Merge branches 'for-3.9/sony' and 'for-3.9/steelseries' into for-linus
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
25 #include "pnode.h"
26 #include "internal.h"
27
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41
42 /* /sys/fs */
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
45
46 /*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54 DEFINE_BRLOCK(vfsmount_lock);
55
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57 {
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
62 }
63
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
66 /*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
70 static int mnt_alloc_id(struct mount *mnt)
71 {
72 int res;
73
74 retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
78 if (!res)
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85 }
86
87 static void mnt_free_id(struct mount *mnt)
88 {
89 int id = mnt->mnt_id;
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
94 spin_unlock(&mnt_id_lock);
95 }
96
97 /*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
102 static int mnt_alloc_group_id(struct mount *mnt)
103 {
104 int res;
105
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
111 &mnt->mnt_group_id);
112 if (!res)
113 mnt_group_start = mnt->mnt_group_id + 1;
114
115 return res;
116 }
117
118 /*
119 * Release a peer group ID
120 */
121 void mnt_release_group_id(struct mount *mnt)
122 {
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
128 }
129
130 /*
131 * vfsmount lock must be held for read
132 */
133 static inline void mnt_add_count(struct mount *mnt, int n)
134 {
135 #ifdef CONFIG_SMP
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
137 #else
138 preempt_disable();
139 mnt->mnt_count += n;
140 preempt_enable();
141 #endif
142 }
143
144 /*
145 * vfsmount lock must be held for write
146 */
147 unsigned int mnt_get_count(struct mount *mnt)
148 {
149 #ifdef CONFIG_SMP
150 unsigned int count = 0;
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 }
156
157 return count;
158 #else
159 return mnt->mnt_count;
160 #endif
161 }
162
163 static struct mount *alloc_vfsmnt(const char *name)
164 {
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
167 int err;
168
169 err = mnt_alloc_id(mnt);
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
176 goto out_free_id;
177 }
178
179 #ifdef CONFIG_SMP
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
182 goto out_free_devname;
183
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 #else
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
188 #endif
189
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
200 #endif
201 }
202 return mnt;
203
204 #ifdef CONFIG_SMP
205 out_free_devname:
206 kfree(mnt->mnt_devname);
207 #endif
208 out_free_id:
209 mnt_free_id(mnt);
210 out_free_cache:
211 kmem_cache_free(mnt_cache, mnt);
212 return NULL;
213 }
214
215 /*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223 /*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234 int __mnt_is_readonly(struct vfsmount *mnt)
235 {
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
244 static inline void mnt_inc_writers(struct mount *mnt)
245 {
246 #ifdef CONFIG_SMP
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
248 #else
249 mnt->mnt_writers++;
250 #endif
251 }
252
253 static inline void mnt_dec_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
257 #else
258 mnt->mnt_writers--;
259 #endif
260 }
261
262 static unsigned int mnt_get_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 unsigned int count = 0;
266 int cpu;
267
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 }
271
272 return count;
273 #else
274 return mnt->mnt_writers;
275 #endif
276 }
277
278 static int mnt_is_readonly(struct vfsmount *mnt)
279 {
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285 }
286
287 /*
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
292 */
293 /**
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
302 */
303 int __mnt_want_write(struct vfsmount *m)
304 {
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329
330 return ret;
331 }
332
333 /**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342 int mnt_want_write(struct vfsmount *m)
343 {
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
350 return ret;
351 }
352 EXPORT_SYMBOL_GPL(mnt_want_write);
353
354 /**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366 int mnt_clone_write(struct vfsmount *mnt)
367 {
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
372 mnt_inc_writers(real_mount(mnt));
373 preempt_enable();
374 return 0;
375 }
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378 /**
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
381 *
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
384 */
385 int __mnt_want_write_file(struct file *file)
386 {
387 struct inode *inode = file->f_dentry->d_inode;
388
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
391 else
392 return mnt_clone_write(file->f_path.mnt);
393 }
394
395 /**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402 int mnt_want_write_file(struct file *file)
403 {
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411 }
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
414 /**
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
421 */
422 void __mnt_drop_write(struct vfsmount *mnt)
423 {
424 preempt_disable();
425 mnt_dec_writers(real_mount(mnt));
426 preempt_enable();
427 }
428
429 /**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437 void mnt_drop_write(struct vfsmount *mnt)
438 {
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441 }
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
443
444 void __mnt_drop_write_file(struct file *file)
445 {
446 __mnt_drop_write(file->f_path.mnt);
447 }
448
449 void mnt_drop_write_file(struct file *file)
450 {
451 mnt_drop_write(file->f_path.mnt);
452 }
453 EXPORT_SYMBOL(mnt_drop_write_file);
454
455 static int mnt_make_readonly(struct mount *mnt)
456 {
457 int ret = 0;
458
459 br_write_lock(&vfsmount_lock);
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
461 /*
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
464 */
465 smp_mb();
466
467 /*
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
482 */
483 if (mnt_get_writers(mnt) > 0)
484 ret = -EBUSY;
485 else
486 mnt->mnt.mnt_flags |= MNT_READONLY;
487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 br_write_unlock(&vfsmount_lock);
494 return ret;
495 }
496
497 static void __mnt_unmake_readonly(struct mount *mnt)
498 {
499 br_write_lock(&vfsmount_lock);
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 br_write_unlock(&vfsmount_lock);
502 }
503
504 int sb_prepare_remount_readonly(struct super_block *sb)
505 {
506 struct mount *mnt;
507 int err = 0;
508
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
513 br_write_lock(&vfsmount_lock);
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
535 br_write_unlock(&vfsmount_lock);
536
537 return err;
538 }
539
540 static void free_vfsmnt(struct mount *mnt)
541 {
542 kfree(mnt->mnt_devname);
543 mnt_free_id(mnt);
544 #ifdef CONFIG_SMP
545 free_percpu(mnt->mnt_pcp);
546 #endif
547 kmem_cache_free(mnt_cache, mnt);
548 }
549
550 /*
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
553 * vfsmount_lock must be held for read or write.
554 */
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
556 int dir)
557 {
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
560 struct mount *p, *found = NULL;
561
562 for (;;) {
563 tmp = dir ? tmp->next : tmp->prev;
564 p = NULL;
565 if (tmp == head)
566 break;
567 p = list_entry(tmp, struct mount, mnt_hash);
568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
569 found = p;
570 break;
571 }
572 }
573 return found;
574 }
575
576 /*
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
591 */
592 struct vfsmount *lookup_mnt(struct path *path)
593 {
594 struct mount *child_mnt;
595
596 br_read_lock(&vfsmount_lock);
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
600 br_read_unlock(&vfsmount_lock);
601 return &child_mnt->mnt;
602 } else {
603 br_read_unlock(&vfsmount_lock);
604 return NULL;
605 }
606 }
607
608 static inline int check_mnt(struct mount *mnt)
609 {
610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
611 }
612
613 /*
614 * vfsmount lock must be held for write
615 */
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
617 {
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622 }
623
624 /*
625 * vfsmount lock must be held for write
626 */
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
628 {
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633 }
634
635 /*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
639 static void dentry_reset_mounted(struct dentry *dentry)
640 {
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
644 struct mount *p;
645
646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 if (p->mnt_mountpoint == dentry)
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654 }
655
656 /*
657 * vfsmount lock must be held for write
658 */
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
660 {
661 old_path->dentry = mnt->mnt_mountpoint;
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 list_del_init(&mnt->mnt_child);
666 list_del_init(&mnt->mnt_hash);
667 dentry_reset_mounted(old_path->dentry);
668 }
669
670 /*
671 * vfsmount lock must be held for write
672 */
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 struct mount *child_mnt)
675 {
676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
677 child_mnt->mnt_mountpoint = dget(dentry);
678 child_mnt->mnt_parent = mnt;
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
682 }
683
684 /*
685 * vfsmount lock must be held for write
686 */
687 static void attach_mnt(struct mount *mnt, struct path *path)
688 {
689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 hash(path->mnt, path->dentry));
692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
693 }
694
695 /*
696 * vfsmount lock must be held for write
697 */
698 static void commit_tree(struct mount *mnt)
699 {
700 struct mount *parent = mnt->mnt_parent;
701 struct mount *m;
702 LIST_HEAD(head);
703 struct mnt_namespace *n = parent->mnt_ns;
704
705 BUG_ON(parent == mnt);
706
707 list_add_tail(&head, &mnt->mnt_list);
708 list_for_each_entry(m, &head, mnt_list)
709 m->mnt_ns = n;
710
711 list_splice(&head, n->list.prev);
712
713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 hash(&parent->mnt, mnt->mnt_mountpoint));
715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 touch_mnt_namespace(n);
717 }
718
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
720 {
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
723 while (1) {
724 if (p == root)
725 return NULL;
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
728 break;
729 p = p->mnt_parent;
730 }
731 }
732 return list_entry(next, struct mount, mnt_child);
733 }
734
735 static struct mount *skip_mnt_tree(struct mount *p)
736 {
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
741 }
742 return p;
743 }
744
745 struct vfsmount *
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747 {
748 struct mount *mnt;
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
759 mnt->mnt.mnt_flags = MNT_INTERNAL;
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 mnt->mnt_parent = mnt;
771 br_write_lock(&vfsmount_lock);
772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 br_write_unlock(&vfsmount_lock);
774 return &mnt->mnt;
775 }
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
779 int flag)
780 {
781 struct super_block *sb = old->mnt.mnt_sb;
782 struct mount *mnt;
783 int err;
784
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
788
789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
793
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
798 }
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
809
810 if ((flag & CL_SLAVE) ||
811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
812 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 mnt->mnt_master = old;
814 CLEAR_MNT_SHARED(mnt);
815 } else if (!(flag & CL_PRIVATE)) {
816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 list_add(&mnt->mnt_share, &old->mnt_share);
818 if (IS_MNT_SLAVE(old))
819 list_add(&mnt->mnt_slave, &old->mnt_slave);
820 mnt->mnt_master = old->mnt_master;
821 }
822 if (flag & CL_MAKE_SHARED)
823 set_mnt_shared(mnt);
824
825 /* stick the duplicate mount on the same expiry list
826 * as the original if that was on one */
827 if (flag & CL_EXPIRE) {
828 if (!list_empty(&old->mnt_expire))
829 list_add(&mnt->mnt_expire, &old->mnt_expire);
830 }
831
832 return mnt;
833
834 out_free:
835 free_vfsmnt(mnt);
836 return ERR_PTR(err);
837 }
838
839 static inline void mntfree(struct mount *mnt)
840 {
841 struct vfsmount *m = &mnt->mnt;
842 struct super_block *sb = m->mnt_sb;
843
844 /*
845 * This probably indicates that somebody messed
846 * up a mnt_want/drop_write() pair. If this
847 * happens, the filesystem was probably unable
848 * to make r/w->r/o transitions.
849 */
850 /*
851 * The locking used to deal with mnt_count decrement provides barriers,
852 * so mnt_get_writers() below is safe.
853 */
854 WARN_ON(mnt_get_writers(mnt));
855 fsnotify_vfsmount_delete(m);
856 dput(m->mnt_root);
857 free_vfsmnt(mnt);
858 deactivate_super(sb);
859 }
860
861 static void mntput_no_expire(struct mount *mnt)
862 {
863 put_again:
864 #ifdef CONFIG_SMP
865 br_read_lock(&vfsmount_lock);
866 if (likely(mnt->mnt_ns)) {
867 /* shouldn't be the last one */
868 mnt_add_count(mnt, -1);
869 br_read_unlock(&vfsmount_lock);
870 return;
871 }
872 br_read_unlock(&vfsmount_lock);
873
874 br_write_lock(&vfsmount_lock);
875 mnt_add_count(mnt, -1);
876 if (mnt_get_count(mnt)) {
877 br_write_unlock(&vfsmount_lock);
878 return;
879 }
880 #else
881 mnt_add_count(mnt, -1);
882 if (likely(mnt_get_count(mnt)))
883 return;
884 br_write_lock(&vfsmount_lock);
885 #endif
886 if (unlikely(mnt->mnt_pinned)) {
887 mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 mnt->mnt_pinned = 0;
889 br_write_unlock(&vfsmount_lock);
890 acct_auto_close_mnt(&mnt->mnt);
891 goto put_again;
892 }
893
894 list_del(&mnt->mnt_instance);
895 br_write_unlock(&vfsmount_lock);
896 mntfree(mnt);
897 }
898
899 void mntput(struct vfsmount *mnt)
900 {
901 if (mnt) {
902 struct mount *m = real_mount(mnt);
903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
904 if (unlikely(m->mnt_expiry_mark))
905 m->mnt_expiry_mark = 0;
906 mntput_no_expire(m);
907 }
908 }
909 EXPORT_SYMBOL(mntput);
910
911 struct vfsmount *mntget(struct vfsmount *mnt)
912 {
913 if (mnt)
914 mnt_add_count(real_mount(mnt), 1);
915 return mnt;
916 }
917 EXPORT_SYMBOL(mntget);
918
919 void mnt_pin(struct vfsmount *mnt)
920 {
921 br_write_lock(&vfsmount_lock);
922 real_mount(mnt)->mnt_pinned++;
923 br_write_unlock(&vfsmount_lock);
924 }
925 EXPORT_SYMBOL(mnt_pin);
926
927 void mnt_unpin(struct vfsmount *m)
928 {
929 struct mount *mnt = real_mount(m);
930 br_write_lock(&vfsmount_lock);
931 if (mnt->mnt_pinned) {
932 mnt_add_count(mnt, 1);
933 mnt->mnt_pinned--;
934 }
935 br_write_unlock(&vfsmount_lock);
936 }
937 EXPORT_SYMBOL(mnt_unpin);
938
939 static inline void mangle(struct seq_file *m, const char *s)
940 {
941 seq_escape(m, s, " \t\n\\");
942 }
943
944 /*
945 * Simple .show_options callback for filesystems which don't want to
946 * implement more complex mount option showing.
947 *
948 * See also save_mount_options().
949 */
950 int generic_show_options(struct seq_file *m, struct dentry *root)
951 {
952 const char *options;
953
954 rcu_read_lock();
955 options = rcu_dereference(root->d_sb->s_options);
956
957 if (options != NULL && options[0]) {
958 seq_putc(m, ',');
959 mangle(m, options);
960 }
961 rcu_read_unlock();
962
963 return 0;
964 }
965 EXPORT_SYMBOL(generic_show_options);
966
967 /*
968 * If filesystem uses generic_show_options(), this function should be
969 * called from the fill_super() callback.
970 *
971 * The .remount_fs callback usually needs to be handled in a special
972 * way, to make sure, that previous options are not overwritten if the
973 * remount fails.
974 *
975 * Also note, that if the filesystem's .remount_fs function doesn't
976 * reset all options to their default value, but changes only newly
977 * given options, then the displayed options will not reflect reality
978 * any more.
979 */
980 void save_mount_options(struct super_block *sb, char *options)
981 {
982 BUG_ON(sb->s_options);
983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
984 }
985 EXPORT_SYMBOL(save_mount_options);
986
987 void replace_mount_options(struct super_block *sb, char *options)
988 {
989 char *old = sb->s_options;
990 rcu_assign_pointer(sb->s_options, options);
991 if (old) {
992 synchronize_rcu();
993 kfree(old);
994 }
995 }
996 EXPORT_SYMBOL(replace_mount_options);
997
998 #ifdef CONFIG_PROC_FS
999 /* iterator; we want it to have access to namespace_sem, thus here... */
1000 static void *m_start(struct seq_file *m, loff_t *pos)
1001 {
1002 struct proc_mounts *p = proc_mounts(m);
1003
1004 down_read(&namespace_sem);
1005 return seq_list_start(&p->ns->list, *pos);
1006 }
1007
1008 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009 {
1010 struct proc_mounts *p = proc_mounts(m);
1011
1012 return seq_list_next(v, &p->ns->list, pos);
1013 }
1014
1015 static void m_stop(struct seq_file *m, void *v)
1016 {
1017 up_read(&namespace_sem);
1018 }
1019
1020 static int m_show(struct seq_file *m, void *v)
1021 {
1022 struct proc_mounts *p = proc_mounts(m);
1023 struct mount *r = list_entry(v, struct mount, mnt_list);
1024 return p->show(m, &r->mnt);
1025 }
1026
1027 const struct seq_operations mounts_op = {
1028 .start = m_start,
1029 .next = m_next,
1030 .stop = m_stop,
1031 .show = m_show,
1032 };
1033 #endif /* CONFIG_PROC_FS */
1034
1035 /**
1036 * may_umount_tree - check if a mount tree is busy
1037 * @mnt: root of mount tree
1038 *
1039 * This is called to check if a tree of mounts has any
1040 * open files, pwds, chroots or sub mounts that are
1041 * busy.
1042 */
1043 int may_umount_tree(struct vfsmount *m)
1044 {
1045 struct mount *mnt = real_mount(m);
1046 int actual_refs = 0;
1047 int minimum_refs = 0;
1048 struct mount *p;
1049 BUG_ON(!m);
1050
1051 /* write lock needed for mnt_get_count */
1052 br_write_lock(&vfsmount_lock);
1053 for (p = mnt; p; p = next_mnt(p, mnt)) {
1054 actual_refs += mnt_get_count(p);
1055 minimum_refs += 2;
1056 }
1057 br_write_unlock(&vfsmount_lock);
1058
1059 if (actual_refs > minimum_refs)
1060 return 0;
1061
1062 return 1;
1063 }
1064
1065 EXPORT_SYMBOL(may_umount_tree);
1066
1067 /**
1068 * may_umount - check if a mount point is busy
1069 * @mnt: root of mount
1070 *
1071 * This is called to check if a mount point has any
1072 * open files, pwds, chroots or sub mounts. If the
1073 * mount has sub mounts this will return busy
1074 * regardless of whether the sub mounts are busy.
1075 *
1076 * Doesn't take quota and stuff into account. IOW, in some cases it will
1077 * give false negatives. The main reason why it's here is that we need
1078 * a non-destructive way to look for easily umountable filesystems.
1079 */
1080 int may_umount(struct vfsmount *mnt)
1081 {
1082 int ret = 1;
1083 down_read(&namespace_sem);
1084 br_write_lock(&vfsmount_lock);
1085 if (propagate_mount_busy(real_mount(mnt), 2))
1086 ret = 0;
1087 br_write_unlock(&vfsmount_lock);
1088 up_read(&namespace_sem);
1089 return ret;
1090 }
1091
1092 EXPORT_SYMBOL(may_umount);
1093
1094 void release_mounts(struct list_head *head)
1095 {
1096 struct mount *mnt;
1097 while (!list_empty(head)) {
1098 mnt = list_first_entry(head, struct mount, mnt_hash);
1099 list_del_init(&mnt->mnt_hash);
1100 if (mnt_has_parent(mnt)) {
1101 struct dentry *dentry;
1102 struct mount *m;
1103
1104 br_write_lock(&vfsmount_lock);
1105 dentry = mnt->mnt_mountpoint;
1106 m = mnt->mnt_parent;
1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1108 mnt->mnt_parent = mnt;
1109 m->mnt_ghosts--;
1110 br_write_unlock(&vfsmount_lock);
1111 dput(dentry);
1112 mntput(&m->mnt);
1113 }
1114 mntput(&mnt->mnt);
1115 }
1116 }
1117
1118 /*
1119 * vfsmount lock must be held for write
1120 * namespace_sem must be held for write
1121 */
1122 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1123 {
1124 LIST_HEAD(tmp_list);
1125 struct mount *p;
1126
1127 for (p = mnt; p; p = next_mnt(p, mnt))
1128 list_move(&p->mnt_hash, &tmp_list);
1129
1130 if (propagate)
1131 propagate_umount(&tmp_list);
1132
1133 list_for_each_entry(p, &tmp_list, mnt_hash) {
1134 list_del_init(&p->mnt_expire);
1135 list_del_init(&p->mnt_list);
1136 __touch_mnt_namespace(p->mnt_ns);
1137 p->mnt_ns = NULL;
1138 list_del_init(&p->mnt_child);
1139 if (mnt_has_parent(p)) {
1140 p->mnt_parent->mnt_ghosts++;
1141 dentry_reset_mounted(p->mnt_mountpoint);
1142 }
1143 change_mnt_propagation(p, MS_PRIVATE);
1144 }
1145 list_splice(&tmp_list, kill);
1146 }
1147
1148 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1149
1150 static int do_umount(struct mount *mnt, int flags)
1151 {
1152 struct super_block *sb = mnt->mnt.mnt_sb;
1153 int retval;
1154 LIST_HEAD(umount_list);
1155
1156 retval = security_sb_umount(&mnt->mnt, flags);
1157 if (retval)
1158 return retval;
1159
1160 /*
1161 * Allow userspace to request a mountpoint be expired rather than
1162 * unmounting unconditionally. Unmount only happens if:
1163 * (1) the mark is already set (the mark is cleared by mntput())
1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 */
1166 if (flags & MNT_EXPIRE) {
1167 if (&mnt->mnt == current->fs->root.mnt ||
1168 flags & (MNT_FORCE | MNT_DETACH))
1169 return -EINVAL;
1170
1171 /*
1172 * probably don't strictly need the lock here if we examined
1173 * all race cases, but it's a slowpath.
1174 */
1175 br_write_lock(&vfsmount_lock);
1176 if (mnt_get_count(mnt) != 2) {
1177 br_write_unlock(&vfsmount_lock);
1178 return -EBUSY;
1179 }
1180 br_write_unlock(&vfsmount_lock);
1181
1182 if (!xchg(&mnt->mnt_expiry_mark, 1))
1183 return -EAGAIN;
1184 }
1185
1186 /*
1187 * If we may have to abort operations to get out of this
1188 * mount, and they will themselves hold resources we must
1189 * allow the fs to do things. In the Unix tradition of
1190 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 * might fail to complete on the first run through as other tasks
1192 * must return, and the like. Thats for the mount program to worry
1193 * about for the moment.
1194 */
1195
1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1197 sb->s_op->umount_begin(sb);
1198 }
1199
1200 /*
1201 * No sense to grab the lock for this test, but test itself looks
1202 * somewhat bogus. Suggestions for better replacement?
1203 * Ho-hum... In principle, we might treat that as umount + switch
1204 * to rootfs. GC would eventually take care of the old vfsmount.
1205 * Actually it makes sense, especially if rootfs would contain a
1206 * /reboot - static binary that would close all descriptors and
1207 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 */
1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1210 /*
1211 * Special case for "unmounting" root ...
1212 * we just try to remount it readonly.
1213 */
1214 down_write(&sb->s_umount);
1215 if (!(sb->s_flags & MS_RDONLY))
1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1217 up_write(&sb->s_umount);
1218 return retval;
1219 }
1220
1221 down_write(&namespace_sem);
1222 br_write_lock(&vfsmount_lock);
1223 event++;
1224
1225 if (!(flags & MNT_DETACH))
1226 shrink_submounts(mnt, &umount_list);
1227
1228 retval = -EBUSY;
1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1230 if (!list_empty(&mnt->mnt_list))
1231 umount_tree(mnt, 1, &umount_list);
1232 retval = 0;
1233 }
1234 br_write_unlock(&vfsmount_lock);
1235 up_write(&namespace_sem);
1236 release_mounts(&umount_list);
1237 return retval;
1238 }
1239
1240 /*
1241 * Now umount can handle mount points as well as block devices.
1242 * This is important for filesystems which use unnamed block devices.
1243 *
1244 * We now support a flag for forced unmount like the other 'big iron'
1245 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1246 */
1247
1248 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1249 {
1250 struct path path;
1251 struct mount *mnt;
1252 int retval;
1253 int lookup_flags = 0;
1254
1255 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1256 return -EINVAL;
1257
1258 if (!(flags & UMOUNT_NOFOLLOW))
1259 lookup_flags |= LOOKUP_FOLLOW;
1260
1261 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1262 if (retval)
1263 goto out;
1264 mnt = real_mount(path.mnt);
1265 retval = -EINVAL;
1266 if (path.dentry != path.mnt->mnt_root)
1267 goto dput_and_out;
1268 if (!check_mnt(mnt))
1269 goto dput_and_out;
1270
1271 retval = -EPERM;
1272 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1273 goto dput_and_out;
1274
1275 retval = do_umount(mnt, flags);
1276 dput_and_out:
1277 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1278 dput(path.dentry);
1279 mntput_no_expire(mnt);
1280 out:
1281 return retval;
1282 }
1283
1284 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1285
1286 /*
1287 * The 2.0 compatible umount. No flags.
1288 */
1289 SYSCALL_DEFINE1(oldumount, char __user *, name)
1290 {
1291 return sys_umount(name, 0);
1292 }
1293
1294 #endif
1295
1296 static int mount_is_safe(struct path *path)
1297 {
1298 if (ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1299 return 0;
1300 return -EPERM;
1301 #ifdef notyet
1302 if (S_ISLNK(path->dentry->d_inode->i_mode))
1303 return -EPERM;
1304 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1305 if (current_uid() != path->dentry->d_inode->i_uid)
1306 return -EPERM;
1307 }
1308 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1309 return -EPERM;
1310 return 0;
1311 #endif
1312 }
1313
1314 static bool mnt_ns_loop(struct path *path)
1315 {
1316 /* Could bind mounting the mount namespace inode cause a
1317 * mount namespace loop?
1318 */
1319 struct inode *inode = path->dentry->d_inode;
1320 struct proc_inode *ei;
1321 struct mnt_namespace *mnt_ns;
1322
1323 if (!proc_ns_inode(inode))
1324 return false;
1325
1326 ei = PROC_I(inode);
1327 if (ei->ns_ops != &mntns_operations)
1328 return false;
1329
1330 mnt_ns = ei->ns;
1331 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1332 }
1333
1334 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1335 int flag)
1336 {
1337 struct mount *res, *p, *q, *r;
1338 struct path path;
1339
1340 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1341 return ERR_PTR(-EINVAL);
1342
1343 res = q = clone_mnt(mnt, dentry, flag);
1344 if (IS_ERR(q))
1345 return q;
1346
1347 q->mnt_mountpoint = mnt->mnt_mountpoint;
1348
1349 p = mnt;
1350 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1351 struct mount *s;
1352 if (!is_subdir(r->mnt_mountpoint, dentry))
1353 continue;
1354
1355 for (s = r; s; s = next_mnt(s, r)) {
1356 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1357 s = skip_mnt_tree(s);
1358 continue;
1359 }
1360 while (p != s->mnt_parent) {
1361 p = p->mnt_parent;
1362 q = q->mnt_parent;
1363 }
1364 p = s;
1365 path.mnt = &q->mnt;
1366 path.dentry = p->mnt_mountpoint;
1367 q = clone_mnt(p, p->mnt.mnt_root, flag);
1368 if (IS_ERR(q))
1369 goto out;
1370 br_write_lock(&vfsmount_lock);
1371 list_add_tail(&q->mnt_list, &res->mnt_list);
1372 attach_mnt(q, &path);
1373 br_write_unlock(&vfsmount_lock);
1374 }
1375 }
1376 return res;
1377 out:
1378 if (res) {
1379 LIST_HEAD(umount_list);
1380 br_write_lock(&vfsmount_lock);
1381 umount_tree(res, 0, &umount_list);
1382 br_write_unlock(&vfsmount_lock);
1383 release_mounts(&umount_list);
1384 }
1385 return q;
1386 }
1387
1388 /* Caller should check returned pointer for errors */
1389
1390 struct vfsmount *collect_mounts(struct path *path)
1391 {
1392 struct mount *tree;
1393 down_write(&namespace_sem);
1394 tree = copy_tree(real_mount(path->mnt), path->dentry,
1395 CL_COPY_ALL | CL_PRIVATE);
1396 up_write(&namespace_sem);
1397 if (IS_ERR(tree))
1398 return NULL;
1399 return &tree->mnt;
1400 }
1401
1402 void drop_collected_mounts(struct vfsmount *mnt)
1403 {
1404 LIST_HEAD(umount_list);
1405 down_write(&namespace_sem);
1406 br_write_lock(&vfsmount_lock);
1407 umount_tree(real_mount(mnt), 0, &umount_list);
1408 br_write_unlock(&vfsmount_lock);
1409 up_write(&namespace_sem);
1410 release_mounts(&umount_list);
1411 }
1412
1413 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1414 struct vfsmount *root)
1415 {
1416 struct mount *mnt;
1417 int res = f(root, arg);
1418 if (res)
1419 return res;
1420 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1421 res = f(&mnt->mnt, arg);
1422 if (res)
1423 return res;
1424 }
1425 return 0;
1426 }
1427
1428 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1429 {
1430 struct mount *p;
1431
1432 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1433 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1434 mnt_release_group_id(p);
1435 }
1436 }
1437
1438 static int invent_group_ids(struct mount *mnt, bool recurse)
1439 {
1440 struct mount *p;
1441
1442 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1443 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1444 int err = mnt_alloc_group_id(p);
1445 if (err) {
1446 cleanup_group_ids(mnt, p);
1447 return err;
1448 }
1449 }
1450 }
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * @source_mnt : mount tree to be attached
1457 * @nd : place the mount tree @source_mnt is attached
1458 * @parent_nd : if non-null, detach the source_mnt from its parent and
1459 * store the parent mount and mountpoint dentry.
1460 * (done when source_mnt is moved)
1461 *
1462 * NOTE: in the table below explains the semantics when a source mount
1463 * of a given type is attached to a destination mount of a given type.
1464 * ---------------------------------------------------------------------------
1465 * | BIND MOUNT OPERATION |
1466 * |**************************************************************************
1467 * | source-->| shared | private | slave | unbindable |
1468 * | dest | | | | |
1469 * | | | | | | |
1470 * | v | | | | |
1471 * |**************************************************************************
1472 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1473 * | | | | | |
1474 * |non-shared| shared (+) | private | slave (*) | invalid |
1475 * ***************************************************************************
1476 * A bind operation clones the source mount and mounts the clone on the
1477 * destination mount.
1478 *
1479 * (++) the cloned mount is propagated to all the mounts in the propagation
1480 * tree of the destination mount and the cloned mount is added to
1481 * the peer group of the source mount.
1482 * (+) the cloned mount is created under the destination mount and is marked
1483 * as shared. The cloned mount is added to the peer group of the source
1484 * mount.
1485 * (+++) the mount is propagated to all the mounts in the propagation tree
1486 * of the destination mount and the cloned mount is made slave
1487 * of the same master as that of the source mount. The cloned mount
1488 * is marked as 'shared and slave'.
1489 * (*) the cloned mount is made a slave of the same master as that of the
1490 * source mount.
1491 *
1492 * ---------------------------------------------------------------------------
1493 * | MOVE MOUNT OPERATION |
1494 * |**************************************************************************
1495 * | source-->| shared | private | slave | unbindable |
1496 * | dest | | | | |
1497 * | | | | | | |
1498 * | v | | | | |
1499 * |**************************************************************************
1500 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1501 * | | | | | |
1502 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1503 * ***************************************************************************
1504 *
1505 * (+) the mount is moved to the destination. And is then propagated to
1506 * all the mounts in the propagation tree of the destination mount.
1507 * (+*) the mount is moved to the destination.
1508 * (+++) the mount is moved to the destination and is then propagated to
1509 * all the mounts belonging to the destination mount's propagation tree.
1510 * the mount is marked as 'shared and slave'.
1511 * (*) the mount continues to be a slave at the new location.
1512 *
1513 * if the source mount is a tree, the operations explained above is
1514 * applied to each mount in the tree.
1515 * Must be called without spinlocks held, since this function can sleep
1516 * in allocations.
1517 */
1518 static int attach_recursive_mnt(struct mount *source_mnt,
1519 struct path *path, struct path *parent_path)
1520 {
1521 LIST_HEAD(tree_list);
1522 struct mount *dest_mnt = real_mount(path->mnt);
1523 struct dentry *dest_dentry = path->dentry;
1524 struct mount *child, *p;
1525 int err;
1526
1527 if (IS_MNT_SHARED(dest_mnt)) {
1528 err = invent_group_ids(source_mnt, true);
1529 if (err)
1530 goto out;
1531 }
1532 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1533 if (err)
1534 goto out_cleanup_ids;
1535
1536 br_write_lock(&vfsmount_lock);
1537
1538 if (IS_MNT_SHARED(dest_mnt)) {
1539 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1540 set_mnt_shared(p);
1541 }
1542 if (parent_path) {
1543 detach_mnt(source_mnt, parent_path);
1544 attach_mnt(source_mnt, path);
1545 touch_mnt_namespace(source_mnt->mnt_ns);
1546 } else {
1547 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1548 commit_tree(source_mnt);
1549 }
1550
1551 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1552 list_del_init(&child->mnt_hash);
1553 commit_tree(child);
1554 }
1555 br_write_unlock(&vfsmount_lock);
1556
1557 return 0;
1558
1559 out_cleanup_ids:
1560 if (IS_MNT_SHARED(dest_mnt))
1561 cleanup_group_ids(source_mnt, NULL);
1562 out:
1563 return err;
1564 }
1565
1566 static int lock_mount(struct path *path)
1567 {
1568 struct vfsmount *mnt;
1569 retry:
1570 mutex_lock(&path->dentry->d_inode->i_mutex);
1571 if (unlikely(cant_mount(path->dentry))) {
1572 mutex_unlock(&path->dentry->d_inode->i_mutex);
1573 return -ENOENT;
1574 }
1575 down_write(&namespace_sem);
1576 mnt = lookup_mnt(path);
1577 if (likely(!mnt))
1578 return 0;
1579 up_write(&namespace_sem);
1580 mutex_unlock(&path->dentry->d_inode->i_mutex);
1581 path_put(path);
1582 path->mnt = mnt;
1583 path->dentry = dget(mnt->mnt_root);
1584 goto retry;
1585 }
1586
1587 static void unlock_mount(struct path *path)
1588 {
1589 up_write(&namespace_sem);
1590 mutex_unlock(&path->dentry->d_inode->i_mutex);
1591 }
1592
1593 static int graft_tree(struct mount *mnt, struct path *path)
1594 {
1595 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1596 return -EINVAL;
1597
1598 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1599 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1600 return -ENOTDIR;
1601
1602 if (d_unlinked(path->dentry))
1603 return -ENOENT;
1604
1605 return attach_recursive_mnt(mnt, path, NULL);
1606 }
1607
1608 /*
1609 * Sanity check the flags to change_mnt_propagation.
1610 */
1611
1612 static int flags_to_propagation_type(int flags)
1613 {
1614 int type = flags & ~(MS_REC | MS_SILENT);
1615
1616 /* Fail if any non-propagation flags are set */
1617 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1618 return 0;
1619 /* Only one propagation flag should be set */
1620 if (!is_power_of_2(type))
1621 return 0;
1622 return type;
1623 }
1624
1625 /*
1626 * recursively change the type of the mountpoint.
1627 */
1628 static int do_change_type(struct path *path, int flag)
1629 {
1630 struct mount *m;
1631 struct mount *mnt = real_mount(path->mnt);
1632 int recurse = flag & MS_REC;
1633 int type;
1634 int err = 0;
1635
1636 if (!ns_capable(mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
1637 return -EPERM;
1638
1639 if (path->dentry != path->mnt->mnt_root)
1640 return -EINVAL;
1641
1642 type = flags_to_propagation_type(flag);
1643 if (!type)
1644 return -EINVAL;
1645
1646 down_write(&namespace_sem);
1647 if (type == MS_SHARED) {
1648 err = invent_group_ids(mnt, recurse);
1649 if (err)
1650 goto out_unlock;
1651 }
1652
1653 br_write_lock(&vfsmount_lock);
1654 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1655 change_mnt_propagation(m, type);
1656 br_write_unlock(&vfsmount_lock);
1657
1658 out_unlock:
1659 up_write(&namespace_sem);
1660 return err;
1661 }
1662
1663 /*
1664 * do loopback mount.
1665 */
1666 static int do_loopback(struct path *path, const char *old_name,
1667 int recurse)
1668 {
1669 LIST_HEAD(umount_list);
1670 struct path old_path;
1671 struct mount *mnt = NULL, *old;
1672 int err = mount_is_safe(path);
1673 if (err)
1674 return err;
1675 if (!old_name || !*old_name)
1676 return -EINVAL;
1677 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1678 if (err)
1679 return err;
1680
1681 err = -EINVAL;
1682 if (mnt_ns_loop(&old_path))
1683 goto out;
1684
1685 err = lock_mount(path);
1686 if (err)
1687 goto out;
1688
1689 old = real_mount(old_path.mnt);
1690
1691 err = -EINVAL;
1692 if (IS_MNT_UNBINDABLE(old))
1693 goto out2;
1694
1695 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1696 goto out2;
1697
1698 if (recurse)
1699 mnt = copy_tree(old, old_path.dentry, 0);
1700 else
1701 mnt = clone_mnt(old, old_path.dentry, 0);
1702
1703 if (IS_ERR(mnt)) {
1704 err = PTR_ERR(mnt);
1705 goto out;
1706 }
1707
1708 err = graft_tree(mnt, path);
1709 if (err) {
1710 br_write_lock(&vfsmount_lock);
1711 umount_tree(mnt, 0, &umount_list);
1712 br_write_unlock(&vfsmount_lock);
1713 }
1714 out2:
1715 unlock_mount(path);
1716 release_mounts(&umount_list);
1717 out:
1718 path_put(&old_path);
1719 return err;
1720 }
1721
1722 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1723 {
1724 int error = 0;
1725 int readonly_request = 0;
1726
1727 if (ms_flags & MS_RDONLY)
1728 readonly_request = 1;
1729 if (readonly_request == __mnt_is_readonly(mnt))
1730 return 0;
1731
1732 if (readonly_request)
1733 error = mnt_make_readonly(real_mount(mnt));
1734 else
1735 __mnt_unmake_readonly(real_mount(mnt));
1736 return error;
1737 }
1738
1739 /*
1740 * change filesystem flags. dir should be a physical root of filesystem.
1741 * If you've mounted a non-root directory somewhere and want to do remount
1742 * on it - tough luck.
1743 */
1744 static int do_remount(struct path *path, int flags, int mnt_flags,
1745 void *data)
1746 {
1747 int err;
1748 struct super_block *sb = path->mnt->mnt_sb;
1749 struct mount *mnt = real_mount(path->mnt);
1750
1751 if (!capable(CAP_SYS_ADMIN))
1752 return -EPERM;
1753
1754 if (!check_mnt(mnt))
1755 return -EINVAL;
1756
1757 if (path->dentry != path->mnt->mnt_root)
1758 return -EINVAL;
1759
1760 err = security_sb_remount(sb, data);
1761 if (err)
1762 return err;
1763
1764 down_write(&sb->s_umount);
1765 if (flags & MS_BIND)
1766 err = change_mount_flags(path->mnt, flags);
1767 else
1768 err = do_remount_sb(sb, flags, data, 0);
1769 if (!err) {
1770 br_write_lock(&vfsmount_lock);
1771 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1772 mnt->mnt.mnt_flags = mnt_flags;
1773 br_write_unlock(&vfsmount_lock);
1774 }
1775 up_write(&sb->s_umount);
1776 if (!err) {
1777 br_write_lock(&vfsmount_lock);
1778 touch_mnt_namespace(mnt->mnt_ns);
1779 br_write_unlock(&vfsmount_lock);
1780 }
1781 return err;
1782 }
1783
1784 static inline int tree_contains_unbindable(struct mount *mnt)
1785 {
1786 struct mount *p;
1787 for (p = mnt; p; p = next_mnt(p, mnt)) {
1788 if (IS_MNT_UNBINDABLE(p))
1789 return 1;
1790 }
1791 return 0;
1792 }
1793
1794 static int do_move_mount(struct path *path, const char *old_name)
1795 {
1796 struct path old_path, parent_path;
1797 struct mount *p;
1798 struct mount *old;
1799 int err = 0;
1800 if (!ns_capable(real_mount(path->mnt)->mnt_ns->user_ns, CAP_SYS_ADMIN))
1801 return -EPERM;
1802 if (!old_name || !*old_name)
1803 return -EINVAL;
1804 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1805 if (err)
1806 return err;
1807
1808 err = lock_mount(path);
1809 if (err < 0)
1810 goto out;
1811
1812 old = real_mount(old_path.mnt);
1813 p = real_mount(path->mnt);
1814
1815 err = -EINVAL;
1816 if (!check_mnt(p) || !check_mnt(old))
1817 goto out1;
1818
1819 if (d_unlinked(path->dentry))
1820 goto out1;
1821
1822 err = -EINVAL;
1823 if (old_path.dentry != old_path.mnt->mnt_root)
1824 goto out1;
1825
1826 if (!mnt_has_parent(old))
1827 goto out1;
1828
1829 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1830 S_ISDIR(old_path.dentry->d_inode->i_mode))
1831 goto out1;
1832 /*
1833 * Don't move a mount residing in a shared parent.
1834 */
1835 if (IS_MNT_SHARED(old->mnt_parent))
1836 goto out1;
1837 /*
1838 * Don't move a mount tree containing unbindable mounts to a destination
1839 * mount which is shared.
1840 */
1841 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1842 goto out1;
1843 err = -ELOOP;
1844 for (; mnt_has_parent(p); p = p->mnt_parent)
1845 if (p == old)
1846 goto out1;
1847
1848 err = attach_recursive_mnt(old, path, &parent_path);
1849 if (err)
1850 goto out1;
1851
1852 /* if the mount is moved, it should no longer be expire
1853 * automatically */
1854 list_del_init(&old->mnt_expire);
1855 out1:
1856 unlock_mount(path);
1857 out:
1858 if (!err)
1859 path_put(&parent_path);
1860 path_put(&old_path);
1861 return err;
1862 }
1863
1864 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1865 {
1866 int err;
1867 const char *subtype = strchr(fstype, '.');
1868 if (subtype) {
1869 subtype++;
1870 err = -EINVAL;
1871 if (!subtype[0])
1872 goto err;
1873 } else
1874 subtype = "";
1875
1876 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1877 err = -ENOMEM;
1878 if (!mnt->mnt_sb->s_subtype)
1879 goto err;
1880 return mnt;
1881
1882 err:
1883 mntput(mnt);
1884 return ERR_PTR(err);
1885 }
1886
1887 /*
1888 * add a mount into a namespace's mount tree
1889 */
1890 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1891 {
1892 int err;
1893
1894 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1895
1896 err = lock_mount(path);
1897 if (err)
1898 return err;
1899
1900 err = -EINVAL;
1901 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1902 /* that's acceptable only for automounts done in private ns */
1903 if (!(mnt_flags & MNT_SHRINKABLE))
1904 goto unlock;
1905 /* ... and for those we'd better have mountpoint still alive */
1906 if (!real_mount(path->mnt)->mnt_ns)
1907 goto unlock;
1908 }
1909
1910 /* Refuse the same filesystem on the same mount point */
1911 err = -EBUSY;
1912 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1913 path->mnt->mnt_root == path->dentry)
1914 goto unlock;
1915
1916 err = -EINVAL;
1917 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1918 goto unlock;
1919
1920 newmnt->mnt.mnt_flags = mnt_flags;
1921 err = graft_tree(newmnt, path);
1922
1923 unlock:
1924 unlock_mount(path);
1925 return err;
1926 }
1927
1928 /*
1929 * create a new mount for userspace and request it to be added into the
1930 * namespace's tree
1931 */
1932 static int do_new_mount(struct path *path, const char *fstype, int flags,
1933 int mnt_flags, const char *name, void *data)
1934 {
1935 struct file_system_type *type;
1936 struct user_namespace *user_ns;
1937 struct vfsmount *mnt;
1938 int err;
1939
1940 if (!fstype)
1941 return -EINVAL;
1942
1943 /* we need capabilities... */
1944 user_ns = real_mount(path->mnt)->mnt_ns->user_ns;
1945 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1946 return -EPERM;
1947
1948 type = get_fs_type(fstype);
1949 if (!type)
1950 return -ENODEV;
1951
1952 if (user_ns != &init_user_ns) {
1953 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1954 put_filesystem(type);
1955 return -EPERM;
1956 }
1957 /* Only in special cases allow devices from mounts
1958 * created outside the initial user namespace.
1959 */
1960 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1961 flags |= MS_NODEV;
1962 mnt_flags |= MNT_NODEV;
1963 }
1964 }
1965
1966 mnt = vfs_kern_mount(type, flags, name, data);
1967 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1968 !mnt->mnt_sb->s_subtype)
1969 mnt = fs_set_subtype(mnt, fstype);
1970
1971 put_filesystem(type);
1972 if (IS_ERR(mnt))
1973 return PTR_ERR(mnt);
1974
1975 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1976 if (err)
1977 mntput(mnt);
1978 return err;
1979 }
1980
1981 int finish_automount(struct vfsmount *m, struct path *path)
1982 {
1983 struct mount *mnt = real_mount(m);
1984 int err;
1985 /* The new mount record should have at least 2 refs to prevent it being
1986 * expired before we get a chance to add it
1987 */
1988 BUG_ON(mnt_get_count(mnt) < 2);
1989
1990 if (m->mnt_sb == path->mnt->mnt_sb &&
1991 m->mnt_root == path->dentry) {
1992 err = -ELOOP;
1993 goto fail;
1994 }
1995
1996 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1997 if (!err)
1998 return 0;
1999 fail:
2000 /* remove m from any expiration list it may be on */
2001 if (!list_empty(&mnt->mnt_expire)) {
2002 down_write(&namespace_sem);
2003 br_write_lock(&vfsmount_lock);
2004 list_del_init(&mnt->mnt_expire);
2005 br_write_unlock(&vfsmount_lock);
2006 up_write(&namespace_sem);
2007 }
2008 mntput(m);
2009 mntput(m);
2010 return err;
2011 }
2012
2013 /**
2014 * mnt_set_expiry - Put a mount on an expiration list
2015 * @mnt: The mount to list.
2016 * @expiry_list: The list to add the mount to.
2017 */
2018 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2019 {
2020 down_write(&namespace_sem);
2021 br_write_lock(&vfsmount_lock);
2022
2023 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2024
2025 br_write_unlock(&vfsmount_lock);
2026 up_write(&namespace_sem);
2027 }
2028 EXPORT_SYMBOL(mnt_set_expiry);
2029
2030 /*
2031 * process a list of expirable mountpoints with the intent of discarding any
2032 * mountpoints that aren't in use and haven't been touched since last we came
2033 * here
2034 */
2035 void mark_mounts_for_expiry(struct list_head *mounts)
2036 {
2037 struct mount *mnt, *next;
2038 LIST_HEAD(graveyard);
2039 LIST_HEAD(umounts);
2040
2041 if (list_empty(mounts))
2042 return;
2043
2044 down_write(&namespace_sem);
2045 br_write_lock(&vfsmount_lock);
2046
2047 /* extract from the expiration list every vfsmount that matches the
2048 * following criteria:
2049 * - only referenced by its parent vfsmount
2050 * - still marked for expiry (marked on the last call here; marks are
2051 * cleared by mntput())
2052 */
2053 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2054 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2055 propagate_mount_busy(mnt, 1))
2056 continue;
2057 list_move(&mnt->mnt_expire, &graveyard);
2058 }
2059 while (!list_empty(&graveyard)) {
2060 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2061 touch_mnt_namespace(mnt->mnt_ns);
2062 umount_tree(mnt, 1, &umounts);
2063 }
2064 br_write_unlock(&vfsmount_lock);
2065 up_write(&namespace_sem);
2066
2067 release_mounts(&umounts);
2068 }
2069
2070 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2071
2072 /*
2073 * Ripoff of 'select_parent()'
2074 *
2075 * search the list of submounts for a given mountpoint, and move any
2076 * shrinkable submounts to the 'graveyard' list.
2077 */
2078 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2079 {
2080 struct mount *this_parent = parent;
2081 struct list_head *next;
2082 int found = 0;
2083
2084 repeat:
2085 next = this_parent->mnt_mounts.next;
2086 resume:
2087 while (next != &this_parent->mnt_mounts) {
2088 struct list_head *tmp = next;
2089 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2090
2091 next = tmp->next;
2092 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2093 continue;
2094 /*
2095 * Descend a level if the d_mounts list is non-empty.
2096 */
2097 if (!list_empty(&mnt->mnt_mounts)) {
2098 this_parent = mnt;
2099 goto repeat;
2100 }
2101
2102 if (!propagate_mount_busy(mnt, 1)) {
2103 list_move_tail(&mnt->mnt_expire, graveyard);
2104 found++;
2105 }
2106 }
2107 /*
2108 * All done at this level ... ascend and resume the search
2109 */
2110 if (this_parent != parent) {
2111 next = this_parent->mnt_child.next;
2112 this_parent = this_parent->mnt_parent;
2113 goto resume;
2114 }
2115 return found;
2116 }
2117
2118 /*
2119 * process a list of expirable mountpoints with the intent of discarding any
2120 * submounts of a specific parent mountpoint
2121 *
2122 * vfsmount_lock must be held for write
2123 */
2124 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2125 {
2126 LIST_HEAD(graveyard);
2127 struct mount *m;
2128
2129 /* extract submounts of 'mountpoint' from the expiration list */
2130 while (select_submounts(mnt, &graveyard)) {
2131 while (!list_empty(&graveyard)) {
2132 m = list_first_entry(&graveyard, struct mount,
2133 mnt_expire);
2134 touch_mnt_namespace(m->mnt_ns);
2135 umount_tree(m, 1, umounts);
2136 }
2137 }
2138 }
2139
2140 /*
2141 * Some copy_from_user() implementations do not return the exact number of
2142 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2143 * Note that this function differs from copy_from_user() in that it will oops
2144 * on bad values of `to', rather than returning a short copy.
2145 */
2146 static long exact_copy_from_user(void *to, const void __user * from,
2147 unsigned long n)
2148 {
2149 char *t = to;
2150 const char __user *f = from;
2151 char c;
2152
2153 if (!access_ok(VERIFY_READ, from, n))
2154 return n;
2155
2156 while (n) {
2157 if (__get_user(c, f)) {
2158 memset(t, 0, n);
2159 break;
2160 }
2161 *t++ = c;
2162 f++;
2163 n--;
2164 }
2165 return n;
2166 }
2167
2168 int copy_mount_options(const void __user * data, unsigned long *where)
2169 {
2170 int i;
2171 unsigned long page;
2172 unsigned long size;
2173
2174 *where = 0;
2175 if (!data)
2176 return 0;
2177
2178 if (!(page = __get_free_page(GFP_KERNEL)))
2179 return -ENOMEM;
2180
2181 /* We only care that *some* data at the address the user
2182 * gave us is valid. Just in case, we'll zero
2183 * the remainder of the page.
2184 */
2185 /* copy_from_user cannot cross TASK_SIZE ! */
2186 size = TASK_SIZE - (unsigned long)data;
2187 if (size > PAGE_SIZE)
2188 size = PAGE_SIZE;
2189
2190 i = size - exact_copy_from_user((void *)page, data, size);
2191 if (!i) {
2192 free_page(page);
2193 return -EFAULT;
2194 }
2195 if (i != PAGE_SIZE)
2196 memset((char *)page + i, 0, PAGE_SIZE - i);
2197 *where = page;
2198 return 0;
2199 }
2200
2201 int copy_mount_string(const void __user *data, char **where)
2202 {
2203 char *tmp;
2204
2205 if (!data) {
2206 *where = NULL;
2207 return 0;
2208 }
2209
2210 tmp = strndup_user(data, PAGE_SIZE);
2211 if (IS_ERR(tmp))
2212 return PTR_ERR(tmp);
2213
2214 *where = tmp;
2215 return 0;
2216 }
2217
2218 /*
2219 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2220 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2221 *
2222 * data is a (void *) that can point to any structure up to
2223 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2224 * information (or be NULL).
2225 *
2226 * Pre-0.97 versions of mount() didn't have a flags word.
2227 * When the flags word was introduced its top half was required
2228 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2229 * Therefore, if this magic number is present, it carries no information
2230 * and must be discarded.
2231 */
2232 long do_mount(const char *dev_name, const char *dir_name,
2233 const char *type_page, unsigned long flags, void *data_page)
2234 {
2235 struct path path;
2236 int retval = 0;
2237 int mnt_flags = 0;
2238
2239 /* Discard magic */
2240 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2241 flags &= ~MS_MGC_MSK;
2242
2243 /* Basic sanity checks */
2244
2245 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2246 return -EINVAL;
2247
2248 if (data_page)
2249 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2250
2251 /* ... and get the mountpoint */
2252 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2253 if (retval)
2254 return retval;
2255
2256 retval = security_sb_mount(dev_name, &path,
2257 type_page, flags, data_page);
2258 if (retval)
2259 goto dput_out;
2260
2261 /* Default to relatime unless overriden */
2262 if (!(flags & MS_NOATIME))
2263 mnt_flags |= MNT_RELATIME;
2264
2265 /* Separate the per-mountpoint flags */
2266 if (flags & MS_NOSUID)
2267 mnt_flags |= MNT_NOSUID;
2268 if (flags & MS_NODEV)
2269 mnt_flags |= MNT_NODEV;
2270 if (flags & MS_NOEXEC)
2271 mnt_flags |= MNT_NOEXEC;
2272 if (flags & MS_NOATIME)
2273 mnt_flags |= MNT_NOATIME;
2274 if (flags & MS_NODIRATIME)
2275 mnt_flags |= MNT_NODIRATIME;
2276 if (flags & MS_STRICTATIME)
2277 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2278 if (flags & MS_RDONLY)
2279 mnt_flags |= MNT_READONLY;
2280
2281 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2282 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2283 MS_STRICTATIME);
2284
2285 if (flags & MS_REMOUNT)
2286 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2287 data_page);
2288 else if (flags & MS_BIND)
2289 retval = do_loopback(&path, dev_name, flags & MS_REC);
2290 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2291 retval = do_change_type(&path, flags);
2292 else if (flags & MS_MOVE)
2293 retval = do_move_mount(&path, dev_name);
2294 else
2295 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2296 dev_name, data_page);
2297 dput_out:
2298 path_put(&path);
2299 return retval;
2300 }
2301
2302 static void free_mnt_ns(struct mnt_namespace *ns)
2303 {
2304 proc_free_inum(ns->proc_inum);
2305 put_user_ns(ns->user_ns);
2306 kfree(ns);
2307 }
2308
2309 /*
2310 * Assign a sequence number so we can detect when we attempt to bind
2311 * mount a reference to an older mount namespace into the current
2312 * mount namespace, preventing reference counting loops. A 64bit
2313 * number incrementing at 10Ghz will take 12,427 years to wrap which
2314 * is effectively never, so we can ignore the possibility.
2315 */
2316 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2317
2318 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2319 {
2320 struct mnt_namespace *new_ns;
2321 int ret;
2322
2323 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2324 if (!new_ns)
2325 return ERR_PTR(-ENOMEM);
2326 ret = proc_alloc_inum(&new_ns->proc_inum);
2327 if (ret) {
2328 kfree(new_ns);
2329 return ERR_PTR(ret);
2330 }
2331 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2332 atomic_set(&new_ns->count, 1);
2333 new_ns->root = NULL;
2334 INIT_LIST_HEAD(&new_ns->list);
2335 init_waitqueue_head(&new_ns->poll);
2336 new_ns->event = 0;
2337 new_ns->user_ns = get_user_ns(user_ns);
2338 return new_ns;
2339 }
2340
2341 /*
2342 * Allocate a new namespace structure and populate it with contents
2343 * copied from the namespace of the passed in task structure.
2344 */
2345 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2346 struct user_namespace *user_ns, struct fs_struct *fs)
2347 {
2348 struct mnt_namespace *new_ns;
2349 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2350 struct mount *p, *q;
2351 struct mount *old = mnt_ns->root;
2352 struct mount *new;
2353 int copy_flags;
2354
2355 new_ns = alloc_mnt_ns(user_ns);
2356 if (IS_ERR(new_ns))
2357 return new_ns;
2358
2359 down_write(&namespace_sem);
2360 /* First pass: copy the tree topology */
2361 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2362 if (user_ns != mnt_ns->user_ns)
2363 copy_flags |= CL_SHARED_TO_SLAVE;
2364 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2365 if (IS_ERR(new)) {
2366 up_write(&namespace_sem);
2367 free_mnt_ns(new_ns);
2368 return ERR_CAST(new);
2369 }
2370 new_ns->root = new;
2371 br_write_lock(&vfsmount_lock);
2372 list_add_tail(&new_ns->list, &new->mnt_list);
2373 br_write_unlock(&vfsmount_lock);
2374
2375 /*
2376 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2377 * as belonging to new namespace. We have already acquired a private
2378 * fs_struct, so tsk->fs->lock is not needed.
2379 */
2380 p = old;
2381 q = new;
2382 while (p) {
2383 q->mnt_ns = new_ns;
2384 if (fs) {
2385 if (&p->mnt == fs->root.mnt) {
2386 fs->root.mnt = mntget(&q->mnt);
2387 rootmnt = &p->mnt;
2388 }
2389 if (&p->mnt == fs->pwd.mnt) {
2390 fs->pwd.mnt = mntget(&q->mnt);
2391 pwdmnt = &p->mnt;
2392 }
2393 }
2394 p = next_mnt(p, old);
2395 q = next_mnt(q, new);
2396 }
2397 up_write(&namespace_sem);
2398
2399 if (rootmnt)
2400 mntput(rootmnt);
2401 if (pwdmnt)
2402 mntput(pwdmnt);
2403
2404 return new_ns;
2405 }
2406
2407 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2408 struct user_namespace *user_ns, struct fs_struct *new_fs)
2409 {
2410 struct mnt_namespace *new_ns;
2411
2412 BUG_ON(!ns);
2413 get_mnt_ns(ns);
2414
2415 if (!(flags & CLONE_NEWNS))
2416 return ns;
2417
2418 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2419
2420 put_mnt_ns(ns);
2421 return new_ns;
2422 }
2423
2424 /**
2425 * create_mnt_ns - creates a private namespace and adds a root filesystem
2426 * @mnt: pointer to the new root filesystem mountpoint
2427 */
2428 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2429 {
2430 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2431 if (!IS_ERR(new_ns)) {
2432 struct mount *mnt = real_mount(m);
2433 mnt->mnt_ns = new_ns;
2434 new_ns->root = mnt;
2435 list_add(&new_ns->list, &mnt->mnt_list);
2436 } else {
2437 mntput(m);
2438 }
2439 return new_ns;
2440 }
2441
2442 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2443 {
2444 struct mnt_namespace *ns;
2445 struct super_block *s;
2446 struct path path;
2447 int err;
2448
2449 ns = create_mnt_ns(mnt);
2450 if (IS_ERR(ns))
2451 return ERR_CAST(ns);
2452
2453 err = vfs_path_lookup(mnt->mnt_root, mnt,
2454 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2455
2456 put_mnt_ns(ns);
2457
2458 if (err)
2459 return ERR_PTR(err);
2460
2461 /* trade a vfsmount reference for active sb one */
2462 s = path.mnt->mnt_sb;
2463 atomic_inc(&s->s_active);
2464 mntput(path.mnt);
2465 /* lock the sucker */
2466 down_write(&s->s_umount);
2467 /* ... and return the root of (sub)tree on it */
2468 return path.dentry;
2469 }
2470 EXPORT_SYMBOL(mount_subtree);
2471
2472 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2473 char __user *, type, unsigned long, flags, void __user *, data)
2474 {
2475 int ret;
2476 char *kernel_type;
2477 struct filename *kernel_dir;
2478 char *kernel_dev;
2479 unsigned long data_page;
2480
2481 ret = copy_mount_string(type, &kernel_type);
2482 if (ret < 0)
2483 goto out_type;
2484
2485 kernel_dir = getname(dir_name);
2486 if (IS_ERR(kernel_dir)) {
2487 ret = PTR_ERR(kernel_dir);
2488 goto out_dir;
2489 }
2490
2491 ret = copy_mount_string(dev_name, &kernel_dev);
2492 if (ret < 0)
2493 goto out_dev;
2494
2495 ret = copy_mount_options(data, &data_page);
2496 if (ret < 0)
2497 goto out_data;
2498
2499 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2500 (void *) data_page);
2501
2502 free_page(data_page);
2503 out_data:
2504 kfree(kernel_dev);
2505 out_dev:
2506 putname(kernel_dir);
2507 out_dir:
2508 kfree(kernel_type);
2509 out_type:
2510 return ret;
2511 }
2512
2513 /*
2514 * Return true if path is reachable from root
2515 *
2516 * namespace_sem or vfsmount_lock is held
2517 */
2518 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2519 const struct path *root)
2520 {
2521 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2522 dentry = mnt->mnt_mountpoint;
2523 mnt = mnt->mnt_parent;
2524 }
2525 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2526 }
2527
2528 int path_is_under(struct path *path1, struct path *path2)
2529 {
2530 int res;
2531 br_read_lock(&vfsmount_lock);
2532 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2533 br_read_unlock(&vfsmount_lock);
2534 return res;
2535 }
2536 EXPORT_SYMBOL(path_is_under);
2537
2538 /*
2539 * pivot_root Semantics:
2540 * Moves the root file system of the current process to the directory put_old,
2541 * makes new_root as the new root file system of the current process, and sets
2542 * root/cwd of all processes which had them on the current root to new_root.
2543 *
2544 * Restrictions:
2545 * The new_root and put_old must be directories, and must not be on the
2546 * same file system as the current process root. The put_old must be
2547 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2548 * pointed to by put_old must yield the same directory as new_root. No other
2549 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2550 *
2551 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2552 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2553 * in this situation.
2554 *
2555 * Notes:
2556 * - we don't move root/cwd if they are not at the root (reason: if something
2557 * cared enough to change them, it's probably wrong to force them elsewhere)
2558 * - it's okay to pick a root that isn't the root of a file system, e.g.
2559 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2560 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2561 * first.
2562 */
2563 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2564 const char __user *, put_old)
2565 {
2566 struct path new, old, parent_path, root_parent, root;
2567 struct mount *new_mnt, *root_mnt;
2568 int error;
2569
2570 if (!ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN))
2571 return -EPERM;
2572
2573 error = user_path_dir(new_root, &new);
2574 if (error)
2575 goto out0;
2576
2577 error = user_path_dir(put_old, &old);
2578 if (error)
2579 goto out1;
2580
2581 error = security_sb_pivotroot(&old, &new);
2582 if (error)
2583 goto out2;
2584
2585 get_fs_root(current->fs, &root);
2586 error = lock_mount(&old);
2587 if (error)
2588 goto out3;
2589
2590 error = -EINVAL;
2591 new_mnt = real_mount(new.mnt);
2592 root_mnt = real_mount(root.mnt);
2593 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2594 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2595 IS_MNT_SHARED(root_mnt->mnt_parent))
2596 goto out4;
2597 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2598 goto out4;
2599 error = -ENOENT;
2600 if (d_unlinked(new.dentry))
2601 goto out4;
2602 if (d_unlinked(old.dentry))
2603 goto out4;
2604 error = -EBUSY;
2605 if (new.mnt == root.mnt ||
2606 old.mnt == root.mnt)
2607 goto out4; /* loop, on the same file system */
2608 error = -EINVAL;
2609 if (root.mnt->mnt_root != root.dentry)
2610 goto out4; /* not a mountpoint */
2611 if (!mnt_has_parent(root_mnt))
2612 goto out4; /* not attached */
2613 if (new.mnt->mnt_root != new.dentry)
2614 goto out4; /* not a mountpoint */
2615 if (!mnt_has_parent(new_mnt))
2616 goto out4; /* not attached */
2617 /* make sure we can reach put_old from new_root */
2618 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2619 goto out4;
2620 br_write_lock(&vfsmount_lock);
2621 detach_mnt(new_mnt, &parent_path);
2622 detach_mnt(root_mnt, &root_parent);
2623 /* mount old root on put_old */
2624 attach_mnt(root_mnt, &old);
2625 /* mount new_root on / */
2626 attach_mnt(new_mnt, &root_parent);
2627 touch_mnt_namespace(current->nsproxy->mnt_ns);
2628 br_write_unlock(&vfsmount_lock);
2629 chroot_fs_refs(&root, &new);
2630 error = 0;
2631 out4:
2632 unlock_mount(&old);
2633 if (!error) {
2634 path_put(&root_parent);
2635 path_put(&parent_path);
2636 }
2637 out3:
2638 path_put(&root);
2639 out2:
2640 path_put(&old);
2641 out1:
2642 path_put(&new);
2643 out0:
2644 return error;
2645 }
2646
2647 static void __init init_mount_tree(void)
2648 {
2649 struct vfsmount *mnt;
2650 struct mnt_namespace *ns;
2651 struct path root;
2652 struct file_system_type *type;
2653
2654 type = get_fs_type("rootfs");
2655 if (!type)
2656 panic("Can't find rootfs type");
2657 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2658 put_filesystem(type);
2659 if (IS_ERR(mnt))
2660 panic("Can't create rootfs");
2661
2662 ns = create_mnt_ns(mnt);
2663 if (IS_ERR(ns))
2664 panic("Can't allocate initial namespace");
2665
2666 init_task.nsproxy->mnt_ns = ns;
2667 get_mnt_ns(ns);
2668
2669 root.mnt = mnt;
2670 root.dentry = mnt->mnt_root;
2671
2672 set_fs_pwd(current->fs, &root);
2673 set_fs_root(current->fs, &root);
2674 }
2675
2676 void __init mnt_init(void)
2677 {
2678 unsigned u;
2679 int err;
2680
2681 init_rwsem(&namespace_sem);
2682
2683 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2684 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2685
2686 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2687
2688 if (!mount_hashtable)
2689 panic("Failed to allocate mount hash table\n");
2690
2691 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2692
2693 for (u = 0; u < HASH_SIZE; u++)
2694 INIT_LIST_HEAD(&mount_hashtable[u]);
2695
2696 br_lock_init(&vfsmount_lock);
2697
2698 err = sysfs_init();
2699 if (err)
2700 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2701 __func__, err);
2702 fs_kobj = kobject_create_and_add("fs", NULL);
2703 if (!fs_kobj)
2704 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2705 init_rootfs();
2706 init_mount_tree();
2707 }
2708
2709 void put_mnt_ns(struct mnt_namespace *ns)
2710 {
2711 LIST_HEAD(umount_list);
2712
2713 if (!atomic_dec_and_test(&ns->count))
2714 return;
2715 down_write(&namespace_sem);
2716 br_write_lock(&vfsmount_lock);
2717 umount_tree(ns->root, 0, &umount_list);
2718 br_write_unlock(&vfsmount_lock);
2719 up_write(&namespace_sem);
2720 release_mounts(&umount_list);
2721 free_mnt_ns(ns);
2722 }
2723
2724 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2725 {
2726 struct vfsmount *mnt;
2727 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2728 if (!IS_ERR(mnt)) {
2729 /*
2730 * it is a longterm mount, don't release mnt until
2731 * we unmount before file sys is unregistered
2732 */
2733 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2734 }
2735 return mnt;
2736 }
2737 EXPORT_SYMBOL_GPL(kern_mount_data);
2738
2739 void kern_unmount(struct vfsmount *mnt)
2740 {
2741 /* release long term mount so mount point can be released */
2742 if (!IS_ERR_OR_NULL(mnt)) {
2743 br_write_lock(&vfsmount_lock);
2744 real_mount(mnt)->mnt_ns = NULL;
2745 br_write_unlock(&vfsmount_lock);
2746 mntput(mnt);
2747 }
2748 }
2749 EXPORT_SYMBOL(kern_unmount);
2750
2751 bool our_mnt(struct vfsmount *mnt)
2752 {
2753 return check_mnt(real_mount(mnt));
2754 }
2755
2756 static void *mntns_get(struct task_struct *task)
2757 {
2758 struct mnt_namespace *ns = NULL;
2759 struct nsproxy *nsproxy;
2760
2761 rcu_read_lock();
2762 nsproxy = task_nsproxy(task);
2763 if (nsproxy) {
2764 ns = nsproxy->mnt_ns;
2765 get_mnt_ns(ns);
2766 }
2767 rcu_read_unlock();
2768
2769 return ns;
2770 }
2771
2772 static void mntns_put(void *ns)
2773 {
2774 put_mnt_ns(ns);
2775 }
2776
2777 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2778 {
2779 struct fs_struct *fs = current->fs;
2780 struct mnt_namespace *mnt_ns = ns;
2781 struct path root;
2782
2783 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2784 !nsown_capable(CAP_SYS_CHROOT) ||
2785 !nsown_capable(CAP_SYS_ADMIN))
2786 return -EPERM;
2787
2788 if (fs->users != 1)
2789 return -EINVAL;
2790
2791 get_mnt_ns(mnt_ns);
2792 put_mnt_ns(nsproxy->mnt_ns);
2793 nsproxy->mnt_ns = mnt_ns;
2794
2795 /* Find the root */
2796 root.mnt = &mnt_ns->root->mnt;
2797 root.dentry = mnt_ns->root->mnt.mnt_root;
2798 path_get(&root);
2799 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2800 ;
2801
2802 /* Update the pwd and root */
2803 set_fs_pwd(fs, &root);
2804 set_fs_root(fs, &root);
2805
2806 path_put(&root);
2807 return 0;
2808 }
2809
2810 static unsigned int mntns_inum(void *ns)
2811 {
2812 struct mnt_namespace *mnt_ns = ns;
2813 return mnt_ns->proc_inum;
2814 }
2815
2816 const struct proc_ns_operations mntns_operations = {
2817 .name = "mnt",
2818 .type = CLONE_NEWNS,
2819 .get = mntns_get,
2820 .put = mntns_put,
2821 .install = mntns_install,
2822 .inum = mntns_inum,
2823 };
This page took 0.122099 seconds and 6 git commands to generate.