Merge ../linus
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29
30 extern int __init init_rootfs(void);
31
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37 return 0;
38 }
39 #endif
40
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44 static int event;
45
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
50
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 tmp = tmp + (tmp >> hash_bits);
60 return tmp & hash_mask;
61 }
62
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 if (mnt) {
67 memset(mnt, 0, sizeof(struct vfsmount));
68 atomic_set(&mnt->mnt_count, 1);
69 INIT_LIST_HEAD(&mnt->mnt_hash);
70 INIT_LIST_HEAD(&mnt->mnt_child);
71 INIT_LIST_HEAD(&mnt->mnt_mounts);
72 INIT_LIST_HEAD(&mnt->mnt_list);
73 INIT_LIST_HEAD(&mnt->mnt_expire);
74 INIT_LIST_HEAD(&mnt->mnt_share);
75 INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 INIT_LIST_HEAD(&mnt->mnt_slave);
77 if (name) {
78 int size = strlen(name) + 1;
79 char *newname = kmalloc(size, GFP_KERNEL);
80 if (newname) {
81 memcpy(newname, name, size);
82 mnt->mnt_devname = newname;
83 }
84 }
85 }
86 return mnt;
87 }
88
89 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
90 {
91 mnt->mnt_sb = sb;
92 mnt->mnt_root = dget(sb->s_root);
93 return 0;
94 }
95
96 EXPORT_SYMBOL(simple_set_mnt);
97
98 void free_vfsmnt(struct vfsmount *mnt)
99 {
100 kfree(mnt->mnt_devname);
101 kmem_cache_free(mnt_cache, mnt);
102 }
103
104 /*
105 * find the first or last mount at @dentry on vfsmount @mnt depending on
106 * @dir. If @dir is set return the first mount else return the last mount.
107 */
108 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
109 int dir)
110 {
111 struct list_head *head = mount_hashtable + hash(mnt, dentry);
112 struct list_head *tmp = head;
113 struct vfsmount *p, *found = NULL;
114
115 for (;;) {
116 tmp = dir ? tmp->next : tmp->prev;
117 p = NULL;
118 if (tmp == head)
119 break;
120 p = list_entry(tmp, struct vfsmount, mnt_hash);
121 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
122 found = p;
123 break;
124 }
125 }
126 return found;
127 }
128
129 /*
130 * lookup_mnt increments the ref count before returning
131 * the vfsmount struct.
132 */
133 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
134 {
135 struct vfsmount *child_mnt;
136 spin_lock(&vfsmount_lock);
137 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
138 mntget(child_mnt);
139 spin_unlock(&vfsmount_lock);
140 return child_mnt;
141 }
142
143 static inline int check_mnt(struct vfsmount *mnt)
144 {
145 return mnt->mnt_namespace == current->namespace;
146 }
147
148 static void touch_namespace(struct namespace *ns)
149 {
150 if (ns) {
151 ns->event = ++event;
152 wake_up_interruptible(&ns->poll);
153 }
154 }
155
156 static void __touch_namespace(struct namespace *ns)
157 {
158 if (ns && ns->event != event) {
159 ns->event = event;
160 wake_up_interruptible(&ns->poll);
161 }
162 }
163
164 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
165 {
166 old_nd->dentry = mnt->mnt_mountpoint;
167 old_nd->mnt = mnt->mnt_parent;
168 mnt->mnt_parent = mnt;
169 mnt->mnt_mountpoint = mnt->mnt_root;
170 list_del_init(&mnt->mnt_child);
171 list_del_init(&mnt->mnt_hash);
172 old_nd->dentry->d_mounted--;
173 }
174
175 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
176 struct vfsmount *child_mnt)
177 {
178 child_mnt->mnt_parent = mntget(mnt);
179 child_mnt->mnt_mountpoint = dget(dentry);
180 dentry->d_mounted++;
181 }
182
183 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
184 {
185 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
186 list_add_tail(&mnt->mnt_hash, mount_hashtable +
187 hash(nd->mnt, nd->dentry));
188 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
189 }
190
191 /*
192 * the caller must hold vfsmount_lock
193 */
194 static void commit_tree(struct vfsmount *mnt)
195 {
196 struct vfsmount *parent = mnt->mnt_parent;
197 struct vfsmount *m;
198 LIST_HEAD(head);
199 struct namespace *n = parent->mnt_namespace;
200
201 BUG_ON(parent == mnt);
202
203 list_add_tail(&head, &mnt->mnt_list);
204 list_for_each_entry(m, &head, mnt_list)
205 m->mnt_namespace = n;
206 list_splice(&head, n->list.prev);
207
208 list_add_tail(&mnt->mnt_hash, mount_hashtable +
209 hash(parent, mnt->mnt_mountpoint));
210 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
211 touch_namespace(n);
212 }
213
214 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
215 {
216 struct list_head *next = p->mnt_mounts.next;
217 if (next == &p->mnt_mounts) {
218 while (1) {
219 if (p == root)
220 return NULL;
221 next = p->mnt_child.next;
222 if (next != &p->mnt_parent->mnt_mounts)
223 break;
224 p = p->mnt_parent;
225 }
226 }
227 return list_entry(next, struct vfsmount, mnt_child);
228 }
229
230 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
231 {
232 struct list_head *prev = p->mnt_mounts.prev;
233 while (prev != &p->mnt_mounts) {
234 p = list_entry(prev, struct vfsmount, mnt_child);
235 prev = p->mnt_mounts.prev;
236 }
237 return p;
238 }
239
240 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
241 int flag)
242 {
243 struct super_block *sb = old->mnt_sb;
244 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
245
246 if (mnt) {
247 mnt->mnt_flags = old->mnt_flags;
248 atomic_inc(&sb->s_active);
249 mnt->mnt_sb = sb;
250 mnt->mnt_root = dget(root);
251 mnt->mnt_mountpoint = mnt->mnt_root;
252 mnt->mnt_parent = mnt;
253
254 if (flag & CL_SLAVE) {
255 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
256 mnt->mnt_master = old;
257 CLEAR_MNT_SHARED(mnt);
258 } else {
259 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
260 list_add(&mnt->mnt_share, &old->mnt_share);
261 if (IS_MNT_SLAVE(old))
262 list_add(&mnt->mnt_slave, &old->mnt_slave);
263 mnt->mnt_master = old->mnt_master;
264 }
265 if (flag & CL_MAKE_SHARED)
266 set_mnt_shared(mnt);
267
268 /* stick the duplicate mount on the same expiry list
269 * as the original if that was on one */
270 if (flag & CL_EXPIRE) {
271 spin_lock(&vfsmount_lock);
272 if (!list_empty(&old->mnt_expire))
273 list_add(&mnt->mnt_expire, &old->mnt_expire);
274 spin_unlock(&vfsmount_lock);
275 }
276 }
277 return mnt;
278 }
279
280 static inline void __mntput(struct vfsmount *mnt)
281 {
282 struct super_block *sb = mnt->mnt_sb;
283 dput(mnt->mnt_root);
284 free_vfsmnt(mnt);
285 deactivate_super(sb);
286 }
287
288 void mntput_no_expire(struct vfsmount *mnt)
289 {
290 repeat:
291 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
292 if (likely(!mnt->mnt_pinned)) {
293 spin_unlock(&vfsmount_lock);
294 __mntput(mnt);
295 return;
296 }
297 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
298 mnt->mnt_pinned = 0;
299 spin_unlock(&vfsmount_lock);
300 acct_auto_close_mnt(mnt);
301 security_sb_umount_close(mnt);
302 goto repeat;
303 }
304 }
305
306 EXPORT_SYMBOL(mntput_no_expire);
307
308 void mnt_pin(struct vfsmount *mnt)
309 {
310 spin_lock(&vfsmount_lock);
311 mnt->mnt_pinned++;
312 spin_unlock(&vfsmount_lock);
313 }
314
315 EXPORT_SYMBOL(mnt_pin);
316
317 void mnt_unpin(struct vfsmount *mnt)
318 {
319 spin_lock(&vfsmount_lock);
320 if (mnt->mnt_pinned) {
321 atomic_inc(&mnt->mnt_count);
322 mnt->mnt_pinned--;
323 }
324 spin_unlock(&vfsmount_lock);
325 }
326
327 EXPORT_SYMBOL(mnt_unpin);
328
329 /* iterator */
330 static void *m_start(struct seq_file *m, loff_t *pos)
331 {
332 struct namespace *n = m->private;
333 struct list_head *p;
334 loff_t l = *pos;
335
336 down_read(&namespace_sem);
337 list_for_each(p, &n->list)
338 if (!l--)
339 return list_entry(p, struct vfsmount, mnt_list);
340 return NULL;
341 }
342
343 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
344 {
345 struct namespace *n = m->private;
346 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
347 (*pos)++;
348 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
349 }
350
351 static void m_stop(struct seq_file *m, void *v)
352 {
353 up_read(&namespace_sem);
354 }
355
356 static inline void mangle(struct seq_file *m, const char *s)
357 {
358 seq_escape(m, s, " \t\n\\");
359 }
360
361 static int show_vfsmnt(struct seq_file *m, void *v)
362 {
363 struct vfsmount *mnt = v;
364 int err = 0;
365 static struct proc_fs_info {
366 int flag;
367 char *str;
368 } fs_info[] = {
369 { MS_SYNCHRONOUS, ",sync" },
370 { MS_DIRSYNC, ",dirsync" },
371 { MS_MANDLOCK, ",mand" },
372 { 0, NULL }
373 };
374 static struct proc_fs_info mnt_info[] = {
375 { MNT_NOSUID, ",nosuid" },
376 { MNT_NODEV, ",nodev" },
377 { MNT_NOEXEC, ",noexec" },
378 { MNT_NOATIME, ",noatime" },
379 { MNT_NODIRATIME, ",nodiratime" },
380 { 0, NULL }
381 };
382 struct proc_fs_info *fs_infop;
383
384 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
385 seq_putc(m, ' ');
386 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
387 seq_putc(m, ' ');
388 mangle(m, mnt->mnt_sb->s_type->name);
389 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
390 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
391 if (mnt->mnt_sb->s_flags & fs_infop->flag)
392 seq_puts(m, fs_infop->str);
393 }
394 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
395 if (mnt->mnt_flags & fs_infop->flag)
396 seq_puts(m, fs_infop->str);
397 }
398 if (mnt->mnt_sb->s_op->show_options)
399 err = mnt->mnt_sb->s_op->show_options(m, mnt);
400 seq_puts(m, " 0 0\n");
401 return err;
402 }
403
404 struct seq_operations mounts_op = {
405 .start = m_start,
406 .next = m_next,
407 .stop = m_stop,
408 .show = show_vfsmnt
409 };
410
411 static int show_vfsstat(struct seq_file *m, void *v)
412 {
413 struct vfsmount *mnt = v;
414 int err = 0;
415
416 /* device */
417 if (mnt->mnt_devname) {
418 seq_puts(m, "device ");
419 mangle(m, mnt->mnt_devname);
420 } else
421 seq_puts(m, "no device");
422
423 /* mount point */
424 seq_puts(m, " mounted on ");
425 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
426 seq_putc(m, ' ');
427
428 /* file system type */
429 seq_puts(m, "with fstype ");
430 mangle(m, mnt->mnt_sb->s_type->name);
431
432 /* optional statistics */
433 if (mnt->mnt_sb->s_op->show_stats) {
434 seq_putc(m, ' ');
435 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
436 }
437
438 seq_putc(m, '\n');
439 return err;
440 }
441
442 struct seq_operations mountstats_op = {
443 .start = m_start,
444 .next = m_next,
445 .stop = m_stop,
446 .show = show_vfsstat,
447 };
448
449 /**
450 * may_umount_tree - check if a mount tree is busy
451 * @mnt: root of mount tree
452 *
453 * This is called to check if a tree of mounts has any
454 * open files, pwds, chroots or sub mounts that are
455 * busy.
456 */
457 int may_umount_tree(struct vfsmount *mnt)
458 {
459 int actual_refs = 0;
460 int minimum_refs = 0;
461 struct vfsmount *p;
462
463 spin_lock(&vfsmount_lock);
464 for (p = mnt; p; p = next_mnt(p, mnt)) {
465 actual_refs += atomic_read(&p->mnt_count);
466 minimum_refs += 2;
467 }
468 spin_unlock(&vfsmount_lock);
469
470 if (actual_refs > minimum_refs)
471 return 0;
472
473 return 1;
474 }
475
476 EXPORT_SYMBOL(may_umount_tree);
477
478 /**
479 * may_umount - check if a mount point is busy
480 * @mnt: root of mount
481 *
482 * This is called to check if a mount point has any
483 * open files, pwds, chroots or sub mounts. If the
484 * mount has sub mounts this will return busy
485 * regardless of whether the sub mounts are busy.
486 *
487 * Doesn't take quota and stuff into account. IOW, in some cases it will
488 * give false negatives. The main reason why it's here is that we need
489 * a non-destructive way to look for easily umountable filesystems.
490 */
491 int may_umount(struct vfsmount *mnt)
492 {
493 int ret = 1;
494 spin_lock(&vfsmount_lock);
495 if (propagate_mount_busy(mnt, 2))
496 ret = 0;
497 spin_unlock(&vfsmount_lock);
498 return ret;
499 }
500
501 EXPORT_SYMBOL(may_umount);
502
503 void release_mounts(struct list_head *head)
504 {
505 struct vfsmount *mnt;
506 while (!list_empty(head)) {
507 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
508 list_del_init(&mnt->mnt_hash);
509 if (mnt->mnt_parent != mnt) {
510 struct dentry *dentry;
511 struct vfsmount *m;
512 spin_lock(&vfsmount_lock);
513 dentry = mnt->mnt_mountpoint;
514 m = mnt->mnt_parent;
515 mnt->mnt_mountpoint = mnt->mnt_root;
516 mnt->mnt_parent = mnt;
517 spin_unlock(&vfsmount_lock);
518 dput(dentry);
519 mntput(m);
520 }
521 mntput(mnt);
522 }
523 }
524
525 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
526 {
527 struct vfsmount *p;
528
529 for (p = mnt; p; p = next_mnt(p, mnt))
530 list_move(&p->mnt_hash, kill);
531
532 if (propagate)
533 propagate_umount(kill);
534
535 list_for_each_entry(p, kill, mnt_hash) {
536 list_del_init(&p->mnt_expire);
537 list_del_init(&p->mnt_list);
538 __touch_namespace(p->mnt_namespace);
539 p->mnt_namespace = NULL;
540 list_del_init(&p->mnt_child);
541 if (p->mnt_parent != p)
542 p->mnt_mountpoint->d_mounted--;
543 change_mnt_propagation(p, MS_PRIVATE);
544 }
545 }
546
547 static int do_umount(struct vfsmount *mnt, int flags)
548 {
549 struct super_block *sb = mnt->mnt_sb;
550 int retval;
551 LIST_HEAD(umount_list);
552
553 retval = security_sb_umount(mnt, flags);
554 if (retval)
555 return retval;
556
557 /*
558 * Allow userspace to request a mountpoint be expired rather than
559 * unmounting unconditionally. Unmount only happens if:
560 * (1) the mark is already set (the mark is cleared by mntput())
561 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
562 */
563 if (flags & MNT_EXPIRE) {
564 if (mnt == current->fs->rootmnt ||
565 flags & (MNT_FORCE | MNT_DETACH))
566 return -EINVAL;
567
568 if (atomic_read(&mnt->mnt_count) != 2)
569 return -EBUSY;
570
571 if (!xchg(&mnt->mnt_expiry_mark, 1))
572 return -EAGAIN;
573 }
574
575 /*
576 * If we may have to abort operations to get out of this
577 * mount, and they will themselves hold resources we must
578 * allow the fs to do things. In the Unix tradition of
579 * 'Gee thats tricky lets do it in userspace' the umount_begin
580 * might fail to complete on the first run through as other tasks
581 * must return, and the like. Thats for the mount program to worry
582 * about for the moment.
583 */
584
585 lock_kernel();
586 if (sb->s_op->umount_begin)
587 sb->s_op->umount_begin(mnt, flags);
588 unlock_kernel();
589
590 /*
591 * No sense to grab the lock for this test, but test itself looks
592 * somewhat bogus. Suggestions for better replacement?
593 * Ho-hum... In principle, we might treat that as umount + switch
594 * to rootfs. GC would eventually take care of the old vfsmount.
595 * Actually it makes sense, especially if rootfs would contain a
596 * /reboot - static binary that would close all descriptors and
597 * call reboot(9). Then init(8) could umount root and exec /reboot.
598 */
599 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
600 /*
601 * Special case for "unmounting" root ...
602 * we just try to remount it readonly.
603 */
604 down_write(&sb->s_umount);
605 if (!(sb->s_flags & MS_RDONLY)) {
606 lock_kernel();
607 DQUOT_OFF(sb);
608 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
609 unlock_kernel();
610 }
611 up_write(&sb->s_umount);
612 return retval;
613 }
614
615 down_write(&namespace_sem);
616 spin_lock(&vfsmount_lock);
617 event++;
618
619 retval = -EBUSY;
620 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
621 if (!list_empty(&mnt->mnt_list))
622 umount_tree(mnt, 1, &umount_list);
623 retval = 0;
624 }
625 spin_unlock(&vfsmount_lock);
626 if (retval)
627 security_sb_umount_busy(mnt);
628 up_write(&namespace_sem);
629 release_mounts(&umount_list);
630 return retval;
631 }
632
633 /*
634 * Now umount can handle mount points as well as block devices.
635 * This is important for filesystems which use unnamed block devices.
636 *
637 * We now support a flag for forced unmount like the other 'big iron'
638 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
639 */
640
641 asmlinkage long sys_umount(char __user * name, int flags)
642 {
643 struct nameidata nd;
644 int retval;
645
646 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
647 if (retval)
648 goto out;
649 retval = -EINVAL;
650 if (nd.dentry != nd.mnt->mnt_root)
651 goto dput_and_out;
652 if (!check_mnt(nd.mnt))
653 goto dput_and_out;
654
655 retval = -EPERM;
656 if (!capable(CAP_SYS_ADMIN))
657 goto dput_and_out;
658
659 retval = do_umount(nd.mnt, flags);
660 dput_and_out:
661 path_release_on_umount(&nd);
662 out:
663 return retval;
664 }
665
666 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
667
668 /*
669 * The 2.0 compatible umount. No flags.
670 */
671 asmlinkage long sys_oldumount(char __user * name)
672 {
673 return sys_umount(name, 0);
674 }
675
676 #endif
677
678 static int mount_is_safe(struct nameidata *nd)
679 {
680 if (capable(CAP_SYS_ADMIN))
681 return 0;
682 return -EPERM;
683 #ifdef notyet
684 if (S_ISLNK(nd->dentry->d_inode->i_mode))
685 return -EPERM;
686 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
687 if (current->uid != nd->dentry->d_inode->i_uid)
688 return -EPERM;
689 }
690 if (vfs_permission(nd, MAY_WRITE))
691 return -EPERM;
692 return 0;
693 #endif
694 }
695
696 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
697 {
698 while (1) {
699 if (d == dentry)
700 return 1;
701 if (d == NULL || d == d->d_parent)
702 return 0;
703 d = d->d_parent;
704 }
705 }
706
707 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
708 int flag)
709 {
710 struct vfsmount *res, *p, *q, *r, *s;
711 struct nameidata nd;
712
713 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
714 return NULL;
715
716 res = q = clone_mnt(mnt, dentry, flag);
717 if (!q)
718 goto Enomem;
719 q->mnt_mountpoint = mnt->mnt_mountpoint;
720
721 p = mnt;
722 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
723 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
724 continue;
725
726 for (s = r; s; s = next_mnt(s, r)) {
727 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
728 s = skip_mnt_tree(s);
729 continue;
730 }
731 while (p != s->mnt_parent) {
732 p = p->mnt_parent;
733 q = q->mnt_parent;
734 }
735 p = s;
736 nd.mnt = q;
737 nd.dentry = p->mnt_mountpoint;
738 q = clone_mnt(p, p->mnt_root, flag);
739 if (!q)
740 goto Enomem;
741 spin_lock(&vfsmount_lock);
742 list_add_tail(&q->mnt_list, &res->mnt_list);
743 attach_mnt(q, &nd);
744 spin_unlock(&vfsmount_lock);
745 }
746 }
747 return res;
748 Enomem:
749 if (res) {
750 LIST_HEAD(umount_list);
751 spin_lock(&vfsmount_lock);
752 umount_tree(res, 0, &umount_list);
753 spin_unlock(&vfsmount_lock);
754 release_mounts(&umount_list);
755 }
756 return NULL;
757 }
758
759 /*
760 * @source_mnt : mount tree to be attached
761 * @nd : place the mount tree @source_mnt is attached
762 * @parent_nd : if non-null, detach the source_mnt from its parent and
763 * store the parent mount and mountpoint dentry.
764 * (done when source_mnt is moved)
765 *
766 * NOTE: in the table below explains the semantics when a source mount
767 * of a given type is attached to a destination mount of a given type.
768 * ---------------------------------------------------------------------------
769 * | BIND MOUNT OPERATION |
770 * |**************************************************************************
771 * | source-->| shared | private | slave | unbindable |
772 * | dest | | | | |
773 * | | | | | | |
774 * | v | | | | |
775 * |**************************************************************************
776 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
777 * | | | | | |
778 * |non-shared| shared (+) | private | slave (*) | invalid |
779 * ***************************************************************************
780 * A bind operation clones the source mount and mounts the clone on the
781 * destination mount.
782 *
783 * (++) the cloned mount is propagated to all the mounts in the propagation
784 * tree of the destination mount and the cloned mount is added to
785 * the peer group of the source mount.
786 * (+) the cloned mount is created under the destination mount and is marked
787 * as shared. The cloned mount is added to the peer group of the source
788 * mount.
789 * (+++) the mount is propagated to all the mounts in the propagation tree
790 * of the destination mount and the cloned mount is made slave
791 * of the same master as that of the source mount. The cloned mount
792 * is marked as 'shared and slave'.
793 * (*) the cloned mount is made a slave of the same master as that of the
794 * source mount.
795 *
796 * ---------------------------------------------------------------------------
797 * | MOVE MOUNT OPERATION |
798 * |**************************************************************************
799 * | source-->| shared | private | slave | unbindable |
800 * | dest | | | | |
801 * | | | | | | |
802 * | v | | | | |
803 * |**************************************************************************
804 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
805 * | | | | | |
806 * |non-shared| shared (+*) | private | slave (*) | unbindable |
807 * ***************************************************************************
808 *
809 * (+) the mount is moved to the destination. And is then propagated to
810 * all the mounts in the propagation tree of the destination mount.
811 * (+*) the mount is moved to the destination.
812 * (+++) the mount is moved to the destination and is then propagated to
813 * all the mounts belonging to the destination mount's propagation tree.
814 * the mount is marked as 'shared and slave'.
815 * (*) the mount continues to be a slave at the new location.
816 *
817 * if the source mount is a tree, the operations explained above is
818 * applied to each mount in the tree.
819 * Must be called without spinlocks held, since this function can sleep
820 * in allocations.
821 */
822 static int attach_recursive_mnt(struct vfsmount *source_mnt,
823 struct nameidata *nd, struct nameidata *parent_nd)
824 {
825 LIST_HEAD(tree_list);
826 struct vfsmount *dest_mnt = nd->mnt;
827 struct dentry *dest_dentry = nd->dentry;
828 struct vfsmount *child, *p;
829
830 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
831 return -EINVAL;
832
833 if (IS_MNT_SHARED(dest_mnt)) {
834 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
835 set_mnt_shared(p);
836 }
837
838 spin_lock(&vfsmount_lock);
839 if (parent_nd) {
840 detach_mnt(source_mnt, parent_nd);
841 attach_mnt(source_mnt, nd);
842 touch_namespace(current->namespace);
843 } else {
844 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
845 commit_tree(source_mnt);
846 }
847
848 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
849 list_del_init(&child->mnt_hash);
850 commit_tree(child);
851 }
852 spin_unlock(&vfsmount_lock);
853 return 0;
854 }
855
856 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
857 {
858 int err;
859 if (mnt->mnt_sb->s_flags & MS_NOUSER)
860 return -EINVAL;
861
862 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
863 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
864 return -ENOTDIR;
865
866 err = -ENOENT;
867 mutex_lock(&nd->dentry->d_inode->i_mutex);
868 if (IS_DEADDIR(nd->dentry->d_inode))
869 goto out_unlock;
870
871 err = security_sb_check_sb(mnt, nd);
872 if (err)
873 goto out_unlock;
874
875 err = -ENOENT;
876 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
877 err = attach_recursive_mnt(mnt, nd, NULL);
878 out_unlock:
879 mutex_unlock(&nd->dentry->d_inode->i_mutex);
880 if (!err)
881 security_sb_post_addmount(mnt, nd);
882 return err;
883 }
884
885 /*
886 * recursively change the type of the mountpoint.
887 */
888 static int do_change_type(struct nameidata *nd, int flag)
889 {
890 struct vfsmount *m, *mnt = nd->mnt;
891 int recurse = flag & MS_REC;
892 int type = flag & ~MS_REC;
893
894 if (nd->dentry != nd->mnt->mnt_root)
895 return -EINVAL;
896
897 down_write(&namespace_sem);
898 spin_lock(&vfsmount_lock);
899 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
900 change_mnt_propagation(m, type);
901 spin_unlock(&vfsmount_lock);
902 up_write(&namespace_sem);
903 return 0;
904 }
905
906 /*
907 * do loopback mount.
908 */
909 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
910 {
911 struct nameidata old_nd;
912 struct vfsmount *mnt = NULL;
913 int err = mount_is_safe(nd);
914 if (err)
915 return err;
916 if (!old_name || !*old_name)
917 return -EINVAL;
918 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
919 if (err)
920 return err;
921
922 down_write(&namespace_sem);
923 err = -EINVAL;
924 if (IS_MNT_UNBINDABLE(old_nd.mnt))
925 goto out;
926
927 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
928 goto out;
929
930 err = -ENOMEM;
931 if (recurse)
932 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
933 else
934 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
935
936 if (!mnt)
937 goto out;
938
939 err = graft_tree(mnt, nd);
940 if (err) {
941 LIST_HEAD(umount_list);
942 spin_lock(&vfsmount_lock);
943 umount_tree(mnt, 0, &umount_list);
944 spin_unlock(&vfsmount_lock);
945 release_mounts(&umount_list);
946 }
947
948 out:
949 up_write(&namespace_sem);
950 path_release(&old_nd);
951 return err;
952 }
953
954 /*
955 * change filesystem flags. dir should be a physical root of filesystem.
956 * If you've mounted a non-root directory somewhere and want to do remount
957 * on it - tough luck.
958 */
959 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
960 void *data)
961 {
962 int err;
963 struct super_block *sb = nd->mnt->mnt_sb;
964
965 if (!capable(CAP_SYS_ADMIN))
966 return -EPERM;
967
968 if (!check_mnt(nd->mnt))
969 return -EINVAL;
970
971 if (nd->dentry != nd->mnt->mnt_root)
972 return -EINVAL;
973
974 down_write(&sb->s_umount);
975 err = do_remount_sb(sb, flags, data, 0);
976 if (!err)
977 nd->mnt->mnt_flags = mnt_flags;
978 up_write(&sb->s_umount);
979 if (!err)
980 security_sb_post_remount(nd->mnt, flags, data);
981 return err;
982 }
983
984 static inline int tree_contains_unbindable(struct vfsmount *mnt)
985 {
986 struct vfsmount *p;
987 for (p = mnt; p; p = next_mnt(p, mnt)) {
988 if (IS_MNT_UNBINDABLE(p))
989 return 1;
990 }
991 return 0;
992 }
993
994 static int do_move_mount(struct nameidata *nd, char *old_name)
995 {
996 struct nameidata old_nd, parent_nd;
997 struct vfsmount *p;
998 int err = 0;
999 if (!capable(CAP_SYS_ADMIN))
1000 return -EPERM;
1001 if (!old_name || !*old_name)
1002 return -EINVAL;
1003 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1004 if (err)
1005 return err;
1006
1007 down_write(&namespace_sem);
1008 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1009 ;
1010 err = -EINVAL;
1011 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1012 goto out;
1013
1014 err = -ENOENT;
1015 mutex_lock(&nd->dentry->d_inode->i_mutex);
1016 if (IS_DEADDIR(nd->dentry->d_inode))
1017 goto out1;
1018
1019 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1020 goto out1;
1021
1022 err = -EINVAL;
1023 if (old_nd.dentry != old_nd.mnt->mnt_root)
1024 goto out1;
1025
1026 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1027 goto out1;
1028
1029 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1030 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1031 goto out1;
1032 /*
1033 * Don't move a mount residing in a shared parent.
1034 */
1035 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1036 goto out1;
1037 /*
1038 * Don't move a mount tree containing unbindable mounts to a destination
1039 * mount which is shared.
1040 */
1041 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1042 goto out1;
1043 err = -ELOOP;
1044 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1045 if (p == old_nd.mnt)
1046 goto out1;
1047
1048 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1049 goto out1;
1050
1051 spin_lock(&vfsmount_lock);
1052 /* if the mount is moved, it should no longer be expire
1053 * automatically */
1054 list_del_init(&old_nd.mnt->mnt_expire);
1055 spin_unlock(&vfsmount_lock);
1056 out1:
1057 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1058 out:
1059 up_write(&namespace_sem);
1060 if (!err)
1061 path_release(&parent_nd);
1062 path_release(&old_nd);
1063 return err;
1064 }
1065
1066 /*
1067 * create a new mount for userspace and request it to be added into the
1068 * namespace's tree
1069 */
1070 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1071 int mnt_flags, char *name, void *data)
1072 {
1073 struct vfsmount *mnt;
1074
1075 if (!type || !memchr(type, 0, PAGE_SIZE))
1076 return -EINVAL;
1077
1078 /* we need capabilities... */
1079 if (!capable(CAP_SYS_ADMIN))
1080 return -EPERM;
1081
1082 mnt = do_kern_mount(type, flags, name, data);
1083 if (IS_ERR(mnt))
1084 return PTR_ERR(mnt);
1085
1086 return do_add_mount(mnt, nd, mnt_flags, NULL);
1087 }
1088
1089 /*
1090 * add a mount into a namespace's mount tree
1091 * - provide the option of adding the new mount to an expiration list
1092 */
1093 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1094 int mnt_flags, struct list_head *fslist)
1095 {
1096 int err;
1097
1098 down_write(&namespace_sem);
1099 /* Something was mounted here while we slept */
1100 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1101 ;
1102 err = -EINVAL;
1103 if (!check_mnt(nd->mnt))
1104 goto unlock;
1105
1106 /* Refuse the same filesystem on the same mount point */
1107 err = -EBUSY;
1108 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1109 nd->mnt->mnt_root == nd->dentry)
1110 goto unlock;
1111
1112 err = -EINVAL;
1113 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1114 goto unlock;
1115
1116 newmnt->mnt_flags = mnt_flags;
1117 if ((err = graft_tree(newmnt, nd)))
1118 goto unlock;
1119
1120 if (fslist) {
1121 /* add to the specified expiration list */
1122 spin_lock(&vfsmount_lock);
1123 list_add_tail(&newmnt->mnt_expire, fslist);
1124 spin_unlock(&vfsmount_lock);
1125 }
1126 up_write(&namespace_sem);
1127 return 0;
1128
1129 unlock:
1130 up_write(&namespace_sem);
1131 mntput(newmnt);
1132 return err;
1133 }
1134
1135 EXPORT_SYMBOL_GPL(do_add_mount);
1136
1137 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1138 struct list_head *umounts)
1139 {
1140 spin_lock(&vfsmount_lock);
1141
1142 /*
1143 * Check if mount is still attached, if not, let whoever holds it deal
1144 * with the sucker
1145 */
1146 if (mnt->mnt_parent == mnt) {
1147 spin_unlock(&vfsmount_lock);
1148 return;
1149 }
1150
1151 /*
1152 * Check that it is still dead: the count should now be 2 - as
1153 * contributed by the vfsmount parent and the mntget above
1154 */
1155 if (!propagate_mount_busy(mnt, 2)) {
1156 /* delete from the namespace */
1157 touch_namespace(mnt->mnt_namespace);
1158 list_del_init(&mnt->mnt_list);
1159 mnt->mnt_namespace = NULL;
1160 umount_tree(mnt, 1, umounts);
1161 spin_unlock(&vfsmount_lock);
1162 } else {
1163 /*
1164 * Someone brought it back to life whilst we didn't have any
1165 * locks held so return it to the expiration list
1166 */
1167 list_add_tail(&mnt->mnt_expire, mounts);
1168 spin_unlock(&vfsmount_lock);
1169 }
1170 }
1171
1172 /*
1173 * go through the vfsmounts we've just consigned to the graveyard to
1174 * - check that they're still dead
1175 * - delete the vfsmount from the appropriate namespace under lock
1176 * - dispose of the corpse
1177 */
1178 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1179 {
1180 struct namespace *namespace;
1181 struct vfsmount *mnt;
1182
1183 while (!list_empty(graveyard)) {
1184 LIST_HEAD(umounts);
1185 mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
1186 list_del_init(&mnt->mnt_expire);
1187
1188 /* don't do anything if the namespace is dead - all the
1189 * vfsmounts from it are going away anyway */
1190 namespace = mnt->mnt_namespace;
1191 if (!namespace || !namespace->root)
1192 continue;
1193 get_namespace(namespace);
1194
1195 spin_unlock(&vfsmount_lock);
1196 down_write(&namespace_sem);
1197 expire_mount(mnt, mounts, &umounts);
1198 up_write(&namespace_sem);
1199 release_mounts(&umounts);
1200 mntput(mnt);
1201 put_namespace(namespace);
1202 spin_lock(&vfsmount_lock);
1203 }
1204 }
1205
1206 /*
1207 * process a list of expirable mountpoints with the intent of discarding any
1208 * mountpoints that aren't in use and haven't been touched since last we came
1209 * here
1210 */
1211 void mark_mounts_for_expiry(struct list_head *mounts)
1212 {
1213 struct vfsmount *mnt, *next;
1214 LIST_HEAD(graveyard);
1215
1216 if (list_empty(mounts))
1217 return;
1218
1219 spin_lock(&vfsmount_lock);
1220
1221 /* extract from the expiration list every vfsmount that matches the
1222 * following criteria:
1223 * - only referenced by its parent vfsmount
1224 * - still marked for expiry (marked on the last call here; marks are
1225 * cleared by mntput())
1226 */
1227 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1228 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1229 atomic_read(&mnt->mnt_count) != 1)
1230 continue;
1231
1232 mntget(mnt);
1233 list_move(&mnt->mnt_expire, &graveyard);
1234 }
1235
1236 expire_mount_list(&graveyard, mounts);
1237
1238 spin_unlock(&vfsmount_lock);
1239 }
1240
1241 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1242
1243 /*
1244 * Ripoff of 'select_parent()'
1245 *
1246 * search the list of submounts for a given mountpoint, and move any
1247 * shrinkable submounts to the 'graveyard' list.
1248 */
1249 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1250 {
1251 struct vfsmount *this_parent = parent;
1252 struct list_head *next;
1253 int found = 0;
1254
1255 repeat:
1256 next = this_parent->mnt_mounts.next;
1257 resume:
1258 while (next != &this_parent->mnt_mounts) {
1259 struct list_head *tmp = next;
1260 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1261
1262 next = tmp->next;
1263 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1264 continue;
1265 /*
1266 * Descend a level if the d_mounts list is non-empty.
1267 */
1268 if (!list_empty(&mnt->mnt_mounts)) {
1269 this_parent = mnt;
1270 goto repeat;
1271 }
1272
1273 if (!propagate_mount_busy(mnt, 1)) {
1274 mntget(mnt);
1275 list_move_tail(&mnt->mnt_expire, graveyard);
1276 found++;
1277 }
1278 }
1279 /*
1280 * All done at this level ... ascend and resume the search
1281 */
1282 if (this_parent != parent) {
1283 next = this_parent->mnt_child.next;
1284 this_parent = this_parent->mnt_parent;
1285 goto resume;
1286 }
1287 return found;
1288 }
1289
1290 /*
1291 * process a list of expirable mountpoints with the intent of discarding any
1292 * submounts of a specific parent mountpoint
1293 */
1294 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1295 {
1296 LIST_HEAD(graveyard);
1297 int found;
1298
1299 spin_lock(&vfsmount_lock);
1300
1301 /* extract submounts of 'mountpoint' from the expiration list */
1302 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1303 expire_mount_list(&graveyard, mounts);
1304
1305 spin_unlock(&vfsmount_lock);
1306 }
1307
1308 EXPORT_SYMBOL_GPL(shrink_submounts);
1309
1310 /*
1311 * Some copy_from_user() implementations do not return the exact number of
1312 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1313 * Note that this function differs from copy_from_user() in that it will oops
1314 * on bad values of `to', rather than returning a short copy.
1315 */
1316 static long exact_copy_from_user(void *to, const void __user * from,
1317 unsigned long n)
1318 {
1319 char *t = to;
1320 const char __user *f = from;
1321 char c;
1322
1323 if (!access_ok(VERIFY_READ, from, n))
1324 return n;
1325
1326 while (n) {
1327 if (__get_user(c, f)) {
1328 memset(t, 0, n);
1329 break;
1330 }
1331 *t++ = c;
1332 f++;
1333 n--;
1334 }
1335 return n;
1336 }
1337
1338 int copy_mount_options(const void __user * data, unsigned long *where)
1339 {
1340 int i;
1341 unsigned long page;
1342 unsigned long size;
1343
1344 *where = 0;
1345 if (!data)
1346 return 0;
1347
1348 if (!(page = __get_free_page(GFP_KERNEL)))
1349 return -ENOMEM;
1350
1351 /* We only care that *some* data at the address the user
1352 * gave us is valid. Just in case, we'll zero
1353 * the remainder of the page.
1354 */
1355 /* copy_from_user cannot cross TASK_SIZE ! */
1356 size = TASK_SIZE - (unsigned long)data;
1357 if (size > PAGE_SIZE)
1358 size = PAGE_SIZE;
1359
1360 i = size - exact_copy_from_user((void *)page, data, size);
1361 if (!i) {
1362 free_page(page);
1363 return -EFAULT;
1364 }
1365 if (i != PAGE_SIZE)
1366 memset((char *)page + i, 0, PAGE_SIZE - i);
1367 *where = page;
1368 return 0;
1369 }
1370
1371 /*
1372 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1373 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1374 *
1375 * data is a (void *) that can point to any structure up to
1376 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1377 * information (or be NULL).
1378 *
1379 * Pre-0.97 versions of mount() didn't have a flags word.
1380 * When the flags word was introduced its top half was required
1381 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1382 * Therefore, if this magic number is present, it carries no information
1383 * and must be discarded.
1384 */
1385 long do_mount(char *dev_name, char *dir_name, char *type_page,
1386 unsigned long flags, void *data_page)
1387 {
1388 struct nameidata nd;
1389 int retval = 0;
1390 int mnt_flags = 0;
1391
1392 /* Discard magic */
1393 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1394 flags &= ~MS_MGC_MSK;
1395
1396 /* Basic sanity checks */
1397
1398 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1399 return -EINVAL;
1400 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1401 return -EINVAL;
1402
1403 if (data_page)
1404 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1405
1406 /* Separate the per-mountpoint flags */
1407 if (flags & MS_NOSUID)
1408 mnt_flags |= MNT_NOSUID;
1409 if (flags & MS_NODEV)
1410 mnt_flags |= MNT_NODEV;
1411 if (flags & MS_NOEXEC)
1412 mnt_flags |= MNT_NOEXEC;
1413 if (flags & MS_NOATIME)
1414 mnt_flags |= MNT_NOATIME;
1415 if (flags & MS_NODIRATIME)
1416 mnt_flags |= MNT_NODIRATIME;
1417
1418 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1419 MS_NOATIME | MS_NODIRATIME);
1420
1421 /* ... and get the mountpoint */
1422 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1423 if (retval)
1424 return retval;
1425
1426 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1427 if (retval)
1428 goto dput_out;
1429
1430 if (flags & MS_REMOUNT)
1431 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1432 data_page);
1433 else if (flags & MS_BIND)
1434 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1435 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1436 retval = do_change_type(&nd, flags);
1437 else if (flags & MS_MOVE)
1438 retval = do_move_mount(&nd, dev_name);
1439 else
1440 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1441 dev_name, data_page);
1442 dput_out:
1443 path_release(&nd);
1444 return retval;
1445 }
1446
1447 /*
1448 * Allocate a new namespace structure and populate it with contents
1449 * copied from the namespace of the passed in task structure.
1450 */
1451 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1452 {
1453 struct namespace *namespace = tsk->namespace;
1454 struct namespace *new_ns;
1455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1456 struct vfsmount *p, *q;
1457
1458 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1459 if (!new_ns)
1460 return NULL;
1461
1462 atomic_set(&new_ns->count, 1);
1463 INIT_LIST_HEAD(&new_ns->list);
1464 init_waitqueue_head(&new_ns->poll);
1465 new_ns->event = 0;
1466
1467 down_write(&namespace_sem);
1468 /* First pass: copy the tree topology */
1469 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1470 CL_COPY_ALL | CL_EXPIRE);
1471 if (!new_ns->root) {
1472 up_write(&namespace_sem);
1473 kfree(new_ns);
1474 return NULL;
1475 }
1476 spin_lock(&vfsmount_lock);
1477 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1478 spin_unlock(&vfsmount_lock);
1479
1480 /*
1481 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1482 * as belonging to new namespace. We have already acquired a private
1483 * fs_struct, so tsk->fs->lock is not needed.
1484 */
1485 p = namespace->root;
1486 q = new_ns->root;
1487 while (p) {
1488 q->mnt_namespace = new_ns;
1489 if (fs) {
1490 if (p == fs->rootmnt) {
1491 rootmnt = p;
1492 fs->rootmnt = mntget(q);
1493 }
1494 if (p == fs->pwdmnt) {
1495 pwdmnt = p;
1496 fs->pwdmnt = mntget(q);
1497 }
1498 if (p == fs->altrootmnt) {
1499 altrootmnt = p;
1500 fs->altrootmnt = mntget(q);
1501 }
1502 }
1503 p = next_mnt(p, namespace->root);
1504 q = next_mnt(q, new_ns->root);
1505 }
1506 up_write(&namespace_sem);
1507
1508 if (rootmnt)
1509 mntput(rootmnt);
1510 if (pwdmnt)
1511 mntput(pwdmnt);
1512 if (altrootmnt)
1513 mntput(altrootmnt);
1514
1515 return new_ns;
1516 }
1517
1518 int copy_namespace(int flags, struct task_struct *tsk)
1519 {
1520 struct namespace *namespace = tsk->namespace;
1521 struct namespace *new_ns;
1522 int err = 0;
1523
1524 if (!namespace)
1525 return 0;
1526
1527 get_namespace(namespace);
1528
1529 if (!(flags & CLONE_NEWNS))
1530 return 0;
1531
1532 if (!capable(CAP_SYS_ADMIN)) {
1533 err = -EPERM;
1534 goto out;
1535 }
1536
1537 new_ns = dup_namespace(tsk, tsk->fs);
1538 if (!new_ns) {
1539 err = -ENOMEM;
1540 goto out;
1541 }
1542
1543 tsk->namespace = new_ns;
1544
1545 out:
1546 put_namespace(namespace);
1547 return err;
1548 }
1549
1550 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1551 char __user * type, unsigned long flags,
1552 void __user * data)
1553 {
1554 int retval;
1555 unsigned long data_page;
1556 unsigned long type_page;
1557 unsigned long dev_page;
1558 char *dir_page;
1559
1560 retval = copy_mount_options(type, &type_page);
1561 if (retval < 0)
1562 return retval;
1563
1564 dir_page = getname(dir_name);
1565 retval = PTR_ERR(dir_page);
1566 if (IS_ERR(dir_page))
1567 goto out1;
1568
1569 retval = copy_mount_options(dev_name, &dev_page);
1570 if (retval < 0)
1571 goto out2;
1572
1573 retval = copy_mount_options(data, &data_page);
1574 if (retval < 0)
1575 goto out3;
1576
1577 lock_kernel();
1578 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1579 flags, (void *)data_page);
1580 unlock_kernel();
1581 free_page(data_page);
1582
1583 out3:
1584 free_page(dev_page);
1585 out2:
1586 putname(dir_page);
1587 out1:
1588 free_page(type_page);
1589 return retval;
1590 }
1591
1592 /*
1593 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1594 * It can block. Requires the big lock held.
1595 */
1596 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1597 struct dentry *dentry)
1598 {
1599 struct dentry *old_root;
1600 struct vfsmount *old_rootmnt;
1601 write_lock(&fs->lock);
1602 old_root = fs->root;
1603 old_rootmnt = fs->rootmnt;
1604 fs->rootmnt = mntget(mnt);
1605 fs->root = dget(dentry);
1606 write_unlock(&fs->lock);
1607 if (old_root) {
1608 dput(old_root);
1609 mntput(old_rootmnt);
1610 }
1611 }
1612
1613 /*
1614 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1615 * It can block. Requires the big lock held.
1616 */
1617 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1618 struct dentry *dentry)
1619 {
1620 struct dentry *old_pwd;
1621 struct vfsmount *old_pwdmnt;
1622
1623 write_lock(&fs->lock);
1624 old_pwd = fs->pwd;
1625 old_pwdmnt = fs->pwdmnt;
1626 fs->pwdmnt = mntget(mnt);
1627 fs->pwd = dget(dentry);
1628 write_unlock(&fs->lock);
1629
1630 if (old_pwd) {
1631 dput(old_pwd);
1632 mntput(old_pwdmnt);
1633 }
1634 }
1635
1636 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1637 {
1638 struct task_struct *g, *p;
1639 struct fs_struct *fs;
1640
1641 read_lock(&tasklist_lock);
1642 do_each_thread(g, p) {
1643 task_lock(p);
1644 fs = p->fs;
1645 if (fs) {
1646 atomic_inc(&fs->count);
1647 task_unlock(p);
1648 if (fs->root == old_nd->dentry
1649 && fs->rootmnt == old_nd->mnt)
1650 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1651 if (fs->pwd == old_nd->dentry
1652 && fs->pwdmnt == old_nd->mnt)
1653 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1654 put_fs_struct(fs);
1655 } else
1656 task_unlock(p);
1657 } while_each_thread(g, p);
1658 read_unlock(&tasklist_lock);
1659 }
1660
1661 /*
1662 * pivot_root Semantics:
1663 * Moves the root file system of the current process to the directory put_old,
1664 * makes new_root as the new root file system of the current process, and sets
1665 * root/cwd of all processes which had them on the current root to new_root.
1666 *
1667 * Restrictions:
1668 * The new_root and put_old must be directories, and must not be on the
1669 * same file system as the current process root. The put_old must be
1670 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1671 * pointed to by put_old must yield the same directory as new_root. No other
1672 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1673 *
1674 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1675 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1676 * in this situation.
1677 *
1678 * Notes:
1679 * - we don't move root/cwd if they are not at the root (reason: if something
1680 * cared enough to change them, it's probably wrong to force them elsewhere)
1681 * - it's okay to pick a root that isn't the root of a file system, e.g.
1682 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1683 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1684 * first.
1685 */
1686 asmlinkage long sys_pivot_root(const char __user * new_root,
1687 const char __user * put_old)
1688 {
1689 struct vfsmount *tmp;
1690 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1691 int error;
1692
1693 if (!capable(CAP_SYS_ADMIN))
1694 return -EPERM;
1695
1696 lock_kernel();
1697
1698 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1699 &new_nd);
1700 if (error)
1701 goto out0;
1702 error = -EINVAL;
1703 if (!check_mnt(new_nd.mnt))
1704 goto out1;
1705
1706 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1707 if (error)
1708 goto out1;
1709
1710 error = security_sb_pivotroot(&old_nd, &new_nd);
1711 if (error) {
1712 path_release(&old_nd);
1713 goto out1;
1714 }
1715
1716 read_lock(&current->fs->lock);
1717 user_nd.mnt = mntget(current->fs->rootmnt);
1718 user_nd.dentry = dget(current->fs->root);
1719 read_unlock(&current->fs->lock);
1720 down_write(&namespace_sem);
1721 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1722 error = -EINVAL;
1723 if (IS_MNT_SHARED(old_nd.mnt) ||
1724 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1725 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1726 goto out2;
1727 if (!check_mnt(user_nd.mnt))
1728 goto out2;
1729 error = -ENOENT;
1730 if (IS_DEADDIR(new_nd.dentry->d_inode))
1731 goto out2;
1732 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1733 goto out2;
1734 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1735 goto out2;
1736 error = -EBUSY;
1737 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1738 goto out2; /* loop, on the same file system */
1739 error = -EINVAL;
1740 if (user_nd.mnt->mnt_root != user_nd.dentry)
1741 goto out2; /* not a mountpoint */
1742 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1743 goto out2; /* not attached */
1744 if (new_nd.mnt->mnt_root != new_nd.dentry)
1745 goto out2; /* not a mountpoint */
1746 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1747 goto out2; /* not attached */
1748 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1749 spin_lock(&vfsmount_lock);
1750 if (tmp != new_nd.mnt) {
1751 for (;;) {
1752 if (tmp->mnt_parent == tmp)
1753 goto out3; /* already mounted on put_old */
1754 if (tmp->mnt_parent == new_nd.mnt)
1755 break;
1756 tmp = tmp->mnt_parent;
1757 }
1758 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1759 goto out3;
1760 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1761 goto out3;
1762 detach_mnt(new_nd.mnt, &parent_nd);
1763 detach_mnt(user_nd.mnt, &root_parent);
1764 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1765 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1766 touch_namespace(current->namespace);
1767 spin_unlock(&vfsmount_lock);
1768 chroot_fs_refs(&user_nd, &new_nd);
1769 security_sb_post_pivotroot(&user_nd, &new_nd);
1770 error = 0;
1771 path_release(&root_parent);
1772 path_release(&parent_nd);
1773 out2:
1774 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1775 up_write(&namespace_sem);
1776 path_release(&user_nd);
1777 path_release(&old_nd);
1778 out1:
1779 path_release(&new_nd);
1780 out0:
1781 unlock_kernel();
1782 return error;
1783 out3:
1784 spin_unlock(&vfsmount_lock);
1785 goto out2;
1786 }
1787
1788 static void __init init_mount_tree(void)
1789 {
1790 struct vfsmount *mnt;
1791 struct namespace *namespace;
1792 struct task_struct *g, *p;
1793
1794 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1795 if (IS_ERR(mnt))
1796 panic("Can't create rootfs");
1797 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1798 if (!namespace)
1799 panic("Can't allocate initial namespace");
1800 atomic_set(&namespace->count, 1);
1801 INIT_LIST_HEAD(&namespace->list);
1802 init_waitqueue_head(&namespace->poll);
1803 namespace->event = 0;
1804 list_add(&mnt->mnt_list, &namespace->list);
1805 namespace->root = mnt;
1806 mnt->mnt_namespace = namespace;
1807
1808 init_task.namespace = namespace;
1809 read_lock(&tasklist_lock);
1810 do_each_thread(g, p) {
1811 get_namespace(namespace);
1812 p->namespace = namespace;
1813 } while_each_thread(g, p);
1814 read_unlock(&tasklist_lock);
1815
1816 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1817 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1818 }
1819
1820 void __init mnt_init(unsigned long mempages)
1821 {
1822 struct list_head *d;
1823 unsigned int nr_hash;
1824 int i;
1825
1826 init_rwsem(&namespace_sem);
1827
1828 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1829 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1830
1831 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1832
1833 if (!mount_hashtable)
1834 panic("Failed to allocate mount hash table\n");
1835
1836 /*
1837 * Find the power-of-two list-heads that can fit into the allocation..
1838 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1839 * a power-of-two.
1840 */
1841 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1842 hash_bits = 0;
1843 do {
1844 hash_bits++;
1845 } while ((nr_hash >> hash_bits) != 0);
1846 hash_bits--;
1847
1848 /*
1849 * Re-calculate the actual number of entries and the mask
1850 * from the number of bits we can fit.
1851 */
1852 nr_hash = 1UL << hash_bits;
1853 hash_mask = nr_hash - 1;
1854
1855 printk("Mount-cache hash table entries: %d\n", nr_hash);
1856
1857 /* And initialize the newly allocated array */
1858 d = mount_hashtable;
1859 i = nr_hash;
1860 do {
1861 INIT_LIST_HEAD(d);
1862 d++;
1863 i--;
1864 } while (i);
1865 sysfs_init();
1866 subsystem_register(&fs_subsys);
1867 init_rootfs();
1868 init_mount_tree();
1869 }
1870
1871 void __put_namespace(struct namespace *namespace)
1872 {
1873 struct vfsmount *root = namespace->root;
1874 LIST_HEAD(umount_list);
1875 namespace->root = NULL;
1876 spin_unlock(&vfsmount_lock);
1877 down_write(&namespace_sem);
1878 spin_lock(&vfsmount_lock);
1879 umount_tree(root, 0, &umount_list);
1880 spin_unlock(&vfsmount_lock);
1881 up_write(&namespace_sem);
1882 release_mounts(&umount_list);
1883 kfree(namespace);
1884 }
This page took 0.107719 seconds and 6 git commands to generate.