Merge branch 'next' into for-linus
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43
44 /*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52 DEFINE_BRLOCK(vfsmount_lock);
53
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
60 }
61
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
64 /*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 int res;
71
72 retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83 }
84
85 static void mnt_free_id(struct mount *mnt)
86 {
87 int id = mnt->mnt_id;
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
92 spin_unlock(&mnt_id_lock);
93 }
94
95 /*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 int res;
103
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
114 }
115
116 /*
117 * Release a peer group ID
118 */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
126 }
127
128 /*
129 * vfsmount lock must be held for read
130 */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 preempt_disable();
137 mnt->mnt_count += n;
138 preempt_enable();
139 #endif
140 }
141
142 /*
143 * vfsmount lock must be held for write
144 */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 unsigned int count = 0;
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 }
154
155 return count;
156 #else
157 return mnt->mnt_count;
158 #endif
159 }
160
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
165 int err;
166
167 err = mnt_alloc_id(mnt);
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
174 goto out_free_id;
175 }
176
177 #ifdef CONFIG_SMP
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
180 goto out_free_devname;
181
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
186 #endif
187
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 }
200 return mnt;
201
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 mnt_free_id(mnt);
208 out_free_cache:
209 kmem_cache_free(mnt_cache, mnt);
210 return NULL;
211 }
212
213 /*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221 /*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 mnt->mnt_writers++;
248 #endif
249 }
250
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 mnt->mnt_writers--;
257 #endif
258 }
259
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 unsigned int count = 0;
264 int cpu;
265
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 }
269
270 return count;
271 #else
272 return mnt->mnt_writers;
273 #endif
274 }
275
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283 }
284
285 /*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293 /**
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329 return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332
333 /**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
351 mnt_inc_writers(real_mount(mnt));
352 preempt_enable();
353 return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357 /**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364 int mnt_want_write_file(struct file *file)
365 {
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
374 /**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 preempt_disable();
385 mnt_dec_writers(real_mount(mnt));
386 preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389
390 void mnt_drop_write_file(struct file *file)
391 {
392 mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 int ret = 0;
399
400 br_write_lock(&vfsmount_lock);
401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 /*
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
405 */
406 smp_mb();
407
408 /*
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
423 */
424 if (mnt_get_writers(mnt) > 0)
425 ret = -EBUSY;
426 else
427 mnt->mnt.mnt_flags |= MNT_READONLY;
428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 br_write_unlock(&vfsmount_lock);
435 return ret;
436 }
437
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 br_write_lock(&vfsmount_lock);
441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 br_write_unlock(&vfsmount_lock);
443 }
444
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 struct mount *mnt;
448 int err = 0;
449
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
454 br_write_lock(&vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
476 br_write_unlock(&vfsmount_lock);
477
478 return err;
479 }
480
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 kfree(mnt->mnt_devname);
484 mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 free_percpu(mnt->mnt_pcp);
487 #endif
488 kmem_cache_free(mnt_cache, mnt);
489 }
490
491 /*
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
495 */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 int dir)
498 {
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
501 struct mount *p, *found = NULL;
502
503 for (;;) {
504 tmp = dir ? tmp->next : tmp->prev;
505 p = NULL;
506 if (tmp == head)
507 break;
508 p = list_entry(tmp, struct mount, mnt_hash);
509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 found = p;
511 break;
512 }
513 }
514 return found;
515 }
516
517 /*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
521 struct vfsmount *lookup_mnt(struct path *path)
522 {
523 struct mount *child_mnt;
524
525 br_read_lock(&vfsmount_lock);
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
529 br_read_unlock(&vfsmount_lock);
530 return &child_mnt->mnt;
531 } else {
532 br_read_unlock(&vfsmount_lock);
533 return NULL;
534 }
535 }
536
537 static inline int check_mnt(struct mount *mnt)
538 {
539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
540 }
541
542 /*
543 * vfsmount lock must be held for write
544 */
545 static void touch_mnt_namespace(struct mnt_namespace *ns)
546 {
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551 }
552
553 /*
554 * vfsmount lock must be held for write
555 */
556 static void __touch_mnt_namespace(struct mnt_namespace *ns)
557 {
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562 }
563
564 /*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
568 static void dentry_reset_mounted(struct dentry *dentry)
569 {
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
573 struct mount *p;
574
575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
576 if (p->mnt_mountpoint == dentry)
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583 }
584
585 /*
586 * vfsmount lock must be held for write
587 */
588 static void detach_mnt(struct mount *mnt, struct path *old_path)
589 {
590 old_path->dentry = mnt->mnt_mountpoint;
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
594 list_del_init(&mnt->mnt_child);
595 list_del_init(&mnt->mnt_hash);
596 dentry_reset_mounted(old_path->dentry);
597 }
598
599 /*
600 * vfsmount lock must be held for write
601 */
602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
603 struct mount *child_mnt)
604 {
605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
606 child_mnt->mnt_mountpoint = dget(dentry);
607 child_mnt->mnt_parent = mnt;
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
611 }
612
613 /*
614 * vfsmount lock must be held for write
615 */
616 static void attach_mnt(struct mount *mnt, struct path *path)
617 {
618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
620 hash(path->mnt, path->dentry));
621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
622 }
623
624 static inline void __mnt_make_longterm(struct mount *mnt)
625 {
626 #ifdef CONFIG_SMP
627 atomic_inc(&mnt->mnt_longterm);
628 #endif
629 }
630
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount *mnt)
633 {
634 #ifdef CONFIG_SMP
635 atomic_dec(&mnt->mnt_longterm);
636 #endif
637 }
638
639 /*
640 * vfsmount lock must be held for write
641 */
642 static void commit_tree(struct mount *mnt)
643 {
644 struct mount *parent = mnt->mnt_parent;
645 struct mount *m;
646 LIST_HEAD(head);
647 struct mnt_namespace *n = parent->mnt_ns;
648
649 BUG_ON(parent == mnt);
650
651 list_add_tail(&head, &mnt->mnt_list);
652 list_for_each_entry(m, &head, mnt_list) {
653 m->mnt_ns = n;
654 __mnt_make_longterm(m);
655 }
656
657 list_splice(&head, n->list.prev);
658
659 list_add_tail(&mnt->mnt_hash, mount_hashtable +
660 hash(&parent->mnt, mnt->mnt_mountpoint));
661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
662 touch_mnt_namespace(n);
663 }
664
665 static struct mount *next_mnt(struct mount *p, struct mount *root)
666 {
667 struct list_head *next = p->mnt_mounts.next;
668 if (next == &p->mnt_mounts) {
669 while (1) {
670 if (p == root)
671 return NULL;
672 next = p->mnt_child.next;
673 if (next != &p->mnt_parent->mnt_mounts)
674 break;
675 p = p->mnt_parent;
676 }
677 }
678 return list_entry(next, struct mount, mnt_child);
679 }
680
681 static struct mount *skip_mnt_tree(struct mount *p)
682 {
683 struct list_head *prev = p->mnt_mounts.prev;
684 while (prev != &p->mnt_mounts) {
685 p = list_entry(prev, struct mount, mnt_child);
686 prev = p->mnt_mounts.prev;
687 }
688 return p;
689 }
690
691 struct vfsmount *
692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693 {
694 struct mount *mnt;
695 struct dentry *root;
696
697 if (!type)
698 return ERR_PTR(-ENODEV);
699
700 mnt = alloc_vfsmnt(name);
701 if (!mnt)
702 return ERR_PTR(-ENOMEM);
703
704 if (flags & MS_KERNMOUNT)
705 mnt->mnt.mnt_flags = MNT_INTERNAL;
706
707 root = mount_fs(type, flags, name, data);
708 if (IS_ERR(root)) {
709 free_vfsmnt(mnt);
710 return ERR_CAST(root);
711 }
712
713 mnt->mnt.mnt_root = root;
714 mnt->mnt.mnt_sb = root->d_sb;
715 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
716 mnt->mnt_parent = mnt;
717 br_write_lock(&vfsmount_lock);
718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 br_write_unlock(&vfsmount_lock);
720 return &mnt->mnt;
721 }
722 EXPORT_SYMBOL_GPL(vfs_kern_mount);
723
724 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
725 int flag)
726 {
727 struct super_block *sb = old->mnt.mnt_sb;
728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
729
730 if (mnt) {
731 if (flag & (CL_SLAVE | CL_PRIVATE))
732 mnt->mnt_group_id = 0; /* not a peer of original */
733 else
734 mnt->mnt_group_id = old->mnt_group_id;
735
736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
737 int err = mnt_alloc_group_id(mnt);
738 if (err)
739 goto out_free;
740 }
741
742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
743 atomic_inc(&sb->s_active);
744 mnt->mnt.mnt_sb = sb;
745 mnt->mnt.mnt_root = dget(root);
746 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
747 mnt->mnt_parent = mnt;
748 br_write_lock(&vfsmount_lock);
749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 br_write_unlock(&vfsmount_lock);
751
752 if (flag & CL_SLAVE) {
753 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
754 mnt->mnt_master = old;
755 CLEAR_MNT_SHARED(mnt);
756 } else if (!(flag & CL_PRIVATE)) {
757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
758 list_add(&mnt->mnt_share, &old->mnt_share);
759 if (IS_MNT_SLAVE(old))
760 list_add(&mnt->mnt_slave, &old->mnt_slave);
761 mnt->mnt_master = old->mnt_master;
762 }
763 if (flag & CL_MAKE_SHARED)
764 set_mnt_shared(mnt);
765
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
768 if (flag & CL_EXPIRE) {
769 if (!list_empty(&old->mnt_expire))
770 list_add(&mnt->mnt_expire, &old->mnt_expire);
771 }
772 }
773 return mnt;
774
775 out_free:
776 free_vfsmnt(mnt);
777 return NULL;
778 }
779
780 static inline void mntfree(struct mount *mnt)
781 {
782 struct vfsmount *m = &mnt->mnt;
783 struct super_block *sb = m->mnt_sb;
784
785 /*
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
790 */
791 /*
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
794 */
795 WARN_ON(mnt_get_writers(mnt));
796 fsnotify_vfsmount_delete(m);
797 dput(m->mnt_root);
798 free_vfsmnt(mnt);
799 deactivate_super(sb);
800 }
801
802 static void mntput_no_expire(struct mount *mnt)
803 {
804 put_again:
805 #ifdef CONFIG_SMP
806 br_read_lock(&vfsmount_lock);
807 if (likely(atomic_read(&mnt->mnt_longterm))) {
808 mnt_add_count(mnt, -1);
809 br_read_unlock(&vfsmount_lock);
810 return;
811 }
812 br_read_unlock(&vfsmount_lock);
813
814 br_write_lock(&vfsmount_lock);
815 mnt_add_count(mnt, -1);
816 if (mnt_get_count(mnt)) {
817 br_write_unlock(&vfsmount_lock);
818 return;
819 }
820 #else
821 mnt_add_count(mnt, -1);
822 if (likely(mnt_get_count(mnt)))
823 return;
824 br_write_lock(&vfsmount_lock);
825 #endif
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
829 br_write_unlock(&vfsmount_lock);
830 acct_auto_close_mnt(&mnt->mnt);
831 goto put_again;
832 }
833
834 list_del(&mnt->mnt_instance);
835 br_write_unlock(&vfsmount_lock);
836 mntfree(mnt);
837 }
838
839 void mntput(struct vfsmount *mnt)
840 {
841 if (mnt) {
842 struct mount *m = real_mount(mnt);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
846 mntput_no_expire(m);
847 }
848 }
849 EXPORT_SYMBOL(mntput);
850
851 struct vfsmount *mntget(struct vfsmount *mnt)
852 {
853 if (mnt)
854 mnt_add_count(real_mount(mnt), 1);
855 return mnt;
856 }
857 EXPORT_SYMBOL(mntget);
858
859 void mnt_pin(struct vfsmount *mnt)
860 {
861 br_write_lock(&vfsmount_lock);
862 real_mount(mnt)->mnt_pinned++;
863 br_write_unlock(&vfsmount_lock);
864 }
865 EXPORT_SYMBOL(mnt_pin);
866
867 void mnt_unpin(struct vfsmount *m)
868 {
869 struct mount *mnt = real_mount(m);
870 br_write_lock(&vfsmount_lock);
871 if (mnt->mnt_pinned) {
872 mnt_add_count(mnt, 1);
873 mnt->mnt_pinned--;
874 }
875 br_write_unlock(&vfsmount_lock);
876 }
877 EXPORT_SYMBOL(mnt_unpin);
878
879 static inline void mangle(struct seq_file *m, const char *s)
880 {
881 seq_escape(m, s, " \t\n\\");
882 }
883
884 /*
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
887 *
888 * See also save_mount_options().
889 */
890 int generic_show_options(struct seq_file *m, struct dentry *root)
891 {
892 const char *options;
893
894 rcu_read_lock();
895 options = rcu_dereference(root->d_sb->s_options);
896
897 if (options != NULL && options[0]) {
898 seq_putc(m, ',');
899 mangle(m, options);
900 }
901 rcu_read_unlock();
902
903 return 0;
904 }
905 EXPORT_SYMBOL(generic_show_options);
906
907 /*
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
910 *
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
913 * remount fails.
914 *
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
918 * any more.
919 */
920 void save_mount_options(struct super_block *sb, char *options)
921 {
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 }
925 EXPORT_SYMBOL(save_mount_options);
926
927 void replace_mount_options(struct super_block *sb, char *options)
928 {
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
931 if (old) {
932 synchronize_rcu();
933 kfree(old);
934 }
935 }
936 EXPORT_SYMBOL(replace_mount_options);
937
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
941 {
942 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
943
944 down_read(&namespace_sem);
945 return seq_list_start(&p->ns->list, *pos);
946 }
947
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 {
950 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
951
952 return seq_list_next(v, &p->ns->list, pos);
953 }
954
955 static void m_stop(struct seq_file *m, void *v)
956 {
957 up_read(&namespace_sem);
958 }
959
960 static int m_show(struct seq_file *m, void *v)
961 {
962 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
963 struct mount *r = list_entry(v, struct mount, mnt_list);
964 return p->show(m, &r->mnt);
965 }
966
967 const struct seq_operations mounts_op = {
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
971 .show = m_show,
972 };
973 #endif /* CONFIG_PROC_FS */
974
975 /**
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
978 *
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
982 */
983 int may_umount_tree(struct vfsmount *m)
984 {
985 struct mount *mnt = real_mount(m);
986 int actual_refs = 0;
987 int minimum_refs = 0;
988 struct mount *p;
989 BUG_ON(!m);
990
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock);
993 for (p = mnt; p; p = next_mnt(p, mnt)) {
994 actual_refs += mnt_get_count(p);
995 minimum_refs += 2;
996 }
997 br_write_unlock(&vfsmount_lock);
998
999 if (actual_refs > minimum_refs)
1000 return 0;
1001
1002 return 1;
1003 }
1004
1005 EXPORT_SYMBOL(may_umount_tree);
1006
1007 /**
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1010 *
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1015 *
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1019 */
1020 int may_umount(struct vfsmount *mnt)
1021 {
1022 int ret = 1;
1023 down_read(&namespace_sem);
1024 br_write_lock(&vfsmount_lock);
1025 if (propagate_mount_busy(real_mount(mnt), 2))
1026 ret = 0;
1027 br_write_unlock(&vfsmount_lock);
1028 up_read(&namespace_sem);
1029 return ret;
1030 }
1031
1032 EXPORT_SYMBOL(may_umount);
1033
1034 void release_mounts(struct list_head *head)
1035 {
1036 struct mount *mnt;
1037 while (!list_empty(head)) {
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
1040 if (mnt_has_parent(mnt)) {
1041 struct dentry *dentry;
1042 struct mount *m;
1043
1044 br_write_lock(&vfsmount_lock);
1045 dentry = mnt->mnt_mountpoint;
1046 m = mnt->mnt_parent;
1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 mnt->mnt_parent = mnt;
1049 m->mnt_ghosts--;
1050 br_write_unlock(&vfsmount_lock);
1051 dput(dentry);
1052 mntput(&m->mnt);
1053 }
1054 mntput(&mnt->mnt);
1055 }
1056 }
1057
1058 /*
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1061 */
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 {
1064 LIST_HEAD(tmp_list);
1065 struct mount *p;
1066
1067 for (p = mnt; p; p = next_mnt(p, mnt))
1068 list_move(&p->mnt_hash, &tmp_list);
1069
1070 if (propagate)
1071 propagate_umount(&tmp_list);
1072
1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 list_del_init(&p->mnt_expire);
1075 list_del_init(&p->mnt_list);
1076 __touch_mnt_namespace(p->mnt_ns);
1077 if (p->mnt_ns)
1078 __mnt_make_shortterm(p);
1079 p->mnt_ns = NULL;
1080 list_del_init(&p->mnt_child);
1081 if (mnt_has_parent(p)) {
1082 p->mnt_parent->mnt_ghosts++;
1083 dentry_reset_mounted(p->mnt_mountpoint);
1084 }
1085 change_mnt_propagation(p, MS_PRIVATE);
1086 }
1087 list_splice(&tmp_list, kill);
1088 }
1089
1090 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1091
1092 static int do_umount(struct mount *mnt, int flags)
1093 {
1094 struct super_block *sb = mnt->mnt.mnt_sb;
1095 int retval;
1096 LIST_HEAD(umount_list);
1097
1098 retval = security_sb_umount(&mnt->mnt, flags);
1099 if (retval)
1100 return retval;
1101
1102 /*
1103 * Allow userspace to request a mountpoint be expired rather than
1104 * unmounting unconditionally. Unmount only happens if:
1105 * (1) the mark is already set (the mark is cleared by mntput())
1106 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1107 */
1108 if (flags & MNT_EXPIRE) {
1109 if (&mnt->mnt == current->fs->root.mnt ||
1110 flags & (MNT_FORCE | MNT_DETACH))
1111 return -EINVAL;
1112
1113 /*
1114 * probably don't strictly need the lock here if we examined
1115 * all race cases, but it's a slowpath.
1116 */
1117 br_write_lock(&vfsmount_lock);
1118 if (mnt_get_count(mnt) != 2) {
1119 br_write_unlock(&vfsmount_lock);
1120 return -EBUSY;
1121 }
1122 br_write_unlock(&vfsmount_lock);
1123
1124 if (!xchg(&mnt->mnt_expiry_mark, 1))
1125 return -EAGAIN;
1126 }
1127
1128 /*
1129 * If we may have to abort operations to get out of this
1130 * mount, and they will themselves hold resources we must
1131 * allow the fs to do things. In the Unix tradition of
1132 * 'Gee thats tricky lets do it in userspace' the umount_begin
1133 * might fail to complete on the first run through as other tasks
1134 * must return, and the like. Thats for the mount program to worry
1135 * about for the moment.
1136 */
1137
1138 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1139 sb->s_op->umount_begin(sb);
1140 }
1141
1142 /*
1143 * No sense to grab the lock for this test, but test itself looks
1144 * somewhat bogus. Suggestions for better replacement?
1145 * Ho-hum... In principle, we might treat that as umount + switch
1146 * to rootfs. GC would eventually take care of the old vfsmount.
1147 * Actually it makes sense, especially if rootfs would contain a
1148 * /reboot - static binary that would close all descriptors and
1149 * call reboot(9). Then init(8) could umount root and exec /reboot.
1150 */
1151 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1152 /*
1153 * Special case for "unmounting" root ...
1154 * we just try to remount it readonly.
1155 */
1156 down_write(&sb->s_umount);
1157 if (!(sb->s_flags & MS_RDONLY))
1158 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1159 up_write(&sb->s_umount);
1160 return retval;
1161 }
1162
1163 down_write(&namespace_sem);
1164 br_write_lock(&vfsmount_lock);
1165 event++;
1166
1167 if (!(flags & MNT_DETACH))
1168 shrink_submounts(mnt, &umount_list);
1169
1170 retval = -EBUSY;
1171 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1172 if (!list_empty(&mnt->mnt_list))
1173 umount_tree(mnt, 1, &umount_list);
1174 retval = 0;
1175 }
1176 br_write_unlock(&vfsmount_lock);
1177 up_write(&namespace_sem);
1178 release_mounts(&umount_list);
1179 return retval;
1180 }
1181
1182 /*
1183 * Now umount can handle mount points as well as block devices.
1184 * This is important for filesystems which use unnamed block devices.
1185 *
1186 * We now support a flag for forced unmount like the other 'big iron'
1187 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188 */
1189
1190 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1191 {
1192 struct path path;
1193 struct mount *mnt;
1194 int retval;
1195 int lookup_flags = 0;
1196
1197 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1198 return -EINVAL;
1199
1200 if (!(flags & UMOUNT_NOFOLLOW))
1201 lookup_flags |= LOOKUP_FOLLOW;
1202
1203 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1204 if (retval)
1205 goto out;
1206 mnt = real_mount(path.mnt);
1207 retval = -EINVAL;
1208 if (path.dentry != path.mnt->mnt_root)
1209 goto dput_and_out;
1210 if (!check_mnt(mnt))
1211 goto dput_and_out;
1212
1213 retval = -EPERM;
1214 if (!capable(CAP_SYS_ADMIN))
1215 goto dput_and_out;
1216
1217 retval = do_umount(mnt, flags);
1218 dput_and_out:
1219 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1220 dput(path.dentry);
1221 mntput_no_expire(mnt);
1222 out:
1223 return retval;
1224 }
1225
1226 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227
1228 /*
1229 * The 2.0 compatible umount. No flags.
1230 */
1231 SYSCALL_DEFINE1(oldumount, char __user *, name)
1232 {
1233 return sys_umount(name, 0);
1234 }
1235
1236 #endif
1237
1238 static int mount_is_safe(struct path *path)
1239 {
1240 if (capable(CAP_SYS_ADMIN))
1241 return 0;
1242 return -EPERM;
1243 #ifdef notyet
1244 if (S_ISLNK(path->dentry->d_inode->i_mode))
1245 return -EPERM;
1246 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1247 if (current_uid() != path->dentry->d_inode->i_uid)
1248 return -EPERM;
1249 }
1250 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1251 return -EPERM;
1252 return 0;
1253 #endif
1254 }
1255
1256 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1257 int flag)
1258 {
1259 struct mount *res, *p, *q, *r;
1260 struct path path;
1261
1262 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1263 return NULL;
1264
1265 res = q = clone_mnt(mnt, dentry, flag);
1266 if (!q)
1267 goto Enomem;
1268 q->mnt_mountpoint = mnt->mnt_mountpoint;
1269
1270 p = mnt;
1271 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1272 struct mount *s;
1273 if (!is_subdir(r->mnt_mountpoint, dentry))
1274 continue;
1275
1276 for (s = r; s; s = next_mnt(s, r)) {
1277 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1278 s = skip_mnt_tree(s);
1279 continue;
1280 }
1281 while (p != s->mnt_parent) {
1282 p = p->mnt_parent;
1283 q = q->mnt_parent;
1284 }
1285 p = s;
1286 path.mnt = &q->mnt;
1287 path.dentry = p->mnt_mountpoint;
1288 q = clone_mnt(p, p->mnt.mnt_root, flag);
1289 if (!q)
1290 goto Enomem;
1291 br_write_lock(&vfsmount_lock);
1292 list_add_tail(&q->mnt_list, &res->mnt_list);
1293 attach_mnt(q, &path);
1294 br_write_unlock(&vfsmount_lock);
1295 }
1296 }
1297 return res;
1298 Enomem:
1299 if (res) {
1300 LIST_HEAD(umount_list);
1301 br_write_lock(&vfsmount_lock);
1302 umount_tree(res, 0, &umount_list);
1303 br_write_unlock(&vfsmount_lock);
1304 release_mounts(&umount_list);
1305 }
1306 return NULL;
1307 }
1308
1309 struct vfsmount *collect_mounts(struct path *path)
1310 {
1311 struct mount *tree;
1312 down_write(&namespace_sem);
1313 tree = copy_tree(real_mount(path->mnt), path->dentry,
1314 CL_COPY_ALL | CL_PRIVATE);
1315 up_write(&namespace_sem);
1316 return tree ? &tree->mnt : NULL;
1317 }
1318
1319 void drop_collected_mounts(struct vfsmount *mnt)
1320 {
1321 LIST_HEAD(umount_list);
1322 down_write(&namespace_sem);
1323 br_write_lock(&vfsmount_lock);
1324 umount_tree(real_mount(mnt), 0, &umount_list);
1325 br_write_unlock(&vfsmount_lock);
1326 up_write(&namespace_sem);
1327 release_mounts(&umount_list);
1328 }
1329
1330 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1331 struct vfsmount *root)
1332 {
1333 struct mount *mnt;
1334 int res = f(root, arg);
1335 if (res)
1336 return res;
1337 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1338 res = f(&mnt->mnt, arg);
1339 if (res)
1340 return res;
1341 }
1342 return 0;
1343 }
1344
1345 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1346 {
1347 struct mount *p;
1348
1349 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1350 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1351 mnt_release_group_id(p);
1352 }
1353 }
1354
1355 static int invent_group_ids(struct mount *mnt, bool recurse)
1356 {
1357 struct mount *p;
1358
1359 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1360 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1361 int err = mnt_alloc_group_id(p);
1362 if (err) {
1363 cleanup_group_ids(mnt, p);
1364 return err;
1365 }
1366 }
1367 }
1368
1369 return 0;
1370 }
1371
1372 /*
1373 * @source_mnt : mount tree to be attached
1374 * @nd : place the mount tree @source_mnt is attached
1375 * @parent_nd : if non-null, detach the source_mnt from its parent and
1376 * store the parent mount and mountpoint dentry.
1377 * (done when source_mnt is moved)
1378 *
1379 * NOTE: in the table below explains the semantics when a source mount
1380 * of a given type is attached to a destination mount of a given type.
1381 * ---------------------------------------------------------------------------
1382 * | BIND MOUNT OPERATION |
1383 * |**************************************************************************
1384 * | source-->| shared | private | slave | unbindable |
1385 * | dest | | | | |
1386 * | | | | | | |
1387 * | v | | | | |
1388 * |**************************************************************************
1389 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1390 * | | | | | |
1391 * |non-shared| shared (+) | private | slave (*) | invalid |
1392 * ***************************************************************************
1393 * A bind operation clones the source mount and mounts the clone on the
1394 * destination mount.
1395 *
1396 * (++) the cloned mount is propagated to all the mounts in the propagation
1397 * tree of the destination mount and the cloned mount is added to
1398 * the peer group of the source mount.
1399 * (+) the cloned mount is created under the destination mount and is marked
1400 * as shared. The cloned mount is added to the peer group of the source
1401 * mount.
1402 * (+++) the mount is propagated to all the mounts in the propagation tree
1403 * of the destination mount and the cloned mount is made slave
1404 * of the same master as that of the source mount. The cloned mount
1405 * is marked as 'shared and slave'.
1406 * (*) the cloned mount is made a slave of the same master as that of the
1407 * source mount.
1408 *
1409 * ---------------------------------------------------------------------------
1410 * | MOVE MOUNT OPERATION |
1411 * |**************************************************************************
1412 * | source-->| shared | private | slave | unbindable |
1413 * | dest | | | | |
1414 * | | | | | | |
1415 * | v | | | | |
1416 * |**************************************************************************
1417 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1418 * | | | | | |
1419 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1420 * ***************************************************************************
1421 *
1422 * (+) the mount is moved to the destination. And is then propagated to
1423 * all the mounts in the propagation tree of the destination mount.
1424 * (+*) the mount is moved to the destination.
1425 * (+++) the mount is moved to the destination and is then propagated to
1426 * all the mounts belonging to the destination mount's propagation tree.
1427 * the mount is marked as 'shared and slave'.
1428 * (*) the mount continues to be a slave at the new location.
1429 *
1430 * if the source mount is a tree, the operations explained above is
1431 * applied to each mount in the tree.
1432 * Must be called without spinlocks held, since this function can sleep
1433 * in allocations.
1434 */
1435 static int attach_recursive_mnt(struct mount *source_mnt,
1436 struct path *path, struct path *parent_path)
1437 {
1438 LIST_HEAD(tree_list);
1439 struct mount *dest_mnt = real_mount(path->mnt);
1440 struct dentry *dest_dentry = path->dentry;
1441 struct mount *child, *p;
1442 int err;
1443
1444 if (IS_MNT_SHARED(dest_mnt)) {
1445 err = invent_group_ids(source_mnt, true);
1446 if (err)
1447 goto out;
1448 }
1449 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1450 if (err)
1451 goto out_cleanup_ids;
1452
1453 br_write_lock(&vfsmount_lock);
1454
1455 if (IS_MNT_SHARED(dest_mnt)) {
1456 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1457 set_mnt_shared(p);
1458 }
1459 if (parent_path) {
1460 detach_mnt(source_mnt, parent_path);
1461 attach_mnt(source_mnt, path);
1462 touch_mnt_namespace(source_mnt->mnt_ns);
1463 } else {
1464 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1465 commit_tree(source_mnt);
1466 }
1467
1468 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1469 list_del_init(&child->mnt_hash);
1470 commit_tree(child);
1471 }
1472 br_write_unlock(&vfsmount_lock);
1473
1474 return 0;
1475
1476 out_cleanup_ids:
1477 if (IS_MNT_SHARED(dest_mnt))
1478 cleanup_group_ids(source_mnt, NULL);
1479 out:
1480 return err;
1481 }
1482
1483 static int lock_mount(struct path *path)
1484 {
1485 struct vfsmount *mnt;
1486 retry:
1487 mutex_lock(&path->dentry->d_inode->i_mutex);
1488 if (unlikely(cant_mount(path->dentry))) {
1489 mutex_unlock(&path->dentry->d_inode->i_mutex);
1490 return -ENOENT;
1491 }
1492 down_write(&namespace_sem);
1493 mnt = lookup_mnt(path);
1494 if (likely(!mnt))
1495 return 0;
1496 up_write(&namespace_sem);
1497 mutex_unlock(&path->dentry->d_inode->i_mutex);
1498 path_put(path);
1499 path->mnt = mnt;
1500 path->dentry = dget(mnt->mnt_root);
1501 goto retry;
1502 }
1503
1504 static void unlock_mount(struct path *path)
1505 {
1506 up_write(&namespace_sem);
1507 mutex_unlock(&path->dentry->d_inode->i_mutex);
1508 }
1509
1510 static int graft_tree(struct mount *mnt, struct path *path)
1511 {
1512 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1513 return -EINVAL;
1514
1515 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1516 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1517 return -ENOTDIR;
1518
1519 if (d_unlinked(path->dentry))
1520 return -ENOENT;
1521
1522 return attach_recursive_mnt(mnt, path, NULL);
1523 }
1524
1525 /*
1526 * Sanity check the flags to change_mnt_propagation.
1527 */
1528
1529 static int flags_to_propagation_type(int flags)
1530 {
1531 int type = flags & ~(MS_REC | MS_SILENT);
1532
1533 /* Fail if any non-propagation flags are set */
1534 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1535 return 0;
1536 /* Only one propagation flag should be set */
1537 if (!is_power_of_2(type))
1538 return 0;
1539 return type;
1540 }
1541
1542 /*
1543 * recursively change the type of the mountpoint.
1544 */
1545 static int do_change_type(struct path *path, int flag)
1546 {
1547 struct mount *m;
1548 struct mount *mnt = real_mount(path->mnt);
1549 int recurse = flag & MS_REC;
1550 int type;
1551 int err = 0;
1552
1553 if (!capable(CAP_SYS_ADMIN))
1554 return -EPERM;
1555
1556 if (path->dentry != path->mnt->mnt_root)
1557 return -EINVAL;
1558
1559 type = flags_to_propagation_type(flag);
1560 if (!type)
1561 return -EINVAL;
1562
1563 down_write(&namespace_sem);
1564 if (type == MS_SHARED) {
1565 err = invent_group_ids(mnt, recurse);
1566 if (err)
1567 goto out_unlock;
1568 }
1569
1570 br_write_lock(&vfsmount_lock);
1571 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1572 change_mnt_propagation(m, type);
1573 br_write_unlock(&vfsmount_lock);
1574
1575 out_unlock:
1576 up_write(&namespace_sem);
1577 return err;
1578 }
1579
1580 /*
1581 * do loopback mount.
1582 */
1583 static int do_loopback(struct path *path, char *old_name,
1584 int recurse)
1585 {
1586 LIST_HEAD(umount_list);
1587 struct path old_path;
1588 struct mount *mnt = NULL, *old;
1589 int err = mount_is_safe(path);
1590 if (err)
1591 return err;
1592 if (!old_name || !*old_name)
1593 return -EINVAL;
1594 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1595 if (err)
1596 return err;
1597
1598 err = lock_mount(path);
1599 if (err)
1600 goto out;
1601
1602 old = real_mount(old_path.mnt);
1603
1604 err = -EINVAL;
1605 if (IS_MNT_UNBINDABLE(old))
1606 goto out2;
1607
1608 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1609 goto out2;
1610
1611 err = -ENOMEM;
1612 if (recurse)
1613 mnt = copy_tree(old, old_path.dentry, 0);
1614 else
1615 mnt = clone_mnt(old, old_path.dentry, 0);
1616
1617 if (!mnt)
1618 goto out2;
1619
1620 err = graft_tree(mnt, path);
1621 if (err) {
1622 br_write_lock(&vfsmount_lock);
1623 umount_tree(mnt, 0, &umount_list);
1624 br_write_unlock(&vfsmount_lock);
1625 }
1626 out2:
1627 unlock_mount(path);
1628 release_mounts(&umount_list);
1629 out:
1630 path_put(&old_path);
1631 return err;
1632 }
1633
1634 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1635 {
1636 int error = 0;
1637 int readonly_request = 0;
1638
1639 if (ms_flags & MS_RDONLY)
1640 readonly_request = 1;
1641 if (readonly_request == __mnt_is_readonly(mnt))
1642 return 0;
1643
1644 if (readonly_request)
1645 error = mnt_make_readonly(real_mount(mnt));
1646 else
1647 __mnt_unmake_readonly(real_mount(mnt));
1648 return error;
1649 }
1650
1651 /*
1652 * change filesystem flags. dir should be a physical root of filesystem.
1653 * If you've mounted a non-root directory somewhere and want to do remount
1654 * on it - tough luck.
1655 */
1656 static int do_remount(struct path *path, int flags, int mnt_flags,
1657 void *data)
1658 {
1659 int err;
1660 struct super_block *sb = path->mnt->mnt_sb;
1661 struct mount *mnt = real_mount(path->mnt);
1662
1663 if (!capable(CAP_SYS_ADMIN))
1664 return -EPERM;
1665
1666 if (!check_mnt(mnt))
1667 return -EINVAL;
1668
1669 if (path->dentry != path->mnt->mnt_root)
1670 return -EINVAL;
1671
1672 err = security_sb_remount(sb, data);
1673 if (err)
1674 return err;
1675
1676 down_write(&sb->s_umount);
1677 if (flags & MS_BIND)
1678 err = change_mount_flags(path->mnt, flags);
1679 else
1680 err = do_remount_sb(sb, flags, data, 0);
1681 if (!err) {
1682 br_write_lock(&vfsmount_lock);
1683 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1684 mnt->mnt.mnt_flags = mnt_flags;
1685 br_write_unlock(&vfsmount_lock);
1686 }
1687 up_write(&sb->s_umount);
1688 if (!err) {
1689 br_write_lock(&vfsmount_lock);
1690 touch_mnt_namespace(mnt->mnt_ns);
1691 br_write_unlock(&vfsmount_lock);
1692 }
1693 return err;
1694 }
1695
1696 static inline int tree_contains_unbindable(struct mount *mnt)
1697 {
1698 struct mount *p;
1699 for (p = mnt; p; p = next_mnt(p, mnt)) {
1700 if (IS_MNT_UNBINDABLE(p))
1701 return 1;
1702 }
1703 return 0;
1704 }
1705
1706 static int do_move_mount(struct path *path, char *old_name)
1707 {
1708 struct path old_path, parent_path;
1709 struct mount *p;
1710 struct mount *old;
1711 int err = 0;
1712 if (!capable(CAP_SYS_ADMIN))
1713 return -EPERM;
1714 if (!old_name || !*old_name)
1715 return -EINVAL;
1716 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1717 if (err)
1718 return err;
1719
1720 err = lock_mount(path);
1721 if (err < 0)
1722 goto out;
1723
1724 old = real_mount(old_path.mnt);
1725 p = real_mount(path->mnt);
1726
1727 err = -EINVAL;
1728 if (!check_mnt(p) || !check_mnt(old))
1729 goto out1;
1730
1731 if (d_unlinked(path->dentry))
1732 goto out1;
1733
1734 err = -EINVAL;
1735 if (old_path.dentry != old_path.mnt->mnt_root)
1736 goto out1;
1737
1738 if (!mnt_has_parent(old))
1739 goto out1;
1740
1741 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1742 S_ISDIR(old_path.dentry->d_inode->i_mode))
1743 goto out1;
1744 /*
1745 * Don't move a mount residing in a shared parent.
1746 */
1747 if (IS_MNT_SHARED(old->mnt_parent))
1748 goto out1;
1749 /*
1750 * Don't move a mount tree containing unbindable mounts to a destination
1751 * mount which is shared.
1752 */
1753 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1754 goto out1;
1755 err = -ELOOP;
1756 for (; mnt_has_parent(p); p = p->mnt_parent)
1757 if (p == old)
1758 goto out1;
1759
1760 err = attach_recursive_mnt(old, path, &parent_path);
1761 if (err)
1762 goto out1;
1763
1764 /* if the mount is moved, it should no longer be expire
1765 * automatically */
1766 list_del_init(&old->mnt_expire);
1767 out1:
1768 unlock_mount(path);
1769 out:
1770 if (!err)
1771 path_put(&parent_path);
1772 path_put(&old_path);
1773 return err;
1774 }
1775
1776 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1777 {
1778 int err;
1779 const char *subtype = strchr(fstype, '.');
1780 if (subtype) {
1781 subtype++;
1782 err = -EINVAL;
1783 if (!subtype[0])
1784 goto err;
1785 } else
1786 subtype = "";
1787
1788 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1789 err = -ENOMEM;
1790 if (!mnt->mnt_sb->s_subtype)
1791 goto err;
1792 return mnt;
1793
1794 err:
1795 mntput(mnt);
1796 return ERR_PTR(err);
1797 }
1798
1799 static struct vfsmount *
1800 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1801 {
1802 struct file_system_type *type = get_fs_type(fstype);
1803 struct vfsmount *mnt;
1804 if (!type)
1805 return ERR_PTR(-ENODEV);
1806 mnt = vfs_kern_mount(type, flags, name, data);
1807 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1808 !mnt->mnt_sb->s_subtype)
1809 mnt = fs_set_subtype(mnt, fstype);
1810 put_filesystem(type);
1811 return mnt;
1812 }
1813
1814 /*
1815 * add a mount into a namespace's mount tree
1816 */
1817 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1818 {
1819 int err;
1820
1821 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1822
1823 err = lock_mount(path);
1824 if (err)
1825 return err;
1826
1827 err = -EINVAL;
1828 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1829 goto unlock;
1830
1831 /* Refuse the same filesystem on the same mount point */
1832 err = -EBUSY;
1833 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1834 path->mnt->mnt_root == path->dentry)
1835 goto unlock;
1836
1837 err = -EINVAL;
1838 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1839 goto unlock;
1840
1841 newmnt->mnt.mnt_flags = mnt_flags;
1842 err = graft_tree(newmnt, path);
1843
1844 unlock:
1845 unlock_mount(path);
1846 return err;
1847 }
1848
1849 /*
1850 * create a new mount for userspace and request it to be added into the
1851 * namespace's tree
1852 */
1853 static int do_new_mount(struct path *path, char *type, int flags,
1854 int mnt_flags, char *name, void *data)
1855 {
1856 struct vfsmount *mnt;
1857 int err;
1858
1859 if (!type)
1860 return -EINVAL;
1861
1862 /* we need capabilities... */
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865
1866 mnt = do_kern_mount(type, flags, name, data);
1867 if (IS_ERR(mnt))
1868 return PTR_ERR(mnt);
1869
1870 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1871 if (err)
1872 mntput(mnt);
1873 return err;
1874 }
1875
1876 int finish_automount(struct vfsmount *m, struct path *path)
1877 {
1878 struct mount *mnt = real_mount(m);
1879 int err;
1880 /* The new mount record should have at least 2 refs to prevent it being
1881 * expired before we get a chance to add it
1882 */
1883 BUG_ON(mnt_get_count(mnt) < 2);
1884
1885 if (m->mnt_sb == path->mnt->mnt_sb &&
1886 m->mnt_root == path->dentry) {
1887 err = -ELOOP;
1888 goto fail;
1889 }
1890
1891 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1892 if (!err)
1893 return 0;
1894 fail:
1895 /* remove m from any expiration list it may be on */
1896 if (!list_empty(&mnt->mnt_expire)) {
1897 down_write(&namespace_sem);
1898 br_write_lock(&vfsmount_lock);
1899 list_del_init(&mnt->mnt_expire);
1900 br_write_unlock(&vfsmount_lock);
1901 up_write(&namespace_sem);
1902 }
1903 mntput(m);
1904 mntput(m);
1905 return err;
1906 }
1907
1908 /**
1909 * mnt_set_expiry - Put a mount on an expiration list
1910 * @mnt: The mount to list.
1911 * @expiry_list: The list to add the mount to.
1912 */
1913 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1914 {
1915 down_write(&namespace_sem);
1916 br_write_lock(&vfsmount_lock);
1917
1918 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1919
1920 br_write_unlock(&vfsmount_lock);
1921 up_write(&namespace_sem);
1922 }
1923 EXPORT_SYMBOL(mnt_set_expiry);
1924
1925 /*
1926 * process a list of expirable mountpoints with the intent of discarding any
1927 * mountpoints that aren't in use and haven't been touched since last we came
1928 * here
1929 */
1930 void mark_mounts_for_expiry(struct list_head *mounts)
1931 {
1932 struct mount *mnt, *next;
1933 LIST_HEAD(graveyard);
1934 LIST_HEAD(umounts);
1935
1936 if (list_empty(mounts))
1937 return;
1938
1939 down_write(&namespace_sem);
1940 br_write_lock(&vfsmount_lock);
1941
1942 /* extract from the expiration list every vfsmount that matches the
1943 * following criteria:
1944 * - only referenced by its parent vfsmount
1945 * - still marked for expiry (marked on the last call here; marks are
1946 * cleared by mntput())
1947 */
1948 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1949 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1950 propagate_mount_busy(mnt, 1))
1951 continue;
1952 list_move(&mnt->mnt_expire, &graveyard);
1953 }
1954 while (!list_empty(&graveyard)) {
1955 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1956 touch_mnt_namespace(mnt->mnt_ns);
1957 umount_tree(mnt, 1, &umounts);
1958 }
1959 br_write_unlock(&vfsmount_lock);
1960 up_write(&namespace_sem);
1961
1962 release_mounts(&umounts);
1963 }
1964
1965 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1966
1967 /*
1968 * Ripoff of 'select_parent()'
1969 *
1970 * search the list of submounts for a given mountpoint, and move any
1971 * shrinkable submounts to the 'graveyard' list.
1972 */
1973 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1974 {
1975 struct mount *this_parent = parent;
1976 struct list_head *next;
1977 int found = 0;
1978
1979 repeat:
1980 next = this_parent->mnt_mounts.next;
1981 resume:
1982 while (next != &this_parent->mnt_mounts) {
1983 struct list_head *tmp = next;
1984 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1985
1986 next = tmp->next;
1987 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1988 continue;
1989 /*
1990 * Descend a level if the d_mounts list is non-empty.
1991 */
1992 if (!list_empty(&mnt->mnt_mounts)) {
1993 this_parent = mnt;
1994 goto repeat;
1995 }
1996
1997 if (!propagate_mount_busy(mnt, 1)) {
1998 list_move_tail(&mnt->mnt_expire, graveyard);
1999 found++;
2000 }
2001 }
2002 /*
2003 * All done at this level ... ascend and resume the search
2004 */
2005 if (this_parent != parent) {
2006 next = this_parent->mnt_child.next;
2007 this_parent = this_parent->mnt_parent;
2008 goto resume;
2009 }
2010 return found;
2011 }
2012
2013 /*
2014 * process a list of expirable mountpoints with the intent of discarding any
2015 * submounts of a specific parent mountpoint
2016 *
2017 * vfsmount_lock must be held for write
2018 */
2019 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2020 {
2021 LIST_HEAD(graveyard);
2022 struct mount *m;
2023
2024 /* extract submounts of 'mountpoint' from the expiration list */
2025 while (select_submounts(mnt, &graveyard)) {
2026 while (!list_empty(&graveyard)) {
2027 m = list_first_entry(&graveyard, struct mount,
2028 mnt_expire);
2029 touch_mnt_namespace(m->mnt_ns);
2030 umount_tree(m, 1, umounts);
2031 }
2032 }
2033 }
2034
2035 /*
2036 * Some copy_from_user() implementations do not return the exact number of
2037 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2038 * Note that this function differs from copy_from_user() in that it will oops
2039 * on bad values of `to', rather than returning a short copy.
2040 */
2041 static long exact_copy_from_user(void *to, const void __user * from,
2042 unsigned long n)
2043 {
2044 char *t = to;
2045 const char __user *f = from;
2046 char c;
2047
2048 if (!access_ok(VERIFY_READ, from, n))
2049 return n;
2050
2051 while (n) {
2052 if (__get_user(c, f)) {
2053 memset(t, 0, n);
2054 break;
2055 }
2056 *t++ = c;
2057 f++;
2058 n--;
2059 }
2060 return n;
2061 }
2062
2063 int copy_mount_options(const void __user * data, unsigned long *where)
2064 {
2065 int i;
2066 unsigned long page;
2067 unsigned long size;
2068
2069 *where = 0;
2070 if (!data)
2071 return 0;
2072
2073 if (!(page = __get_free_page(GFP_KERNEL)))
2074 return -ENOMEM;
2075
2076 /* We only care that *some* data at the address the user
2077 * gave us is valid. Just in case, we'll zero
2078 * the remainder of the page.
2079 */
2080 /* copy_from_user cannot cross TASK_SIZE ! */
2081 size = TASK_SIZE - (unsigned long)data;
2082 if (size > PAGE_SIZE)
2083 size = PAGE_SIZE;
2084
2085 i = size - exact_copy_from_user((void *)page, data, size);
2086 if (!i) {
2087 free_page(page);
2088 return -EFAULT;
2089 }
2090 if (i != PAGE_SIZE)
2091 memset((char *)page + i, 0, PAGE_SIZE - i);
2092 *where = page;
2093 return 0;
2094 }
2095
2096 int copy_mount_string(const void __user *data, char **where)
2097 {
2098 char *tmp;
2099
2100 if (!data) {
2101 *where = NULL;
2102 return 0;
2103 }
2104
2105 tmp = strndup_user(data, PAGE_SIZE);
2106 if (IS_ERR(tmp))
2107 return PTR_ERR(tmp);
2108
2109 *where = tmp;
2110 return 0;
2111 }
2112
2113 /*
2114 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2115 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2116 *
2117 * data is a (void *) that can point to any structure up to
2118 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2119 * information (or be NULL).
2120 *
2121 * Pre-0.97 versions of mount() didn't have a flags word.
2122 * When the flags word was introduced its top half was required
2123 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2124 * Therefore, if this magic number is present, it carries no information
2125 * and must be discarded.
2126 */
2127 long do_mount(char *dev_name, char *dir_name, char *type_page,
2128 unsigned long flags, void *data_page)
2129 {
2130 struct path path;
2131 int retval = 0;
2132 int mnt_flags = 0;
2133
2134 /* Discard magic */
2135 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2136 flags &= ~MS_MGC_MSK;
2137
2138 /* Basic sanity checks */
2139
2140 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2141 return -EINVAL;
2142
2143 if (data_page)
2144 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2145
2146 /* ... and get the mountpoint */
2147 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2148 if (retval)
2149 return retval;
2150
2151 retval = security_sb_mount(dev_name, &path,
2152 type_page, flags, data_page);
2153 if (retval)
2154 goto dput_out;
2155
2156 /* Default to relatime unless overriden */
2157 if (!(flags & MS_NOATIME))
2158 mnt_flags |= MNT_RELATIME;
2159
2160 /* Separate the per-mountpoint flags */
2161 if (flags & MS_NOSUID)
2162 mnt_flags |= MNT_NOSUID;
2163 if (flags & MS_NODEV)
2164 mnt_flags |= MNT_NODEV;
2165 if (flags & MS_NOEXEC)
2166 mnt_flags |= MNT_NOEXEC;
2167 if (flags & MS_NOATIME)
2168 mnt_flags |= MNT_NOATIME;
2169 if (flags & MS_NODIRATIME)
2170 mnt_flags |= MNT_NODIRATIME;
2171 if (flags & MS_STRICTATIME)
2172 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2173 if (flags & MS_RDONLY)
2174 mnt_flags |= MNT_READONLY;
2175
2176 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2177 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2178 MS_STRICTATIME);
2179
2180 if (flags & MS_REMOUNT)
2181 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2182 data_page);
2183 else if (flags & MS_BIND)
2184 retval = do_loopback(&path, dev_name, flags & MS_REC);
2185 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2186 retval = do_change_type(&path, flags);
2187 else if (flags & MS_MOVE)
2188 retval = do_move_mount(&path, dev_name);
2189 else
2190 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2191 dev_name, data_page);
2192 dput_out:
2193 path_put(&path);
2194 return retval;
2195 }
2196
2197 static struct mnt_namespace *alloc_mnt_ns(void)
2198 {
2199 struct mnt_namespace *new_ns;
2200
2201 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2202 if (!new_ns)
2203 return ERR_PTR(-ENOMEM);
2204 atomic_set(&new_ns->count, 1);
2205 new_ns->root = NULL;
2206 INIT_LIST_HEAD(&new_ns->list);
2207 init_waitqueue_head(&new_ns->poll);
2208 new_ns->event = 0;
2209 return new_ns;
2210 }
2211
2212 void mnt_make_longterm(struct vfsmount *mnt)
2213 {
2214 __mnt_make_longterm(real_mount(mnt));
2215 }
2216
2217 void mnt_make_shortterm(struct vfsmount *m)
2218 {
2219 #ifdef CONFIG_SMP
2220 struct mount *mnt = real_mount(m);
2221 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2222 return;
2223 br_write_lock(&vfsmount_lock);
2224 atomic_dec(&mnt->mnt_longterm);
2225 br_write_unlock(&vfsmount_lock);
2226 #endif
2227 }
2228
2229 /*
2230 * Allocate a new namespace structure and populate it with contents
2231 * copied from the namespace of the passed in task structure.
2232 */
2233 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2234 struct fs_struct *fs)
2235 {
2236 struct mnt_namespace *new_ns;
2237 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2238 struct mount *p, *q;
2239 struct mount *old = mnt_ns->root;
2240 struct mount *new;
2241
2242 new_ns = alloc_mnt_ns();
2243 if (IS_ERR(new_ns))
2244 return new_ns;
2245
2246 down_write(&namespace_sem);
2247 /* First pass: copy the tree topology */
2248 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2249 if (!new) {
2250 up_write(&namespace_sem);
2251 kfree(new_ns);
2252 return ERR_PTR(-ENOMEM);
2253 }
2254 new_ns->root = new;
2255 br_write_lock(&vfsmount_lock);
2256 list_add_tail(&new_ns->list, &new->mnt_list);
2257 br_write_unlock(&vfsmount_lock);
2258
2259 /*
2260 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2261 * as belonging to new namespace. We have already acquired a private
2262 * fs_struct, so tsk->fs->lock is not needed.
2263 */
2264 p = old;
2265 q = new;
2266 while (p) {
2267 q->mnt_ns = new_ns;
2268 __mnt_make_longterm(q);
2269 if (fs) {
2270 if (&p->mnt == fs->root.mnt) {
2271 fs->root.mnt = mntget(&q->mnt);
2272 __mnt_make_longterm(q);
2273 mnt_make_shortterm(&p->mnt);
2274 rootmnt = &p->mnt;
2275 }
2276 if (&p->mnt == fs->pwd.mnt) {
2277 fs->pwd.mnt = mntget(&q->mnt);
2278 __mnt_make_longterm(q);
2279 mnt_make_shortterm(&p->mnt);
2280 pwdmnt = &p->mnt;
2281 }
2282 }
2283 p = next_mnt(p, old);
2284 q = next_mnt(q, new);
2285 }
2286 up_write(&namespace_sem);
2287
2288 if (rootmnt)
2289 mntput(rootmnt);
2290 if (pwdmnt)
2291 mntput(pwdmnt);
2292
2293 return new_ns;
2294 }
2295
2296 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2297 struct fs_struct *new_fs)
2298 {
2299 struct mnt_namespace *new_ns;
2300
2301 BUG_ON(!ns);
2302 get_mnt_ns(ns);
2303
2304 if (!(flags & CLONE_NEWNS))
2305 return ns;
2306
2307 new_ns = dup_mnt_ns(ns, new_fs);
2308
2309 put_mnt_ns(ns);
2310 return new_ns;
2311 }
2312
2313 /**
2314 * create_mnt_ns - creates a private namespace and adds a root filesystem
2315 * @mnt: pointer to the new root filesystem mountpoint
2316 */
2317 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2318 {
2319 struct mnt_namespace *new_ns = alloc_mnt_ns();
2320 if (!IS_ERR(new_ns)) {
2321 struct mount *mnt = real_mount(m);
2322 mnt->mnt_ns = new_ns;
2323 __mnt_make_longterm(mnt);
2324 new_ns->root = mnt;
2325 list_add(&new_ns->list, &mnt->mnt_list);
2326 } else {
2327 mntput(m);
2328 }
2329 return new_ns;
2330 }
2331
2332 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2333 {
2334 struct mnt_namespace *ns;
2335 struct super_block *s;
2336 struct path path;
2337 int err;
2338
2339 ns = create_mnt_ns(mnt);
2340 if (IS_ERR(ns))
2341 return ERR_CAST(ns);
2342
2343 err = vfs_path_lookup(mnt->mnt_root, mnt,
2344 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2345
2346 put_mnt_ns(ns);
2347
2348 if (err)
2349 return ERR_PTR(err);
2350
2351 /* trade a vfsmount reference for active sb one */
2352 s = path.mnt->mnt_sb;
2353 atomic_inc(&s->s_active);
2354 mntput(path.mnt);
2355 /* lock the sucker */
2356 down_write(&s->s_umount);
2357 /* ... and return the root of (sub)tree on it */
2358 return path.dentry;
2359 }
2360 EXPORT_SYMBOL(mount_subtree);
2361
2362 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2363 char __user *, type, unsigned long, flags, void __user *, data)
2364 {
2365 int ret;
2366 char *kernel_type;
2367 char *kernel_dir;
2368 char *kernel_dev;
2369 unsigned long data_page;
2370
2371 ret = copy_mount_string(type, &kernel_type);
2372 if (ret < 0)
2373 goto out_type;
2374
2375 kernel_dir = getname(dir_name);
2376 if (IS_ERR(kernel_dir)) {
2377 ret = PTR_ERR(kernel_dir);
2378 goto out_dir;
2379 }
2380
2381 ret = copy_mount_string(dev_name, &kernel_dev);
2382 if (ret < 0)
2383 goto out_dev;
2384
2385 ret = copy_mount_options(data, &data_page);
2386 if (ret < 0)
2387 goto out_data;
2388
2389 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2390 (void *) data_page);
2391
2392 free_page(data_page);
2393 out_data:
2394 kfree(kernel_dev);
2395 out_dev:
2396 putname(kernel_dir);
2397 out_dir:
2398 kfree(kernel_type);
2399 out_type:
2400 return ret;
2401 }
2402
2403 /*
2404 * Return true if path is reachable from root
2405 *
2406 * namespace_sem or vfsmount_lock is held
2407 */
2408 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2409 const struct path *root)
2410 {
2411 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2412 dentry = mnt->mnt_mountpoint;
2413 mnt = mnt->mnt_parent;
2414 }
2415 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2416 }
2417
2418 int path_is_under(struct path *path1, struct path *path2)
2419 {
2420 int res;
2421 br_read_lock(&vfsmount_lock);
2422 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2423 br_read_unlock(&vfsmount_lock);
2424 return res;
2425 }
2426 EXPORT_SYMBOL(path_is_under);
2427
2428 /*
2429 * pivot_root Semantics:
2430 * Moves the root file system of the current process to the directory put_old,
2431 * makes new_root as the new root file system of the current process, and sets
2432 * root/cwd of all processes which had them on the current root to new_root.
2433 *
2434 * Restrictions:
2435 * The new_root and put_old must be directories, and must not be on the
2436 * same file system as the current process root. The put_old must be
2437 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2438 * pointed to by put_old must yield the same directory as new_root. No other
2439 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2440 *
2441 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2442 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2443 * in this situation.
2444 *
2445 * Notes:
2446 * - we don't move root/cwd if they are not at the root (reason: if something
2447 * cared enough to change them, it's probably wrong to force them elsewhere)
2448 * - it's okay to pick a root that isn't the root of a file system, e.g.
2449 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2450 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2451 * first.
2452 */
2453 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2454 const char __user *, put_old)
2455 {
2456 struct path new, old, parent_path, root_parent, root;
2457 struct mount *new_mnt, *root_mnt;
2458 int error;
2459
2460 if (!capable(CAP_SYS_ADMIN))
2461 return -EPERM;
2462
2463 error = user_path_dir(new_root, &new);
2464 if (error)
2465 goto out0;
2466
2467 error = user_path_dir(put_old, &old);
2468 if (error)
2469 goto out1;
2470
2471 error = security_sb_pivotroot(&old, &new);
2472 if (error)
2473 goto out2;
2474
2475 get_fs_root(current->fs, &root);
2476 error = lock_mount(&old);
2477 if (error)
2478 goto out3;
2479
2480 error = -EINVAL;
2481 new_mnt = real_mount(new.mnt);
2482 root_mnt = real_mount(root.mnt);
2483 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2484 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2485 IS_MNT_SHARED(root_mnt->mnt_parent))
2486 goto out4;
2487 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2488 goto out4;
2489 error = -ENOENT;
2490 if (d_unlinked(new.dentry))
2491 goto out4;
2492 if (d_unlinked(old.dentry))
2493 goto out4;
2494 error = -EBUSY;
2495 if (new.mnt == root.mnt ||
2496 old.mnt == root.mnt)
2497 goto out4; /* loop, on the same file system */
2498 error = -EINVAL;
2499 if (root.mnt->mnt_root != root.dentry)
2500 goto out4; /* not a mountpoint */
2501 if (!mnt_has_parent(root_mnt))
2502 goto out4; /* not attached */
2503 if (new.mnt->mnt_root != new.dentry)
2504 goto out4; /* not a mountpoint */
2505 if (!mnt_has_parent(new_mnt))
2506 goto out4; /* not attached */
2507 /* make sure we can reach put_old from new_root */
2508 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2509 goto out4;
2510 br_write_lock(&vfsmount_lock);
2511 detach_mnt(new_mnt, &parent_path);
2512 detach_mnt(root_mnt, &root_parent);
2513 /* mount old root on put_old */
2514 attach_mnt(root_mnt, &old);
2515 /* mount new_root on / */
2516 attach_mnt(new_mnt, &root_parent);
2517 touch_mnt_namespace(current->nsproxy->mnt_ns);
2518 br_write_unlock(&vfsmount_lock);
2519 chroot_fs_refs(&root, &new);
2520 error = 0;
2521 out4:
2522 unlock_mount(&old);
2523 if (!error) {
2524 path_put(&root_parent);
2525 path_put(&parent_path);
2526 }
2527 out3:
2528 path_put(&root);
2529 out2:
2530 path_put(&old);
2531 out1:
2532 path_put(&new);
2533 out0:
2534 return error;
2535 }
2536
2537 static void __init init_mount_tree(void)
2538 {
2539 struct vfsmount *mnt;
2540 struct mnt_namespace *ns;
2541 struct path root;
2542
2543 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2544 if (IS_ERR(mnt))
2545 panic("Can't create rootfs");
2546
2547 ns = create_mnt_ns(mnt);
2548 if (IS_ERR(ns))
2549 panic("Can't allocate initial namespace");
2550
2551 init_task.nsproxy->mnt_ns = ns;
2552 get_mnt_ns(ns);
2553
2554 root.mnt = mnt;
2555 root.dentry = mnt->mnt_root;
2556
2557 set_fs_pwd(current->fs, &root);
2558 set_fs_root(current->fs, &root);
2559 }
2560
2561 void __init mnt_init(void)
2562 {
2563 unsigned u;
2564 int err;
2565
2566 init_rwsem(&namespace_sem);
2567
2568 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2569 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2570
2571 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2572
2573 if (!mount_hashtable)
2574 panic("Failed to allocate mount hash table\n");
2575
2576 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2577
2578 for (u = 0; u < HASH_SIZE; u++)
2579 INIT_LIST_HEAD(&mount_hashtable[u]);
2580
2581 br_lock_init(&vfsmount_lock);
2582
2583 err = sysfs_init();
2584 if (err)
2585 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2586 __func__, err);
2587 fs_kobj = kobject_create_and_add("fs", NULL);
2588 if (!fs_kobj)
2589 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2590 init_rootfs();
2591 init_mount_tree();
2592 }
2593
2594 void put_mnt_ns(struct mnt_namespace *ns)
2595 {
2596 LIST_HEAD(umount_list);
2597
2598 if (!atomic_dec_and_test(&ns->count))
2599 return;
2600 down_write(&namespace_sem);
2601 br_write_lock(&vfsmount_lock);
2602 umount_tree(ns->root, 0, &umount_list);
2603 br_write_unlock(&vfsmount_lock);
2604 up_write(&namespace_sem);
2605 release_mounts(&umount_list);
2606 kfree(ns);
2607 }
2608
2609 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2610 {
2611 struct vfsmount *mnt;
2612 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2613 if (!IS_ERR(mnt)) {
2614 /*
2615 * it is a longterm mount, don't release mnt until
2616 * we unmount before file sys is unregistered
2617 */
2618 mnt_make_longterm(mnt);
2619 }
2620 return mnt;
2621 }
2622 EXPORT_SYMBOL_GPL(kern_mount_data);
2623
2624 void kern_unmount(struct vfsmount *mnt)
2625 {
2626 /* release long term mount so mount point can be released */
2627 if (!IS_ERR_OR_NULL(mnt)) {
2628 mnt_make_shortterm(mnt);
2629 mntput(mnt);
2630 }
2631 }
2632 EXPORT_SYMBOL(kern_unmount);
2633
2634 bool our_mnt(struct vfsmount *mnt)
2635 {
2636 return check_mnt(real_mount(mnt));
2637 }
This page took 0.145208 seconds and 6 git commands to generate.