NFS: Ensure we return the dirent->d_type when it is known
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/vmalloc.h>
37 #include <linux/kmemleak.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static int nfs_readdir_clear_array(struct page*, gfp_t);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct inode_operations nfs_dir_inode_operations = {
72 .create = nfs_create,
73 .lookup = nfs_lookup,
74 .link = nfs_link,
75 .unlink = nfs_unlink,
76 .symlink = nfs_symlink,
77 .mkdir = nfs_mkdir,
78 .rmdir = nfs_rmdir,
79 .mknod = nfs_mknod,
80 .rename = nfs_rename,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
84 };
85
86 const struct address_space_operations nfs_dir_addr_space_ops = {
87 .releasepage = nfs_readdir_clear_array,
88 };
89
90 #ifdef CONFIG_NFS_V3
91 const struct inode_operations nfs3_dir_inode_operations = {
92 .create = nfs_create,
93 .lookup = nfs_lookup,
94 .link = nfs_link,
95 .unlink = nfs_unlink,
96 .symlink = nfs_symlink,
97 .mkdir = nfs_mkdir,
98 .rmdir = nfs_rmdir,
99 .mknod = nfs_mknod,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
108 };
109 #endif /* CONFIG_NFS_V3 */
110
111 #ifdef CONFIG_NFS_V4
112
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
118 .link = nfs_link,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
121 .mkdir = nfs_mkdir,
122 .rmdir = nfs_rmdir,
123 .mknod = nfs_mknod,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = nfs4_getxattr,
129 .setxattr = nfs4_setxattr,
130 .listxattr = nfs4_listxattr,
131 };
132
133 #endif /* CONFIG_NFS_V4 */
134
135 /*
136 * Open file
137 */
138 static int
139 nfs_opendir(struct inode *inode, struct file *filp)
140 {
141 int res;
142
143 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
144 filp->f_path.dentry->d_parent->d_name.name,
145 filp->f_path.dentry->d_name.name);
146
147 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
148
149 /* Call generic open code in order to cache credentials */
150 res = nfs_open(inode, filp);
151 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
152 /* This is a mountpoint, so d_revalidate will never
153 * have been called, so we need to refresh the
154 * inode (for close-open consistency) ourselves.
155 */
156 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
157 }
158 return res;
159 }
160
161 struct nfs_cache_array_entry {
162 u64 cookie;
163 u64 ino;
164 struct qstr string;
165 unsigned char d_type;
166 };
167
168 struct nfs_cache_array {
169 unsigned int size;
170 int eof_index;
171 u64 last_cookie;
172 struct nfs_cache_array_entry array[0];
173 };
174
175 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
176 typedef struct {
177 struct file *file;
178 struct page *page;
179 unsigned long page_index;
180 u64 *dir_cookie;
181 loff_t current_index;
182 decode_dirent_t decode;
183
184 unsigned long timestamp;
185 unsigned long gencount;
186 unsigned int cache_entry_index;
187 unsigned int plus:1;
188 unsigned int eof:1;
189 } nfs_readdir_descriptor_t;
190
191 /*
192 * The caller is responsible for calling nfs_readdir_release_array(page)
193 */
194 static
195 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
196 {
197 void *ptr;
198 if (page == NULL)
199 return ERR_PTR(-EIO);
200 ptr = kmap(page);
201 if (ptr == NULL)
202 return ERR_PTR(-ENOMEM);
203 return ptr;
204 }
205
206 static
207 void nfs_readdir_release_array(struct page *page)
208 {
209 kunmap(page);
210 }
211
212 /*
213 * we are freeing strings created by nfs_add_to_readdir_array()
214 */
215 static
216 int nfs_readdir_clear_array(struct page *page, gfp_t mask)
217 {
218 struct nfs_cache_array *array = nfs_readdir_get_array(page);
219 int i;
220
221 if (IS_ERR(array))
222 return PTR_ERR(array);
223 for (i = 0; i < array->size; i++)
224 kfree(array->array[i].string.name);
225 nfs_readdir_release_array(page);
226 return 0;
227 }
228
229 /*
230 * the caller is responsible for freeing qstr.name
231 * when called by nfs_readdir_add_to_array, the strings will be freed in
232 * nfs_clear_readdir_array()
233 */
234 static
235 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
236 {
237 string->len = len;
238 string->name = kmemdup(name, len, GFP_KERNEL);
239 if (string->name == NULL)
240 return -ENOMEM;
241 /*
242 * Avoid a kmemleak false positive. The pointer to the name is stored
243 * in a page cache page which kmemleak does not scan.
244 */
245 kmemleak_not_leak(string->name);
246 string->hash = full_name_hash(name, len);
247 return 0;
248 }
249
250 static
251 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
252 {
253 struct nfs_cache_array *array = nfs_readdir_get_array(page);
254 struct nfs_cache_array_entry *cache_entry;
255 int ret;
256
257 if (IS_ERR(array))
258 return PTR_ERR(array);
259
260 cache_entry = &array->array[array->size];
261
262 /* Check that this entry lies within the page bounds */
263 ret = -ENOSPC;
264 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
265 goto out;
266
267 cache_entry->cookie = entry->prev_cookie;
268 cache_entry->ino = entry->ino;
269 cache_entry->d_type = entry->d_type;
270 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
271 if (ret)
272 goto out;
273 array->last_cookie = entry->cookie;
274 array->size++;
275 if (entry->eof == 1)
276 array->eof_index = array->size;
277 out:
278 nfs_readdir_release_array(page);
279 return ret;
280 }
281
282 static
283 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 loff_t diff = desc->file->f_pos - desc->current_index;
286 unsigned int index;
287
288 if (diff < 0)
289 goto out_eof;
290 if (diff >= array->size) {
291 if (array->eof_index >= 0)
292 goto out_eof;
293 desc->current_index += array->size;
294 return -EAGAIN;
295 }
296
297 index = (unsigned int)diff;
298 *desc->dir_cookie = array->array[index].cookie;
299 desc->cache_entry_index = index;
300 return 0;
301 out_eof:
302 desc->eof = 1;
303 return -EBADCOOKIE;
304 }
305
306 static
307 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
308 {
309 int i;
310 int status = -EAGAIN;
311
312 for (i = 0; i < array->size; i++) {
313 if (array->array[i].cookie == *desc->dir_cookie) {
314 desc->cache_entry_index = i;
315 status = 0;
316 goto out;
317 }
318 }
319 if (i == array->eof_index) {
320 desc->eof = 1;
321 status = -EBADCOOKIE;
322 }
323 out:
324 return status;
325 }
326
327 static
328 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
329 {
330 struct nfs_cache_array *array;
331 int status = -EBADCOOKIE;
332
333 if (desc->dir_cookie == NULL)
334 goto out;
335
336 array = nfs_readdir_get_array(desc->page);
337 if (IS_ERR(array)) {
338 status = PTR_ERR(array);
339 goto out;
340 }
341
342 if (*desc->dir_cookie == 0)
343 status = nfs_readdir_search_for_pos(array, desc);
344 else
345 status = nfs_readdir_search_for_cookie(array, desc);
346
347 nfs_readdir_release_array(desc->page);
348 out:
349 return status;
350 }
351
352 /* Fill a page with xdr information before transferring to the cache page */
353 static
354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
355 struct nfs_entry *entry, struct file *file, struct inode *inode)
356 {
357 struct rpc_cred *cred = nfs_file_cred(file);
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 /* Fill in an entry based on the xdr code stored in desc->page */
383 static
384 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
385 {
386 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
387 if (IS_ERR(p))
388 return PTR_ERR(p);
389
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 struct nfs_inode *node;
399 if (dentry->d_inode == NULL)
400 goto different;
401 node = NFS_I(dentry->d_inode);
402 if (node->fh.size != entry->fh->size)
403 goto different;
404 if (strncmp(node->fh.data, entry->fh->data, node->fh.size) != 0)
405 goto different;
406 return 1;
407 different:
408 return 0;
409 }
410
411 static
412 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
413 {
414 struct qstr filename = {
415 .len = entry->len,
416 .name = entry->name,
417 };
418 struct dentry *dentry;
419 struct dentry *alias;
420 struct inode *dir = parent->d_inode;
421 struct inode *inode;
422
423 if (filename.name[0] == '.') {
424 if (filename.len == 1)
425 return;
426 if (filename.len == 2 && filename.name[1] == '.')
427 return;
428 }
429 filename.hash = full_name_hash(filename.name, filename.len);
430
431 dentry = d_lookup(parent, &filename);
432 if (dentry != NULL) {
433 if (nfs_same_file(dentry, entry)) {
434 nfs_refresh_inode(dentry->d_inode, entry->fattr);
435 goto out;
436 } else {
437 d_drop(dentry);
438 dput(dentry);
439 }
440 }
441
442 dentry = d_alloc(parent, &filename);
443 if (dentry == NULL)
444 return;
445
446 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
447 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
448 if (IS_ERR(inode))
449 goto out;
450
451 alias = d_materialise_unique(dentry, inode);
452 if (IS_ERR(alias))
453 goto out;
454 else if (alias) {
455 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
456 dput(alias);
457 } else
458 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
459
460 out:
461 dput(dentry);
462 }
463
464 /* Perform conversion from xdr to cache array */
465 static
466 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
467 void *xdr_page, struct page *page, unsigned int buflen)
468 {
469 struct xdr_stream stream;
470 struct xdr_buf buf;
471 __be32 *ptr = xdr_page;
472 struct nfs_cache_array *array;
473 unsigned int count = 0;
474 int status;
475
476 buf.head->iov_base = xdr_page;
477 buf.head->iov_len = buflen;
478 buf.tail->iov_len = 0;
479 buf.page_base = 0;
480 buf.page_len = 0;
481 buf.buflen = buf.head->iov_len;
482 buf.len = buf.head->iov_len;
483
484 xdr_init_decode(&stream, &buf, ptr);
485
486
487 do {
488 status = xdr_decode(desc, entry, &stream);
489 if (status != 0) {
490 if (status == -EAGAIN)
491 status = 0;
492 break;
493 }
494
495 count++;
496
497 if (desc->plus == 1)
498 nfs_prime_dcache(desc->file->f_path.dentry, entry);
499
500 status = nfs_readdir_add_to_array(entry, page);
501 if (status != 0)
502 break;
503 } while (!entry->eof);
504
505 if (count == 0 || (status == -EBADCOOKIE && entry->eof == 1)) {
506 array = nfs_readdir_get_array(page);
507 if (!IS_ERR(array)) {
508 array->eof_index = array->size;
509 status = 0;
510 nfs_readdir_release_array(page);
511 } else
512 status = PTR_ERR(array);
513 }
514 return status;
515 }
516
517 static
518 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
519 {
520 unsigned int i;
521 for (i = 0; i < npages; i++)
522 put_page(pages[i]);
523 }
524
525 static
526 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
527 unsigned int npages)
528 {
529 vm_unmap_ram(ptr, npages);
530 nfs_readdir_free_pagearray(pages, npages);
531 }
532
533 /*
534 * nfs_readdir_large_page will allocate pages that must be freed with a call
535 * to nfs_readdir_free_large_page
536 */
537 static
538 void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
539 {
540 void *ptr;
541 unsigned int i;
542
543 for (i = 0; i < npages; i++) {
544 struct page *page = alloc_page(GFP_KERNEL);
545 if (page == NULL)
546 goto out_freepages;
547 pages[i] = page;
548 }
549
550 ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
551 if (!IS_ERR_OR_NULL(ptr))
552 return ptr;
553 out_freepages:
554 nfs_readdir_free_pagearray(pages, i);
555 return NULL;
556 }
557
558 static
559 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
560 {
561 struct page *pages[NFS_MAX_READDIR_PAGES];
562 void *pages_ptr = NULL;
563 struct nfs_entry entry;
564 struct file *file = desc->file;
565 struct nfs_cache_array *array;
566 int status = -ENOMEM;
567 unsigned int array_size = ARRAY_SIZE(pages);
568
569 entry.prev_cookie = 0;
570 entry.cookie = *desc->dir_cookie;
571 entry.eof = 0;
572 entry.fh = nfs_alloc_fhandle();
573 entry.fattr = nfs_alloc_fattr();
574 if (entry.fh == NULL || entry.fattr == NULL)
575 goto out;
576
577 array = nfs_readdir_get_array(page);
578 if (IS_ERR(array)) {
579 status = PTR_ERR(array);
580 goto out;
581 }
582 memset(array, 0, sizeof(struct nfs_cache_array));
583 array->eof_index = -1;
584
585 pages_ptr = nfs_readdir_large_page(pages, array_size);
586 if (!pages_ptr)
587 goto out_release_array;
588 do {
589 unsigned int pglen;
590 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
591
592 if (status < 0)
593 break;
594 pglen = status;
595 status = nfs_readdir_page_filler(desc, &entry, pages_ptr, page, pglen);
596 if (status < 0) {
597 if (status == -ENOSPC)
598 status = 0;
599 break;
600 }
601 } while (array->eof_index < 0);
602
603 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
604 out_release_array:
605 nfs_readdir_release_array(page);
606 out:
607 nfs_free_fattr(entry.fattr);
608 nfs_free_fhandle(entry.fh);
609 return status;
610 }
611
612 /*
613 * Now we cache directories properly, by converting xdr information
614 * to an array that can be used for lookups later. This results in
615 * fewer cache pages, since we can store more information on each page.
616 * We only need to convert from xdr once so future lookups are much simpler
617 */
618 static
619 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
620 {
621 struct inode *inode = desc->file->f_path.dentry->d_inode;
622 int ret;
623
624 ret = nfs_readdir_xdr_to_array(desc, page, inode);
625 if (ret < 0)
626 goto error;
627 SetPageUptodate(page);
628
629 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
630 /* Should never happen */
631 nfs_zap_mapping(inode, inode->i_mapping);
632 }
633 unlock_page(page);
634 return 0;
635 error:
636 unlock_page(page);
637 return ret;
638 }
639
640 static
641 void cache_page_release(nfs_readdir_descriptor_t *desc)
642 {
643 page_cache_release(desc->page);
644 desc->page = NULL;
645 }
646
647 static
648 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
649 {
650 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
651 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
652 }
653
654 /*
655 * Returns 0 if desc->dir_cookie was found on page desc->page_index
656 */
657 static
658 int find_cache_page(nfs_readdir_descriptor_t *desc)
659 {
660 int res;
661
662 desc->page = get_cache_page(desc);
663 if (IS_ERR(desc->page))
664 return PTR_ERR(desc->page);
665
666 res = nfs_readdir_search_array(desc);
667 if (res == 0)
668 return 0;
669 cache_page_release(desc);
670 return res;
671 }
672
673 /* Search for desc->dir_cookie from the beginning of the page cache */
674 static inline
675 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
676 {
677 int res;
678
679 if (desc->page_index == 0)
680 desc->current_index = 0;
681 while (1) {
682 res = find_cache_page(desc);
683 if (res != -EAGAIN)
684 break;
685 desc->page_index++;
686 }
687 return res;
688 }
689
690 static inline unsigned int dt_type(struct inode *inode)
691 {
692 return (inode->i_mode >> 12) & 15;
693 }
694
695 /*
696 * Once we've found the start of the dirent within a page: fill 'er up...
697 */
698 static
699 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
700 filldir_t filldir)
701 {
702 struct file *file = desc->file;
703 int i = 0;
704 int res = 0;
705 struct nfs_cache_array *array = NULL;
706
707 array = nfs_readdir_get_array(desc->page);
708 if (IS_ERR(array)) {
709 res = PTR_ERR(array);
710 goto out;
711 }
712
713 for (i = desc->cache_entry_index; i < array->size; i++) {
714 struct nfs_cache_array_entry *ent;
715
716 ent = &array->array[i];
717 if (filldir(dirent, ent->string.name, ent->string.len,
718 file->f_pos, nfs_compat_user_ino64(ent->ino),
719 ent->d_type) < 0) {
720 desc->eof = 1;
721 break;
722 }
723 file->f_pos++;
724 desc->cache_entry_index = i;
725 if (i < (array->size-1))
726 *desc->dir_cookie = array->array[i+1].cookie;
727 else
728 *desc->dir_cookie = array->last_cookie;
729 }
730 if (i == array->eof_index)
731 desc->eof = 1;
732
733 nfs_readdir_release_array(desc->page);
734 out:
735 cache_page_release(desc);
736 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
737 (unsigned long long)*desc->dir_cookie, res);
738 return res;
739 }
740
741 /*
742 * If we cannot find a cookie in our cache, we suspect that this is
743 * because it points to a deleted file, so we ask the server to return
744 * whatever it thinks is the next entry. We then feed this to filldir.
745 * If all goes well, we should then be able to find our way round the
746 * cache on the next call to readdir_search_pagecache();
747 *
748 * NOTE: we cannot add the anonymous page to the pagecache because
749 * the data it contains might not be page aligned. Besides,
750 * we should already have a complete representation of the
751 * directory in the page cache by the time we get here.
752 */
753 static inline
754 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
755 filldir_t filldir)
756 {
757 struct page *page = NULL;
758 int status;
759 struct inode *inode = desc->file->f_path.dentry->d_inode;
760
761 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
762 (unsigned long long)*desc->dir_cookie);
763
764 page = alloc_page(GFP_HIGHUSER);
765 if (!page) {
766 status = -ENOMEM;
767 goto out;
768 }
769
770 desc->page_index = 0;
771 desc->page = page;
772
773 status = nfs_readdir_xdr_to_array(desc, page, inode);
774 if (status < 0)
775 goto out_release;
776
777 status = nfs_do_filldir(desc, dirent, filldir);
778
779 out:
780 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
781 __func__, status);
782 return status;
783 out_release:
784 cache_page_release(desc);
785 goto out;
786 }
787
788 /* The file offset position represents the dirent entry number. A
789 last cookie cache takes care of the common case of reading the
790 whole directory.
791 */
792 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
793 {
794 struct dentry *dentry = filp->f_path.dentry;
795 struct inode *inode = dentry->d_inode;
796 nfs_readdir_descriptor_t my_desc,
797 *desc = &my_desc;
798 int res = -ENOMEM;
799
800 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
801 dentry->d_parent->d_name.name, dentry->d_name.name,
802 (long long)filp->f_pos);
803 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
804
805 /*
806 * filp->f_pos points to the dirent entry number.
807 * *desc->dir_cookie has the cookie for the next entry. We have
808 * to either find the entry with the appropriate number or
809 * revalidate the cookie.
810 */
811 memset(desc, 0, sizeof(*desc));
812
813 desc->file = filp;
814 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
815 desc->decode = NFS_PROTO(inode)->decode_dirent;
816 desc->plus = NFS_USE_READDIRPLUS(inode);
817
818 nfs_block_sillyrename(dentry);
819 res = nfs_revalidate_mapping(inode, filp->f_mapping);
820 if (res < 0)
821 goto out;
822
823 while (desc->eof != 1) {
824 res = readdir_search_pagecache(desc);
825
826 if (res == -EBADCOOKIE) {
827 res = 0;
828 /* This means either end of directory */
829 if (*desc->dir_cookie && desc->eof == 0) {
830 /* Or that the server has 'lost' a cookie */
831 res = uncached_readdir(desc, dirent, filldir);
832 if (res == 0)
833 continue;
834 }
835 break;
836 }
837 if (res == -ETOOSMALL && desc->plus) {
838 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
839 nfs_zap_caches(inode);
840 desc->page_index = 0;
841 desc->plus = 0;
842 desc->eof = 0;
843 continue;
844 }
845 if (res < 0)
846 break;
847
848 res = nfs_do_filldir(desc, dirent, filldir);
849 if (res < 0)
850 break;
851 }
852 out:
853 nfs_unblock_sillyrename(dentry);
854 if (res > 0)
855 res = 0;
856 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
857 dentry->d_parent->d_name.name, dentry->d_name.name,
858 res);
859 return res;
860 }
861
862 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
863 {
864 struct dentry *dentry = filp->f_path.dentry;
865 struct inode *inode = dentry->d_inode;
866
867 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
868 dentry->d_parent->d_name.name,
869 dentry->d_name.name,
870 offset, origin);
871
872 mutex_lock(&inode->i_mutex);
873 switch (origin) {
874 case 1:
875 offset += filp->f_pos;
876 case 0:
877 if (offset >= 0)
878 break;
879 default:
880 offset = -EINVAL;
881 goto out;
882 }
883 if (offset != filp->f_pos) {
884 filp->f_pos = offset;
885 nfs_file_open_context(filp)->dir_cookie = 0;
886 }
887 out:
888 mutex_unlock(&inode->i_mutex);
889 return offset;
890 }
891
892 /*
893 * All directory operations under NFS are synchronous, so fsync()
894 * is a dummy operation.
895 */
896 static int nfs_fsync_dir(struct file *filp, int datasync)
897 {
898 struct dentry *dentry = filp->f_path.dentry;
899
900 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
901 dentry->d_parent->d_name.name, dentry->d_name.name,
902 datasync);
903
904 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
905 return 0;
906 }
907
908 /**
909 * nfs_force_lookup_revalidate - Mark the directory as having changed
910 * @dir - pointer to directory inode
911 *
912 * This forces the revalidation code in nfs_lookup_revalidate() to do a
913 * full lookup on all child dentries of 'dir' whenever a change occurs
914 * on the server that might have invalidated our dcache.
915 *
916 * The caller should be holding dir->i_lock
917 */
918 void nfs_force_lookup_revalidate(struct inode *dir)
919 {
920 NFS_I(dir)->cache_change_attribute++;
921 }
922
923 /*
924 * A check for whether or not the parent directory has changed.
925 * In the case it has, we assume that the dentries are untrustworthy
926 * and may need to be looked up again.
927 */
928 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
929 {
930 if (IS_ROOT(dentry))
931 return 1;
932 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
933 return 0;
934 if (!nfs_verify_change_attribute(dir, dentry->d_time))
935 return 0;
936 /* Revalidate nfsi->cache_change_attribute before we declare a match */
937 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
938 return 0;
939 if (!nfs_verify_change_attribute(dir, dentry->d_time))
940 return 0;
941 return 1;
942 }
943
944 /*
945 * Return the intent data that applies to this particular path component
946 *
947 * Note that the current set of intents only apply to the very last
948 * component of the path.
949 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
950 */
951 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
952 {
953 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
954 return 0;
955 return nd->flags & mask;
956 }
957
958 /*
959 * Use intent information to check whether or not we're going to do
960 * an O_EXCL create using this path component.
961 */
962 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
963 {
964 if (NFS_PROTO(dir)->version == 2)
965 return 0;
966 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
967 }
968
969 /*
970 * Inode and filehandle revalidation for lookups.
971 *
972 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
973 * or if the intent information indicates that we're about to open this
974 * particular file and the "nocto" mount flag is not set.
975 *
976 */
977 static inline
978 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
979 {
980 struct nfs_server *server = NFS_SERVER(inode);
981
982 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
983 return 0;
984 if (nd != NULL) {
985 /* VFS wants an on-the-wire revalidation */
986 if (nd->flags & LOOKUP_REVAL)
987 goto out_force;
988 /* This is an open(2) */
989 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
990 !(server->flags & NFS_MOUNT_NOCTO) &&
991 (S_ISREG(inode->i_mode) ||
992 S_ISDIR(inode->i_mode)))
993 goto out_force;
994 return 0;
995 }
996 return nfs_revalidate_inode(server, inode);
997 out_force:
998 return __nfs_revalidate_inode(server, inode);
999 }
1000
1001 /*
1002 * We judge how long we want to trust negative
1003 * dentries by looking at the parent inode mtime.
1004 *
1005 * If parent mtime has changed, we revalidate, else we wait for a
1006 * period corresponding to the parent's attribute cache timeout value.
1007 */
1008 static inline
1009 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1010 struct nameidata *nd)
1011 {
1012 /* Don't revalidate a negative dentry if we're creating a new file */
1013 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1014 return 0;
1015 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1016 return 1;
1017 return !nfs_check_verifier(dir, dentry);
1018 }
1019
1020 /*
1021 * This is called every time the dcache has a lookup hit,
1022 * and we should check whether we can really trust that
1023 * lookup.
1024 *
1025 * NOTE! The hit can be a negative hit too, don't assume
1026 * we have an inode!
1027 *
1028 * If the parent directory is seen to have changed, we throw out the
1029 * cached dentry and do a new lookup.
1030 */
1031 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
1032 {
1033 struct inode *dir;
1034 struct inode *inode;
1035 struct dentry *parent;
1036 struct nfs_fh *fhandle = NULL;
1037 struct nfs_fattr *fattr = NULL;
1038 int error;
1039
1040 parent = dget_parent(dentry);
1041 dir = parent->d_inode;
1042 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1043 inode = dentry->d_inode;
1044
1045 if (!inode) {
1046 if (nfs_neg_need_reval(dir, dentry, nd))
1047 goto out_bad;
1048 goto out_valid;
1049 }
1050
1051 if (is_bad_inode(inode)) {
1052 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1053 __func__, dentry->d_parent->d_name.name,
1054 dentry->d_name.name);
1055 goto out_bad;
1056 }
1057
1058 if (nfs_have_delegation(inode, FMODE_READ))
1059 goto out_set_verifier;
1060
1061 /* Force a full look up iff the parent directory has changed */
1062 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1063 if (nfs_lookup_verify_inode(inode, nd))
1064 goto out_zap_parent;
1065 goto out_valid;
1066 }
1067
1068 if (NFS_STALE(inode))
1069 goto out_bad;
1070
1071 error = -ENOMEM;
1072 fhandle = nfs_alloc_fhandle();
1073 fattr = nfs_alloc_fattr();
1074 if (fhandle == NULL || fattr == NULL)
1075 goto out_error;
1076
1077 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1078 if (error)
1079 goto out_bad;
1080 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1081 goto out_bad;
1082 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1083 goto out_bad;
1084
1085 nfs_free_fattr(fattr);
1086 nfs_free_fhandle(fhandle);
1087 out_set_verifier:
1088 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1089 out_valid:
1090 dput(parent);
1091 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1092 __func__, dentry->d_parent->d_name.name,
1093 dentry->d_name.name);
1094 return 1;
1095 out_zap_parent:
1096 nfs_zap_caches(dir);
1097 out_bad:
1098 nfs_mark_for_revalidate(dir);
1099 if (inode && S_ISDIR(inode->i_mode)) {
1100 /* Purge readdir caches. */
1101 nfs_zap_caches(inode);
1102 /* If we have submounts, don't unhash ! */
1103 if (have_submounts(dentry))
1104 goto out_valid;
1105 if (dentry->d_flags & DCACHE_DISCONNECTED)
1106 goto out_valid;
1107 shrink_dcache_parent(dentry);
1108 }
1109 d_drop(dentry);
1110 nfs_free_fattr(fattr);
1111 nfs_free_fhandle(fhandle);
1112 dput(parent);
1113 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1114 __func__, dentry->d_parent->d_name.name,
1115 dentry->d_name.name);
1116 return 0;
1117 out_error:
1118 nfs_free_fattr(fattr);
1119 nfs_free_fhandle(fhandle);
1120 dput(parent);
1121 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1122 __func__, dentry->d_parent->d_name.name,
1123 dentry->d_name.name, error);
1124 return error;
1125 }
1126
1127 /*
1128 * This is called from dput() when d_count is going to 0.
1129 */
1130 static int nfs_dentry_delete(struct dentry *dentry)
1131 {
1132 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1133 dentry->d_parent->d_name.name, dentry->d_name.name,
1134 dentry->d_flags);
1135
1136 /* Unhash any dentry with a stale inode */
1137 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1138 return 1;
1139
1140 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1141 /* Unhash it, so that ->d_iput() would be called */
1142 return 1;
1143 }
1144 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1145 /* Unhash it, so that ancestors of killed async unlink
1146 * files will be cleaned up during umount */
1147 return 1;
1148 }
1149 return 0;
1150
1151 }
1152
1153 static void nfs_drop_nlink(struct inode *inode)
1154 {
1155 spin_lock(&inode->i_lock);
1156 if (inode->i_nlink > 0)
1157 drop_nlink(inode);
1158 spin_unlock(&inode->i_lock);
1159 }
1160
1161 /*
1162 * Called when the dentry loses inode.
1163 * We use it to clean up silly-renamed files.
1164 */
1165 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1166 {
1167 if (S_ISDIR(inode->i_mode))
1168 /* drop any readdir cache as it could easily be old */
1169 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1170
1171 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1172 drop_nlink(inode);
1173 nfs_complete_unlink(dentry, inode);
1174 }
1175 iput(inode);
1176 }
1177
1178 const struct dentry_operations nfs_dentry_operations = {
1179 .d_revalidate = nfs_lookup_revalidate,
1180 .d_delete = nfs_dentry_delete,
1181 .d_iput = nfs_dentry_iput,
1182 };
1183
1184 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1185 {
1186 struct dentry *res;
1187 struct dentry *parent;
1188 struct inode *inode = NULL;
1189 struct nfs_fh *fhandle = NULL;
1190 struct nfs_fattr *fattr = NULL;
1191 int error;
1192
1193 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1194 dentry->d_parent->d_name.name, dentry->d_name.name);
1195 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1196
1197 res = ERR_PTR(-ENAMETOOLONG);
1198 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1199 goto out;
1200
1201 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1202
1203 /*
1204 * If we're doing an exclusive create, optimize away the lookup
1205 * but don't hash the dentry.
1206 */
1207 if (nfs_is_exclusive_create(dir, nd)) {
1208 d_instantiate(dentry, NULL);
1209 res = NULL;
1210 goto out;
1211 }
1212
1213 res = ERR_PTR(-ENOMEM);
1214 fhandle = nfs_alloc_fhandle();
1215 fattr = nfs_alloc_fattr();
1216 if (fhandle == NULL || fattr == NULL)
1217 goto out;
1218
1219 parent = dentry->d_parent;
1220 /* Protect against concurrent sillydeletes */
1221 nfs_block_sillyrename(parent);
1222 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1223 if (error == -ENOENT)
1224 goto no_entry;
1225 if (error < 0) {
1226 res = ERR_PTR(error);
1227 goto out_unblock_sillyrename;
1228 }
1229 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1230 res = (struct dentry *)inode;
1231 if (IS_ERR(res))
1232 goto out_unblock_sillyrename;
1233
1234 no_entry:
1235 res = d_materialise_unique(dentry, inode);
1236 if (res != NULL) {
1237 if (IS_ERR(res))
1238 goto out_unblock_sillyrename;
1239 dentry = res;
1240 }
1241 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1242 out_unblock_sillyrename:
1243 nfs_unblock_sillyrename(parent);
1244 out:
1245 nfs_free_fattr(fattr);
1246 nfs_free_fhandle(fhandle);
1247 return res;
1248 }
1249
1250 #ifdef CONFIG_NFS_V4
1251 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1252
1253 const struct dentry_operations nfs4_dentry_operations = {
1254 .d_revalidate = nfs_open_revalidate,
1255 .d_delete = nfs_dentry_delete,
1256 .d_iput = nfs_dentry_iput,
1257 };
1258
1259 /*
1260 * Use intent information to determine whether we need to substitute
1261 * the NFSv4-style stateful OPEN for the LOOKUP call
1262 */
1263 static int is_atomic_open(struct nameidata *nd)
1264 {
1265 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1266 return 0;
1267 /* NFS does not (yet) have a stateful open for directories */
1268 if (nd->flags & LOOKUP_DIRECTORY)
1269 return 0;
1270 /* Are we trying to write to a read only partition? */
1271 if (__mnt_is_readonly(nd->path.mnt) &&
1272 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1273 return 0;
1274 return 1;
1275 }
1276
1277 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1278 {
1279 struct path path = {
1280 .mnt = nd->path.mnt,
1281 .dentry = dentry,
1282 };
1283 struct nfs_open_context *ctx;
1284 struct rpc_cred *cred;
1285 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1286
1287 cred = rpc_lookup_cred();
1288 if (IS_ERR(cred))
1289 return ERR_CAST(cred);
1290 ctx = alloc_nfs_open_context(&path, cred, fmode);
1291 put_rpccred(cred);
1292 if (ctx == NULL)
1293 return ERR_PTR(-ENOMEM);
1294 return ctx;
1295 }
1296
1297 static int do_open(struct inode *inode, struct file *filp)
1298 {
1299 nfs_fscache_set_inode_cookie(inode, filp);
1300 return 0;
1301 }
1302
1303 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1304 {
1305 struct file *filp;
1306 int ret = 0;
1307
1308 /* If the open_intent is for execute, we have an extra check to make */
1309 if (ctx->mode & FMODE_EXEC) {
1310 ret = nfs_may_open(ctx->path.dentry->d_inode,
1311 ctx->cred,
1312 nd->intent.open.flags);
1313 if (ret < 0)
1314 goto out;
1315 }
1316 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1317 if (IS_ERR(filp))
1318 ret = PTR_ERR(filp);
1319 else
1320 nfs_file_set_open_context(filp, ctx);
1321 out:
1322 put_nfs_open_context(ctx);
1323 return ret;
1324 }
1325
1326 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1327 {
1328 struct nfs_open_context *ctx;
1329 struct iattr attr;
1330 struct dentry *res = NULL;
1331 struct inode *inode;
1332 int open_flags;
1333 int err;
1334
1335 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1336 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1337
1338 /* Check that we are indeed trying to open this file */
1339 if (!is_atomic_open(nd))
1340 goto no_open;
1341
1342 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1343 res = ERR_PTR(-ENAMETOOLONG);
1344 goto out;
1345 }
1346 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1347
1348 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1349 * the dentry. */
1350 if (nd->flags & LOOKUP_EXCL) {
1351 d_instantiate(dentry, NULL);
1352 goto out;
1353 }
1354
1355 ctx = nameidata_to_nfs_open_context(dentry, nd);
1356 res = ERR_CAST(ctx);
1357 if (IS_ERR(ctx))
1358 goto out;
1359
1360 open_flags = nd->intent.open.flags;
1361 if (nd->flags & LOOKUP_CREATE) {
1362 attr.ia_mode = nd->intent.open.create_mode;
1363 attr.ia_valid = ATTR_MODE;
1364 if (!IS_POSIXACL(dir))
1365 attr.ia_mode &= ~current_umask();
1366 } else {
1367 open_flags &= ~(O_EXCL | O_CREAT);
1368 attr.ia_valid = 0;
1369 }
1370
1371 /* Open the file on the server */
1372 nfs_block_sillyrename(dentry->d_parent);
1373 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1374 if (IS_ERR(inode)) {
1375 nfs_unblock_sillyrename(dentry->d_parent);
1376 put_nfs_open_context(ctx);
1377 switch (PTR_ERR(inode)) {
1378 /* Make a negative dentry */
1379 case -ENOENT:
1380 d_add(dentry, NULL);
1381 res = NULL;
1382 goto out;
1383 /* This turned out not to be a regular file */
1384 case -ENOTDIR:
1385 goto no_open;
1386 case -ELOOP:
1387 if (!(nd->intent.open.flags & O_NOFOLLOW))
1388 goto no_open;
1389 /* case -EISDIR: */
1390 /* case -EINVAL: */
1391 default:
1392 res = ERR_CAST(inode);
1393 goto out;
1394 }
1395 }
1396 res = d_add_unique(dentry, inode);
1397 nfs_unblock_sillyrename(dentry->d_parent);
1398 if (res != NULL) {
1399 dput(ctx->path.dentry);
1400 ctx->path.dentry = dget(res);
1401 dentry = res;
1402 }
1403 err = nfs_intent_set_file(nd, ctx);
1404 if (err < 0) {
1405 if (res != NULL)
1406 dput(res);
1407 return ERR_PTR(err);
1408 }
1409 out:
1410 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1411 return res;
1412 no_open:
1413 return nfs_lookup(dir, dentry, nd);
1414 }
1415
1416 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1417 {
1418 struct dentry *parent = NULL;
1419 struct inode *inode = dentry->d_inode;
1420 struct inode *dir;
1421 struct nfs_open_context *ctx;
1422 int openflags, ret = 0;
1423
1424 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1425 goto no_open;
1426
1427 parent = dget_parent(dentry);
1428 dir = parent->d_inode;
1429
1430 /* We can't create new files in nfs_open_revalidate(), so we
1431 * optimize away revalidation of negative dentries.
1432 */
1433 if (inode == NULL) {
1434 if (!nfs_neg_need_reval(dir, dentry, nd))
1435 ret = 1;
1436 goto out;
1437 }
1438
1439 /* NFS only supports OPEN on regular files */
1440 if (!S_ISREG(inode->i_mode))
1441 goto no_open_dput;
1442 openflags = nd->intent.open.flags;
1443 /* We cannot do exclusive creation on a positive dentry */
1444 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1445 goto no_open_dput;
1446 /* We can't create new files, or truncate existing ones here */
1447 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1448
1449 ctx = nameidata_to_nfs_open_context(dentry, nd);
1450 ret = PTR_ERR(ctx);
1451 if (IS_ERR(ctx))
1452 goto out;
1453 /*
1454 * Note: we're not holding inode->i_mutex and so may be racing with
1455 * operations that change the directory. We therefore save the
1456 * change attribute *before* we do the RPC call.
1457 */
1458 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1459 if (IS_ERR(inode)) {
1460 ret = PTR_ERR(inode);
1461 switch (ret) {
1462 case -EPERM:
1463 case -EACCES:
1464 case -EDQUOT:
1465 case -ENOSPC:
1466 case -EROFS:
1467 goto out_put_ctx;
1468 default:
1469 goto out_drop;
1470 }
1471 }
1472 iput(inode);
1473 if (inode != dentry->d_inode)
1474 goto out_drop;
1475
1476 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1477 ret = nfs_intent_set_file(nd, ctx);
1478 if (ret >= 0)
1479 ret = 1;
1480 out:
1481 dput(parent);
1482 return ret;
1483 out_drop:
1484 d_drop(dentry);
1485 ret = 0;
1486 out_put_ctx:
1487 put_nfs_open_context(ctx);
1488 goto out;
1489
1490 no_open_dput:
1491 dput(parent);
1492 no_open:
1493 return nfs_lookup_revalidate(dentry, nd);
1494 }
1495
1496 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1497 struct nameidata *nd)
1498 {
1499 struct nfs_open_context *ctx = NULL;
1500 struct iattr attr;
1501 int error;
1502 int open_flags = 0;
1503
1504 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1505 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1506
1507 attr.ia_mode = mode;
1508 attr.ia_valid = ATTR_MODE;
1509
1510 if ((nd->flags & LOOKUP_CREATE) != 0) {
1511 open_flags = nd->intent.open.flags;
1512
1513 ctx = nameidata_to_nfs_open_context(dentry, nd);
1514 error = PTR_ERR(ctx);
1515 if (IS_ERR(ctx))
1516 goto out_err_drop;
1517 }
1518
1519 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1520 if (error != 0)
1521 goto out_put_ctx;
1522 if (ctx != NULL) {
1523 error = nfs_intent_set_file(nd, ctx);
1524 if (error < 0)
1525 goto out_err;
1526 }
1527 return 0;
1528 out_put_ctx:
1529 if (ctx != NULL)
1530 put_nfs_open_context(ctx);
1531 out_err_drop:
1532 d_drop(dentry);
1533 out_err:
1534 return error;
1535 }
1536
1537 #endif /* CONFIG_NFSV4 */
1538
1539 /*
1540 * Code common to create, mkdir, and mknod.
1541 */
1542 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1543 struct nfs_fattr *fattr)
1544 {
1545 struct dentry *parent = dget_parent(dentry);
1546 struct inode *dir = parent->d_inode;
1547 struct inode *inode;
1548 int error = -EACCES;
1549
1550 d_drop(dentry);
1551
1552 /* We may have been initialized further down */
1553 if (dentry->d_inode)
1554 goto out;
1555 if (fhandle->size == 0) {
1556 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1557 if (error)
1558 goto out_error;
1559 }
1560 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1561 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1562 struct nfs_server *server = NFS_SB(dentry->d_sb);
1563 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1564 if (error < 0)
1565 goto out_error;
1566 }
1567 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1568 error = PTR_ERR(inode);
1569 if (IS_ERR(inode))
1570 goto out_error;
1571 d_add(dentry, inode);
1572 out:
1573 dput(parent);
1574 return 0;
1575 out_error:
1576 nfs_mark_for_revalidate(dir);
1577 dput(parent);
1578 return error;
1579 }
1580
1581 /*
1582 * Following a failed create operation, we drop the dentry rather
1583 * than retain a negative dentry. This avoids a problem in the event
1584 * that the operation succeeded on the server, but an error in the
1585 * reply path made it appear to have failed.
1586 */
1587 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1588 struct nameidata *nd)
1589 {
1590 struct iattr attr;
1591 int error;
1592
1593 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1594 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1595
1596 attr.ia_mode = mode;
1597 attr.ia_valid = ATTR_MODE;
1598
1599 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1600 if (error != 0)
1601 goto out_err;
1602 return 0;
1603 out_err:
1604 d_drop(dentry);
1605 return error;
1606 }
1607
1608 /*
1609 * See comments for nfs_proc_create regarding failed operations.
1610 */
1611 static int
1612 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1613 {
1614 struct iattr attr;
1615 int status;
1616
1617 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1618 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1619
1620 if (!new_valid_dev(rdev))
1621 return -EINVAL;
1622
1623 attr.ia_mode = mode;
1624 attr.ia_valid = ATTR_MODE;
1625
1626 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1627 if (status != 0)
1628 goto out_err;
1629 return 0;
1630 out_err:
1631 d_drop(dentry);
1632 return status;
1633 }
1634
1635 /*
1636 * See comments for nfs_proc_create regarding failed operations.
1637 */
1638 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1639 {
1640 struct iattr attr;
1641 int error;
1642
1643 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1644 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1645
1646 attr.ia_valid = ATTR_MODE;
1647 attr.ia_mode = mode | S_IFDIR;
1648
1649 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1650 if (error != 0)
1651 goto out_err;
1652 return 0;
1653 out_err:
1654 d_drop(dentry);
1655 return error;
1656 }
1657
1658 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1659 {
1660 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1661 d_delete(dentry);
1662 }
1663
1664 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1665 {
1666 int error;
1667
1668 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1669 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1670
1671 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1672 /* Ensure the VFS deletes this inode */
1673 if (error == 0 && dentry->d_inode != NULL)
1674 clear_nlink(dentry->d_inode);
1675 else if (error == -ENOENT)
1676 nfs_dentry_handle_enoent(dentry);
1677
1678 return error;
1679 }
1680
1681 /*
1682 * Remove a file after making sure there are no pending writes,
1683 * and after checking that the file has only one user.
1684 *
1685 * We invalidate the attribute cache and free the inode prior to the operation
1686 * to avoid possible races if the server reuses the inode.
1687 */
1688 static int nfs_safe_remove(struct dentry *dentry)
1689 {
1690 struct inode *dir = dentry->d_parent->d_inode;
1691 struct inode *inode = dentry->d_inode;
1692 int error = -EBUSY;
1693
1694 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1695 dentry->d_parent->d_name.name, dentry->d_name.name);
1696
1697 /* If the dentry was sillyrenamed, we simply call d_delete() */
1698 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 error = 0;
1700 goto out;
1701 }
1702
1703 if (inode != NULL) {
1704 nfs_inode_return_delegation(inode);
1705 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1706 /* The VFS may want to delete this inode */
1707 if (error == 0)
1708 nfs_drop_nlink(inode);
1709 nfs_mark_for_revalidate(inode);
1710 } else
1711 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1712 if (error == -ENOENT)
1713 nfs_dentry_handle_enoent(dentry);
1714 out:
1715 return error;
1716 }
1717
1718 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1719 * belongs to an active ".nfs..." file and we return -EBUSY.
1720 *
1721 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1722 */
1723 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1724 {
1725 int error;
1726 int need_rehash = 0;
1727
1728 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1729 dir->i_ino, dentry->d_name.name);
1730
1731 spin_lock(&dcache_lock);
1732 spin_lock(&dentry->d_lock);
1733 if (atomic_read(&dentry->d_count) > 1) {
1734 spin_unlock(&dentry->d_lock);
1735 spin_unlock(&dcache_lock);
1736 /* Start asynchronous writeout of the inode */
1737 write_inode_now(dentry->d_inode, 0);
1738 error = nfs_sillyrename(dir, dentry);
1739 return error;
1740 }
1741 if (!d_unhashed(dentry)) {
1742 __d_drop(dentry);
1743 need_rehash = 1;
1744 }
1745 spin_unlock(&dentry->d_lock);
1746 spin_unlock(&dcache_lock);
1747 error = nfs_safe_remove(dentry);
1748 if (!error || error == -ENOENT) {
1749 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1750 } else if (need_rehash)
1751 d_rehash(dentry);
1752 return error;
1753 }
1754
1755 /*
1756 * To create a symbolic link, most file systems instantiate a new inode,
1757 * add a page to it containing the path, then write it out to the disk
1758 * using prepare_write/commit_write.
1759 *
1760 * Unfortunately the NFS client can't create the in-core inode first
1761 * because it needs a file handle to create an in-core inode (see
1762 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1763 * symlink request has completed on the server.
1764 *
1765 * So instead we allocate a raw page, copy the symname into it, then do
1766 * the SYMLINK request with the page as the buffer. If it succeeds, we
1767 * now have a new file handle and can instantiate an in-core NFS inode
1768 * and move the raw page into its mapping.
1769 */
1770 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1771 {
1772 struct pagevec lru_pvec;
1773 struct page *page;
1774 char *kaddr;
1775 struct iattr attr;
1776 unsigned int pathlen = strlen(symname);
1777 int error;
1778
1779 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1780 dir->i_ino, dentry->d_name.name, symname);
1781
1782 if (pathlen > PAGE_SIZE)
1783 return -ENAMETOOLONG;
1784
1785 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1786 attr.ia_valid = ATTR_MODE;
1787
1788 page = alloc_page(GFP_HIGHUSER);
1789 if (!page)
1790 return -ENOMEM;
1791
1792 kaddr = kmap_atomic(page, KM_USER0);
1793 memcpy(kaddr, symname, pathlen);
1794 if (pathlen < PAGE_SIZE)
1795 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1796 kunmap_atomic(kaddr, KM_USER0);
1797
1798 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1799 if (error != 0) {
1800 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1801 dir->i_sb->s_id, dir->i_ino,
1802 dentry->d_name.name, symname, error);
1803 d_drop(dentry);
1804 __free_page(page);
1805 return error;
1806 }
1807
1808 /*
1809 * No big deal if we can't add this page to the page cache here.
1810 * READLINK will get the missing page from the server if needed.
1811 */
1812 pagevec_init(&lru_pvec, 0);
1813 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1814 GFP_KERNEL)) {
1815 pagevec_add(&lru_pvec, page);
1816 pagevec_lru_add_file(&lru_pvec);
1817 SetPageUptodate(page);
1818 unlock_page(page);
1819 } else
1820 __free_page(page);
1821
1822 return 0;
1823 }
1824
1825 static int
1826 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1827 {
1828 struct inode *inode = old_dentry->d_inode;
1829 int error;
1830
1831 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1832 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1833 dentry->d_parent->d_name.name, dentry->d_name.name);
1834
1835 nfs_inode_return_delegation(inode);
1836
1837 d_drop(dentry);
1838 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1839 if (error == 0) {
1840 ihold(inode);
1841 d_add(dentry, inode);
1842 }
1843 return error;
1844 }
1845
1846 /*
1847 * RENAME
1848 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1849 * different file handle for the same inode after a rename (e.g. when
1850 * moving to a different directory). A fail-safe method to do so would
1851 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1852 * rename the old file using the sillyrename stuff. This way, the original
1853 * file in old_dir will go away when the last process iput()s the inode.
1854 *
1855 * FIXED.
1856 *
1857 * It actually works quite well. One needs to have the possibility for
1858 * at least one ".nfs..." file in each directory the file ever gets
1859 * moved or linked to which happens automagically with the new
1860 * implementation that only depends on the dcache stuff instead of
1861 * using the inode layer
1862 *
1863 * Unfortunately, things are a little more complicated than indicated
1864 * above. For a cross-directory move, we want to make sure we can get
1865 * rid of the old inode after the operation. This means there must be
1866 * no pending writes (if it's a file), and the use count must be 1.
1867 * If these conditions are met, we can drop the dentries before doing
1868 * the rename.
1869 */
1870 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1871 struct inode *new_dir, struct dentry *new_dentry)
1872 {
1873 struct inode *old_inode = old_dentry->d_inode;
1874 struct inode *new_inode = new_dentry->d_inode;
1875 struct dentry *dentry = NULL, *rehash = NULL;
1876 int error = -EBUSY;
1877
1878 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1879 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1880 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1881 atomic_read(&new_dentry->d_count));
1882
1883 /*
1884 * For non-directories, check whether the target is busy and if so,
1885 * make a copy of the dentry and then do a silly-rename. If the
1886 * silly-rename succeeds, the copied dentry is hashed and becomes
1887 * the new target.
1888 */
1889 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1890 /*
1891 * To prevent any new references to the target during the
1892 * rename, we unhash the dentry in advance.
1893 */
1894 if (!d_unhashed(new_dentry)) {
1895 d_drop(new_dentry);
1896 rehash = new_dentry;
1897 }
1898
1899 if (atomic_read(&new_dentry->d_count) > 2) {
1900 int err;
1901
1902 /* copy the target dentry's name */
1903 dentry = d_alloc(new_dentry->d_parent,
1904 &new_dentry->d_name);
1905 if (!dentry)
1906 goto out;
1907
1908 /* silly-rename the existing target ... */
1909 err = nfs_sillyrename(new_dir, new_dentry);
1910 if (err)
1911 goto out;
1912
1913 new_dentry = dentry;
1914 rehash = NULL;
1915 new_inode = NULL;
1916 }
1917 }
1918
1919 nfs_inode_return_delegation(old_inode);
1920 if (new_inode != NULL)
1921 nfs_inode_return_delegation(new_inode);
1922
1923 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1924 new_dir, &new_dentry->d_name);
1925 nfs_mark_for_revalidate(old_inode);
1926 out:
1927 if (rehash)
1928 d_rehash(rehash);
1929 if (!error) {
1930 if (new_inode != NULL)
1931 nfs_drop_nlink(new_inode);
1932 d_move(old_dentry, new_dentry);
1933 nfs_set_verifier(new_dentry,
1934 nfs_save_change_attribute(new_dir));
1935 } else if (error == -ENOENT)
1936 nfs_dentry_handle_enoent(old_dentry);
1937
1938 /* new dentry created? */
1939 if (dentry)
1940 dput(dentry);
1941 return error;
1942 }
1943
1944 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1945 static LIST_HEAD(nfs_access_lru_list);
1946 static atomic_long_t nfs_access_nr_entries;
1947
1948 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1949 {
1950 put_rpccred(entry->cred);
1951 kfree(entry);
1952 smp_mb__before_atomic_dec();
1953 atomic_long_dec(&nfs_access_nr_entries);
1954 smp_mb__after_atomic_dec();
1955 }
1956
1957 static void nfs_access_free_list(struct list_head *head)
1958 {
1959 struct nfs_access_entry *cache;
1960
1961 while (!list_empty(head)) {
1962 cache = list_entry(head->next, struct nfs_access_entry, lru);
1963 list_del(&cache->lru);
1964 nfs_access_free_entry(cache);
1965 }
1966 }
1967
1968 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1969 {
1970 LIST_HEAD(head);
1971 struct nfs_inode *nfsi, *next;
1972 struct nfs_access_entry *cache;
1973
1974 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1975 return (nr_to_scan == 0) ? 0 : -1;
1976
1977 spin_lock(&nfs_access_lru_lock);
1978 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1979 struct inode *inode;
1980
1981 if (nr_to_scan-- == 0)
1982 break;
1983 inode = &nfsi->vfs_inode;
1984 spin_lock(&inode->i_lock);
1985 if (list_empty(&nfsi->access_cache_entry_lru))
1986 goto remove_lru_entry;
1987 cache = list_entry(nfsi->access_cache_entry_lru.next,
1988 struct nfs_access_entry, lru);
1989 list_move(&cache->lru, &head);
1990 rb_erase(&cache->rb_node, &nfsi->access_cache);
1991 if (!list_empty(&nfsi->access_cache_entry_lru))
1992 list_move_tail(&nfsi->access_cache_inode_lru,
1993 &nfs_access_lru_list);
1994 else {
1995 remove_lru_entry:
1996 list_del_init(&nfsi->access_cache_inode_lru);
1997 smp_mb__before_clear_bit();
1998 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1999 smp_mb__after_clear_bit();
2000 }
2001 spin_unlock(&inode->i_lock);
2002 }
2003 spin_unlock(&nfs_access_lru_lock);
2004 nfs_access_free_list(&head);
2005 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2006 }
2007
2008 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2009 {
2010 struct rb_root *root_node = &nfsi->access_cache;
2011 struct rb_node *n;
2012 struct nfs_access_entry *entry;
2013
2014 /* Unhook entries from the cache */
2015 while ((n = rb_first(root_node)) != NULL) {
2016 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2017 rb_erase(n, root_node);
2018 list_move(&entry->lru, head);
2019 }
2020 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2021 }
2022
2023 void nfs_access_zap_cache(struct inode *inode)
2024 {
2025 LIST_HEAD(head);
2026
2027 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2028 return;
2029 /* Remove from global LRU init */
2030 spin_lock(&nfs_access_lru_lock);
2031 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2032 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2033
2034 spin_lock(&inode->i_lock);
2035 __nfs_access_zap_cache(NFS_I(inode), &head);
2036 spin_unlock(&inode->i_lock);
2037 spin_unlock(&nfs_access_lru_lock);
2038 nfs_access_free_list(&head);
2039 }
2040
2041 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2042 {
2043 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2044 struct nfs_access_entry *entry;
2045
2046 while (n != NULL) {
2047 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2048
2049 if (cred < entry->cred)
2050 n = n->rb_left;
2051 else if (cred > entry->cred)
2052 n = n->rb_right;
2053 else
2054 return entry;
2055 }
2056 return NULL;
2057 }
2058
2059 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2060 {
2061 struct nfs_inode *nfsi = NFS_I(inode);
2062 struct nfs_access_entry *cache;
2063 int err = -ENOENT;
2064
2065 spin_lock(&inode->i_lock);
2066 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2067 goto out_zap;
2068 cache = nfs_access_search_rbtree(inode, cred);
2069 if (cache == NULL)
2070 goto out;
2071 if (!nfs_have_delegated_attributes(inode) &&
2072 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2073 goto out_stale;
2074 res->jiffies = cache->jiffies;
2075 res->cred = cache->cred;
2076 res->mask = cache->mask;
2077 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2078 err = 0;
2079 out:
2080 spin_unlock(&inode->i_lock);
2081 return err;
2082 out_stale:
2083 rb_erase(&cache->rb_node, &nfsi->access_cache);
2084 list_del(&cache->lru);
2085 spin_unlock(&inode->i_lock);
2086 nfs_access_free_entry(cache);
2087 return -ENOENT;
2088 out_zap:
2089 spin_unlock(&inode->i_lock);
2090 nfs_access_zap_cache(inode);
2091 return -ENOENT;
2092 }
2093
2094 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2095 {
2096 struct nfs_inode *nfsi = NFS_I(inode);
2097 struct rb_root *root_node = &nfsi->access_cache;
2098 struct rb_node **p = &root_node->rb_node;
2099 struct rb_node *parent = NULL;
2100 struct nfs_access_entry *entry;
2101
2102 spin_lock(&inode->i_lock);
2103 while (*p != NULL) {
2104 parent = *p;
2105 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2106
2107 if (set->cred < entry->cred)
2108 p = &parent->rb_left;
2109 else if (set->cred > entry->cred)
2110 p = &parent->rb_right;
2111 else
2112 goto found;
2113 }
2114 rb_link_node(&set->rb_node, parent, p);
2115 rb_insert_color(&set->rb_node, root_node);
2116 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2117 spin_unlock(&inode->i_lock);
2118 return;
2119 found:
2120 rb_replace_node(parent, &set->rb_node, root_node);
2121 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2122 list_del(&entry->lru);
2123 spin_unlock(&inode->i_lock);
2124 nfs_access_free_entry(entry);
2125 }
2126
2127 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2128 {
2129 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2130 if (cache == NULL)
2131 return;
2132 RB_CLEAR_NODE(&cache->rb_node);
2133 cache->jiffies = set->jiffies;
2134 cache->cred = get_rpccred(set->cred);
2135 cache->mask = set->mask;
2136
2137 nfs_access_add_rbtree(inode, cache);
2138
2139 /* Update accounting */
2140 smp_mb__before_atomic_inc();
2141 atomic_long_inc(&nfs_access_nr_entries);
2142 smp_mb__after_atomic_inc();
2143
2144 /* Add inode to global LRU list */
2145 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2146 spin_lock(&nfs_access_lru_lock);
2147 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2148 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2149 &nfs_access_lru_list);
2150 spin_unlock(&nfs_access_lru_lock);
2151 }
2152 }
2153
2154 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2155 {
2156 struct nfs_access_entry cache;
2157 int status;
2158
2159 status = nfs_access_get_cached(inode, cred, &cache);
2160 if (status == 0)
2161 goto out;
2162
2163 /* Be clever: ask server to check for all possible rights */
2164 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2165 cache.cred = cred;
2166 cache.jiffies = jiffies;
2167 status = NFS_PROTO(inode)->access(inode, &cache);
2168 if (status != 0) {
2169 if (status == -ESTALE) {
2170 nfs_zap_caches(inode);
2171 if (!S_ISDIR(inode->i_mode))
2172 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2173 }
2174 return status;
2175 }
2176 nfs_access_add_cache(inode, &cache);
2177 out:
2178 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2179 return 0;
2180 return -EACCES;
2181 }
2182
2183 static int nfs_open_permission_mask(int openflags)
2184 {
2185 int mask = 0;
2186
2187 if (openflags & FMODE_READ)
2188 mask |= MAY_READ;
2189 if (openflags & FMODE_WRITE)
2190 mask |= MAY_WRITE;
2191 if (openflags & FMODE_EXEC)
2192 mask |= MAY_EXEC;
2193 return mask;
2194 }
2195
2196 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2197 {
2198 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2199 }
2200
2201 int nfs_permission(struct inode *inode, int mask)
2202 {
2203 struct rpc_cred *cred;
2204 int res = 0;
2205
2206 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2207
2208 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2209 goto out;
2210 /* Is this sys_access() ? */
2211 if (mask & (MAY_ACCESS | MAY_CHDIR))
2212 goto force_lookup;
2213
2214 switch (inode->i_mode & S_IFMT) {
2215 case S_IFLNK:
2216 goto out;
2217 case S_IFREG:
2218 /* NFSv4 has atomic_open... */
2219 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2220 && (mask & MAY_OPEN)
2221 && !(mask & MAY_EXEC))
2222 goto out;
2223 break;
2224 case S_IFDIR:
2225 /*
2226 * Optimize away all write operations, since the server
2227 * will check permissions when we perform the op.
2228 */
2229 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2230 goto out;
2231 }
2232
2233 force_lookup:
2234 if (!NFS_PROTO(inode)->access)
2235 goto out_notsup;
2236
2237 cred = rpc_lookup_cred();
2238 if (!IS_ERR(cred)) {
2239 res = nfs_do_access(inode, cred, mask);
2240 put_rpccred(cred);
2241 } else
2242 res = PTR_ERR(cred);
2243 out:
2244 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2245 res = -EACCES;
2246
2247 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2248 inode->i_sb->s_id, inode->i_ino, mask, res);
2249 return res;
2250 out_notsup:
2251 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2252 if (res == 0)
2253 res = generic_permission(inode, mask, NULL);
2254 goto out;
2255 }
2256
2257 /*
2258 * Local variables:
2259 * version-control: t
2260 * kept-new-versions: 5
2261 * End:
2262 */
This page took 0.142179 seconds and 5 git commands to generate.