fsnotify/vfsmount: add fsnotify fields to struct vfsmount
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/nsproxy.h>
26 #include <linux/security.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/log2.h>
30 #include <linux/idr.h>
31 #include <linux/fs_struct.h>
32 #include <linux/fsnotify.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include "pnode.h"
36 #include "internal.h"
37
38 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
39 #define HASH_SIZE (1UL << HASH_SHIFT)
40
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44 static int event;
45 static DEFINE_IDA(mnt_id_ida);
46 static DEFINE_IDA(mnt_group_ida);
47 static int mnt_id_start = 0;
48 static int mnt_group_start = 1;
49
50 static struct list_head *mount_hashtable __read_mostly;
51 static struct kmem_cache *mnt_cache __read_mostly;
52 static struct rw_semaphore namespace_sem;
53
54 /* /sys/fs */
55 struct kobject *fs_kobj;
56 EXPORT_SYMBOL_GPL(fs_kobj);
57
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /* allocation is serialized by namespace_sem */
69 static int mnt_alloc_id(struct vfsmount *mnt)
70 {
71 int res;
72
73 retry:
74 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
75 spin_lock(&vfsmount_lock);
76 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
77 if (!res)
78 mnt_id_start = mnt->mnt_id + 1;
79 spin_unlock(&vfsmount_lock);
80 if (res == -EAGAIN)
81 goto retry;
82
83 return res;
84 }
85
86 static void mnt_free_id(struct vfsmount *mnt)
87 {
88 int id = mnt->mnt_id;
89 spin_lock(&vfsmount_lock);
90 ida_remove(&mnt_id_ida, id);
91 if (mnt_id_start > id)
92 mnt_id_start = id;
93 spin_unlock(&vfsmount_lock);
94 }
95
96 /*
97 * Allocate a new peer group ID
98 *
99 * mnt_group_ida is protected by namespace_sem
100 */
101 static int mnt_alloc_group_id(struct vfsmount *mnt)
102 {
103 int res;
104
105 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
106 return -ENOMEM;
107
108 res = ida_get_new_above(&mnt_group_ida,
109 mnt_group_start,
110 &mnt->mnt_group_id);
111 if (!res)
112 mnt_group_start = mnt->mnt_group_id + 1;
113
114 return res;
115 }
116
117 /*
118 * Release a peer group ID
119 */
120 void mnt_release_group_id(struct vfsmount *mnt)
121 {
122 int id = mnt->mnt_group_id;
123 ida_remove(&mnt_group_ida, id);
124 if (mnt_group_start > id)
125 mnt_group_start = id;
126 mnt->mnt_group_id = 0;
127 }
128
129 struct vfsmount *alloc_vfsmnt(const char *name)
130 {
131 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
132 if (mnt) {
133 int err;
134
135 err = mnt_alloc_id(mnt);
136 if (err)
137 goto out_free_cache;
138
139 if (name) {
140 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
141 if (!mnt->mnt_devname)
142 goto out_free_id;
143 }
144
145 atomic_set(&mnt->mnt_count, 1);
146 INIT_LIST_HEAD(&mnt->mnt_hash);
147 INIT_LIST_HEAD(&mnt->mnt_child);
148 INIT_LIST_HEAD(&mnt->mnt_mounts);
149 INIT_LIST_HEAD(&mnt->mnt_list);
150 INIT_LIST_HEAD(&mnt->mnt_expire);
151 INIT_LIST_HEAD(&mnt->mnt_share);
152 INIT_LIST_HEAD(&mnt->mnt_slave_list);
153 INIT_LIST_HEAD(&mnt->mnt_slave);
154 #ifdef CONFIG_FSNOTIFY
155 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
156 #endif
157 #ifdef CONFIG_SMP
158 mnt->mnt_writers = alloc_percpu(int);
159 if (!mnt->mnt_writers)
160 goto out_free_devname;
161 #else
162 mnt->mnt_writers = 0;
163 #endif
164 }
165 return mnt;
166
167 #ifdef CONFIG_SMP
168 out_free_devname:
169 kfree(mnt->mnt_devname);
170 #endif
171 out_free_id:
172 mnt_free_id(mnt);
173 out_free_cache:
174 kmem_cache_free(mnt_cache, mnt);
175 return NULL;
176 }
177
178 /*
179 * Most r/o checks on a fs are for operations that take
180 * discrete amounts of time, like a write() or unlink().
181 * We must keep track of when those operations start
182 * (for permission checks) and when they end, so that
183 * we can determine when writes are able to occur to
184 * a filesystem.
185 */
186 /*
187 * __mnt_is_readonly: check whether a mount is read-only
188 * @mnt: the mount to check for its write status
189 *
190 * This shouldn't be used directly ouside of the VFS.
191 * It does not guarantee that the filesystem will stay
192 * r/w, just that it is right *now*. This can not and
193 * should not be used in place of IS_RDONLY(inode).
194 * mnt_want/drop_write() will _keep_ the filesystem
195 * r/w.
196 */
197 int __mnt_is_readonly(struct vfsmount *mnt)
198 {
199 if (mnt->mnt_flags & MNT_READONLY)
200 return 1;
201 if (mnt->mnt_sb->s_flags & MS_RDONLY)
202 return 1;
203 return 0;
204 }
205 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
206
207 static inline void inc_mnt_writers(struct vfsmount *mnt)
208 {
209 #ifdef CONFIG_SMP
210 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
211 #else
212 mnt->mnt_writers++;
213 #endif
214 }
215
216 static inline void dec_mnt_writers(struct vfsmount *mnt)
217 {
218 #ifdef CONFIG_SMP
219 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
220 #else
221 mnt->mnt_writers--;
222 #endif
223 }
224
225 static unsigned int count_mnt_writers(struct vfsmount *mnt)
226 {
227 #ifdef CONFIG_SMP
228 unsigned int count = 0;
229 int cpu;
230
231 for_each_possible_cpu(cpu) {
232 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
233 }
234
235 return count;
236 #else
237 return mnt->mnt_writers;
238 #endif
239 }
240
241 /*
242 * Most r/o checks on a fs are for operations that take
243 * discrete amounts of time, like a write() or unlink().
244 * We must keep track of when those operations start
245 * (for permission checks) and when they end, so that
246 * we can determine when writes are able to occur to
247 * a filesystem.
248 */
249 /**
250 * mnt_want_write - get write access to a mount
251 * @mnt: the mount on which to take a write
252 *
253 * This tells the low-level filesystem that a write is
254 * about to be performed to it, and makes sure that
255 * writes are allowed before returning success. When
256 * the write operation is finished, mnt_drop_write()
257 * must be called. This is effectively a refcount.
258 */
259 int mnt_want_write(struct vfsmount *mnt)
260 {
261 int ret = 0;
262
263 preempt_disable();
264 inc_mnt_writers(mnt);
265 /*
266 * The store to inc_mnt_writers must be visible before we pass
267 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
268 * incremented count after it has set MNT_WRITE_HOLD.
269 */
270 smp_mb();
271 while (mnt->mnt_flags & MNT_WRITE_HOLD)
272 cpu_relax();
273 /*
274 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
275 * be set to match its requirements. So we must not load that until
276 * MNT_WRITE_HOLD is cleared.
277 */
278 smp_rmb();
279 if (__mnt_is_readonly(mnt)) {
280 dec_mnt_writers(mnt);
281 ret = -EROFS;
282 goto out;
283 }
284 out:
285 preempt_enable();
286 return ret;
287 }
288 EXPORT_SYMBOL_GPL(mnt_want_write);
289
290 /**
291 * mnt_clone_write - get write access to a mount
292 * @mnt: the mount on which to take a write
293 *
294 * This is effectively like mnt_want_write, except
295 * it must only be used to take an extra write reference
296 * on a mountpoint that we already know has a write reference
297 * on it. This allows some optimisation.
298 *
299 * After finished, mnt_drop_write must be called as usual to
300 * drop the reference.
301 */
302 int mnt_clone_write(struct vfsmount *mnt)
303 {
304 /* superblock may be r/o */
305 if (__mnt_is_readonly(mnt))
306 return -EROFS;
307 preempt_disable();
308 inc_mnt_writers(mnt);
309 preempt_enable();
310 return 0;
311 }
312 EXPORT_SYMBOL_GPL(mnt_clone_write);
313
314 /**
315 * mnt_want_write_file - get write access to a file's mount
316 * @file: the file who's mount on which to take a write
317 *
318 * This is like mnt_want_write, but it takes a file and can
319 * do some optimisations if the file is open for write already
320 */
321 int mnt_want_write_file(struct file *file)
322 {
323 struct inode *inode = file->f_dentry->d_inode;
324 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
325 return mnt_want_write(file->f_path.mnt);
326 else
327 return mnt_clone_write(file->f_path.mnt);
328 }
329 EXPORT_SYMBOL_GPL(mnt_want_write_file);
330
331 /**
332 * mnt_drop_write - give up write access to a mount
333 * @mnt: the mount on which to give up write access
334 *
335 * Tells the low-level filesystem that we are done
336 * performing writes to it. Must be matched with
337 * mnt_want_write() call above.
338 */
339 void mnt_drop_write(struct vfsmount *mnt)
340 {
341 preempt_disable();
342 dec_mnt_writers(mnt);
343 preempt_enable();
344 }
345 EXPORT_SYMBOL_GPL(mnt_drop_write);
346
347 static int mnt_make_readonly(struct vfsmount *mnt)
348 {
349 int ret = 0;
350
351 spin_lock(&vfsmount_lock);
352 mnt->mnt_flags |= MNT_WRITE_HOLD;
353 /*
354 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
355 * should be visible before we do.
356 */
357 smp_mb();
358
359 /*
360 * With writers on hold, if this value is zero, then there are
361 * definitely no active writers (although held writers may subsequently
362 * increment the count, they'll have to wait, and decrement it after
363 * seeing MNT_READONLY).
364 *
365 * It is OK to have counter incremented on one CPU and decremented on
366 * another: the sum will add up correctly. The danger would be when we
367 * sum up each counter, if we read a counter before it is incremented,
368 * but then read another CPU's count which it has been subsequently
369 * decremented from -- we would see more decrements than we should.
370 * MNT_WRITE_HOLD protects against this scenario, because
371 * mnt_want_write first increments count, then smp_mb, then spins on
372 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
373 * we're counting up here.
374 */
375 if (count_mnt_writers(mnt) > 0)
376 ret = -EBUSY;
377 else
378 mnt->mnt_flags |= MNT_READONLY;
379 /*
380 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
381 * that become unheld will see MNT_READONLY.
382 */
383 smp_wmb();
384 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
385 spin_unlock(&vfsmount_lock);
386 return ret;
387 }
388
389 static void __mnt_unmake_readonly(struct vfsmount *mnt)
390 {
391 spin_lock(&vfsmount_lock);
392 mnt->mnt_flags &= ~MNT_READONLY;
393 spin_unlock(&vfsmount_lock);
394 }
395
396 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
397 {
398 mnt->mnt_sb = sb;
399 mnt->mnt_root = dget(sb->s_root);
400 }
401
402 EXPORT_SYMBOL(simple_set_mnt);
403
404 void free_vfsmnt(struct vfsmount *mnt)
405 {
406 kfree(mnt->mnt_devname);
407 mnt_free_id(mnt);
408 #ifdef CONFIG_SMP
409 free_percpu(mnt->mnt_writers);
410 #endif
411 kmem_cache_free(mnt_cache, mnt);
412 }
413
414 /*
415 * find the first or last mount at @dentry on vfsmount @mnt depending on
416 * @dir. If @dir is set return the first mount else return the last mount.
417 */
418 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
419 int dir)
420 {
421 struct list_head *head = mount_hashtable + hash(mnt, dentry);
422 struct list_head *tmp = head;
423 struct vfsmount *p, *found = NULL;
424
425 for (;;) {
426 tmp = dir ? tmp->next : tmp->prev;
427 p = NULL;
428 if (tmp == head)
429 break;
430 p = list_entry(tmp, struct vfsmount, mnt_hash);
431 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
432 found = p;
433 break;
434 }
435 }
436 return found;
437 }
438
439 /*
440 * lookup_mnt increments the ref count before returning
441 * the vfsmount struct.
442 */
443 struct vfsmount *lookup_mnt(struct path *path)
444 {
445 struct vfsmount *child_mnt;
446 spin_lock(&vfsmount_lock);
447 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
448 mntget(child_mnt);
449 spin_unlock(&vfsmount_lock);
450 return child_mnt;
451 }
452
453 static inline int check_mnt(struct vfsmount *mnt)
454 {
455 return mnt->mnt_ns == current->nsproxy->mnt_ns;
456 }
457
458 static void touch_mnt_namespace(struct mnt_namespace *ns)
459 {
460 if (ns) {
461 ns->event = ++event;
462 wake_up_interruptible(&ns->poll);
463 }
464 }
465
466 static void __touch_mnt_namespace(struct mnt_namespace *ns)
467 {
468 if (ns && ns->event != event) {
469 ns->event = event;
470 wake_up_interruptible(&ns->poll);
471 }
472 }
473
474 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
475 {
476 old_path->dentry = mnt->mnt_mountpoint;
477 old_path->mnt = mnt->mnt_parent;
478 mnt->mnt_parent = mnt;
479 mnt->mnt_mountpoint = mnt->mnt_root;
480 list_del_init(&mnt->mnt_child);
481 list_del_init(&mnt->mnt_hash);
482 old_path->dentry->d_mounted--;
483 }
484
485 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
486 struct vfsmount *child_mnt)
487 {
488 child_mnt->mnt_parent = mntget(mnt);
489 child_mnt->mnt_mountpoint = dget(dentry);
490 dentry->d_mounted++;
491 }
492
493 static void attach_mnt(struct vfsmount *mnt, struct path *path)
494 {
495 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
496 list_add_tail(&mnt->mnt_hash, mount_hashtable +
497 hash(path->mnt, path->dentry));
498 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
499 }
500
501 /*
502 * the caller must hold vfsmount_lock
503 */
504 static void commit_tree(struct vfsmount *mnt)
505 {
506 struct vfsmount *parent = mnt->mnt_parent;
507 struct vfsmount *m;
508 LIST_HEAD(head);
509 struct mnt_namespace *n = parent->mnt_ns;
510
511 BUG_ON(parent == mnt);
512
513 list_add_tail(&head, &mnt->mnt_list);
514 list_for_each_entry(m, &head, mnt_list)
515 m->mnt_ns = n;
516 list_splice(&head, n->list.prev);
517
518 list_add_tail(&mnt->mnt_hash, mount_hashtable +
519 hash(parent, mnt->mnt_mountpoint));
520 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
521 touch_mnt_namespace(n);
522 }
523
524 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
525 {
526 struct list_head *next = p->mnt_mounts.next;
527 if (next == &p->mnt_mounts) {
528 while (1) {
529 if (p == root)
530 return NULL;
531 next = p->mnt_child.next;
532 if (next != &p->mnt_parent->mnt_mounts)
533 break;
534 p = p->mnt_parent;
535 }
536 }
537 return list_entry(next, struct vfsmount, mnt_child);
538 }
539
540 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
541 {
542 struct list_head *prev = p->mnt_mounts.prev;
543 while (prev != &p->mnt_mounts) {
544 p = list_entry(prev, struct vfsmount, mnt_child);
545 prev = p->mnt_mounts.prev;
546 }
547 return p;
548 }
549
550 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
551 int flag)
552 {
553 struct super_block *sb = old->mnt_sb;
554 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
555
556 if (mnt) {
557 if (flag & (CL_SLAVE | CL_PRIVATE))
558 mnt->mnt_group_id = 0; /* not a peer of original */
559 else
560 mnt->mnt_group_id = old->mnt_group_id;
561
562 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
563 int err = mnt_alloc_group_id(mnt);
564 if (err)
565 goto out_free;
566 }
567
568 mnt->mnt_flags = old->mnt_flags;
569 atomic_inc(&sb->s_active);
570 mnt->mnt_sb = sb;
571 mnt->mnt_root = dget(root);
572 mnt->mnt_mountpoint = mnt->mnt_root;
573 mnt->mnt_parent = mnt;
574
575 if (flag & CL_SLAVE) {
576 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
577 mnt->mnt_master = old;
578 CLEAR_MNT_SHARED(mnt);
579 } else if (!(flag & CL_PRIVATE)) {
580 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
581 list_add(&mnt->mnt_share, &old->mnt_share);
582 if (IS_MNT_SLAVE(old))
583 list_add(&mnt->mnt_slave, &old->mnt_slave);
584 mnt->mnt_master = old->mnt_master;
585 }
586 if (flag & CL_MAKE_SHARED)
587 set_mnt_shared(mnt);
588
589 /* stick the duplicate mount on the same expiry list
590 * as the original if that was on one */
591 if (flag & CL_EXPIRE) {
592 if (!list_empty(&old->mnt_expire))
593 list_add(&mnt->mnt_expire, &old->mnt_expire);
594 }
595 }
596 return mnt;
597
598 out_free:
599 free_vfsmnt(mnt);
600 return NULL;
601 }
602
603 static inline void __mntput(struct vfsmount *mnt)
604 {
605 struct super_block *sb = mnt->mnt_sb;
606 /*
607 * This probably indicates that somebody messed
608 * up a mnt_want/drop_write() pair. If this
609 * happens, the filesystem was probably unable
610 * to make r/w->r/o transitions.
611 */
612 /*
613 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
614 * provides barriers, so count_mnt_writers() below is safe. AV
615 */
616 WARN_ON(count_mnt_writers(mnt));
617 dput(mnt->mnt_root);
618 free_vfsmnt(mnt);
619 deactivate_super(sb);
620 }
621
622 void mntput_no_expire(struct vfsmount *mnt)
623 {
624 repeat:
625 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
626 if (likely(!mnt->mnt_pinned)) {
627 spin_unlock(&vfsmount_lock);
628 __mntput(mnt);
629 return;
630 }
631 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
632 mnt->mnt_pinned = 0;
633 spin_unlock(&vfsmount_lock);
634 acct_auto_close_mnt(mnt);
635 goto repeat;
636 }
637 }
638
639 EXPORT_SYMBOL(mntput_no_expire);
640
641 void mnt_pin(struct vfsmount *mnt)
642 {
643 spin_lock(&vfsmount_lock);
644 mnt->mnt_pinned++;
645 spin_unlock(&vfsmount_lock);
646 }
647
648 EXPORT_SYMBOL(mnt_pin);
649
650 void mnt_unpin(struct vfsmount *mnt)
651 {
652 spin_lock(&vfsmount_lock);
653 if (mnt->mnt_pinned) {
654 atomic_inc(&mnt->mnt_count);
655 mnt->mnt_pinned--;
656 }
657 spin_unlock(&vfsmount_lock);
658 }
659
660 EXPORT_SYMBOL(mnt_unpin);
661
662 static inline void mangle(struct seq_file *m, const char *s)
663 {
664 seq_escape(m, s, " \t\n\\");
665 }
666
667 /*
668 * Simple .show_options callback for filesystems which don't want to
669 * implement more complex mount option showing.
670 *
671 * See also save_mount_options().
672 */
673 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
674 {
675 const char *options;
676
677 rcu_read_lock();
678 options = rcu_dereference(mnt->mnt_sb->s_options);
679
680 if (options != NULL && options[0]) {
681 seq_putc(m, ',');
682 mangle(m, options);
683 }
684 rcu_read_unlock();
685
686 return 0;
687 }
688 EXPORT_SYMBOL(generic_show_options);
689
690 /*
691 * If filesystem uses generic_show_options(), this function should be
692 * called from the fill_super() callback.
693 *
694 * The .remount_fs callback usually needs to be handled in a special
695 * way, to make sure, that previous options are not overwritten if the
696 * remount fails.
697 *
698 * Also note, that if the filesystem's .remount_fs function doesn't
699 * reset all options to their default value, but changes only newly
700 * given options, then the displayed options will not reflect reality
701 * any more.
702 */
703 void save_mount_options(struct super_block *sb, char *options)
704 {
705 BUG_ON(sb->s_options);
706 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
707 }
708 EXPORT_SYMBOL(save_mount_options);
709
710 void replace_mount_options(struct super_block *sb, char *options)
711 {
712 char *old = sb->s_options;
713 rcu_assign_pointer(sb->s_options, options);
714 if (old) {
715 synchronize_rcu();
716 kfree(old);
717 }
718 }
719 EXPORT_SYMBOL(replace_mount_options);
720
721 #ifdef CONFIG_PROC_FS
722 /* iterator */
723 static void *m_start(struct seq_file *m, loff_t *pos)
724 {
725 struct proc_mounts *p = m->private;
726
727 down_read(&namespace_sem);
728 return seq_list_start(&p->ns->list, *pos);
729 }
730
731 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
732 {
733 struct proc_mounts *p = m->private;
734
735 return seq_list_next(v, &p->ns->list, pos);
736 }
737
738 static void m_stop(struct seq_file *m, void *v)
739 {
740 up_read(&namespace_sem);
741 }
742
743 int mnt_had_events(struct proc_mounts *p)
744 {
745 struct mnt_namespace *ns = p->ns;
746 int res = 0;
747
748 spin_lock(&vfsmount_lock);
749 if (p->event != ns->event) {
750 p->event = ns->event;
751 res = 1;
752 }
753 spin_unlock(&vfsmount_lock);
754
755 return res;
756 }
757
758 struct proc_fs_info {
759 int flag;
760 const char *str;
761 };
762
763 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
764 {
765 static const struct proc_fs_info fs_info[] = {
766 { MS_SYNCHRONOUS, ",sync" },
767 { MS_DIRSYNC, ",dirsync" },
768 { MS_MANDLOCK, ",mand" },
769 { 0, NULL }
770 };
771 const struct proc_fs_info *fs_infop;
772
773 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
774 if (sb->s_flags & fs_infop->flag)
775 seq_puts(m, fs_infop->str);
776 }
777
778 return security_sb_show_options(m, sb);
779 }
780
781 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
782 {
783 static const struct proc_fs_info mnt_info[] = {
784 { MNT_NOSUID, ",nosuid" },
785 { MNT_NODEV, ",nodev" },
786 { MNT_NOEXEC, ",noexec" },
787 { MNT_NOATIME, ",noatime" },
788 { MNT_NODIRATIME, ",nodiratime" },
789 { MNT_RELATIME, ",relatime" },
790 { MNT_STRICTATIME, ",strictatime" },
791 { 0, NULL }
792 };
793 const struct proc_fs_info *fs_infop;
794
795 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
796 if (mnt->mnt_flags & fs_infop->flag)
797 seq_puts(m, fs_infop->str);
798 }
799 }
800
801 static void show_type(struct seq_file *m, struct super_block *sb)
802 {
803 mangle(m, sb->s_type->name);
804 if (sb->s_subtype && sb->s_subtype[0]) {
805 seq_putc(m, '.');
806 mangle(m, sb->s_subtype);
807 }
808 }
809
810 static int show_vfsmnt(struct seq_file *m, void *v)
811 {
812 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
813 int err = 0;
814 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
815
816 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
817 seq_putc(m, ' ');
818 seq_path(m, &mnt_path, " \t\n\\");
819 seq_putc(m, ' ');
820 show_type(m, mnt->mnt_sb);
821 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
822 err = show_sb_opts(m, mnt->mnt_sb);
823 if (err)
824 goto out;
825 show_mnt_opts(m, mnt);
826 if (mnt->mnt_sb->s_op->show_options)
827 err = mnt->mnt_sb->s_op->show_options(m, mnt);
828 seq_puts(m, " 0 0\n");
829 out:
830 return err;
831 }
832
833 const struct seq_operations mounts_op = {
834 .start = m_start,
835 .next = m_next,
836 .stop = m_stop,
837 .show = show_vfsmnt
838 };
839
840 static int show_mountinfo(struct seq_file *m, void *v)
841 {
842 struct proc_mounts *p = m->private;
843 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
844 struct super_block *sb = mnt->mnt_sb;
845 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
846 struct path root = p->root;
847 int err = 0;
848
849 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
850 MAJOR(sb->s_dev), MINOR(sb->s_dev));
851 seq_dentry(m, mnt->mnt_root, " \t\n\\");
852 seq_putc(m, ' ');
853 seq_path_root(m, &mnt_path, &root, " \t\n\\");
854 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
855 /*
856 * Mountpoint is outside root, discard that one. Ugly,
857 * but less so than trying to do that in iterator in a
858 * race-free way (due to renames).
859 */
860 return SEQ_SKIP;
861 }
862 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
863 show_mnt_opts(m, mnt);
864
865 /* Tagged fields ("foo:X" or "bar") */
866 if (IS_MNT_SHARED(mnt))
867 seq_printf(m, " shared:%i", mnt->mnt_group_id);
868 if (IS_MNT_SLAVE(mnt)) {
869 int master = mnt->mnt_master->mnt_group_id;
870 int dom = get_dominating_id(mnt, &p->root);
871 seq_printf(m, " master:%i", master);
872 if (dom && dom != master)
873 seq_printf(m, " propagate_from:%i", dom);
874 }
875 if (IS_MNT_UNBINDABLE(mnt))
876 seq_puts(m, " unbindable");
877
878 /* Filesystem specific data */
879 seq_puts(m, " - ");
880 show_type(m, sb);
881 seq_putc(m, ' ');
882 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
883 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
884 err = show_sb_opts(m, sb);
885 if (err)
886 goto out;
887 if (sb->s_op->show_options)
888 err = sb->s_op->show_options(m, mnt);
889 seq_putc(m, '\n');
890 out:
891 return err;
892 }
893
894 const struct seq_operations mountinfo_op = {
895 .start = m_start,
896 .next = m_next,
897 .stop = m_stop,
898 .show = show_mountinfo,
899 };
900
901 static int show_vfsstat(struct seq_file *m, void *v)
902 {
903 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
904 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
905 int err = 0;
906
907 /* device */
908 if (mnt->mnt_devname) {
909 seq_puts(m, "device ");
910 mangle(m, mnt->mnt_devname);
911 } else
912 seq_puts(m, "no device");
913
914 /* mount point */
915 seq_puts(m, " mounted on ");
916 seq_path(m, &mnt_path, " \t\n\\");
917 seq_putc(m, ' ');
918
919 /* file system type */
920 seq_puts(m, "with fstype ");
921 show_type(m, mnt->mnt_sb);
922
923 /* optional statistics */
924 if (mnt->mnt_sb->s_op->show_stats) {
925 seq_putc(m, ' ');
926 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
927 }
928
929 seq_putc(m, '\n');
930 return err;
931 }
932
933 const struct seq_operations mountstats_op = {
934 .start = m_start,
935 .next = m_next,
936 .stop = m_stop,
937 .show = show_vfsstat,
938 };
939 #endif /* CONFIG_PROC_FS */
940
941 /**
942 * may_umount_tree - check if a mount tree is busy
943 * @mnt: root of mount tree
944 *
945 * This is called to check if a tree of mounts has any
946 * open files, pwds, chroots or sub mounts that are
947 * busy.
948 */
949 int may_umount_tree(struct vfsmount *mnt)
950 {
951 int actual_refs = 0;
952 int minimum_refs = 0;
953 struct vfsmount *p;
954
955 spin_lock(&vfsmount_lock);
956 for (p = mnt; p; p = next_mnt(p, mnt)) {
957 actual_refs += atomic_read(&p->mnt_count);
958 minimum_refs += 2;
959 }
960 spin_unlock(&vfsmount_lock);
961
962 if (actual_refs > minimum_refs)
963 return 0;
964
965 return 1;
966 }
967
968 EXPORT_SYMBOL(may_umount_tree);
969
970 /**
971 * may_umount - check if a mount point is busy
972 * @mnt: root of mount
973 *
974 * This is called to check if a mount point has any
975 * open files, pwds, chroots or sub mounts. If the
976 * mount has sub mounts this will return busy
977 * regardless of whether the sub mounts are busy.
978 *
979 * Doesn't take quota and stuff into account. IOW, in some cases it will
980 * give false negatives. The main reason why it's here is that we need
981 * a non-destructive way to look for easily umountable filesystems.
982 */
983 int may_umount(struct vfsmount *mnt)
984 {
985 int ret = 1;
986 down_read(&namespace_sem);
987 spin_lock(&vfsmount_lock);
988 if (propagate_mount_busy(mnt, 2))
989 ret = 0;
990 spin_unlock(&vfsmount_lock);
991 up_read(&namespace_sem);
992 return ret;
993 }
994
995 EXPORT_SYMBOL(may_umount);
996
997 void release_mounts(struct list_head *head)
998 {
999 struct vfsmount *mnt;
1000 while (!list_empty(head)) {
1001 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1002 list_del_init(&mnt->mnt_hash);
1003 if (mnt->mnt_parent != mnt) {
1004 struct dentry *dentry;
1005 struct vfsmount *m;
1006 spin_lock(&vfsmount_lock);
1007 dentry = mnt->mnt_mountpoint;
1008 m = mnt->mnt_parent;
1009 mnt->mnt_mountpoint = mnt->mnt_root;
1010 mnt->mnt_parent = mnt;
1011 m->mnt_ghosts--;
1012 spin_unlock(&vfsmount_lock);
1013 dput(dentry);
1014 mntput(m);
1015 }
1016 mntput(mnt);
1017 }
1018 }
1019
1020 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1021 {
1022 struct vfsmount *p;
1023
1024 for (p = mnt; p; p = next_mnt(p, mnt))
1025 list_move(&p->mnt_hash, kill);
1026
1027 if (propagate)
1028 propagate_umount(kill);
1029
1030 list_for_each_entry(p, kill, mnt_hash) {
1031 list_del_init(&p->mnt_expire);
1032 list_del_init(&p->mnt_list);
1033 __touch_mnt_namespace(p->mnt_ns);
1034 p->mnt_ns = NULL;
1035 list_del_init(&p->mnt_child);
1036 if (p->mnt_parent != p) {
1037 p->mnt_parent->mnt_ghosts++;
1038 p->mnt_mountpoint->d_mounted--;
1039 }
1040 change_mnt_propagation(p, MS_PRIVATE);
1041 }
1042 }
1043
1044 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1045
1046 static int do_umount(struct vfsmount *mnt, int flags)
1047 {
1048 struct super_block *sb = mnt->mnt_sb;
1049 int retval;
1050 LIST_HEAD(umount_list);
1051
1052 retval = security_sb_umount(mnt, flags);
1053 if (retval)
1054 return retval;
1055
1056 /*
1057 * Allow userspace to request a mountpoint be expired rather than
1058 * unmounting unconditionally. Unmount only happens if:
1059 * (1) the mark is already set (the mark is cleared by mntput())
1060 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1061 */
1062 if (flags & MNT_EXPIRE) {
1063 if (mnt == current->fs->root.mnt ||
1064 flags & (MNT_FORCE | MNT_DETACH))
1065 return -EINVAL;
1066
1067 if (atomic_read(&mnt->mnt_count) != 2)
1068 return -EBUSY;
1069
1070 if (!xchg(&mnt->mnt_expiry_mark, 1))
1071 return -EAGAIN;
1072 }
1073
1074 /*
1075 * If we may have to abort operations to get out of this
1076 * mount, and they will themselves hold resources we must
1077 * allow the fs to do things. In the Unix tradition of
1078 * 'Gee thats tricky lets do it in userspace' the umount_begin
1079 * might fail to complete on the first run through as other tasks
1080 * must return, and the like. Thats for the mount program to worry
1081 * about for the moment.
1082 */
1083
1084 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1085 sb->s_op->umount_begin(sb);
1086 }
1087
1088 /*
1089 * No sense to grab the lock for this test, but test itself looks
1090 * somewhat bogus. Suggestions for better replacement?
1091 * Ho-hum... In principle, we might treat that as umount + switch
1092 * to rootfs. GC would eventually take care of the old vfsmount.
1093 * Actually it makes sense, especially if rootfs would contain a
1094 * /reboot - static binary that would close all descriptors and
1095 * call reboot(9). Then init(8) could umount root and exec /reboot.
1096 */
1097 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1098 /*
1099 * Special case for "unmounting" root ...
1100 * we just try to remount it readonly.
1101 */
1102 down_write(&sb->s_umount);
1103 if (!(sb->s_flags & MS_RDONLY))
1104 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1105 up_write(&sb->s_umount);
1106 return retval;
1107 }
1108
1109 down_write(&namespace_sem);
1110 spin_lock(&vfsmount_lock);
1111 event++;
1112
1113 if (!(flags & MNT_DETACH))
1114 shrink_submounts(mnt, &umount_list);
1115
1116 retval = -EBUSY;
1117 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1118 if (!list_empty(&mnt->mnt_list))
1119 umount_tree(mnt, 1, &umount_list);
1120 retval = 0;
1121 }
1122 spin_unlock(&vfsmount_lock);
1123 up_write(&namespace_sem);
1124 release_mounts(&umount_list);
1125 return retval;
1126 }
1127
1128 /*
1129 * Now umount can handle mount points as well as block devices.
1130 * This is important for filesystems which use unnamed block devices.
1131 *
1132 * We now support a flag for forced unmount like the other 'big iron'
1133 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1134 */
1135
1136 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1137 {
1138 struct path path;
1139 int retval;
1140 int lookup_flags = 0;
1141
1142 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1143 return -EINVAL;
1144
1145 if (!(flags & UMOUNT_NOFOLLOW))
1146 lookup_flags |= LOOKUP_FOLLOW;
1147
1148 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1149 if (retval)
1150 goto out;
1151 retval = -EINVAL;
1152 if (path.dentry != path.mnt->mnt_root)
1153 goto dput_and_out;
1154 if (!check_mnt(path.mnt))
1155 goto dput_and_out;
1156
1157 retval = -EPERM;
1158 if (!capable(CAP_SYS_ADMIN))
1159 goto dput_and_out;
1160
1161 retval = do_umount(path.mnt, flags);
1162 dput_and_out:
1163 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1164 dput(path.dentry);
1165 mntput_no_expire(path.mnt);
1166 out:
1167 return retval;
1168 }
1169
1170 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1171
1172 /*
1173 * The 2.0 compatible umount. No flags.
1174 */
1175 SYSCALL_DEFINE1(oldumount, char __user *, name)
1176 {
1177 return sys_umount(name, 0);
1178 }
1179
1180 #endif
1181
1182 static int mount_is_safe(struct path *path)
1183 {
1184 if (capable(CAP_SYS_ADMIN))
1185 return 0;
1186 return -EPERM;
1187 #ifdef notyet
1188 if (S_ISLNK(path->dentry->d_inode->i_mode))
1189 return -EPERM;
1190 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1191 if (current_uid() != path->dentry->d_inode->i_uid)
1192 return -EPERM;
1193 }
1194 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1195 return -EPERM;
1196 return 0;
1197 #endif
1198 }
1199
1200 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1201 int flag)
1202 {
1203 struct vfsmount *res, *p, *q, *r, *s;
1204 struct path path;
1205
1206 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1207 return NULL;
1208
1209 res = q = clone_mnt(mnt, dentry, flag);
1210 if (!q)
1211 goto Enomem;
1212 q->mnt_mountpoint = mnt->mnt_mountpoint;
1213
1214 p = mnt;
1215 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1216 if (!is_subdir(r->mnt_mountpoint, dentry))
1217 continue;
1218
1219 for (s = r; s; s = next_mnt(s, r)) {
1220 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1221 s = skip_mnt_tree(s);
1222 continue;
1223 }
1224 while (p != s->mnt_parent) {
1225 p = p->mnt_parent;
1226 q = q->mnt_parent;
1227 }
1228 p = s;
1229 path.mnt = q;
1230 path.dentry = p->mnt_mountpoint;
1231 q = clone_mnt(p, p->mnt_root, flag);
1232 if (!q)
1233 goto Enomem;
1234 spin_lock(&vfsmount_lock);
1235 list_add_tail(&q->mnt_list, &res->mnt_list);
1236 attach_mnt(q, &path);
1237 spin_unlock(&vfsmount_lock);
1238 }
1239 }
1240 return res;
1241 Enomem:
1242 if (res) {
1243 LIST_HEAD(umount_list);
1244 spin_lock(&vfsmount_lock);
1245 umount_tree(res, 0, &umount_list);
1246 spin_unlock(&vfsmount_lock);
1247 release_mounts(&umount_list);
1248 }
1249 return NULL;
1250 }
1251
1252 struct vfsmount *collect_mounts(struct path *path)
1253 {
1254 struct vfsmount *tree;
1255 down_write(&namespace_sem);
1256 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1257 up_write(&namespace_sem);
1258 return tree;
1259 }
1260
1261 void drop_collected_mounts(struct vfsmount *mnt)
1262 {
1263 LIST_HEAD(umount_list);
1264 down_write(&namespace_sem);
1265 spin_lock(&vfsmount_lock);
1266 umount_tree(mnt, 0, &umount_list);
1267 spin_unlock(&vfsmount_lock);
1268 up_write(&namespace_sem);
1269 release_mounts(&umount_list);
1270 }
1271
1272 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1273 struct vfsmount *root)
1274 {
1275 struct vfsmount *mnt;
1276 int res = f(root, arg);
1277 if (res)
1278 return res;
1279 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1280 res = f(mnt, arg);
1281 if (res)
1282 return res;
1283 }
1284 return 0;
1285 }
1286
1287 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1288 {
1289 struct vfsmount *p;
1290
1291 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1292 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1293 mnt_release_group_id(p);
1294 }
1295 }
1296
1297 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1298 {
1299 struct vfsmount *p;
1300
1301 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1302 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1303 int err = mnt_alloc_group_id(p);
1304 if (err) {
1305 cleanup_group_ids(mnt, p);
1306 return err;
1307 }
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 /*
1315 * @source_mnt : mount tree to be attached
1316 * @nd : place the mount tree @source_mnt is attached
1317 * @parent_nd : if non-null, detach the source_mnt from its parent and
1318 * store the parent mount and mountpoint dentry.
1319 * (done when source_mnt is moved)
1320 *
1321 * NOTE: in the table below explains the semantics when a source mount
1322 * of a given type is attached to a destination mount of a given type.
1323 * ---------------------------------------------------------------------------
1324 * | BIND MOUNT OPERATION |
1325 * |**************************************************************************
1326 * | source-->| shared | private | slave | unbindable |
1327 * | dest | | | | |
1328 * | | | | | | |
1329 * | v | | | | |
1330 * |**************************************************************************
1331 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1332 * | | | | | |
1333 * |non-shared| shared (+) | private | slave (*) | invalid |
1334 * ***************************************************************************
1335 * A bind operation clones the source mount and mounts the clone on the
1336 * destination mount.
1337 *
1338 * (++) the cloned mount is propagated to all the mounts in the propagation
1339 * tree of the destination mount and the cloned mount is added to
1340 * the peer group of the source mount.
1341 * (+) the cloned mount is created under the destination mount and is marked
1342 * as shared. The cloned mount is added to the peer group of the source
1343 * mount.
1344 * (+++) the mount is propagated to all the mounts in the propagation tree
1345 * of the destination mount and the cloned mount is made slave
1346 * of the same master as that of the source mount. The cloned mount
1347 * is marked as 'shared and slave'.
1348 * (*) the cloned mount is made a slave of the same master as that of the
1349 * source mount.
1350 *
1351 * ---------------------------------------------------------------------------
1352 * | MOVE MOUNT OPERATION |
1353 * |**************************************************************************
1354 * | source-->| shared | private | slave | unbindable |
1355 * | dest | | | | |
1356 * | | | | | | |
1357 * | v | | | | |
1358 * |**************************************************************************
1359 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1360 * | | | | | |
1361 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1362 * ***************************************************************************
1363 *
1364 * (+) the mount is moved to the destination. And is then propagated to
1365 * all the mounts in the propagation tree of the destination mount.
1366 * (+*) the mount is moved to the destination.
1367 * (+++) the mount is moved to the destination and is then propagated to
1368 * all the mounts belonging to the destination mount's propagation tree.
1369 * the mount is marked as 'shared and slave'.
1370 * (*) the mount continues to be a slave at the new location.
1371 *
1372 * if the source mount is a tree, the operations explained above is
1373 * applied to each mount in the tree.
1374 * Must be called without spinlocks held, since this function can sleep
1375 * in allocations.
1376 */
1377 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1378 struct path *path, struct path *parent_path)
1379 {
1380 LIST_HEAD(tree_list);
1381 struct vfsmount *dest_mnt = path->mnt;
1382 struct dentry *dest_dentry = path->dentry;
1383 struct vfsmount *child, *p;
1384 int err;
1385
1386 if (IS_MNT_SHARED(dest_mnt)) {
1387 err = invent_group_ids(source_mnt, true);
1388 if (err)
1389 goto out;
1390 }
1391 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1392 if (err)
1393 goto out_cleanup_ids;
1394
1395 spin_lock(&vfsmount_lock);
1396
1397 if (IS_MNT_SHARED(dest_mnt)) {
1398 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1399 set_mnt_shared(p);
1400 }
1401 if (parent_path) {
1402 detach_mnt(source_mnt, parent_path);
1403 attach_mnt(source_mnt, path);
1404 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1405 } else {
1406 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1407 commit_tree(source_mnt);
1408 }
1409
1410 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1411 list_del_init(&child->mnt_hash);
1412 commit_tree(child);
1413 }
1414 spin_unlock(&vfsmount_lock);
1415 return 0;
1416
1417 out_cleanup_ids:
1418 if (IS_MNT_SHARED(dest_mnt))
1419 cleanup_group_ids(source_mnt, NULL);
1420 out:
1421 return err;
1422 }
1423
1424 static int graft_tree(struct vfsmount *mnt, struct path *path)
1425 {
1426 int err;
1427 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1428 return -EINVAL;
1429
1430 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1431 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1432 return -ENOTDIR;
1433
1434 err = -ENOENT;
1435 mutex_lock(&path->dentry->d_inode->i_mutex);
1436 if (cant_mount(path->dentry))
1437 goto out_unlock;
1438
1439 if (!d_unlinked(path->dentry))
1440 err = attach_recursive_mnt(mnt, path, NULL);
1441 out_unlock:
1442 mutex_unlock(&path->dentry->d_inode->i_mutex);
1443 return err;
1444 }
1445
1446 /*
1447 * recursively change the type of the mountpoint.
1448 */
1449 static int do_change_type(struct path *path, int flag)
1450 {
1451 struct vfsmount *m, *mnt = path->mnt;
1452 int recurse = flag & MS_REC;
1453 int type = flag & ~MS_REC;
1454 int err = 0;
1455
1456 if (!capable(CAP_SYS_ADMIN))
1457 return -EPERM;
1458
1459 if (path->dentry != path->mnt->mnt_root)
1460 return -EINVAL;
1461
1462 down_write(&namespace_sem);
1463 if (type == MS_SHARED) {
1464 err = invent_group_ids(mnt, recurse);
1465 if (err)
1466 goto out_unlock;
1467 }
1468
1469 spin_lock(&vfsmount_lock);
1470 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1471 change_mnt_propagation(m, type);
1472 spin_unlock(&vfsmount_lock);
1473
1474 out_unlock:
1475 up_write(&namespace_sem);
1476 return err;
1477 }
1478
1479 /*
1480 * do loopback mount.
1481 */
1482 static int do_loopback(struct path *path, char *old_name,
1483 int recurse)
1484 {
1485 struct path old_path;
1486 struct vfsmount *mnt = NULL;
1487 int err = mount_is_safe(path);
1488 if (err)
1489 return err;
1490 if (!old_name || !*old_name)
1491 return -EINVAL;
1492 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1493 if (err)
1494 return err;
1495
1496 down_write(&namespace_sem);
1497 err = -EINVAL;
1498 if (IS_MNT_UNBINDABLE(old_path.mnt))
1499 goto out;
1500
1501 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1502 goto out;
1503
1504 err = -ENOMEM;
1505 if (recurse)
1506 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1507 else
1508 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1509
1510 if (!mnt)
1511 goto out;
1512
1513 err = graft_tree(mnt, path);
1514 if (err) {
1515 LIST_HEAD(umount_list);
1516 spin_lock(&vfsmount_lock);
1517 umount_tree(mnt, 0, &umount_list);
1518 spin_unlock(&vfsmount_lock);
1519 release_mounts(&umount_list);
1520 }
1521
1522 out:
1523 up_write(&namespace_sem);
1524 path_put(&old_path);
1525 return err;
1526 }
1527
1528 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1529 {
1530 int error = 0;
1531 int readonly_request = 0;
1532
1533 if (ms_flags & MS_RDONLY)
1534 readonly_request = 1;
1535 if (readonly_request == __mnt_is_readonly(mnt))
1536 return 0;
1537
1538 if (readonly_request)
1539 error = mnt_make_readonly(mnt);
1540 else
1541 __mnt_unmake_readonly(mnt);
1542 return error;
1543 }
1544
1545 /*
1546 * change filesystem flags. dir should be a physical root of filesystem.
1547 * If you've mounted a non-root directory somewhere and want to do remount
1548 * on it - tough luck.
1549 */
1550 static int do_remount(struct path *path, int flags, int mnt_flags,
1551 void *data)
1552 {
1553 int err;
1554 struct super_block *sb = path->mnt->mnt_sb;
1555
1556 if (!capable(CAP_SYS_ADMIN))
1557 return -EPERM;
1558
1559 if (!check_mnt(path->mnt))
1560 return -EINVAL;
1561
1562 if (path->dentry != path->mnt->mnt_root)
1563 return -EINVAL;
1564
1565 down_write(&sb->s_umount);
1566 if (flags & MS_BIND)
1567 err = change_mount_flags(path->mnt, flags);
1568 else
1569 err = do_remount_sb(sb, flags, data, 0);
1570 if (!err) {
1571 spin_lock(&vfsmount_lock);
1572 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1573 path->mnt->mnt_flags = mnt_flags;
1574 spin_unlock(&vfsmount_lock);
1575 }
1576 up_write(&sb->s_umount);
1577 if (!err) {
1578 spin_lock(&vfsmount_lock);
1579 touch_mnt_namespace(path->mnt->mnt_ns);
1580 spin_unlock(&vfsmount_lock);
1581 }
1582 return err;
1583 }
1584
1585 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1586 {
1587 struct vfsmount *p;
1588 for (p = mnt; p; p = next_mnt(p, mnt)) {
1589 if (IS_MNT_UNBINDABLE(p))
1590 return 1;
1591 }
1592 return 0;
1593 }
1594
1595 static int do_move_mount(struct path *path, char *old_name)
1596 {
1597 struct path old_path, parent_path;
1598 struct vfsmount *p;
1599 int err = 0;
1600 if (!capable(CAP_SYS_ADMIN))
1601 return -EPERM;
1602 if (!old_name || !*old_name)
1603 return -EINVAL;
1604 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1605 if (err)
1606 return err;
1607
1608 down_write(&namespace_sem);
1609 while (d_mountpoint(path->dentry) &&
1610 follow_down(path))
1611 ;
1612 err = -EINVAL;
1613 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1614 goto out;
1615
1616 err = -ENOENT;
1617 mutex_lock(&path->dentry->d_inode->i_mutex);
1618 if (cant_mount(path->dentry))
1619 goto out1;
1620
1621 if (d_unlinked(path->dentry))
1622 goto out1;
1623
1624 err = -EINVAL;
1625 if (old_path.dentry != old_path.mnt->mnt_root)
1626 goto out1;
1627
1628 if (old_path.mnt == old_path.mnt->mnt_parent)
1629 goto out1;
1630
1631 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1632 S_ISDIR(old_path.dentry->d_inode->i_mode))
1633 goto out1;
1634 /*
1635 * Don't move a mount residing in a shared parent.
1636 */
1637 if (old_path.mnt->mnt_parent &&
1638 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1639 goto out1;
1640 /*
1641 * Don't move a mount tree containing unbindable mounts to a destination
1642 * mount which is shared.
1643 */
1644 if (IS_MNT_SHARED(path->mnt) &&
1645 tree_contains_unbindable(old_path.mnt))
1646 goto out1;
1647 err = -ELOOP;
1648 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1649 if (p == old_path.mnt)
1650 goto out1;
1651
1652 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1653 if (err)
1654 goto out1;
1655
1656 /* if the mount is moved, it should no longer be expire
1657 * automatically */
1658 list_del_init(&old_path.mnt->mnt_expire);
1659 out1:
1660 mutex_unlock(&path->dentry->d_inode->i_mutex);
1661 out:
1662 up_write(&namespace_sem);
1663 if (!err)
1664 path_put(&parent_path);
1665 path_put(&old_path);
1666 return err;
1667 }
1668
1669 /*
1670 * create a new mount for userspace and request it to be added into the
1671 * namespace's tree
1672 */
1673 static int do_new_mount(struct path *path, char *type, int flags,
1674 int mnt_flags, char *name, void *data)
1675 {
1676 struct vfsmount *mnt;
1677
1678 if (!type)
1679 return -EINVAL;
1680
1681 /* we need capabilities... */
1682 if (!capable(CAP_SYS_ADMIN))
1683 return -EPERM;
1684
1685 lock_kernel();
1686 mnt = do_kern_mount(type, flags, name, data);
1687 unlock_kernel();
1688 if (IS_ERR(mnt))
1689 return PTR_ERR(mnt);
1690
1691 return do_add_mount(mnt, path, mnt_flags, NULL);
1692 }
1693
1694 /*
1695 * add a mount into a namespace's mount tree
1696 * - provide the option of adding the new mount to an expiration list
1697 */
1698 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1699 int mnt_flags, struct list_head *fslist)
1700 {
1701 int err;
1702
1703 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1704
1705 down_write(&namespace_sem);
1706 /* Something was mounted here while we slept */
1707 while (d_mountpoint(path->dentry) &&
1708 follow_down(path))
1709 ;
1710 err = -EINVAL;
1711 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1712 goto unlock;
1713
1714 /* Refuse the same filesystem on the same mount point */
1715 err = -EBUSY;
1716 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1717 path->mnt->mnt_root == path->dentry)
1718 goto unlock;
1719
1720 err = -EINVAL;
1721 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1722 goto unlock;
1723
1724 newmnt->mnt_flags = mnt_flags;
1725 if ((err = graft_tree(newmnt, path)))
1726 goto unlock;
1727
1728 if (fslist) /* add to the specified expiration list */
1729 list_add_tail(&newmnt->mnt_expire, fslist);
1730
1731 up_write(&namespace_sem);
1732 return 0;
1733
1734 unlock:
1735 up_write(&namespace_sem);
1736 mntput(newmnt);
1737 return err;
1738 }
1739
1740 EXPORT_SYMBOL_GPL(do_add_mount);
1741
1742 /*
1743 * process a list of expirable mountpoints with the intent of discarding any
1744 * mountpoints that aren't in use and haven't been touched since last we came
1745 * here
1746 */
1747 void mark_mounts_for_expiry(struct list_head *mounts)
1748 {
1749 struct vfsmount *mnt, *next;
1750 LIST_HEAD(graveyard);
1751 LIST_HEAD(umounts);
1752
1753 if (list_empty(mounts))
1754 return;
1755
1756 down_write(&namespace_sem);
1757 spin_lock(&vfsmount_lock);
1758
1759 /* extract from the expiration list every vfsmount that matches the
1760 * following criteria:
1761 * - only referenced by its parent vfsmount
1762 * - still marked for expiry (marked on the last call here; marks are
1763 * cleared by mntput())
1764 */
1765 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1766 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1767 propagate_mount_busy(mnt, 1))
1768 continue;
1769 list_move(&mnt->mnt_expire, &graveyard);
1770 }
1771 while (!list_empty(&graveyard)) {
1772 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1773 touch_mnt_namespace(mnt->mnt_ns);
1774 umount_tree(mnt, 1, &umounts);
1775 }
1776 spin_unlock(&vfsmount_lock);
1777 up_write(&namespace_sem);
1778
1779 release_mounts(&umounts);
1780 }
1781
1782 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1783
1784 /*
1785 * Ripoff of 'select_parent()'
1786 *
1787 * search the list of submounts for a given mountpoint, and move any
1788 * shrinkable submounts to the 'graveyard' list.
1789 */
1790 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1791 {
1792 struct vfsmount *this_parent = parent;
1793 struct list_head *next;
1794 int found = 0;
1795
1796 repeat:
1797 next = this_parent->mnt_mounts.next;
1798 resume:
1799 while (next != &this_parent->mnt_mounts) {
1800 struct list_head *tmp = next;
1801 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1802
1803 next = tmp->next;
1804 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1805 continue;
1806 /*
1807 * Descend a level if the d_mounts list is non-empty.
1808 */
1809 if (!list_empty(&mnt->mnt_mounts)) {
1810 this_parent = mnt;
1811 goto repeat;
1812 }
1813
1814 if (!propagate_mount_busy(mnt, 1)) {
1815 list_move_tail(&mnt->mnt_expire, graveyard);
1816 found++;
1817 }
1818 }
1819 /*
1820 * All done at this level ... ascend and resume the search
1821 */
1822 if (this_parent != parent) {
1823 next = this_parent->mnt_child.next;
1824 this_parent = this_parent->mnt_parent;
1825 goto resume;
1826 }
1827 return found;
1828 }
1829
1830 /*
1831 * process a list of expirable mountpoints with the intent of discarding any
1832 * submounts of a specific parent mountpoint
1833 */
1834 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1835 {
1836 LIST_HEAD(graveyard);
1837 struct vfsmount *m;
1838
1839 /* extract submounts of 'mountpoint' from the expiration list */
1840 while (select_submounts(mnt, &graveyard)) {
1841 while (!list_empty(&graveyard)) {
1842 m = list_first_entry(&graveyard, struct vfsmount,
1843 mnt_expire);
1844 touch_mnt_namespace(m->mnt_ns);
1845 umount_tree(m, 1, umounts);
1846 }
1847 }
1848 }
1849
1850 /*
1851 * Some copy_from_user() implementations do not return the exact number of
1852 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1853 * Note that this function differs from copy_from_user() in that it will oops
1854 * on bad values of `to', rather than returning a short copy.
1855 */
1856 static long exact_copy_from_user(void *to, const void __user * from,
1857 unsigned long n)
1858 {
1859 char *t = to;
1860 const char __user *f = from;
1861 char c;
1862
1863 if (!access_ok(VERIFY_READ, from, n))
1864 return n;
1865
1866 while (n) {
1867 if (__get_user(c, f)) {
1868 memset(t, 0, n);
1869 break;
1870 }
1871 *t++ = c;
1872 f++;
1873 n--;
1874 }
1875 return n;
1876 }
1877
1878 int copy_mount_options(const void __user * data, unsigned long *where)
1879 {
1880 int i;
1881 unsigned long page;
1882 unsigned long size;
1883
1884 *where = 0;
1885 if (!data)
1886 return 0;
1887
1888 if (!(page = __get_free_page(GFP_KERNEL)))
1889 return -ENOMEM;
1890
1891 /* We only care that *some* data at the address the user
1892 * gave us is valid. Just in case, we'll zero
1893 * the remainder of the page.
1894 */
1895 /* copy_from_user cannot cross TASK_SIZE ! */
1896 size = TASK_SIZE - (unsigned long)data;
1897 if (size > PAGE_SIZE)
1898 size = PAGE_SIZE;
1899
1900 i = size - exact_copy_from_user((void *)page, data, size);
1901 if (!i) {
1902 free_page(page);
1903 return -EFAULT;
1904 }
1905 if (i != PAGE_SIZE)
1906 memset((char *)page + i, 0, PAGE_SIZE - i);
1907 *where = page;
1908 return 0;
1909 }
1910
1911 int copy_mount_string(const void __user *data, char **where)
1912 {
1913 char *tmp;
1914
1915 if (!data) {
1916 *where = NULL;
1917 return 0;
1918 }
1919
1920 tmp = strndup_user(data, PAGE_SIZE);
1921 if (IS_ERR(tmp))
1922 return PTR_ERR(tmp);
1923
1924 *where = tmp;
1925 return 0;
1926 }
1927
1928 /*
1929 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1930 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1931 *
1932 * data is a (void *) that can point to any structure up to
1933 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1934 * information (or be NULL).
1935 *
1936 * Pre-0.97 versions of mount() didn't have a flags word.
1937 * When the flags word was introduced its top half was required
1938 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1939 * Therefore, if this magic number is present, it carries no information
1940 * and must be discarded.
1941 */
1942 long do_mount(char *dev_name, char *dir_name, char *type_page,
1943 unsigned long flags, void *data_page)
1944 {
1945 struct path path;
1946 int retval = 0;
1947 int mnt_flags = 0;
1948
1949 /* Discard magic */
1950 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1951 flags &= ~MS_MGC_MSK;
1952
1953 /* Basic sanity checks */
1954
1955 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1956 return -EINVAL;
1957
1958 if (data_page)
1959 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1960
1961 /* ... and get the mountpoint */
1962 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1963 if (retval)
1964 return retval;
1965
1966 retval = security_sb_mount(dev_name, &path,
1967 type_page, flags, data_page);
1968 if (retval)
1969 goto dput_out;
1970
1971 /* Default to relatime unless overriden */
1972 if (!(flags & MS_NOATIME))
1973 mnt_flags |= MNT_RELATIME;
1974
1975 /* Separate the per-mountpoint flags */
1976 if (flags & MS_NOSUID)
1977 mnt_flags |= MNT_NOSUID;
1978 if (flags & MS_NODEV)
1979 mnt_flags |= MNT_NODEV;
1980 if (flags & MS_NOEXEC)
1981 mnt_flags |= MNT_NOEXEC;
1982 if (flags & MS_NOATIME)
1983 mnt_flags |= MNT_NOATIME;
1984 if (flags & MS_NODIRATIME)
1985 mnt_flags |= MNT_NODIRATIME;
1986 if (flags & MS_STRICTATIME)
1987 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1988 if (flags & MS_RDONLY)
1989 mnt_flags |= MNT_READONLY;
1990
1991 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1992 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1993 MS_STRICTATIME);
1994
1995 if (flags & MS_REMOUNT)
1996 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1997 data_page);
1998 else if (flags & MS_BIND)
1999 retval = do_loopback(&path, dev_name, flags & MS_REC);
2000 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2001 retval = do_change_type(&path, flags);
2002 else if (flags & MS_MOVE)
2003 retval = do_move_mount(&path, dev_name);
2004 else
2005 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2006 dev_name, data_page);
2007 dput_out:
2008 path_put(&path);
2009 return retval;
2010 }
2011
2012 static struct mnt_namespace *alloc_mnt_ns(void)
2013 {
2014 struct mnt_namespace *new_ns;
2015
2016 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2017 if (!new_ns)
2018 return ERR_PTR(-ENOMEM);
2019 atomic_set(&new_ns->count, 1);
2020 new_ns->root = NULL;
2021 INIT_LIST_HEAD(&new_ns->list);
2022 init_waitqueue_head(&new_ns->poll);
2023 new_ns->event = 0;
2024 return new_ns;
2025 }
2026
2027 /*
2028 * Allocate a new namespace structure and populate it with contents
2029 * copied from the namespace of the passed in task structure.
2030 */
2031 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2032 struct fs_struct *fs)
2033 {
2034 struct mnt_namespace *new_ns;
2035 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2036 struct vfsmount *p, *q;
2037
2038 new_ns = alloc_mnt_ns();
2039 if (IS_ERR(new_ns))
2040 return new_ns;
2041
2042 down_write(&namespace_sem);
2043 /* First pass: copy the tree topology */
2044 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2045 CL_COPY_ALL | CL_EXPIRE);
2046 if (!new_ns->root) {
2047 up_write(&namespace_sem);
2048 kfree(new_ns);
2049 return ERR_PTR(-ENOMEM);
2050 }
2051 spin_lock(&vfsmount_lock);
2052 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2053 spin_unlock(&vfsmount_lock);
2054
2055 /*
2056 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2057 * as belonging to new namespace. We have already acquired a private
2058 * fs_struct, so tsk->fs->lock is not needed.
2059 */
2060 p = mnt_ns->root;
2061 q = new_ns->root;
2062 while (p) {
2063 q->mnt_ns = new_ns;
2064 if (fs) {
2065 if (p == fs->root.mnt) {
2066 rootmnt = p;
2067 fs->root.mnt = mntget(q);
2068 }
2069 if (p == fs->pwd.mnt) {
2070 pwdmnt = p;
2071 fs->pwd.mnt = mntget(q);
2072 }
2073 }
2074 p = next_mnt(p, mnt_ns->root);
2075 q = next_mnt(q, new_ns->root);
2076 }
2077 up_write(&namespace_sem);
2078
2079 if (rootmnt)
2080 mntput(rootmnt);
2081 if (pwdmnt)
2082 mntput(pwdmnt);
2083
2084 return new_ns;
2085 }
2086
2087 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2088 struct fs_struct *new_fs)
2089 {
2090 struct mnt_namespace *new_ns;
2091
2092 BUG_ON(!ns);
2093 get_mnt_ns(ns);
2094
2095 if (!(flags & CLONE_NEWNS))
2096 return ns;
2097
2098 new_ns = dup_mnt_ns(ns, new_fs);
2099
2100 put_mnt_ns(ns);
2101 return new_ns;
2102 }
2103
2104 /**
2105 * create_mnt_ns - creates a private namespace and adds a root filesystem
2106 * @mnt: pointer to the new root filesystem mountpoint
2107 */
2108 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2109 {
2110 struct mnt_namespace *new_ns;
2111
2112 new_ns = alloc_mnt_ns();
2113 if (!IS_ERR(new_ns)) {
2114 mnt->mnt_ns = new_ns;
2115 new_ns->root = mnt;
2116 list_add(&new_ns->list, &new_ns->root->mnt_list);
2117 }
2118 return new_ns;
2119 }
2120 EXPORT_SYMBOL(create_mnt_ns);
2121
2122 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2123 char __user *, type, unsigned long, flags, void __user *, data)
2124 {
2125 int ret;
2126 char *kernel_type;
2127 char *kernel_dir;
2128 char *kernel_dev;
2129 unsigned long data_page;
2130
2131 ret = copy_mount_string(type, &kernel_type);
2132 if (ret < 0)
2133 goto out_type;
2134
2135 kernel_dir = getname(dir_name);
2136 if (IS_ERR(kernel_dir)) {
2137 ret = PTR_ERR(kernel_dir);
2138 goto out_dir;
2139 }
2140
2141 ret = copy_mount_string(dev_name, &kernel_dev);
2142 if (ret < 0)
2143 goto out_dev;
2144
2145 ret = copy_mount_options(data, &data_page);
2146 if (ret < 0)
2147 goto out_data;
2148
2149 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2150 (void *) data_page);
2151
2152 free_page(data_page);
2153 out_data:
2154 kfree(kernel_dev);
2155 out_dev:
2156 putname(kernel_dir);
2157 out_dir:
2158 kfree(kernel_type);
2159 out_type:
2160 return ret;
2161 }
2162
2163 /*
2164 * pivot_root Semantics:
2165 * Moves the root file system of the current process to the directory put_old,
2166 * makes new_root as the new root file system of the current process, and sets
2167 * root/cwd of all processes which had them on the current root to new_root.
2168 *
2169 * Restrictions:
2170 * The new_root and put_old must be directories, and must not be on the
2171 * same file system as the current process root. The put_old must be
2172 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2173 * pointed to by put_old must yield the same directory as new_root. No other
2174 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2175 *
2176 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2177 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2178 * in this situation.
2179 *
2180 * Notes:
2181 * - we don't move root/cwd if they are not at the root (reason: if something
2182 * cared enough to change them, it's probably wrong to force them elsewhere)
2183 * - it's okay to pick a root that isn't the root of a file system, e.g.
2184 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2185 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2186 * first.
2187 */
2188 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2189 const char __user *, put_old)
2190 {
2191 struct vfsmount *tmp;
2192 struct path new, old, parent_path, root_parent, root;
2193 int error;
2194
2195 if (!capable(CAP_SYS_ADMIN))
2196 return -EPERM;
2197
2198 error = user_path_dir(new_root, &new);
2199 if (error)
2200 goto out0;
2201 error = -EINVAL;
2202 if (!check_mnt(new.mnt))
2203 goto out1;
2204
2205 error = user_path_dir(put_old, &old);
2206 if (error)
2207 goto out1;
2208
2209 error = security_sb_pivotroot(&old, &new);
2210 if (error) {
2211 path_put(&old);
2212 goto out1;
2213 }
2214
2215 read_lock(&current->fs->lock);
2216 root = current->fs->root;
2217 path_get(&current->fs->root);
2218 read_unlock(&current->fs->lock);
2219 down_write(&namespace_sem);
2220 mutex_lock(&old.dentry->d_inode->i_mutex);
2221 error = -EINVAL;
2222 if (IS_MNT_SHARED(old.mnt) ||
2223 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2224 IS_MNT_SHARED(root.mnt->mnt_parent))
2225 goto out2;
2226 if (!check_mnt(root.mnt))
2227 goto out2;
2228 error = -ENOENT;
2229 if (cant_mount(old.dentry))
2230 goto out2;
2231 if (d_unlinked(new.dentry))
2232 goto out2;
2233 if (d_unlinked(old.dentry))
2234 goto out2;
2235 error = -EBUSY;
2236 if (new.mnt == root.mnt ||
2237 old.mnt == root.mnt)
2238 goto out2; /* loop, on the same file system */
2239 error = -EINVAL;
2240 if (root.mnt->mnt_root != root.dentry)
2241 goto out2; /* not a mountpoint */
2242 if (root.mnt->mnt_parent == root.mnt)
2243 goto out2; /* not attached */
2244 if (new.mnt->mnt_root != new.dentry)
2245 goto out2; /* not a mountpoint */
2246 if (new.mnt->mnt_parent == new.mnt)
2247 goto out2; /* not attached */
2248 /* make sure we can reach put_old from new_root */
2249 tmp = old.mnt;
2250 spin_lock(&vfsmount_lock);
2251 if (tmp != new.mnt) {
2252 for (;;) {
2253 if (tmp->mnt_parent == tmp)
2254 goto out3; /* already mounted on put_old */
2255 if (tmp->mnt_parent == new.mnt)
2256 break;
2257 tmp = tmp->mnt_parent;
2258 }
2259 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2260 goto out3;
2261 } else if (!is_subdir(old.dentry, new.dentry))
2262 goto out3;
2263 detach_mnt(new.mnt, &parent_path);
2264 detach_mnt(root.mnt, &root_parent);
2265 /* mount old root on put_old */
2266 attach_mnt(root.mnt, &old);
2267 /* mount new_root on / */
2268 attach_mnt(new.mnt, &root_parent);
2269 touch_mnt_namespace(current->nsproxy->mnt_ns);
2270 spin_unlock(&vfsmount_lock);
2271 chroot_fs_refs(&root, &new);
2272 error = 0;
2273 path_put(&root_parent);
2274 path_put(&parent_path);
2275 out2:
2276 mutex_unlock(&old.dentry->d_inode->i_mutex);
2277 up_write(&namespace_sem);
2278 path_put(&root);
2279 path_put(&old);
2280 out1:
2281 path_put(&new);
2282 out0:
2283 return error;
2284 out3:
2285 spin_unlock(&vfsmount_lock);
2286 goto out2;
2287 }
2288
2289 static void __init init_mount_tree(void)
2290 {
2291 struct vfsmount *mnt;
2292 struct mnt_namespace *ns;
2293 struct path root;
2294
2295 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2296 if (IS_ERR(mnt))
2297 panic("Can't create rootfs");
2298 ns = create_mnt_ns(mnt);
2299 if (IS_ERR(ns))
2300 panic("Can't allocate initial namespace");
2301
2302 init_task.nsproxy->mnt_ns = ns;
2303 get_mnt_ns(ns);
2304
2305 root.mnt = ns->root;
2306 root.dentry = ns->root->mnt_root;
2307
2308 set_fs_pwd(current->fs, &root);
2309 set_fs_root(current->fs, &root);
2310 }
2311
2312 void __init mnt_init(void)
2313 {
2314 unsigned u;
2315 int err;
2316
2317 init_rwsem(&namespace_sem);
2318
2319 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2320 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2321
2322 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2323
2324 if (!mount_hashtable)
2325 panic("Failed to allocate mount hash table\n");
2326
2327 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2328
2329 for (u = 0; u < HASH_SIZE; u++)
2330 INIT_LIST_HEAD(&mount_hashtable[u]);
2331
2332 err = sysfs_init();
2333 if (err)
2334 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2335 __func__, err);
2336 fs_kobj = kobject_create_and_add("fs", NULL);
2337 if (!fs_kobj)
2338 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2339 init_rootfs();
2340 init_mount_tree();
2341 }
2342
2343 void put_mnt_ns(struct mnt_namespace *ns)
2344 {
2345 LIST_HEAD(umount_list);
2346
2347 if (!atomic_dec_and_test(&ns->count))
2348 return;
2349 down_write(&namespace_sem);
2350 spin_lock(&vfsmount_lock);
2351 umount_tree(ns->root, 0, &umount_list);
2352 spin_unlock(&vfsmount_lock);
2353 up_write(&namespace_sem);
2354 release_mounts(&umount_list);
2355 kfree(ns);
2356 }
2357 EXPORT_SYMBOL(put_mnt_ns);
This page took 0.107697 seconds and 6 git commands to generate.