Merge git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-edac
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43
44 /*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52 DEFINE_BRLOCK(vfsmount_lock);
53
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
60 }
61
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
64 /*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 int res;
71
72 retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83 }
84
85 static void mnt_free_id(struct mount *mnt)
86 {
87 int id = mnt->mnt_id;
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
92 spin_unlock(&mnt_id_lock);
93 }
94
95 /*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 int res;
103
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
114 }
115
116 /*
117 * Release a peer group ID
118 */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
126 }
127
128 /*
129 * vfsmount lock must be held for read
130 */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 preempt_disable();
137 mnt->mnt_count += n;
138 preempt_enable();
139 #endif
140 }
141
142 /*
143 * vfsmount lock must be held for write
144 */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 unsigned int count = 0;
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 }
154
155 return count;
156 #else
157 return mnt->mnt_count;
158 #endif
159 }
160
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
165 int err;
166
167 err = mnt_alloc_id(mnt);
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
174 goto out_free_id;
175 }
176
177 #ifdef CONFIG_SMP
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
180 goto out_free_devname;
181
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
186 #endif
187
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 }
200 return mnt;
201
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 mnt_free_id(mnt);
208 out_free_cache:
209 kmem_cache_free(mnt_cache, mnt);
210 return NULL;
211 }
212
213 /*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221 /*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 mnt->mnt_writers++;
248 #endif
249 }
250
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 mnt->mnt_writers--;
257 #endif
258 }
259
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 unsigned int count = 0;
264 int cpu;
265
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 }
269
270 return count;
271 #else
272 return mnt->mnt_writers;
273 #endif
274 }
275
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283 }
284
285 /*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293 /**
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329 return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332
333 /**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
351 mnt_inc_writers(real_mount(mnt));
352 preempt_enable();
353 return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357 /**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364 int mnt_want_write_file(struct file *file)
365 {
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
374 /**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 preempt_disable();
385 mnt_dec_writers(real_mount(mnt));
386 preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389
390 void mnt_drop_write_file(struct file *file)
391 {
392 mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 int ret = 0;
399
400 br_write_lock(&vfsmount_lock);
401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 /*
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
405 */
406 smp_mb();
407
408 /*
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
423 */
424 if (mnt_get_writers(mnt) > 0)
425 ret = -EBUSY;
426 else
427 mnt->mnt.mnt_flags |= MNT_READONLY;
428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 br_write_unlock(&vfsmount_lock);
435 return ret;
436 }
437
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 br_write_lock(&vfsmount_lock);
441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 br_write_unlock(&vfsmount_lock);
443 }
444
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 struct mount *mnt;
448 int err = 0;
449
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
454 br_write_lock(&vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
476 br_write_unlock(&vfsmount_lock);
477
478 return err;
479 }
480
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 kfree(mnt->mnt_devname);
484 mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 free_percpu(mnt->mnt_pcp);
487 #endif
488 kmem_cache_free(mnt_cache, mnt);
489 }
490
491 /*
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
495 */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 int dir)
498 {
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
501 struct mount *p, *found = NULL;
502
503 for (;;) {
504 tmp = dir ? tmp->next : tmp->prev;
505 p = NULL;
506 if (tmp == head)
507 break;
508 p = list_entry(tmp, struct mount, mnt_hash);
509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 found = p;
511 break;
512 }
513 }
514 return found;
515 }
516
517 /*
518 * lookup_mnt - Return the first child mount mounted at path
519 *
520 * "First" means first mounted chronologically. If you create the
521 * following mounts:
522 *
523 * mount /dev/sda1 /mnt
524 * mount /dev/sda2 /mnt
525 * mount /dev/sda3 /mnt
526 *
527 * Then lookup_mnt() on the base /mnt dentry in the root mount will
528 * return successively the root dentry and vfsmount of /dev/sda1, then
529 * /dev/sda2, then /dev/sda3, then NULL.
530 *
531 * lookup_mnt takes a reference to the found vfsmount.
532 */
533 struct vfsmount *lookup_mnt(struct path *path)
534 {
535 struct mount *child_mnt;
536
537 br_read_lock(&vfsmount_lock);
538 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
539 if (child_mnt) {
540 mnt_add_count(child_mnt, 1);
541 br_read_unlock(&vfsmount_lock);
542 return &child_mnt->mnt;
543 } else {
544 br_read_unlock(&vfsmount_lock);
545 return NULL;
546 }
547 }
548
549 static inline int check_mnt(struct mount *mnt)
550 {
551 return mnt->mnt_ns == current->nsproxy->mnt_ns;
552 }
553
554 /*
555 * vfsmount lock must be held for write
556 */
557 static void touch_mnt_namespace(struct mnt_namespace *ns)
558 {
559 if (ns) {
560 ns->event = ++event;
561 wake_up_interruptible(&ns->poll);
562 }
563 }
564
565 /*
566 * vfsmount lock must be held for write
567 */
568 static void __touch_mnt_namespace(struct mnt_namespace *ns)
569 {
570 if (ns && ns->event != event) {
571 ns->event = event;
572 wake_up_interruptible(&ns->poll);
573 }
574 }
575
576 /*
577 * Clear dentry's mounted state if it has no remaining mounts.
578 * vfsmount_lock must be held for write.
579 */
580 static void dentry_reset_mounted(struct dentry *dentry)
581 {
582 unsigned u;
583
584 for (u = 0; u < HASH_SIZE; u++) {
585 struct mount *p;
586
587 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
588 if (p->mnt_mountpoint == dentry)
589 return;
590 }
591 }
592 spin_lock(&dentry->d_lock);
593 dentry->d_flags &= ~DCACHE_MOUNTED;
594 spin_unlock(&dentry->d_lock);
595 }
596
597 /*
598 * vfsmount lock must be held for write
599 */
600 static void detach_mnt(struct mount *mnt, struct path *old_path)
601 {
602 old_path->dentry = mnt->mnt_mountpoint;
603 old_path->mnt = &mnt->mnt_parent->mnt;
604 mnt->mnt_parent = mnt;
605 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
606 list_del_init(&mnt->mnt_child);
607 list_del_init(&mnt->mnt_hash);
608 dentry_reset_mounted(old_path->dentry);
609 }
610
611 /*
612 * vfsmount lock must be held for write
613 */
614 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
615 struct mount *child_mnt)
616 {
617 mnt_add_count(mnt, 1); /* essentially, that's mntget */
618 child_mnt->mnt_mountpoint = dget(dentry);
619 child_mnt->mnt_parent = mnt;
620 spin_lock(&dentry->d_lock);
621 dentry->d_flags |= DCACHE_MOUNTED;
622 spin_unlock(&dentry->d_lock);
623 }
624
625 /*
626 * vfsmount lock must be held for write
627 */
628 static void attach_mnt(struct mount *mnt, struct path *path)
629 {
630 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
631 list_add_tail(&mnt->mnt_hash, mount_hashtable +
632 hash(path->mnt, path->dentry));
633 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
634 }
635
636 /*
637 * vfsmount lock must be held for write
638 */
639 static void commit_tree(struct mount *mnt)
640 {
641 struct mount *parent = mnt->mnt_parent;
642 struct mount *m;
643 LIST_HEAD(head);
644 struct mnt_namespace *n = parent->mnt_ns;
645
646 BUG_ON(parent == mnt);
647
648 list_add_tail(&head, &mnt->mnt_list);
649 list_for_each_entry(m, &head, mnt_list)
650 m->mnt_ns = n;
651
652 list_splice(&head, n->list.prev);
653
654 list_add_tail(&mnt->mnt_hash, mount_hashtable +
655 hash(&parent->mnt, mnt->mnt_mountpoint));
656 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
657 touch_mnt_namespace(n);
658 }
659
660 static struct mount *next_mnt(struct mount *p, struct mount *root)
661 {
662 struct list_head *next = p->mnt_mounts.next;
663 if (next == &p->mnt_mounts) {
664 while (1) {
665 if (p == root)
666 return NULL;
667 next = p->mnt_child.next;
668 if (next != &p->mnt_parent->mnt_mounts)
669 break;
670 p = p->mnt_parent;
671 }
672 }
673 return list_entry(next, struct mount, mnt_child);
674 }
675
676 static struct mount *skip_mnt_tree(struct mount *p)
677 {
678 struct list_head *prev = p->mnt_mounts.prev;
679 while (prev != &p->mnt_mounts) {
680 p = list_entry(prev, struct mount, mnt_child);
681 prev = p->mnt_mounts.prev;
682 }
683 return p;
684 }
685
686 struct vfsmount *
687 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
688 {
689 struct mount *mnt;
690 struct dentry *root;
691
692 if (!type)
693 return ERR_PTR(-ENODEV);
694
695 mnt = alloc_vfsmnt(name);
696 if (!mnt)
697 return ERR_PTR(-ENOMEM);
698
699 if (flags & MS_KERNMOUNT)
700 mnt->mnt.mnt_flags = MNT_INTERNAL;
701
702 root = mount_fs(type, flags, name, data);
703 if (IS_ERR(root)) {
704 free_vfsmnt(mnt);
705 return ERR_CAST(root);
706 }
707
708 mnt->mnt.mnt_root = root;
709 mnt->mnt.mnt_sb = root->d_sb;
710 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
711 mnt->mnt_parent = mnt;
712 br_write_lock(&vfsmount_lock);
713 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
714 br_write_unlock(&vfsmount_lock);
715 return &mnt->mnt;
716 }
717 EXPORT_SYMBOL_GPL(vfs_kern_mount);
718
719 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
720 int flag)
721 {
722 struct super_block *sb = old->mnt.mnt_sb;
723 struct mount *mnt;
724 int err;
725
726 mnt = alloc_vfsmnt(old->mnt_devname);
727 if (!mnt)
728 return ERR_PTR(-ENOMEM);
729
730 if (flag & (CL_SLAVE | CL_PRIVATE))
731 mnt->mnt_group_id = 0; /* not a peer of original */
732 else
733 mnt->mnt_group_id = old->mnt_group_id;
734
735 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
736 err = mnt_alloc_group_id(mnt);
737 if (err)
738 goto out_free;
739 }
740
741 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
742 atomic_inc(&sb->s_active);
743 mnt->mnt.mnt_sb = sb;
744 mnt->mnt.mnt_root = dget(root);
745 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
746 mnt->mnt_parent = mnt;
747 br_write_lock(&vfsmount_lock);
748 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
749 br_write_unlock(&vfsmount_lock);
750
751 if (flag & CL_SLAVE) {
752 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
753 mnt->mnt_master = old;
754 CLEAR_MNT_SHARED(mnt);
755 } else if (!(flag & CL_PRIVATE)) {
756 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
757 list_add(&mnt->mnt_share, &old->mnt_share);
758 if (IS_MNT_SLAVE(old))
759 list_add(&mnt->mnt_slave, &old->mnt_slave);
760 mnt->mnt_master = old->mnt_master;
761 }
762 if (flag & CL_MAKE_SHARED)
763 set_mnt_shared(mnt);
764
765 /* stick the duplicate mount on the same expiry list
766 * as the original if that was on one */
767 if (flag & CL_EXPIRE) {
768 if (!list_empty(&old->mnt_expire))
769 list_add(&mnt->mnt_expire, &old->mnt_expire);
770 }
771
772 return mnt;
773
774 out_free:
775 free_vfsmnt(mnt);
776 return ERR_PTR(err);
777 }
778
779 static inline void mntfree(struct mount *mnt)
780 {
781 struct vfsmount *m = &mnt->mnt;
782 struct super_block *sb = m->mnt_sb;
783
784 /*
785 * This probably indicates that somebody messed
786 * up a mnt_want/drop_write() pair. If this
787 * happens, the filesystem was probably unable
788 * to make r/w->r/o transitions.
789 */
790 /*
791 * The locking used to deal with mnt_count decrement provides barriers,
792 * so mnt_get_writers() below is safe.
793 */
794 WARN_ON(mnt_get_writers(mnt));
795 fsnotify_vfsmount_delete(m);
796 dput(m->mnt_root);
797 free_vfsmnt(mnt);
798 deactivate_super(sb);
799 }
800
801 static void mntput_no_expire(struct mount *mnt)
802 {
803 put_again:
804 #ifdef CONFIG_SMP
805 br_read_lock(&vfsmount_lock);
806 if (likely(mnt->mnt_ns)) {
807 /* shouldn't be the last one */
808 mnt_add_count(mnt, -1);
809 br_read_unlock(&vfsmount_lock);
810 return;
811 }
812 br_read_unlock(&vfsmount_lock);
813
814 br_write_lock(&vfsmount_lock);
815 mnt_add_count(mnt, -1);
816 if (mnt_get_count(mnt)) {
817 br_write_unlock(&vfsmount_lock);
818 return;
819 }
820 #else
821 mnt_add_count(mnt, -1);
822 if (likely(mnt_get_count(mnt)))
823 return;
824 br_write_lock(&vfsmount_lock);
825 #endif
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
829 br_write_unlock(&vfsmount_lock);
830 acct_auto_close_mnt(&mnt->mnt);
831 goto put_again;
832 }
833
834 list_del(&mnt->mnt_instance);
835 br_write_unlock(&vfsmount_lock);
836 mntfree(mnt);
837 }
838
839 void mntput(struct vfsmount *mnt)
840 {
841 if (mnt) {
842 struct mount *m = real_mount(mnt);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
846 mntput_no_expire(m);
847 }
848 }
849 EXPORT_SYMBOL(mntput);
850
851 struct vfsmount *mntget(struct vfsmount *mnt)
852 {
853 if (mnt)
854 mnt_add_count(real_mount(mnt), 1);
855 return mnt;
856 }
857 EXPORT_SYMBOL(mntget);
858
859 void mnt_pin(struct vfsmount *mnt)
860 {
861 br_write_lock(&vfsmount_lock);
862 real_mount(mnt)->mnt_pinned++;
863 br_write_unlock(&vfsmount_lock);
864 }
865 EXPORT_SYMBOL(mnt_pin);
866
867 void mnt_unpin(struct vfsmount *m)
868 {
869 struct mount *mnt = real_mount(m);
870 br_write_lock(&vfsmount_lock);
871 if (mnt->mnt_pinned) {
872 mnt_add_count(mnt, 1);
873 mnt->mnt_pinned--;
874 }
875 br_write_unlock(&vfsmount_lock);
876 }
877 EXPORT_SYMBOL(mnt_unpin);
878
879 static inline void mangle(struct seq_file *m, const char *s)
880 {
881 seq_escape(m, s, " \t\n\\");
882 }
883
884 /*
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
887 *
888 * See also save_mount_options().
889 */
890 int generic_show_options(struct seq_file *m, struct dentry *root)
891 {
892 const char *options;
893
894 rcu_read_lock();
895 options = rcu_dereference(root->d_sb->s_options);
896
897 if (options != NULL && options[0]) {
898 seq_putc(m, ',');
899 mangle(m, options);
900 }
901 rcu_read_unlock();
902
903 return 0;
904 }
905 EXPORT_SYMBOL(generic_show_options);
906
907 /*
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
910 *
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
913 * remount fails.
914 *
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
918 * any more.
919 */
920 void save_mount_options(struct super_block *sb, char *options)
921 {
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 }
925 EXPORT_SYMBOL(save_mount_options);
926
927 void replace_mount_options(struct super_block *sb, char *options)
928 {
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
931 if (old) {
932 synchronize_rcu();
933 kfree(old);
934 }
935 }
936 EXPORT_SYMBOL(replace_mount_options);
937
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
941 {
942 struct proc_mounts *p = proc_mounts(m);
943
944 down_read(&namespace_sem);
945 return seq_list_start(&p->ns->list, *pos);
946 }
947
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 {
950 struct proc_mounts *p = proc_mounts(m);
951
952 return seq_list_next(v, &p->ns->list, pos);
953 }
954
955 static void m_stop(struct seq_file *m, void *v)
956 {
957 up_read(&namespace_sem);
958 }
959
960 static int m_show(struct seq_file *m, void *v)
961 {
962 struct proc_mounts *p = proc_mounts(m);
963 struct mount *r = list_entry(v, struct mount, mnt_list);
964 return p->show(m, &r->mnt);
965 }
966
967 const struct seq_operations mounts_op = {
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
971 .show = m_show,
972 };
973 #endif /* CONFIG_PROC_FS */
974
975 /**
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
978 *
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
982 */
983 int may_umount_tree(struct vfsmount *m)
984 {
985 struct mount *mnt = real_mount(m);
986 int actual_refs = 0;
987 int minimum_refs = 0;
988 struct mount *p;
989 BUG_ON(!m);
990
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock);
993 for (p = mnt; p; p = next_mnt(p, mnt)) {
994 actual_refs += mnt_get_count(p);
995 minimum_refs += 2;
996 }
997 br_write_unlock(&vfsmount_lock);
998
999 if (actual_refs > minimum_refs)
1000 return 0;
1001
1002 return 1;
1003 }
1004
1005 EXPORT_SYMBOL(may_umount_tree);
1006
1007 /**
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1010 *
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1015 *
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1019 */
1020 int may_umount(struct vfsmount *mnt)
1021 {
1022 int ret = 1;
1023 down_read(&namespace_sem);
1024 br_write_lock(&vfsmount_lock);
1025 if (propagate_mount_busy(real_mount(mnt), 2))
1026 ret = 0;
1027 br_write_unlock(&vfsmount_lock);
1028 up_read(&namespace_sem);
1029 return ret;
1030 }
1031
1032 EXPORT_SYMBOL(may_umount);
1033
1034 void release_mounts(struct list_head *head)
1035 {
1036 struct mount *mnt;
1037 while (!list_empty(head)) {
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
1040 if (mnt_has_parent(mnt)) {
1041 struct dentry *dentry;
1042 struct mount *m;
1043
1044 br_write_lock(&vfsmount_lock);
1045 dentry = mnt->mnt_mountpoint;
1046 m = mnt->mnt_parent;
1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 mnt->mnt_parent = mnt;
1049 m->mnt_ghosts--;
1050 br_write_unlock(&vfsmount_lock);
1051 dput(dentry);
1052 mntput(&m->mnt);
1053 }
1054 mntput(&mnt->mnt);
1055 }
1056 }
1057
1058 /*
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1061 */
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 {
1064 LIST_HEAD(tmp_list);
1065 struct mount *p;
1066
1067 for (p = mnt; p; p = next_mnt(p, mnt))
1068 list_move(&p->mnt_hash, &tmp_list);
1069
1070 if (propagate)
1071 propagate_umount(&tmp_list);
1072
1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 list_del_init(&p->mnt_expire);
1075 list_del_init(&p->mnt_list);
1076 __touch_mnt_namespace(p->mnt_ns);
1077 p->mnt_ns = NULL;
1078 list_del_init(&p->mnt_child);
1079 if (mnt_has_parent(p)) {
1080 p->mnt_parent->mnt_ghosts++;
1081 dentry_reset_mounted(p->mnt_mountpoint);
1082 }
1083 change_mnt_propagation(p, MS_PRIVATE);
1084 }
1085 list_splice(&tmp_list, kill);
1086 }
1087
1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1089
1090 static int do_umount(struct mount *mnt, int flags)
1091 {
1092 struct super_block *sb = mnt->mnt.mnt_sb;
1093 int retval;
1094 LIST_HEAD(umount_list);
1095
1096 retval = security_sb_umount(&mnt->mnt, flags);
1097 if (retval)
1098 return retval;
1099
1100 /*
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1105 */
1106 if (flags & MNT_EXPIRE) {
1107 if (&mnt->mnt == current->fs->root.mnt ||
1108 flags & (MNT_FORCE | MNT_DETACH))
1109 return -EINVAL;
1110
1111 /*
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1114 */
1115 br_write_lock(&vfsmount_lock);
1116 if (mnt_get_count(mnt) != 2) {
1117 br_write_unlock(&vfsmount_lock);
1118 return -EBUSY;
1119 }
1120 br_write_unlock(&vfsmount_lock);
1121
1122 if (!xchg(&mnt->mnt_expiry_mark, 1))
1123 return -EAGAIN;
1124 }
1125
1126 /*
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1134 */
1135
1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1137 sb->s_op->umount_begin(sb);
1138 }
1139
1140 /*
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1148 */
1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1150 /*
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1153 */
1154 down_write(&sb->s_umount);
1155 if (!(sb->s_flags & MS_RDONLY))
1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1157 up_write(&sb->s_umount);
1158 return retval;
1159 }
1160
1161 down_write(&namespace_sem);
1162 br_write_lock(&vfsmount_lock);
1163 event++;
1164
1165 if (!(flags & MNT_DETACH))
1166 shrink_submounts(mnt, &umount_list);
1167
1168 retval = -EBUSY;
1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1170 if (!list_empty(&mnt->mnt_list))
1171 umount_tree(mnt, 1, &umount_list);
1172 retval = 0;
1173 }
1174 br_write_unlock(&vfsmount_lock);
1175 up_write(&namespace_sem);
1176 release_mounts(&umount_list);
1177 return retval;
1178 }
1179
1180 /*
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1183 *
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1186 */
1187
1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1189 {
1190 struct path path;
1191 struct mount *mnt;
1192 int retval;
1193 int lookup_flags = 0;
1194
1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 return -EINVAL;
1197
1198 if (!(flags & UMOUNT_NOFOLLOW))
1199 lookup_flags |= LOOKUP_FOLLOW;
1200
1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1202 if (retval)
1203 goto out;
1204 mnt = real_mount(path.mnt);
1205 retval = -EINVAL;
1206 if (path.dentry != path.mnt->mnt_root)
1207 goto dput_and_out;
1208 if (!check_mnt(mnt))
1209 goto dput_and_out;
1210
1211 retval = -EPERM;
1212 if (!capable(CAP_SYS_ADMIN))
1213 goto dput_and_out;
1214
1215 retval = do_umount(mnt, flags);
1216 dput_and_out:
1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1218 dput(path.dentry);
1219 mntput_no_expire(mnt);
1220 out:
1221 return retval;
1222 }
1223
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1225
1226 /*
1227 * The 2.0 compatible umount. No flags.
1228 */
1229 SYSCALL_DEFINE1(oldumount, char __user *, name)
1230 {
1231 return sys_umount(name, 0);
1232 }
1233
1234 #endif
1235
1236 static int mount_is_safe(struct path *path)
1237 {
1238 if (capable(CAP_SYS_ADMIN))
1239 return 0;
1240 return -EPERM;
1241 #ifdef notyet
1242 if (S_ISLNK(path->dentry->d_inode->i_mode))
1243 return -EPERM;
1244 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1245 if (current_uid() != path->dentry->d_inode->i_uid)
1246 return -EPERM;
1247 }
1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1249 return -EPERM;
1250 return 0;
1251 #endif
1252 }
1253
1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1255 int flag)
1256 {
1257 struct mount *res, *p, *q, *r;
1258 struct path path;
1259
1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1261 return ERR_PTR(-EINVAL);
1262
1263 res = q = clone_mnt(mnt, dentry, flag);
1264 if (IS_ERR(q))
1265 return q;
1266
1267 q->mnt_mountpoint = mnt->mnt_mountpoint;
1268
1269 p = mnt;
1270 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1271 struct mount *s;
1272 if (!is_subdir(r->mnt_mountpoint, dentry))
1273 continue;
1274
1275 for (s = r; s; s = next_mnt(s, r)) {
1276 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1277 s = skip_mnt_tree(s);
1278 continue;
1279 }
1280 while (p != s->mnt_parent) {
1281 p = p->mnt_parent;
1282 q = q->mnt_parent;
1283 }
1284 p = s;
1285 path.mnt = &q->mnt;
1286 path.dentry = p->mnt_mountpoint;
1287 q = clone_mnt(p, p->mnt.mnt_root, flag);
1288 if (IS_ERR(q))
1289 goto out;
1290 br_write_lock(&vfsmount_lock);
1291 list_add_tail(&q->mnt_list, &res->mnt_list);
1292 attach_mnt(q, &path);
1293 br_write_unlock(&vfsmount_lock);
1294 }
1295 }
1296 return res;
1297 out:
1298 if (res) {
1299 LIST_HEAD(umount_list);
1300 br_write_lock(&vfsmount_lock);
1301 umount_tree(res, 0, &umount_list);
1302 br_write_unlock(&vfsmount_lock);
1303 release_mounts(&umount_list);
1304 }
1305 return q;
1306 }
1307
1308 /* Caller should check returned pointer for errors */
1309
1310 struct vfsmount *collect_mounts(struct path *path)
1311 {
1312 struct mount *tree;
1313 down_write(&namespace_sem);
1314 tree = copy_tree(real_mount(path->mnt), path->dentry,
1315 CL_COPY_ALL | CL_PRIVATE);
1316 up_write(&namespace_sem);
1317 if (IS_ERR(tree))
1318 return NULL;
1319 return &tree->mnt;
1320 }
1321
1322 void drop_collected_mounts(struct vfsmount *mnt)
1323 {
1324 LIST_HEAD(umount_list);
1325 down_write(&namespace_sem);
1326 br_write_lock(&vfsmount_lock);
1327 umount_tree(real_mount(mnt), 0, &umount_list);
1328 br_write_unlock(&vfsmount_lock);
1329 up_write(&namespace_sem);
1330 release_mounts(&umount_list);
1331 }
1332
1333 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1334 struct vfsmount *root)
1335 {
1336 struct mount *mnt;
1337 int res = f(root, arg);
1338 if (res)
1339 return res;
1340 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1341 res = f(&mnt->mnt, arg);
1342 if (res)
1343 return res;
1344 }
1345 return 0;
1346 }
1347
1348 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1349 {
1350 struct mount *p;
1351
1352 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1353 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1354 mnt_release_group_id(p);
1355 }
1356 }
1357
1358 static int invent_group_ids(struct mount *mnt, bool recurse)
1359 {
1360 struct mount *p;
1361
1362 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1363 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1364 int err = mnt_alloc_group_id(p);
1365 if (err) {
1366 cleanup_group_ids(mnt, p);
1367 return err;
1368 }
1369 }
1370 }
1371
1372 return 0;
1373 }
1374
1375 /*
1376 * @source_mnt : mount tree to be attached
1377 * @nd : place the mount tree @source_mnt is attached
1378 * @parent_nd : if non-null, detach the source_mnt from its parent and
1379 * store the parent mount and mountpoint dentry.
1380 * (done when source_mnt is moved)
1381 *
1382 * NOTE: in the table below explains the semantics when a source mount
1383 * of a given type is attached to a destination mount of a given type.
1384 * ---------------------------------------------------------------------------
1385 * | BIND MOUNT OPERATION |
1386 * |**************************************************************************
1387 * | source-->| shared | private | slave | unbindable |
1388 * | dest | | | | |
1389 * | | | | | | |
1390 * | v | | | | |
1391 * |**************************************************************************
1392 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1393 * | | | | | |
1394 * |non-shared| shared (+) | private | slave (*) | invalid |
1395 * ***************************************************************************
1396 * A bind operation clones the source mount and mounts the clone on the
1397 * destination mount.
1398 *
1399 * (++) the cloned mount is propagated to all the mounts in the propagation
1400 * tree of the destination mount and the cloned mount is added to
1401 * the peer group of the source mount.
1402 * (+) the cloned mount is created under the destination mount and is marked
1403 * as shared. The cloned mount is added to the peer group of the source
1404 * mount.
1405 * (+++) the mount is propagated to all the mounts in the propagation tree
1406 * of the destination mount and the cloned mount is made slave
1407 * of the same master as that of the source mount. The cloned mount
1408 * is marked as 'shared and slave'.
1409 * (*) the cloned mount is made a slave of the same master as that of the
1410 * source mount.
1411 *
1412 * ---------------------------------------------------------------------------
1413 * | MOVE MOUNT OPERATION |
1414 * |**************************************************************************
1415 * | source-->| shared | private | slave | unbindable |
1416 * | dest | | | | |
1417 * | | | | | | |
1418 * | v | | | | |
1419 * |**************************************************************************
1420 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1421 * | | | | | |
1422 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1423 * ***************************************************************************
1424 *
1425 * (+) the mount is moved to the destination. And is then propagated to
1426 * all the mounts in the propagation tree of the destination mount.
1427 * (+*) the mount is moved to the destination.
1428 * (+++) the mount is moved to the destination and is then propagated to
1429 * all the mounts belonging to the destination mount's propagation tree.
1430 * the mount is marked as 'shared and slave'.
1431 * (*) the mount continues to be a slave at the new location.
1432 *
1433 * if the source mount is a tree, the operations explained above is
1434 * applied to each mount in the tree.
1435 * Must be called without spinlocks held, since this function can sleep
1436 * in allocations.
1437 */
1438 static int attach_recursive_mnt(struct mount *source_mnt,
1439 struct path *path, struct path *parent_path)
1440 {
1441 LIST_HEAD(tree_list);
1442 struct mount *dest_mnt = real_mount(path->mnt);
1443 struct dentry *dest_dentry = path->dentry;
1444 struct mount *child, *p;
1445 int err;
1446
1447 if (IS_MNT_SHARED(dest_mnt)) {
1448 err = invent_group_ids(source_mnt, true);
1449 if (err)
1450 goto out;
1451 }
1452 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1453 if (err)
1454 goto out_cleanup_ids;
1455
1456 br_write_lock(&vfsmount_lock);
1457
1458 if (IS_MNT_SHARED(dest_mnt)) {
1459 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1460 set_mnt_shared(p);
1461 }
1462 if (parent_path) {
1463 detach_mnt(source_mnt, parent_path);
1464 attach_mnt(source_mnt, path);
1465 touch_mnt_namespace(source_mnt->mnt_ns);
1466 } else {
1467 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1468 commit_tree(source_mnt);
1469 }
1470
1471 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1472 list_del_init(&child->mnt_hash);
1473 commit_tree(child);
1474 }
1475 br_write_unlock(&vfsmount_lock);
1476
1477 return 0;
1478
1479 out_cleanup_ids:
1480 if (IS_MNT_SHARED(dest_mnt))
1481 cleanup_group_ids(source_mnt, NULL);
1482 out:
1483 return err;
1484 }
1485
1486 static int lock_mount(struct path *path)
1487 {
1488 struct vfsmount *mnt;
1489 retry:
1490 mutex_lock(&path->dentry->d_inode->i_mutex);
1491 if (unlikely(cant_mount(path->dentry))) {
1492 mutex_unlock(&path->dentry->d_inode->i_mutex);
1493 return -ENOENT;
1494 }
1495 down_write(&namespace_sem);
1496 mnt = lookup_mnt(path);
1497 if (likely(!mnt))
1498 return 0;
1499 up_write(&namespace_sem);
1500 mutex_unlock(&path->dentry->d_inode->i_mutex);
1501 path_put(path);
1502 path->mnt = mnt;
1503 path->dentry = dget(mnt->mnt_root);
1504 goto retry;
1505 }
1506
1507 static void unlock_mount(struct path *path)
1508 {
1509 up_write(&namespace_sem);
1510 mutex_unlock(&path->dentry->d_inode->i_mutex);
1511 }
1512
1513 static int graft_tree(struct mount *mnt, struct path *path)
1514 {
1515 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1516 return -EINVAL;
1517
1518 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1519 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1520 return -ENOTDIR;
1521
1522 if (d_unlinked(path->dentry))
1523 return -ENOENT;
1524
1525 return attach_recursive_mnt(mnt, path, NULL);
1526 }
1527
1528 /*
1529 * Sanity check the flags to change_mnt_propagation.
1530 */
1531
1532 static int flags_to_propagation_type(int flags)
1533 {
1534 int type = flags & ~(MS_REC | MS_SILENT);
1535
1536 /* Fail if any non-propagation flags are set */
1537 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1538 return 0;
1539 /* Only one propagation flag should be set */
1540 if (!is_power_of_2(type))
1541 return 0;
1542 return type;
1543 }
1544
1545 /*
1546 * recursively change the type of the mountpoint.
1547 */
1548 static int do_change_type(struct path *path, int flag)
1549 {
1550 struct mount *m;
1551 struct mount *mnt = real_mount(path->mnt);
1552 int recurse = flag & MS_REC;
1553 int type;
1554 int err = 0;
1555
1556 if (!capable(CAP_SYS_ADMIN))
1557 return -EPERM;
1558
1559 if (path->dentry != path->mnt->mnt_root)
1560 return -EINVAL;
1561
1562 type = flags_to_propagation_type(flag);
1563 if (!type)
1564 return -EINVAL;
1565
1566 down_write(&namespace_sem);
1567 if (type == MS_SHARED) {
1568 err = invent_group_ids(mnt, recurse);
1569 if (err)
1570 goto out_unlock;
1571 }
1572
1573 br_write_lock(&vfsmount_lock);
1574 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1575 change_mnt_propagation(m, type);
1576 br_write_unlock(&vfsmount_lock);
1577
1578 out_unlock:
1579 up_write(&namespace_sem);
1580 return err;
1581 }
1582
1583 /*
1584 * do loopback mount.
1585 */
1586 static int do_loopback(struct path *path, char *old_name,
1587 int recurse)
1588 {
1589 LIST_HEAD(umount_list);
1590 struct path old_path;
1591 struct mount *mnt = NULL, *old;
1592 int err = mount_is_safe(path);
1593 if (err)
1594 return err;
1595 if (!old_name || !*old_name)
1596 return -EINVAL;
1597 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1598 if (err)
1599 return err;
1600
1601 err = lock_mount(path);
1602 if (err)
1603 goto out;
1604
1605 old = real_mount(old_path.mnt);
1606
1607 err = -EINVAL;
1608 if (IS_MNT_UNBINDABLE(old))
1609 goto out2;
1610
1611 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1612 goto out2;
1613
1614 if (recurse)
1615 mnt = copy_tree(old, old_path.dentry, 0);
1616 else
1617 mnt = clone_mnt(old, old_path.dentry, 0);
1618
1619 if (IS_ERR(mnt)) {
1620 err = PTR_ERR(mnt);
1621 goto out;
1622 }
1623
1624 err = graft_tree(mnt, path);
1625 if (err) {
1626 br_write_lock(&vfsmount_lock);
1627 umount_tree(mnt, 0, &umount_list);
1628 br_write_unlock(&vfsmount_lock);
1629 }
1630 out2:
1631 unlock_mount(path);
1632 release_mounts(&umount_list);
1633 out:
1634 path_put(&old_path);
1635 return err;
1636 }
1637
1638 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1639 {
1640 int error = 0;
1641 int readonly_request = 0;
1642
1643 if (ms_flags & MS_RDONLY)
1644 readonly_request = 1;
1645 if (readonly_request == __mnt_is_readonly(mnt))
1646 return 0;
1647
1648 if (readonly_request)
1649 error = mnt_make_readonly(real_mount(mnt));
1650 else
1651 __mnt_unmake_readonly(real_mount(mnt));
1652 return error;
1653 }
1654
1655 /*
1656 * change filesystem flags. dir should be a physical root of filesystem.
1657 * If you've mounted a non-root directory somewhere and want to do remount
1658 * on it - tough luck.
1659 */
1660 static int do_remount(struct path *path, int flags, int mnt_flags,
1661 void *data)
1662 {
1663 int err;
1664 struct super_block *sb = path->mnt->mnt_sb;
1665 struct mount *mnt = real_mount(path->mnt);
1666
1667 if (!capable(CAP_SYS_ADMIN))
1668 return -EPERM;
1669
1670 if (!check_mnt(mnt))
1671 return -EINVAL;
1672
1673 if (path->dentry != path->mnt->mnt_root)
1674 return -EINVAL;
1675
1676 err = security_sb_remount(sb, data);
1677 if (err)
1678 return err;
1679
1680 down_write(&sb->s_umount);
1681 if (flags & MS_BIND)
1682 err = change_mount_flags(path->mnt, flags);
1683 else
1684 err = do_remount_sb(sb, flags, data, 0);
1685 if (!err) {
1686 br_write_lock(&vfsmount_lock);
1687 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1688 mnt->mnt.mnt_flags = mnt_flags;
1689 br_write_unlock(&vfsmount_lock);
1690 }
1691 up_write(&sb->s_umount);
1692 if (!err) {
1693 br_write_lock(&vfsmount_lock);
1694 touch_mnt_namespace(mnt->mnt_ns);
1695 br_write_unlock(&vfsmount_lock);
1696 }
1697 return err;
1698 }
1699
1700 static inline int tree_contains_unbindable(struct mount *mnt)
1701 {
1702 struct mount *p;
1703 for (p = mnt; p; p = next_mnt(p, mnt)) {
1704 if (IS_MNT_UNBINDABLE(p))
1705 return 1;
1706 }
1707 return 0;
1708 }
1709
1710 static int do_move_mount(struct path *path, char *old_name)
1711 {
1712 struct path old_path, parent_path;
1713 struct mount *p;
1714 struct mount *old;
1715 int err = 0;
1716 if (!capable(CAP_SYS_ADMIN))
1717 return -EPERM;
1718 if (!old_name || !*old_name)
1719 return -EINVAL;
1720 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1721 if (err)
1722 return err;
1723
1724 err = lock_mount(path);
1725 if (err < 0)
1726 goto out;
1727
1728 old = real_mount(old_path.mnt);
1729 p = real_mount(path->mnt);
1730
1731 err = -EINVAL;
1732 if (!check_mnt(p) || !check_mnt(old))
1733 goto out1;
1734
1735 if (d_unlinked(path->dentry))
1736 goto out1;
1737
1738 err = -EINVAL;
1739 if (old_path.dentry != old_path.mnt->mnt_root)
1740 goto out1;
1741
1742 if (!mnt_has_parent(old))
1743 goto out1;
1744
1745 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1746 S_ISDIR(old_path.dentry->d_inode->i_mode))
1747 goto out1;
1748 /*
1749 * Don't move a mount residing in a shared parent.
1750 */
1751 if (IS_MNT_SHARED(old->mnt_parent))
1752 goto out1;
1753 /*
1754 * Don't move a mount tree containing unbindable mounts to a destination
1755 * mount which is shared.
1756 */
1757 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1758 goto out1;
1759 err = -ELOOP;
1760 for (; mnt_has_parent(p); p = p->mnt_parent)
1761 if (p == old)
1762 goto out1;
1763
1764 err = attach_recursive_mnt(old, path, &parent_path);
1765 if (err)
1766 goto out1;
1767
1768 /* if the mount is moved, it should no longer be expire
1769 * automatically */
1770 list_del_init(&old->mnt_expire);
1771 out1:
1772 unlock_mount(path);
1773 out:
1774 if (!err)
1775 path_put(&parent_path);
1776 path_put(&old_path);
1777 return err;
1778 }
1779
1780 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1781 {
1782 int err;
1783 const char *subtype = strchr(fstype, '.');
1784 if (subtype) {
1785 subtype++;
1786 err = -EINVAL;
1787 if (!subtype[0])
1788 goto err;
1789 } else
1790 subtype = "";
1791
1792 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1793 err = -ENOMEM;
1794 if (!mnt->mnt_sb->s_subtype)
1795 goto err;
1796 return mnt;
1797
1798 err:
1799 mntput(mnt);
1800 return ERR_PTR(err);
1801 }
1802
1803 static struct vfsmount *
1804 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1805 {
1806 struct file_system_type *type = get_fs_type(fstype);
1807 struct vfsmount *mnt;
1808 if (!type)
1809 return ERR_PTR(-ENODEV);
1810 mnt = vfs_kern_mount(type, flags, name, data);
1811 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1812 !mnt->mnt_sb->s_subtype)
1813 mnt = fs_set_subtype(mnt, fstype);
1814 put_filesystem(type);
1815 return mnt;
1816 }
1817
1818 /*
1819 * add a mount into a namespace's mount tree
1820 */
1821 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1822 {
1823 int err;
1824
1825 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1826
1827 err = lock_mount(path);
1828 if (err)
1829 return err;
1830
1831 err = -EINVAL;
1832 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1833 goto unlock;
1834
1835 /* Refuse the same filesystem on the same mount point */
1836 err = -EBUSY;
1837 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1838 path->mnt->mnt_root == path->dentry)
1839 goto unlock;
1840
1841 err = -EINVAL;
1842 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1843 goto unlock;
1844
1845 newmnt->mnt.mnt_flags = mnt_flags;
1846 err = graft_tree(newmnt, path);
1847
1848 unlock:
1849 unlock_mount(path);
1850 return err;
1851 }
1852
1853 /*
1854 * create a new mount for userspace and request it to be added into the
1855 * namespace's tree
1856 */
1857 static int do_new_mount(struct path *path, char *type, int flags,
1858 int mnt_flags, char *name, void *data)
1859 {
1860 struct vfsmount *mnt;
1861 int err;
1862
1863 if (!type)
1864 return -EINVAL;
1865
1866 /* we need capabilities... */
1867 if (!capable(CAP_SYS_ADMIN))
1868 return -EPERM;
1869
1870 mnt = do_kern_mount(type, flags, name, data);
1871 if (IS_ERR(mnt))
1872 return PTR_ERR(mnt);
1873
1874 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1875 if (err)
1876 mntput(mnt);
1877 return err;
1878 }
1879
1880 int finish_automount(struct vfsmount *m, struct path *path)
1881 {
1882 struct mount *mnt = real_mount(m);
1883 int err;
1884 /* The new mount record should have at least 2 refs to prevent it being
1885 * expired before we get a chance to add it
1886 */
1887 BUG_ON(mnt_get_count(mnt) < 2);
1888
1889 if (m->mnt_sb == path->mnt->mnt_sb &&
1890 m->mnt_root == path->dentry) {
1891 err = -ELOOP;
1892 goto fail;
1893 }
1894
1895 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1896 if (!err)
1897 return 0;
1898 fail:
1899 /* remove m from any expiration list it may be on */
1900 if (!list_empty(&mnt->mnt_expire)) {
1901 down_write(&namespace_sem);
1902 br_write_lock(&vfsmount_lock);
1903 list_del_init(&mnt->mnt_expire);
1904 br_write_unlock(&vfsmount_lock);
1905 up_write(&namespace_sem);
1906 }
1907 mntput(m);
1908 mntput(m);
1909 return err;
1910 }
1911
1912 /**
1913 * mnt_set_expiry - Put a mount on an expiration list
1914 * @mnt: The mount to list.
1915 * @expiry_list: The list to add the mount to.
1916 */
1917 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1918 {
1919 down_write(&namespace_sem);
1920 br_write_lock(&vfsmount_lock);
1921
1922 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1923
1924 br_write_unlock(&vfsmount_lock);
1925 up_write(&namespace_sem);
1926 }
1927 EXPORT_SYMBOL(mnt_set_expiry);
1928
1929 /*
1930 * process a list of expirable mountpoints with the intent of discarding any
1931 * mountpoints that aren't in use and haven't been touched since last we came
1932 * here
1933 */
1934 void mark_mounts_for_expiry(struct list_head *mounts)
1935 {
1936 struct mount *mnt, *next;
1937 LIST_HEAD(graveyard);
1938 LIST_HEAD(umounts);
1939
1940 if (list_empty(mounts))
1941 return;
1942
1943 down_write(&namespace_sem);
1944 br_write_lock(&vfsmount_lock);
1945
1946 /* extract from the expiration list every vfsmount that matches the
1947 * following criteria:
1948 * - only referenced by its parent vfsmount
1949 * - still marked for expiry (marked on the last call here; marks are
1950 * cleared by mntput())
1951 */
1952 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1953 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1954 propagate_mount_busy(mnt, 1))
1955 continue;
1956 list_move(&mnt->mnt_expire, &graveyard);
1957 }
1958 while (!list_empty(&graveyard)) {
1959 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1960 touch_mnt_namespace(mnt->mnt_ns);
1961 umount_tree(mnt, 1, &umounts);
1962 }
1963 br_write_unlock(&vfsmount_lock);
1964 up_write(&namespace_sem);
1965
1966 release_mounts(&umounts);
1967 }
1968
1969 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1970
1971 /*
1972 * Ripoff of 'select_parent()'
1973 *
1974 * search the list of submounts for a given mountpoint, and move any
1975 * shrinkable submounts to the 'graveyard' list.
1976 */
1977 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1978 {
1979 struct mount *this_parent = parent;
1980 struct list_head *next;
1981 int found = 0;
1982
1983 repeat:
1984 next = this_parent->mnt_mounts.next;
1985 resume:
1986 while (next != &this_parent->mnt_mounts) {
1987 struct list_head *tmp = next;
1988 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1989
1990 next = tmp->next;
1991 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1992 continue;
1993 /*
1994 * Descend a level if the d_mounts list is non-empty.
1995 */
1996 if (!list_empty(&mnt->mnt_mounts)) {
1997 this_parent = mnt;
1998 goto repeat;
1999 }
2000
2001 if (!propagate_mount_busy(mnt, 1)) {
2002 list_move_tail(&mnt->mnt_expire, graveyard);
2003 found++;
2004 }
2005 }
2006 /*
2007 * All done at this level ... ascend and resume the search
2008 */
2009 if (this_parent != parent) {
2010 next = this_parent->mnt_child.next;
2011 this_parent = this_parent->mnt_parent;
2012 goto resume;
2013 }
2014 return found;
2015 }
2016
2017 /*
2018 * process a list of expirable mountpoints with the intent of discarding any
2019 * submounts of a specific parent mountpoint
2020 *
2021 * vfsmount_lock must be held for write
2022 */
2023 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2024 {
2025 LIST_HEAD(graveyard);
2026 struct mount *m;
2027
2028 /* extract submounts of 'mountpoint' from the expiration list */
2029 while (select_submounts(mnt, &graveyard)) {
2030 while (!list_empty(&graveyard)) {
2031 m = list_first_entry(&graveyard, struct mount,
2032 mnt_expire);
2033 touch_mnt_namespace(m->mnt_ns);
2034 umount_tree(m, 1, umounts);
2035 }
2036 }
2037 }
2038
2039 /*
2040 * Some copy_from_user() implementations do not return the exact number of
2041 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2042 * Note that this function differs from copy_from_user() in that it will oops
2043 * on bad values of `to', rather than returning a short copy.
2044 */
2045 static long exact_copy_from_user(void *to, const void __user * from,
2046 unsigned long n)
2047 {
2048 char *t = to;
2049 const char __user *f = from;
2050 char c;
2051
2052 if (!access_ok(VERIFY_READ, from, n))
2053 return n;
2054
2055 while (n) {
2056 if (__get_user(c, f)) {
2057 memset(t, 0, n);
2058 break;
2059 }
2060 *t++ = c;
2061 f++;
2062 n--;
2063 }
2064 return n;
2065 }
2066
2067 int copy_mount_options(const void __user * data, unsigned long *where)
2068 {
2069 int i;
2070 unsigned long page;
2071 unsigned long size;
2072
2073 *where = 0;
2074 if (!data)
2075 return 0;
2076
2077 if (!(page = __get_free_page(GFP_KERNEL)))
2078 return -ENOMEM;
2079
2080 /* We only care that *some* data at the address the user
2081 * gave us is valid. Just in case, we'll zero
2082 * the remainder of the page.
2083 */
2084 /* copy_from_user cannot cross TASK_SIZE ! */
2085 size = TASK_SIZE - (unsigned long)data;
2086 if (size > PAGE_SIZE)
2087 size = PAGE_SIZE;
2088
2089 i = size - exact_copy_from_user((void *)page, data, size);
2090 if (!i) {
2091 free_page(page);
2092 return -EFAULT;
2093 }
2094 if (i != PAGE_SIZE)
2095 memset((char *)page + i, 0, PAGE_SIZE - i);
2096 *where = page;
2097 return 0;
2098 }
2099
2100 int copy_mount_string(const void __user *data, char **where)
2101 {
2102 char *tmp;
2103
2104 if (!data) {
2105 *where = NULL;
2106 return 0;
2107 }
2108
2109 tmp = strndup_user(data, PAGE_SIZE);
2110 if (IS_ERR(tmp))
2111 return PTR_ERR(tmp);
2112
2113 *where = tmp;
2114 return 0;
2115 }
2116
2117 /*
2118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2120 *
2121 * data is a (void *) that can point to any structure up to
2122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2123 * information (or be NULL).
2124 *
2125 * Pre-0.97 versions of mount() didn't have a flags word.
2126 * When the flags word was introduced its top half was required
2127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2128 * Therefore, if this magic number is present, it carries no information
2129 * and must be discarded.
2130 */
2131 long do_mount(char *dev_name, char *dir_name, char *type_page,
2132 unsigned long flags, void *data_page)
2133 {
2134 struct path path;
2135 int retval = 0;
2136 int mnt_flags = 0;
2137
2138 /* Discard magic */
2139 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2140 flags &= ~MS_MGC_MSK;
2141
2142 /* Basic sanity checks */
2143
2144 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2145 return -EINVAL;
2146
2147 if (data_page)
2148 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2149
2150 /* ... and get the mountpoint */
2151 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2152 if (retval)
2153 return retval;
2154
2155 retval = security_sb_mount(dev_name, &path,
2156 type_page, flags, data_page);
2157 if (retval)
2158 goto dput_out;
2159
2160 /* Default to relatime unless overriden */
2161 if (!(flags & MS_NOATIME))
2162 mnt_flags |= MNT_RELATIME;
2163
2164 /* Separate the per-mountpoint flags */
2165 if (flags & MS_NOSUID)
2166 mnt_flags |= MNT_NOSUID;
2167 if (flags & MS_NODEV)
2168 mnt_flags |= MNT_NODEV;
2169 if (flags & MS_NOEXEC)
2170 mnt_flags |= MNT_NOEXEC;
2171 if (flags & MS_NOATIME)
2172 mnt_flags |= MNT_NOATIME;
2173 if (flags & MS_NODIRATIME)
2174 mnt_flags |= MNT_NODIRATIME;
2175 if (flags & MS_STRICTATIME)
2176 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2177 if (flags & MS_RDONLY)
2178 mnt_flags |= MNT_READONLY;
2179
2180 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2181 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2182 MS_STRICTATIME);
2183
2184 if (flags & MS_REMOUNT)
2185 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2186 data_page);
2187 else if (flags & MS_BIND)
2188 retval = do_loopback(&path, dev_name, flags & MS_REC);
2189 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2190 retval = do_change_type(&path, flags);
2191 else if (flags & MS_MOVE)
2192 retval = do_move_mount(&path, dev_name);
2193 else
2194 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2195 dev_name, data_page);
2196 dput_out:
2197 path_put(&path);
2198 return retval;
2199 }
2200
2201 static struct mnt_namespace *alloc_mnt_ns(void)
2202 {
2203 struct mnt_namespace *new_ns;
2204
2205 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2206 if (!new_ns)
2207 return ERR_PTR(-ENOMEM);
2208 atomic_set(&new_ns->count, 1);
2209 new_ns->root = NULL;
2210 INIT_LIST_HEAD(&new_ns->list);
2211 init_waitqueue_head(&new_ns->poll);
2212 new_ns->event = 0;
2213 return new_ns;
2214 }
2215
2216 /*
2217 * Allocate a new namespace structure and populate it with contents
2218 * copied from the namespace of the passed in task structure.
2219 */
2220 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2221 struct fs_struct *fs)
2222 {
2223 struct mnt_namespace *new_ns;
2224 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2225 struct mount *p, *q;
2226 struct mount *old = mnt_ns->root;
2227 struct mount *new;
2228
2229 new_ns = alloc_mnt_ns();
2230 if (IS_ERR(new_ns))
2231 return new_ns;
2232
2233 down_write(&namespace_sem);
2234 /* First pass: copy the tree topology */
2235 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2236 if (IS_ERR(new)) {
2237 up_write(&namespace_sem);
2238 kfree(new_ns);
2239 return ERR_CAST(new);
2240 }
2241 new_ns->root = new;
2242 br_write_lock(&vfsmount_lock);
2243 list_add_tail(&new_ns->list, &new->mnt_list);
2244 br_write_unlock(&vfsmount_lock);
2245
2246 /*
2247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2248 * as belonging to new namespace. We have already acquired a private
2249 * fs_struct, so tsk->fs->lock is not needed.
2250 */
2251 p = old;
2252 q = new;
2253 while (p) {
2254 q->mnt_ns = new_ns;
2255 if (fs) {
2256 if (&p->mnt == fs->root.mnt) {
2257 fs->root.mnt = mntget(&q->mnt);
2258 rootmnt = &p->mnt;
2259 }
2260 if (&p->mnt == fs->pwd.mnt) {
2261 fs->pwd.mnt = mntget(&q->mnt);
2262 pwdmnt = &p->mnt;
2263 }
2264 }
2265 p = next_mnt(p, old);
2266 q = next_mnt(q, new);
2267 }
2268 up_write(&namespace_sem);
2269
2270 if (rootmnt)
2271 mntput(rootmnt);
2272 if (pwdmnt)
2273 mntput(pwdmnt);
2274
2275 return new_ns;
2276 }
2277
2278 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2279 struct fs_struct *new_fs)
2280 {
2281 struct mnt_namespace *new_ns;
2282
2283 BUG_ON(!ns);
2284 get_mnt_ns(ns);
2285
2286 if (!(flags & CLONE_NEWNS))
2287 return ns;
2288
2289 new_ns = dup_mnt_ns(ns, new_fs);
2290
2291 put_mnt_ns(ns);
2292 return new_ns;
2293 }
2294
2295 /**
2296 * create_mnt_ns - creates a private namespace and adds a root filesystem
2297 * @mnt: pointer to the new root filesystem mountpoint
2298 */
2299 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2300 {
2301 struct mnt_namespace *new_ns = alloc_mnt_ns();
2302 if (!IS_ERR(new_ns)) {
2303 struct mount *mnt = real_mount(m);
2304 mnt->mnt_ns = new_ns;
2305 new_ns->root = mnt;
2306 list_add(&new_ns->list, &mnt->mnt_list);
2307 } else {
2308 mntput(m);
2309 }
2310 return new_ns;
2311 }
2312
2313 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2314 {
2315 struct mnt_namespace *ns;
2316 struct super_block *s;
2317 struct path path;
2318 int err;
2319
2320 ns = create_mnt_ns(mnt);
2321 if (IS_ERR(ns))
2322 return ERR_CAST(ns);
2323
2324 err = vfs_path_lookup(mnt->mnt_root, mnt,
2325 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2326
2327 put_mnt_ns(ns);
2328
2329 if (err)
2330 return ERR_PTR(err);
2331
2332 /* trade a vfsmount reference for active sb one */
2333 s = path.mnt->mnt_sb;
2334 atomic_inc(&s->s_active);
2335 mntput(path.mnt);
2336 /* lock the sucker */
2337 down_write(&s->s_umount);
2338 /* ... and return the root of (sub)tree on it */
2339 return path.dentry;
2340 }
2341 EXPORT_SYMBOL(mount_subtree);
2342
2343 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2344 char __user *, type, unsigned long, flags, void __user *, data)
2345 {
2346 int ret;
2347 char *kernel_type;
2348 char *kernel_dir;
2349 char *kernel_dev;
2350 unsigned long data_page;
2351
2352 ret = copy_mount_string(type, &kernel_type);
2353 if (ret < 0)
2354 goto out_type;
2355
2356 kernel_dir = getname(dir_name);
2357 if (IS_ERR(kernel_dir)) {
2358 ret = PTR_ERR(kernel_dir);
2359 goto out_dir;
2360 }
2361
2362 ret = copy_mount_string(dev_name, &kernel_dev);
2363 if (ret < 0)
2364 goto out_dev;
2365
2366 ret = copy_mount_options(data, &data_page);
2367 if (ret < 0)
2368 goto out_data;
2369
2370 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2371 (void *) data_page);
2372
2373 free_page(data_page);
2374 out_data:
2375 kfree(kernel_dev);
2376 out_dev:
2377 putname(kernel_dir);
2378 out_dir:
2379 kfree(kernel_type);
2380 out_type:
2381 return ret;
2382 }
2383
2384 /*
2385 * Return true if path is reachable from root
2386 *
2387 * namespace_sem or vfsmount_lock is held
2388 */
2389 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2390 const struct path *root)
2391 {
2392 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2393 dentry = mnt->mnt_mountpoint;
2394 mnt = mnt->mnt_parent;
2395 }
2396 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2397 }
2398
2399 int path_is_under(struct path *path1, struct path *path2)
2400 {
2401 int res;
2402 br_read_lock(&vfsmount_lock);
2403 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2404 br_read_unlock(&vfsmount_lock);
2405 return res;
2406 }
2407 EXPORT_SYMBOL(path_is_under);
2408
2409 /*
2410 * pivot_root Semantics:
2411 * Moves the root file system of the current process to the directory put_old,
2412 * makes new_root as the new root file system of the current process, and sets
2413 * root/cwd of all processes which had them on the current root to new_root.
2414 *
2415 * Restrictions:
2416 * The new_root and put_old must be directories, and must not be on the
2417 * same file system as the current process root. The put_old must be
2418 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2419 * pointed to by put_old must yield the same directory as new_root. No other
2420 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2421 *
2422 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2423 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2424 * in this situation.
2425 *
2426 * Notes:
2427 * - we don't move root/cwd if they are not at the root (reason: if something
2428 * cared enough to change them, it's probably wrong to force them elsewhere)
2429 * - it's okay to pick a root that isn't the root of a file system, e.g.
2430 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2431 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2432 * first.
2433 */
2434 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2435 const char __user *, put_old)
2436 {
2437 struct path new, old, parent_path, root_parent, root;
2438 struct mount *new_mnt, *root_mnt;
2439 int error;
2440
2441 if (!capable(CAP_SYS_ADMIN))
2442 return -EPERM;
2443
2444 error = user_path_dir(new_root, &new);
2445 if (error)
2446 goto out0;
2447
2448 error = user_path_dir(put_old, &old);
2449 if (error)
2450 goto out1;
2451
2452 error = security_sb_pivotroot(&old, &new);
2453 if (error)
2454 goto out2;
2455
2456 get_fs_root(current->fs, &root);
2457 error = lock_mount(&old);
2458 if (error)
2459 goto out3;
2460
2461 error = -EINVAL;
2462 new_mnt = real_mount(new.mnt);
2463 root_mnt = real_mount(root.mnt);
2464 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2465 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2466 IS_MNT_SHARED(root_mnt->mnt_parent))
2467 goto out4;
2468 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2469 goto out4;
2470 error = -ENOENT;
2471 if (d_unlinked(new.dentry))
2472 goto out4;
2473 if (d_unlinked(old.dentry))
2474 goto out4;
2475 error = -EBUSY;
2476 if (new.mnt == root.mnt ||
2477 old.mnt == root.mnt)
2478 goto out4; /* loop, on the same file system */
2479 error = -EINVAL;
2480 if (root.mnt->mnt_root != root.dentry)
2481 goto out4; /* not a mountpoint */
2482 if (!mnt_has_parent(root_mnt))
2483 goto out4; /* not attached */
2484 if (new.mnt->mnt_root != new.dentry)
2485 goto out4; /* not a mountpoint */
2486 if (!mnt_has_parent(new_mnt))
2487 goto out4; /* not attached */
2488 /* make sure we can reach put_old from new_root */
2489 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2490 goto out4;
2491 br_write_lock(&vfsmount_lock);
2492 detach_mnt(new_mnt, &parent_path);
2493 detach_mnt(root_mnt, &root_parent);
2494 /* mount old root on put_old */
2495 attach_mnt(root_mnt, &old);
2496 /* mount new_root on / */
2497 attach_mnt(new_mnt, &root_parent);
2498 touch_mnt_namespace(current->nsproxy->mnt_ns);
2499 br_write_unlock(&vfsmount_lock);
2500 chroot_fs_refs(&root, &new);
2501 error = 0;
2502 out4:
2503 unlock_mount(&old);
2504 if (!error) {
2505 path_put(&root_parent);
2506 path_put(&parent_path);
2507 }
2508 out3:
2509 path_put(&root);
2510 out2:
2511 path_put(&old);
2512 out1:
2513 path_put(&new);
2514 out0:
2515 return error;
2516 }
2517
2518 static void __init init_mount_tree(void)
2519 {
2520 struct vfsmount *mnt;
2521 struct mnt_namespace *ns;
2522 struct path root;
2523
2524 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2525 if (IS_ERR(mnt))
2526 panic("Can't create rootfs");
2527
2528 ns = create_mnt_ns(mnt);
2529 if (IS_ERR(ns))
2530 panic("Can't allocate initial namespace");
2531
2532 init_task.nsproxy->mnt_ns = ns;
2533 get_mnt_ns(ns);
2534
2535 root.mnt = mnt;
2536 root.dentry = mnt->mnt_root;
2537
2538 set_fs_pwd(current->fs, &root);
2539 set_fs_root(current->fs, &root);
2540 }
2541
2542 void __init mnt_init(void)
2543 {
2544 unsigned u;
2545 int err;
2546
2547 init_rwsem(&namespace_sem);
2548
2549 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2550 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2551
2552 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2553
2554 if (!mount_hashtable)
2555 panic("Failed to allocate mount hash table\n");
2556
2557 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2558
2559 for (u = 0; u < HASH_SIZE; u++)
2560 INIT_LIST_HEAD(&mount_hashtable[u]);
2561
2562 br_lock_init(&vfsmount_lock);
2563
2564 err = sysfs_init();
2565 if (err)
2566 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2567 __func__, err);
2568 fs_kobj = kobject_create_and_add("fs", NULL);
2569 if (!fs_kobj)
2570 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2571 init_rootfs();
2572 init_mount_tree();
2573 }
2574
2575 void put_mnt_ns(struct mnt_namespace *ns)
2576 {
2577 LIST_HEAD(umount_list);
2578
2579 if (!atomic_dec_and_test(&ns->count))
2580 return;
2581 down_write(&namespace_sem);
2582 br_write_lock(&vfsmount_lock);
2583 umount_tree(ns->root, 0, &umount_list);
2584 br_write_unlock(&vfsmount_lock);
2585 up_write(&namespace_sem);
2586 release_mounts(&umount_list);
2587 kfree(ns);
2588 }
2589
2590 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2591 {
2592 struct vfsmount *mnt;
2593 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2594 if (!IS_ERR(mnt)) {
2595 /*
2596 * it is a longterm mount, don't release mnt until
2597 * we unmount before file sys is unregistered
2598 */
2599 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2600 }
2601 return mnt;
2602 }
2603 EXPORT_SYMBOL_GPL(kern_mount_data);
2604
2605 void kern_unmount(struct vfsmount *mnt)
2606 {
2607 /* release long term mount so mount point can be released */
2608 if (!IS_ERR_OR_NULL(mnt)) {
2609 br_write_lock(&vfsmount_lock);
2610 real_mount(mnt)->mnt_ns = NULL;
2611 br_write_unlock(&vfsmount_lock);
2612 mntput(mnt);
2613 }
2614 }
2615 EXPORT_SYMBOL(kern_unmount);
2616
2617 bool our_mnt(struct vfsmount *mnt)
2618 {
2619 return check_mnt(real_mount(mnt));
2620 }
This page took 0.085771 seconds and 5 git commands to generate.