry))
1218 continue;
1219
1220 for (s = r; s; s = next_mnt(s, r)) {
1221 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1222 s = skip_mnt_tree(s);
1223 continue;
1224 }
1225 while (p != s->mnt_parent) {
1226 p = p->mnt_parent;
1227 q = q->mnt_parent;
1228 }
1229 p = s;
1230 path.mnt = q;
1231 path.dentry = p->mnt_mountpoint;
1232 q = clone_mnt(p, p->mnt_root, flag);
1233 if (!q)
1234 goto Enomem;
1235 spin_lock(&vfsmount_lock);
1236 list_add_tail(&q->mnt_list, &res->mnt_list);
1237 attach_mnt(q, &path);
1238 spin_unlock(&vfsmount_lock);
1239 }
1240 }
1241 return res;
1242 Enomem:
1243 if (res) {
1244 LIST_HEAD(umount_list);
1245 spin_lock(&vfsmount_lock);
1246 umount_tree(res, 0, &umount_list);
1247 spin_unlock(&vfsmount_lock);
1248 release_mounts(&umount_list);
1249 }
1250 return NULL;
1251 }
1252
1253 struct vfsmount *collect_mounts(struct path *path)
1254 {
1255 struct vfsmount *tree;
1256 down_write(&namespace_sem);
1257 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1258 up_write(&namespace_sem);
1259 return tree;
1260 }
1261
1262 void drop_collected_mounts(struct vfsmount *mnt)
1263 {
1264 LIST_HEAD(umount_list);
1265 down_write(&namespace_sem);
1266 spin_lock(&vfsmount_lock);
1267 umount_tree(mnt, 0, &umount_list);
1268 spin_unlock(&vfsmount_lock);
1269 up_write(&namespace_sem);
1270 release_mounts(&umount_list);
1271 }
1272
1273 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1274 struct vfsmount *root)
1275 {
1276 struct vfsmount *mnt;
1277 int res = f(root, arg);
1278 if (res)
1279 return res;
1280 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1281 res = f(mnt, arg);
1282 if (res)
1283 return res;
1284 }
1285 return 0;
1286 }
1287
1288 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1289 {
1290 struct vfsmount *p;
1291
1292 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1293 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1294 mnt_release_group_id(p);
1295 }
1296 }
1297
1298 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1299 {
1300 struct vfsmount *p;
1301
1302 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1303 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1304 int err = mnt_alloc_group_id(p);
1305 if (err) {
1306 cleanup_group_ids(mnt, p);
1307 return err;
1308 }
1309 }
1310 }
1311
1312 return 0;
1313 }
1314
1315 /*
1316 * @source_mnt : mount tree to be attached
1317 * @nd : place the mount tree @source_mnt is attached
1318 * @parent_nd : if non-null, detach the source_mnt from its parent and
1319 * store the parent mount and mountpoint dentry.
1320 * (done when source_mnt is moved)
1321 *
1322 * NOTE: in the table below explains the semantics when a source mount
1323 * of a given type is attached to a destination mount of a given type.
1324 * ---------------------------------------------------------------------------
1325 * | BIND MOUNT OPERATION |
1326 * |**************************************************************************
1327 * | source-->| shared | private | slave | unbindable |
1328 * | dest | | | | |
1329 * | | | | | | |
1330 * | v | | | | |
1331 * |**************************************************************************
1332 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1333 * | | | | | |
1334 * |non-shared| shared (+) | private | slave (*) | invalid |
1335 * ***************************************************************************
1336 * A bind operation clones the source mount and mounts the clone on the
1337 * destination mount.
1338 *
1339 * (++) the cloned mount is propagated to all the mounts in the propagation
1340 * tree of the destination mount and the cloned mount is added to
1341 * the peer group of the source mount.
1342 * (+) the cloned mount is created under the destination mount and is marked
1343 * as shared. The cloned mount is added to the peer group of the source
1344 * mount.
1345 * (+++) the mount is propagated to all the mounts in the propagation tree
1346 * of the destination mount and the cloned mount is made slave
1347 * of the same master as that of the source mount. The cloned mount
1348 * is marked as 'shared and slave'.
1349 * (*) the cloned mount is made a slave of the same master as that of the
1350 * source mount.
1351 *
1352 * ---------------------------------------------------------------------------
1353 * | MOVE MOUNT OPERATION |
1354 * |**************************************************************************
1355 * | source-->| shared | private | slave | unbindable |
1356 * | dest | | | | |
1357 * | | | | | | |
1358 * | v | | | | |
1359 * |**************************************************************************
1360 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1361 * | | | | | |
1362 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1363 * ***************************************************************************
1364 *
1365 * (+) the mount is moved to the destination. And is then propagated to
1366 * all the mounts in the propagation tree of the destination mount.
1367 * (+*) the mount is moved to the destination.
1368 * (+++) the mount is moved to the destination and is then propagated to
1369 * all the mounts belonging to the destination mount's propagation tree.
1370 * the mount is marked as 'shared and slave'.
1371 * (*) the mount continues to be a slave at the new location.
1372 *
1373 * if the source mount is a tree, the operations explained above is
1374 * applied to each mount in the tree.
1375 * Must be called without spinlocks held, since this function can sleep
1376 * in allocations.
1377 */
1378 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1379 struct path *path, struct path *parent_path)
1380 {
1381 LIST_HEAD(tree_list);
1382 struct vfsmount *dest_mnt = path->mnt;
1383 struct dentry *dest_dentry = path->dentry;
1384 struct vfsmount *child, *p;
1385 int err;
1386
1387 if (IS_MNT_SHARED(dest_mnt)) {
1388 err = invent_group_ids(source_mnt, true);
1389 if (err)
1390 goto out;
1391 }
1392 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1393 if (err)
1394 goto out_cleanup_ids;
1395
1396 spin_lock(&vfsmount_lock);
1397
1398 if (IS_MNT_SHARED(dest_mnt)) {
1399 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1400 set_mnt_shared(p);
1401 }
1402 if (parent_path) {
1403 detach_mnt(source_mnt, parent_path);
1404 attach_mnt(source_mnt, path);
1405 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1406 } else {
1407 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1408 commit_tree(source_mnt);
1409 }
1410
1411 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1412 list_del_init(&child->mnt_hash);
1413 commit_tree(child);
1414 }
1415 spin_unlock(&vfsmount_lock);
1416 return 0;
1417
1418 out_cleanup_ids:
1419 if (IS_MNT_SHARED(dest_mnt))
1420 cleanup_group_ids(source_mnt, NULL);
1421 out:
1422 return err;
1423 }
1424
1425 static int graft_tree(struct vfsmount *mnt, struct path *path)
1426 {
1427 int err;
1428 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1429 return -EINVAL;
1430
1431 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1432 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1433 return -ENOTDIR;
1434
1435 err = -ENOENT;
1436 mutex_lock(&path->dentry->d_inode->i_mutex);
1437 if (cant_mount(path->dentry))
1438 goto out_unlock;
1439
1440 if (!d_unlinked(path->dentry))
1441 err = attach_recursive_mnt(mnt, path, NULL);
1442 out_unlock:
1443 mutex_unlock(&path->dentry->d_inode->i_mutex);
1444 return err;
1445 }
1446
1447 /*
1448 * recursively change the type of the mountpoint.
1449 */
1450 static int do_change_type(struct path *path, int flag)
1451 {
1452 struct vfsmount *m, *mnt = path->mnt;
1453 int recurse = flag & MS_REC;
1454 int type = flag & ~MS_REC;
1455 int err = 0;
1456
1457 if (!capable(CAP_SYS_ADMIN))
1458 return -EPERM;
1459
1460 if (path->dentry != path->mnt->mnt_root)
1461 return -EINVAL;
1462
1463 down_write(&namespace_sem);
1464 if (type == MS_SHARED) {
1465 err = invent_group_ids(mnt, recurse);
1466 if (err)
1467 goto out_unlock;
1468 }
1469
1470 spin_lock(&vfsmount_lock);
1471 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1472 change_mnt_propagation(m, type);
1473 spin_unlock(&vfsmount_lock);
1474
1475 out_unlock:
1476 up_write(&namespace_sem);
1477 return err;
1478 }
1479
1480 /*
1481 * do loopback mount.
1482 */
1483 static int do_loopback(struct path *path, char *old_name,
1484 int recurse)
1485 {
1486 struct path old_path;
1487 struct vfsmount *mnt = NULL;
1488 int err = mount_is_safe(path);
1489 if (err)
1490 return err;
1491 if (!old_name || !*old_name)
1492 return -EINVAL;
1493 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1494 if (err)
1495 return err;
1496
1497 down_write(&namespace_sem);
1498 err = -EINVAL;
1499 if (IS_MNT_UNBINDABLE(old_path.mnt))
1500 goto out;
1501
1502 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1503 goto out;
1504
1505 err = -ENOMEM;
1506 if (recurse)
1507 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1508 else
1509 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1510
1511 if (!mnt)
1512 goto out;
1513
1514 err = graft_tree(mnt, path);
1515 if (err) {
1516 LIST_HEAD(umount_list);
1517 spin_lock(&vfsmount_lock);
1518 umount_tree(mnt, 0, &umount_list);
1519 spin_unlock(&vfsmount_lock);
1520 release_mounts(&umount_list);
1521 }
1522
1523 out:
1524 up_write(&namespace_sem);
1525 path_put(&old_path);
1526 return err;
1527 }
1528
1529 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1530 {
1531 int error = 0;
1532 int readonly_request = 0;
1533
1534 if (ms_flags & MS_RDONLY)
1535 readonly_request = 1;
1536 if (readonly_request == __mnt_is_readonly(mnt))
1537 return 0;
1538
1539 if (readonly_request)
1540 error = mnt_make_readonly(mnt);
1541 else
1542 __mnt_unmake_readonly(mnt);
1543 return error;
1544 }
1545
1546 /*
1547 * change filesystem flags. dir should be a physical root of filesystem.
1548 * If you've mounted a non-root directory somewhere and want to do remount
1549 * on it - tough luck.
1550 */
1551 static int do_remount(struct path *path, int flags, int mnt_flags,
1552 void *data)
1553 {
1554 int err;
1555 struct super_block *sb = path->mnt->mnt_sb;
1556
1557 if (!capable(CAP_SYS_ADMIN))
1558 return -EPERM;
1559
1560 if (!check_mnt(path->mnt))
1561 return -EINVAL;
1562
1563 if (path->dentry != path->mnt->mnt_root)
1564 return -EINVAL;
1565
1566 down_write(&sb->s_umount);
1567 if (flags & MS_BIND)
1568 err = change_mount_flags(path->mnt, flags);
1569 else
1570 err = do_remount_sb(sb, flags, data, 0);
1571 if (!err) {
1572 spin_lock(&vfsmount_lock);
1573 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1574 path->mnt->mnt_flags = mnt_flags;
1575 spin_unlock(&vfsmount_lock);
1576 }
1577 up_write(&sb->s_umount);
1578 if (!err) {
1579 spin_lock(&vfsmount_lock);
1580 touch_mnt_namespace(path->mnt->mnt_ns);
1581 spin_unlock(&vfsmount_lock);
1582 }
1583 return err;
1584 }
1585
1586 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1587 {
1588 struct vfsmount *p;
1589 for (p = mnt; p; p = next_mnt(p, mnt)) {
1590 if (IS_MNT_UNBINDABLE(p))
1591 return 1;
1592 }
1593 return 0;
1594 }
1595
1596 static int do_move_mount(struct path *path, char *old_name)
1597 {
1598 struct path old_path, parent_path;
1599 struct vfsmount *p;
1600 int err = 0;
1601 if (!capable(CAP_SYS_ADMIN))
1602 return -EPERM;
1603 if (!old_name || !*old_name)
1604 return -EINVAL;
1605 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1606 if (err)
1607 return err;
1608
1609 down_write(&namespace_sem);
1610 while (d_mountpoint(path->dentry) &&
1611 follow_down(path))
1612 ;
1613 err = -EINVAL;
1614 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1615 goto out;
1616
1617 err = -ENOENT;
1618 mutex_lock(&path->dentry->d_inode->i_mutex);
1619 if (cant_mount(path->dentry))
1620 goto out1;
1621
1622 if (d_unlinked(path->dentry))
1623 goto out1;
1624
1625 err = -EINVAL;
1626 if (old_path.dentry != old_path.mnt->mnt_root)
1627 goto out1;
1628
1629 if (old_path.mnt == old_path.mnt->mnt_parent)
1630 goto out1;
1631
1632 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1633 S_ISDIR(old_path.dentry->d_inode->i_mode))
1634 goto out1;
1635 /*
1636 * Don't move a mount residing in a shared parent.
1637 */
1638 if (old_path.mnt->mnt_parent &&
1639 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1640 goto out1;
1641 /*
1642 * Don't move a mount tree containing unbindable mounts to a destination
1643 * mount which is shared.
1644 */
1645 if (IS_MNT_SHARED(path->mnt) &&
1646 tree_contains_unbindable(old_path.mnt))
1647 goto out1;
1648 err = -ELOOP;
1649 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1650 if (p == old_path.mnt)
1651 goto out1;
1652
1653 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1654 if (err)
1655 goto out1;
1656
1657 /* if the mount is moved, it should no longer be expire
1658 * automatically */
1659 list_del_init(&old_path.mnt->mnt_expire);
1660 out1:
1661 mutex_unlock(&path->dentry->d_inode->i_mutex);
1662 out:
1663 up_write(&namespace_sem);
1664 if (!err)
1665 path_put(&parent_path);
1666 path_put(&old_path);
1667 return err;
1668 }
1669
1670 /*
1671 * create a new mount for userspace and request it to be added into the
1672 * namespace's tree
1673 */
1674 static int do_new_mount(struct path *path, char *type, int flags,
1675 int mnt_flags, char *name, void *data)
1676 {
1677 struct vfsmount *mnt;
1678
1679 if (!type)
1680 return -EINVAL;
1681
1682 /* we need capabilities... */
1683 if (!capable(CAP_SYS_ADMIN))
1684 return -EPERM;
1685
1686 lock_kernel();
1687 mnt = do_kern_mount(type, flags, name, data);
1688 unlock_kernel();
1689 if (IS_ERR(mnt))
1690 return PTR_ERR(mnt);
1691
1692 return do_add_mount(mnt, path, mnt_flags, NULL);
1693 }
1694
1695 /*
1696 * add a mount into a namespace's mount tree
1697 * - provide the option of adding the new mount to an expiration list
1698 */
1699 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1700 int mnt_flags, struct list_head *fslist)
1701 {
1702 int err;
1703
1704 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1705
1706 down_write(&namespace_sem);
1707 /* Something was mounted here while we slept */
1708 while (d_mountpoint(path->dentry) &&
1709 follow_down(path))
1710 ;
1711 err = -EINVAL;
1712 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1713 goto unlock;
1714
1715 /* Refuse the same filesystem on the same mount point */
1716 err = -EBUSY;
1717 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1718 path->mnt->mnt_root == path->dentry)
1719 goto unlock;
1720
1721 err = -EINVAL;
1722 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1723 goto unlock;
1724
1725 newmnt->mnt_flags = mnt_flags;
1726 if ((err = graft_tree(newmnt, path)))
1727 goto unlock;
1728
1729 if (fslist) /* add to the specified expiration list */
1730 list_add_tail(&newmnt->mnt_expire, fslist);
1731
1732 up_write(&namespace_sem);
1733 return 0;
1734
1735 unlock:
1736 up_write(&namespace_sem);
1737 mntput(newmnt);
1738 return err;
1739 }
1740
1741 EXPORT_SYMBOL_GPL(do_add_mount);
1742
1743 /*
1744 * process a list of expirable mountpoints with the intent of discarding any
1745 * mountpoints that aren't in use and haven't been touched since last we came
1746 * here
1747 */
1748 void mark_mounts_for_expiry(struct list_head *mounts)
1749 {
1750 struct vfsmount *mnt, *next;
1751 LIST_HEAD(graveyard);
1752 LIST_HEAD(umounts);
1753
1754 if (list_empty(mounts))
1755 return;
1756
1757 down_write(&namespace_sem);
1758 spin_lock(&vfsmount_lock);
1759
1760 /* extract from the expiration list every vfsmount that matches the
1761 * following criteria:
1762 * - only referenced by its parent vfsmount
1763 * - still marked for expiry (marked on the last call here; marks are
1764 * cleared by mntput())
1765 */
1766 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1767 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1768 propagate_mount_busy(mnt, 1))
1769 continue;
1770 list_move(&mnt->mnt_expire, &graveyard);
1771 }
1772 while (!list_empty(&graveyard)) {
1773 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1774 touch_mnt_namespace(mnt->mnt_ns);
1775 umount_tree(mnt, 1, &umounts);
1776 }
1777 spin_unlock(&vfsmount_lock);
1778 up_write(&namespace_sem);
1779
1780 release_mounts(&umounts);
1781 }
1782
1783 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1784
1785 /*
1786 * Ripoff of 'select_parent()'
1787 *
1788 * search the list of submounts for a given mountpoint, and move any
1789 * shrinkable submounts to the 'graveyard' list.
1790 */
1791 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1792 {
1793 struct vfsmount *this_parent = parent;
1794 struct list_head *next;
1795 int found = 0;
1796
1797 repeat:
1798 next = this_parent->mnt_mounts.next;
1799 resume:
1800 while (next != &this_parent->mnt_mounts) {
1801 struct list_head *tmp = next;
1802 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1803
1804 next = tmp->next;
1805 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1806 continue;
1807 /*
1808 * Descend a level if the d_mounts list is non-empty.
1809 */
1810 if (!list_empty(&mnt->mnt_mounts)) {
1811 this_parent = mnt;
1812 goto repeat;
1813 }
1814
1815 if (!propagate_mount_busy(mnt, 1)) {
1816 list_move_tail(&mnt->mnt_expire, graveyard);
1817 found++;
1818 }
1819 }
1820 /*
1821 * All done at this level ... ascend and resume the search
1822 */
1823 if (this_parent != parent) {
1824 next = this_parent->mnt_child.next;
1825 this_parent = this_parent->mnt_parent;
1826 goto resume;
1827 }
1828 return found;
1829 }
1830
1831 /*
1832 * process a list of expirable mountpoints with the intent of discarding any
1833 * submounts of a specific parent mountpoint
1834 */
1835 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1836 {
1837 LIST_HEAD(graveyard);
1838 struct vfsmount *m;
1839
1840 /* extract submounts of 'mountpoint' from the expiration list */
1841 while (select_submounts(mnt, &graveyard)) {
1842 while (!list_empty(&graveyard)) {
1843 m = list_first_entry(&graveyard, struct vfsmount,
1844 mnt_expire);
1845 touch_mnt_namespace(m->mnt_ns);
1846 umount_tree(m, 1, umounts);
1847 }
1848 }
1849 }
1850
1851 /*
1852 * Some copy_from_user() implementations do not return the exact number of
1853 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1854 * Note that this function differs from copy_from_user() in that it will oops
1855 * on bad values of `to', rather than returning a short copy.
1856 */
1857 static long exact_copy_from_user(void *to, const void __user * from,
1858 unsigned long n)
1859 {
1860 char *t = to;
1861 const char __user *f = from;
1862 char c;
1863
1864 if (!access_ok(VERIFY_READ, from, n))
1865 return n;
1866
1867 while (n) {
1868 if (__get_user(c, f)) {
1869 memset(t, 0, n);
1870 break;
1871 }
1872 *t++ = c;
1873 f++;
1874 n--;
1875 }
1876 return n;
1877 }
1878
1879 int copy_mount_options(const void __user * data, unsigned long *where)
1880 {
1881 int i;
1882 unsigned long page;
1883 unsigned long size;
1884
1885 *where = 0;
1886 if (!data)
1887 return 0;
1888
1889 if (!(page = __get_free_page(GFP_KERNEL)))
1890 return -ENOMEM;
1891
1892 /* We only care that *some* data at the address the user
1893 * gave us is valid. Just in case, we'll zero
1894 * the remainder of the page.
1895 */
1896 /* copy_from_user cannot cross TASK_SIZE ! */
1897 size = TASK_SIZE - (unsigned long)data;
1898 if (size > PAGE_SIZE)
1899 size = PAGE_SIZE;
1900
1901 i = size - exact_copy_from_user((void *)page, data, size);
1902 if (!i) {
1903 free_page(page);
1904 return -EFAULT;
1905 }
1906 if (i != PAGE_SIZE)
1907 memset((char *)page + i, 0, PAGE_SIZE - i);
1908 *where = page;
1909 return 0;
1910 }
1911
1912 int copy_mount_string(const void __user *data, char **where)
1913 {
1914 char *tmp;
1915
1916 if (!data) {
1917 *where = NULL;
1918 return 0;
1919 }
1920
1921 tmp = strndup_user(data, PAGE_SIZE);
1922 if (IS_ERR(tmp))
1923 return PTR_ERR(tmp);
1924
1925 *where = tmp;
1926 return 0;
1927 }
1928
1929 /*
1930 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1931 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1932 *
1933 * data is a (void *) that can point to any structure up to
1934 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1935 * information (or be NULL).
1936 *
1937 * Pre-0.97 versions of mount() didn't have a flags word.
1938 * When the flags word was introduced its top half was required
1939 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1940 * Therefore, if this magic number is present, it carries no information
1941 * and must be discarded.
1942 */
1943 long do_mount(char *dev_name, char *dir_name, char *type_page,
1944 unsigned long flags, void *data_page)
1945 {
1946 struct path path;
1947 int retval = 0;
1948 int mnt_flags = 0;
1949
1950 /* Discard magic */
1951 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1952 flags &= ~MS_MGC_MSK;
1953
1954 /* Basic sanity checks */
1955
1956 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1957 return -EINVAL;
1958
1959 if (data_page)
1960 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1961
1962 /* ... and get the mountpoint */
1963 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1964 if (retval)
1965 return retval;
1966
1967 retval = security_sb_mount(dev_name, &path,
1968 type_page, flags, data_page);
1969 if (retval)
1970 goto dput_out;
1971
1972 /* Default to relatime unless overriden */
1973 if (!(flags & MS_NOATIME))
1974 mnt_flags |= MNT_RELATIME;
1975
1976 /* Separate the per-mountpoint flags */
1977 if (flags & MS_NOSUID)
1978 mnt_flags |= MNT_NOSUID;
1979 if (flags & MS_NODEV)
1980 mnt_flags |= MNT_NODEV;
1981 if (flags & MS_NOEXEC)
1982 mnt_flags |= MNT_NOEXEC;
1983 if (flags & MS_NOATIME)
1984 mnt_flags |= MNT_NOATIME;
1985 if (flags & MS_NODIRATIME)
1986 mnt_flags |= MNT_NODIRATIME;
1987 if (flags & MS_STRICTATIME)
1988 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1989 if (flags & MS_RDONLY)
1990 mnt_flags |= MNT_READONLY;
1991
1992 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
1993 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1994 MS_STRICTATIME);
1995
1996 if (flags & MS_REMOUNT)
1997 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1998 data_page);
1999 else if (flags & MS_BIND)
2000 retval = do_loopback(&path, dev_name, flags & MS_REC);
2001 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2002 retval = do_change_type(&path, flags);
2003 else if (flags & MS_MOVE)
2004 retval = do_move_mount(&path, dev_name);
2005 else
2006 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2007 dev_name, data_page);
2008 dput_out:
2009 path_put(&path);
2010 return retval;
2011 }
2012
2013 static struct mnt_namespace *alloc_mnt_ns(void)
2014 {
2015 struct mnt_namespace *new_ns;
2016
2017 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2018 if (!new_ns)
2019 return ERR_PTR(-ENOMEM);
2020 atomic_set(&new_ns->count, 1);
2021 new_ns->root = NULL;
2022 INIT_LIST_HEAD(&new_ns->list);
2023 init_waitqueue_head(&new_ns->poll);
2024 new_ns->event = 0;
2025 return new_ns;
2026 }
2027
2028 /*
2029 * Allocate a new namespace structure and populate it with contents
2030 * copied from the namespace of the passed in task structure.
2031 */
2032 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2033 struct fs_struct *fs)
2034 {
2035 struct mnt_namespace *new_ns;
2036 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2037 struct vfsmount *p, *q;
2038
2039 new_ns = alloc_mnt_ns();
2040 if (IS_ERR(new_ns))
2041 return new_ns;
2042
2043 down_write(&namespace_sem);
2044 /* First pass: copy the tree topology */
2045 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2046 CL_COPY_ALL | CL_EXPIRE);
2047 if (!new_ns->root) {
2048 up_write(&namespace_sem);
2049 kfree(new_ns);
2050 return ERR_PTR(-ENOMEM);
2051 }
2052 spin_lock(&vfsmount_lock);
2053 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2054 spin_unlock(&vfsmount_lock);
2055
2056 /*
2057 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2058 * as belonging to new namespace. We have already acquired a private
2059 * fs_struct, so tsk->fs->lock is not needed.
2060 */
2061 p = mnt_ns->root;
2062 q = new_ns->root;
2063 while (p) {
2064 q->mnt_ns = new_ns;
2065 if (fs) {
2066 if (p == fs->root.mnt) {
2067 rootmnt = p;
2068 fs->root.mnt = mntget(q);
2069 }
2070 if (p == fs->pwd.mnt) {
2071 pwdmnt = p;
2072 fs->pwd.mnt = mntget(q);
2073 }
2074 }
2075 p = next_mnt(p, mnt_ns->root);
2076 q = next_mnt(q, new_ns->root);
2077 }
2078 up_write(&namespace_sem);
2079
2080 if (rootmnt)
2081 mntput(rootmnt);
2082 if (pwdmnt)
2083 mntput(pwdmnt);
2084
2085 return new_ns;
2086 }
2087
2088 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2089 struct fs_struct *new_fs)
2090 {
2091 struct mnt_namespace *new_ns;
2092
2093 BUG_ON(!ns);
2094 get_mnt_ns(ns);
2095
2096 if (!(flags & CLONE_NEWNS))
2097 return ns;
2098
2099 new_ns = dup_mnt_ns(ns, new_fs);
2100
2101 put_mnt_ns(ns);
2102 return new_ns;
2103 }
2104
2105 /**
2106 * create_mnt_ns - creates a private namespace and adds a root filesystem
2107 * @mnt: pointer to the new root filesystem mountpoint
2108 */
2109 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2110 {
2111 struct mnt_namespace *new_ns;
2112
2113 new_ns = alloc_mnt_ns();
2114 if (!IS_ERR(new_ns)) {
2115 mnt->mnt_ns = new_ns;
2116 new_ns->root = mnt;
2117 list_add(&new_ns->list, &new_ns->root->mnt_list);
2118 }
2119 return new_ns;
2120 }
2121 EXPORT_SYMBOL(create_mnt_ns);
2122
2123 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2124 char __user *, type, unsigned long, flags, void __user *, data)
2125 {
2126 int ret;
2127 char *kernel_type;
2128 char *kernel_dir;
2129 char *kernel_dev;
2130 unsigned long data_page;
2131
2132 ret = copy_mount_string(type, &kernel_type);
2133 if (ret < 0)
2134 goto out_type;
2135
2136 kernel_dir = getname(dir_name);
2137 if (IS_ERR(kernel_dir)) {
2138 ret = PTR_ERR(kernel_dir);
2139 goto out_dir;
2140 }
2141
2142 ret = copy_mount_string(dev_name, &kernel_dev);
2143 if (ret < 0)
2144 goto out_dev;
2145
2146 ret = copy_mount_options(data, &data_page);
2147 if (ret < 0)
2148 goto out_data;
2149
2150 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2151 (void *) data_page);
2152
2153 free_page(data_page);
2154 out_data:
2155 kfree(kernel_dev);
2156 out_dev:
2157 putname(kernel_dir);
2158 out_dir:
2159 kfree(kernel_type);
2160 out_type:
2161 return ret;
2162 }
2163
2164 /*
2165 * pivot_root Semantics:
2166 * Moves the root file system of the current process to the directory put_old,
2167 * makes new_root as the new root file system of the current process, and sets
2168 * root/cwd of all processes which had them on the current root to new_root.
2169 *
2170 * Restrictions:
2171 * The new_root and put_old must be directories, and must not be on the
2172 * same file system as the current process root. The put_old must be
2173 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2174 * pointed to by put_old must yield the same directory as new_root. No other
2175 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2176 *
2177 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2178 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2179 * in this situation.
2180 *
2181 * Notes:
2182 * - we don't move root/cwd if they are not at the root (reason: if something
2183 * cared enough to change them, it's probably wrong to force them elsewhere)
2184 * - it's okay to pick a root that isn't the root of a file system, e.g.
2185 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2186 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2187 * first.
2188 */
2189 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2190 const char __user *, put_old)
2191 {
2192 struct vfsmount *tmp;
2193 struct path new, old, parent_path, root_parent, root;
2194 int error;
2195
2196 if (!capable(CAP_SYS_ADMIN))
2197 return -EPERM;
2198
2199 error = user_path_dir(new_root, &new);
2200 if (error)
2201 goto out0;
2202 error = -EINVAL;
2203 if (!check_mnt(new.mnt))
2204 goto out1;
2205
2206 error = user_path_dir(put_old, &old);
2207 if (error)
2208 goto out1;
2209
2210 error = security_sb_pivotroot(&old, &new);
2211 if (error) {
2212 path_put(&old);
2213 goto out1;
2214 }
2215
2216 read_lock(&current->fs->lock);
2217 root = current->fs->root;
2218 path_get(&current->fs->root);
2219 read_unlock(&current->fs->lock);
2220 down_write(&namespace_sem);
2221 mutex_lock(&old.dentry->d_inode->i_mutex);
2222 error = -EINVAL;
2223 if (IS_MNT_SHARED(old.mnt) ||
2224 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2225 IS_MNT_SHARED(root.mnt->mnt_parent))
2226 goto out2;
2227 if (!check_mnt(root.mnt))
2228 goto out2;
2229 error = -ENOENT;
2230 if (cant_mount(old.dentry))
2231 goto out2;
2232 if (d_unlinked(new.dentry))
2233 goto out2;
2234 if (d_unlinked(old.dentry))
2235 goto out2;
2236 error = -EBUSY;
2237 if (new.mnt == root.mnt ||
2238 old.mnt == root.mnt)
2239 goto out2; /* loop, on the same file system */
2240 error = -EINVAL;
2241 if (root.mnt->mnt_root != root.dentry)
2242 goto out2; /* not a mountpoint */
2243 if (root.mnt->mnt_parent == root.mnt)
2244 goto out2; /* not attached */
2245 if (new.mnt->mnt_root != new.dentry)
2246 goto out2; /* not a mountpoint */
2247 if (new.mnt->mnt_parent == new.mnt)
2248 goto out2; /* not attached */
2249 /* make sure we can reach put_old from new_root */
2250 tmp = old.mnt;
2251 spin_lock(&vfsmount_lock);
2252 if (tmp != new.mnt) {
2253 for (;;) {
2254 if (tmp->mnt_parent == tmp)
2255 goto out3; /* already mounted on put_old */
2256 if (tmp->mnt_parent == new.mnt)
2257 break;
2258 tmp = tmp->mnt_parent;
2259 }
2260 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2261 goto out3;
2262 } else if (!is_subdir(old.dentry, new.dentry))
2263 goto out3;
2264 detach_mnt(new.mnt, &parent_path);
2265 detach_mnt(root.mnt, &root_parent);
2266 /* mount old root on put_old */
2267 attach_mnt(root.mnt, &old);
2268 /* mount new_root on / */
2269 attach_mnt(new.mnt, &root_parent);
2270 touch_mnt_namespace(current->nsproxy->mnt_ns);
2271 spin_unlock(&vfsmount_lock);
2272 chroot_fs_refs(&root, &new);
2273 error = 0;
2274 path_put(&root_parent);
2275 path_put(&parent_path);
2276 out2:
2277 mutex_unlock(&old.dentry->d_inode->i_mutex);
2278 up_write(&namespace_sem);
2279 path_put(&root);
2280 path_put(&old);
2281 out1:
2282 path_put(&new);
2283 out0:
2284 return error;
2285 out3:
2286 spin_unlock(&vfsmount_lock);
2287 goto out2;
2288 }
2289
2290 static void __init init_mount_tree(void)
2291 {
2292 struct vfsmount *mnt;
2293 struct mnt_namespace *ns;
2294 struct path root;
2295
2296 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2297 if (IS_ERR(mnt))
2298 panic("Can't create rootfs");
2299 ns = create_mnt_ns(mnt);
2300 if (IS_ERR(ns))
2301 panic("Can't allocate initial namespace");
2302
2303 init_task.nsproxy->mnt_ns = ns;
2304 get_mnt_ns(ns);
2305
2306 root.mnt = ns->root;
2307 root.dentry = ns->root->mnt_root;
2308
2309 set_fs_pwd(current->fs, &root);
2310 set_fs_root(current->fs, &root);
2311 }
2312
2313 void __init mnt_init(void)
2314 {
2315 unsigned u;
2316 int err;
2317
2318 init_rwsem(&namespace_sem);
2319
2320 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2321 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2322
2323 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2324
2325 if (!mount_hashtable)
2326 panic("Failed to allocate mount hash table\n");
2327
2328 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2329
2330 for (u = 0; u < HASH_SIZE; u++)
2331 INIT_LIST_HEAD(&mount_hashtable[u]);
2332
2333 err = sysfs_init();
2334 if (err)
2335 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2336 __func__, err);
2337 fs_kobj = kobject_create_and_add("fs", NULL);
2338 if (!fs_kobj)
2339 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2340 init_rootfs();
2341 init_mount_tree();
2342 }
2343
2344 void put_mnt_ns(struct mnt_namespace *ns)
2345 {
2346 LIST_HEAD(umount_list);
2347
2348 if (!atomic_dec_and_test(&ns->count))
2349 return;
2350 down_write(&namespace_sem);
2351 spin_lock(&vfsmount_lock);
2352 umount_tree(ns->root, 0, &umount_list);
2353 spin_unlock(&vfsmount_lock);
2354 up_write(&namespace_sem);
2355 release_mounts(&umount_list);
2356 kfree(ns);
2357 }
2358 EXPORT_SYMBOL(put_mnt_ns);
This page took 0.078061 seconds and 5 git commands to generate.