NFS: add readdir cache array
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36
37 #include "delegation.h"
38 #include "iostat.h"
39 #include "internal.h"
40 #include "fscache.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static int nfs_readdir_clear_array(struct page*, gfp_t);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 const struct address_space_operations nfs_dir_addr_space_ops = {
85 .releasepage = nfs_readdir_clear_array,
86 };
87
88 #ifdef CONFIG_NFS_V3
89 const struct inode_operations nfs3_dir_inode_operations = {
90 .create = nfs_create,
91 .lookup = nfs_lookup,
92 .link = nfs_link,
93 .unlink = nfs_unlink,
94 .symlink = nfs_symlink,
95 .mkdir = nfs_mkdir,
96 .rmdir = nfs_rmdir,
97 .mknod = nfs_mknod,
98 .rename = nfs_rename,
99 .permission = nfs_permission,
100 .getattr = nfs_getattr,
101 .setattr = nfs_setattr,
102 .listxattr = nfs3_listxattr,
103 .getxattr = nfs3_getxattr,
104 .setxattr = nfs3_setxattr,
105 .removexattr = nfs3_removexattr,
106 };
107 #endif /* CONFIG_NFS_V3 */
108
109 #ifdef CONFIG_NFS_V4
110
111 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
112 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
113 const struct inode_operations nfs4_dir_inode_operations = {
114 .create = nfs_open_create,
115 .lookup = nfs_atomic_lookup,
116 .link = nfs_link,
117 .unlink = nfs_unlink,
118 .symlink = nfs_symlink,
119 .mkdir = nfs_mkdir,
120 .rmdir = nfs_rmdir,
121 .mknod = nfs_mknod,
122 .rename = nfs_rename,
123 .permission = nfs_permission,
124 .getattr = nfs_getattr,
125 .setattr = nfs_setattr,
126 .getxattr = nfs4_getxattr,
127 .setxattr = nfs4_setxattr,
128 .listxattr = nfs4_listxattr,
129 };
130
131 #endif /* CONFIG_NFS_V4 */
132
133 /*
134 * Open file
135 */
136 static int
137 nfs_opendir(struct inode *inode, struct file *filp)
138 {
139 int res;
140
141 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
142 filp->f_path.dentry->d_parent->d_name.name,
143 filp->f_path.dentry->d_name.name);
144
145 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
146
147 /* Call generic open code in order to cache credentials */
148 res = nfs_open(inode, filp);
149 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
150 /* This is a mountpoint, so d_revalidate will never
151 * have been called, so we need to refresh the
152 * inode (for close-open consistency) ourselves.
153 */
154 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
155 }
156 return res;
157 }
158
159 struct nfs_cache_array_entry {
160 u64 cookie;
161 u64 ino;
162 struct qstr string;
163 };
164
165 struct nfs_cache_array {
166 unsigned int size;
167 int eof_index;
168 u64 last_cookie;
169 struct nfs_cache_array_entry array[0];
170 };
171
172 #define MAX_READDIR_ARRAY ((PAGE_SIZE - sizeof(struct nfs_cache_array)) / sizeof(struct nfs_cache_array_entry))
173
174 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
175 typedef struct {
176 struct file *file;
177 struct page *page;
178 unsigned long page_index;
179 u64 *dir_cookie;
180 loff_t current_index;
181 decode_dirent_t decode;
182
183 unsigned long timestamp;
184 unsigned long gencount;
185 unsigned int cache_entry_index;
186 unsigned int plus:1;
187 unsigned int eof:1;
188 } nfs_readdir_descriptor_t;
189
190 /*
191 * The caller is responsible for calling nfs_readdir_release_array(page)
192 */
193 static
194 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
195 {
196 if (page == NULL)
197 return ERR_PTR(-EIO);
198 return (struct nfs_cache_array *)kmap(page);
199 }
200
201 static
202 void nfs_readdir_release_array(struct page *page)
203 {
204 kunmap(page);
205 }
206
207 /*
208 * we are freeing strings created by nfs_add_to_readdir_array()
209 */
210 static
211 int nfs_readdir_clear_array(struct page *page, gfp_t mask)
212 {
213 struct nfs_cache_array *array = nfs_readdir_get_array(page);
214 int i;
215 for (i = 0; i < array->size; i++)
216 kfree(array->array[i].string.name);
217 nfs_readdir_release_array(page);
218 return 0;
219 }
220
221 /*
222 * the caller is responsible for freeing qstr.name
223 * when called by nfs_readdir_add_to_array, the strings will be freed in
224 * nfs_clear_readdir_array()
225 */
226 static
227 void nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
228 {
229 string->len = len;
230 string->name = kmemdup(name, len, GFP_KERNEL);
231 string->hash = full_name_hash(string->name, string->len);
232 }
233
234 static
235 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
236 {
237 struct nfs_cache_array *array = nfs_readdir_get_array(page);
238 if (IS_ERR(array))
239 return PTR_ERR(array);
240 if (array->size >= MAX_READDIR_ARRAY) {
241 nfs_readdir_release_array(page);
242 return -EIO;
243 }
244
245 array->array[array->size].cookie = entry->prev_cookie;
246 array->last_cookie = entry->cookie;
247 array->array[array->size].ino = entry->ino;
248 nfs_readdir_make_qstr(&array->array[array->size].string, entry->name, entry->len);
249 if (entry->eof == 1)
250 array->eof_index = array->size;
251 array->size++;
252 nfs_readdir_release_array(page);
253 return 0;
254 }
255
256 static
257 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
258 {
259 loff_t diff = desc->file->f_pos - desc->current_index;
260 unsigned int index;
261
262 if (diff < 0)
263 goto out_eof;
264 if (diff >= array->size) {
265 if (array->eof_index > 0)
266 goto out_eof;
267 desc->current_index += array->size;
268 return -EAGAIN;
269 }
270
271 index = (unsigned int)diff;
272 *desc->dir_cookie = array->array[index].cookie;
273 desc->cache_entry_index = index;
274 if (index == array->eof_index)
275 desc->eof = 1;
276 return 0;
277 out_eof:
278 desc->eof = 1;
279 return -EBADCOOKIE;
280 }
281
282 static
283 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 int i;
286 int status = -EAGAIN;
287
288 for (i = 0; i < array->size; i++) {
289 if (i == array->eof_index) {
290 desc->eof = 1;
291 status = -EBADCOOKIE;
292 }
293 if (array->array[i].cookie == *desc->dir_cookie) {
294 desc->cache_entry_index = i;
295 status = 0;
296 break;
297 }
298 }
299
300 return status;
301 }
302
303 static
304 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
305 {
306 struct nfs_cache_array *array;
307 int status = -EBADCOOKIE;
308
309 if (desc->dir_cookie == NULL)
310 goto out;
311
312 array = nfs_readdir_get_array(desc->page);
313 if (IS_ERR(array)) {
314 status = PTR_ERR(array);
315 goto out;
316 }
317
318 if (*desc->dir_cookie == 0)
319 status = nfs_readdir_search_for_pos(array, desc);
320 else
321 status = nfs_readdir_search_for_cookie(array, desc);
322
323 nfs_readdir_release_array(desc->page);
324 out:
325 return status;
326 }
327
328 /* Fill a page with xdr information before transferring to the cache page */
329 static
330 int nfs_readdir_xdr_filler(struct page *xdr_page, nfs_readdir_descriptor_t *desc,
331 struct nfs_entry *entry, struct file *file, struct inode *inode)
332 {
333 struct rpc_cred *cred = nfs_file_cred(file);
334 unsigned long timestamp, gencount;
335 int error;
336
337 again:
338 timestamp = jiffies;
339 gencount = nfs_inc_attr_generation_counter();
340 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, xdr_page,
341 NFS_SERVER(inode)->dtsize, desc->plus);
342 if (error < 0) {
343 /* We requested READDIRPLUS, but the server doesn't grok it */
344 if (error == -ENOTSUPP && desc->plus) {
345 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
346 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
347 desc->plus = 0;
348 goto again;
349 }
350 goto error;
351 }
352 desc->timestamp = timestamp;
353 desc->gencount = gencount;
354 error:
355 return error;
356 }
357
358 /* Fill in an entry based on the xdr code stored in desc->page */
359 static
360 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, __be32 **ptr)
361 {
362 __be32 *p = *ptr;
363 p = desc->decode(p, entry, desc->plus);
364 if (IS_ERR(p))
365 return PTR_ERR(p);
366 *ptr = p;
367
368 entry->fattr->time_start = desc->timestamp;
369 entry->fattr->gencount = desc->gencount;
370 return 0;
371 }
372
373 /* Perform conversion from xdr to cache array */
374 static
375 void nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
376 struct page *xdr_page, struct page *page)
377 {
378 __be32 *ptr = kmap(xdr_page);
379 while (xdr_decode(desc, entry, &ptr) == 0) {
380 if (nfs_readdir_add_to_array(entry, page) == -1)
381 break;
382 }
383 kunmap(xdr_page);
384 }
385
386 static
387 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
388 {
389 struct page *xdr_page;
390 struct nfs_entry entry;
391 struct file *file = desc->file;
392 struct nfs_cache_array *array;
393 int status = 0;
394
395 entry.prev_cookie = 0;
396 entry.cookie = *desc->dir_cookie;
397 entry.eof = 0;
398 entry.fh = nfs_alloc_fhandle();
399 entry.fattr = nfs_alloc_fattr();
400 if (entry.fh == NULL || entry.fattr == NULL)
401 goto out;
402
403 array = nfs_readdir_get_array(page);
404 memset(array, 0, sizeof(struct nfs_cache_array));
405 array->eof_index = -1;
406
407 xdr_page = alloc_page(GFP_KERNEL);
408 if (!xdr_page)
409 goto out_release_array;
410 do {
411 status = nfs_readdir_xdr_filler(xdr_page, desc, &entry, file, inode);
412 if (status < 0)
413 break;
414 nfs_readdir_page_filler(desc, &entry, xdr_page, page);
415 } while (array->eof_index < 0 && array->size < MAX_READDIR_ARRAY);
416
417 put_page(xdr_page);
418 out_release_array:
419 nfs_readdir_release_array(page);
420 out:
421 nfs_free_fattr(entry.fattr);
422 nfs_free_fhandle(entry.fh);
423 return status;
424 }
425
426 /*
427 * Now we cache directories properly, by converting xdr information
428 * to an array that can be used for lookups later. This results in
429 * fewer cache pages, since we can store more information on each page.
430 * We only need to convert from xdr once so future lookups are much simpler
431 */
432 static
433 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
434 {
435 struct inode *inode = desc->file->f_path.dentry->d_inode;
436
437 if (nfs_readdir_xdr_to_array(desc, page, inode) == -1)
438 goto error;
439 SetPageUptodate(page);
440
441 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
442 /* Should never happen */
443 nfs_zap_mapping(inode, inode->i_mapping);
444 }
445 unlock_page(page);
446 return 0;
447 error:
448 unlock_page(page);
449 return -EIO;
450 }
451
452 static
453 void cache_page_release(nfs_readdir_descriptor_t *desc)
454 {
455 page_cache_release(desc->page);
456 desc->page = NULL;
457 }
458
459 static
460 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
461 {
462 struct page *page;
463 page = read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
464 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
465 if (IS_ERR(page))
466 desc->eof = 1;
467 return page;
468 }
469
470 /*
471 * Returns 0 if desc->dir_cookie was found on page desc->page_index
472 */
473 static
474 int find_cache_page(nfs_readdir_descriptor_t *desc)
475 {
476 int res;
477
478 desc->page = get_cache_page(desc);
479 if (IS_ERR(desc->page))
480 return PTR_ERR(desc->page);
481
482 res = nfs_readdir_search_array(desc);
483 if (res == 0)
484 return 0;
485 cache_page_release(desc);
486 return res;
487 }
488
489 /* Search for desc->dir_cookie from the beginning of the page cache */
490 static inline
491 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
492 {
493 int res = -EAGAIN;
494 desc->page_index = 0;
495
496 if (*desc->dir_cookie == 0)
497 desc->cache_entry_index = 0;
498
499 while (1) {
500 res = find_cache_page(desc);
501 if (res != -EAGAIN)
502 break;
503 desc->page_index++;
504 }
505 return res;
506 }
507
508 static inline unsigned int dt_type(struct inode *inode)
509 {
510 return (inode->i_mode >> 12) & 15;
511 }
512
513 /*
514 * Once we've found the start of the dirent within a page: fill 'er up...
515 */
516 static
517 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
518 filldir_t filldir)
519 {
520 struct file *file = desc->file;
521 int i = 0;
522 int res = 0;
523 struct nfs_cache_array *array = NULL;
524 unsigned int d_type = DT_UNKNOWN;
525 struct dentry *dentry = NULL;
526
527 array = nfs_readdir_get_array(desc->page);
528
529 for (i = desc->cache_entry_index; i < array->size; i++) {
530 d_type = DT_UNKNOWN;
531
532 res = filldir(dirent, array->array[i].string.name,
533 array->array[i].string.len, file->f_pos,
534 nfs_compat_user_ino64(array->array[i].ino), d_type);
535 if (res < 0)
536 break;
537 file->f_pos++;
538 desc->cache_entry_index = i;
539 if (i < (array->size-1))
540 *desc->dir_cookie = array->array[i+1].cookie;
541 else
542 *desc->dir_cookie = array->last_cookie;
543 if (i == array->eof_index) {
544 desc->eof = 1;
545 break;
546 }
547 }
548
549 nfs_readdir_release_array(desc->page);
550 cache_page_release(desc);
551 if (dentry != NULL)
552 dput(dentry);
553 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
554 (unsigned long long)*desc->dir_cookie, res);
555 return res;
556 }
557
558 /*
559 * If we cannot find a cookie in our cache, we suspect that this is
560 * because it points to a deleted file, so we ask the server to return
561 * whatever it thinks is the next entry. We then feed this to filldir.
562 * If all goes well, we should then be able to find our way round the
563 * cache on the next call to readdir_search_pagecache();
564 *
565 * NOTE: we cannot add the anonymous page to the pagecache because
566 * the data it contains might not be page aligned. Besides,
567 * we should already have a complete representation of the
568 * directory in the page cache by the time we get here.
569 */
570 static inline
571 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
572 filldir_t filldir)
573 {
574 struct page *page = NULL;
575 int status;
576 struct inode *inode = desc->file->f_path.dentry->d_inode;
577
578 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
579 (unsigned long long)*desc->dir_cookie);
580
581 page = alloc_page(GFP_HIGHUSER);
582 if (!page) {
583 status = -ENOMEM;
584 goto out;
585 }
586
587 if (nfs_readdir_xdr_to_array(desc, page, inode) == -1) {
588 status = -EIO;
589 goto out_release;
590 }
591
592 desc->page = page;
593 status = nfs_do_filldir(desc, dirent, filldir);
594
595 out:
596 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
597 __func__, status);
598 return status;
599 out_release:
600 cache_page_release(desc);
601 goto out;
602 }
603
604 /* The file offset position represents the dirent entry number. A
605 last cookie cache takes care of the common case of reading the
606 whole directory.
607 */
608 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
609 {
610 struct dentry *dentry = filp->f_path.dentry;
611 struct inode *inode = dentry->d_inode;
612 nfs_readdir_descriptor_t my_desc,
613 *desc = &my_desc;
614 int res = -ENOMEM;
615
616 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
617 dentry->d_parent->d_name.name, dentry->d_name.name,
618 (long long)filp->f_pos);
619 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
620
621 /*
622 * filp->f_pos points to the dirent entry number.
623 * *desc->dir_cookie has the cookie for the next entry. We have
624 * to either find the entry with the appropriate number or
625 * revalidate the cookie.
626 */
627 memset(desc, 0, sizeof(*desc));
628
629 desc->file = filp;
630 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
631 desc->decode = NFS_PROTO(inode)->decode_dirent;
632 desc->plus = NFS_USE_READDIRPLUS(inode);
633
634 nfs_block_sillyrename(dentry);
635 res = nfs_revalidate_mapping(inode, filp->f_mapping);
636 if (res < 0)
637 goto out;
638
639 while (desc->eof != 1) {
640 res = readdir_search_pagecache(desc);
641
642 if (res == -EBADCOOKIE) {
643 /* This means either end of directory */
644 if (*desc->dir_cookie && desc->eof == 0) {
645 /* Or that the server has 'lost' a cookie */
646 res = uncached_readdir(desc, dirent, filldir);
647 if (res >= 0)
648 continue;
649 }
650 res = 0;
651 break;
652 }
653 if (res == -ETOOSMALL && desc->plus) {
654 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
655 nfs_zap_caches(inode);
656 desc->plus = 0;
657 desc->eof = 0;
658 continue;
659 }
660 if (res < 0)
661 break;
662
663 res = nfs_do_filldir(desc, dirent, filldir);
664 if (res < 0) {
665 res = 0;
666 break;
667 }
668 }
669 out:
670 nfs_unblock_sillyrename(dentry);
671 if (res > 0)
672 res = 0;
673 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
674 dentry->d_parent->d_name.name, dentry->d_name.name,
675 res);
676 return res;
677 }
678
679 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
680 {
681 struct dentry *dentry = filp->f_path.dentry;
682 struct inode *inode = dentry->d_inode;
683
684 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
685 dentry->d_parent->d_name.name,
686 dentry->d_name.name,
687 offset, origin);
688
689 mutex_lock(&inode->i_mutex);
690 switch (origin) {
691 case 1:
692 offset += filp->f_pos;
693 case 0:
694 if (offset >= 0)
695 break;
696 default:
697 offset = -EINVAL;
698 goto out;
699 }
700 if (offset != filp->f_pos) {
701 filp->f_pos = offset;
702 nfs_file_open_context(filp)->dir_cookie = 0;
703 }
704 out:
705 mutex_unlock(&inode->i_mutex);
706 return offset;
707 }
708
709 /*
710 * All directory operations under NFS are synchronous, so fsync()
711 * is a dummy operation.
712 */
713 static int nfs_fsync_dir(struct file *filp, int datasync)
714 {
715 struct dentry *dentry = filp->f_path.dentry;
716
717 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
718 dentry->d_parent->d_name.name, dentry->d_name.name,
719 datasync);
720
721 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
722 return 0;
723 }
724
725 /**
726 * nfs_force_lookup_revalidate - Mark the directory as having changed
727 * @dir - pointer to directory inode
728 *
729 * This forces the revalidation code in nfs_lookup_revalidate() to do a
730 * full lookup on all child dentries of 'dir' whenever a change occurs
731 * on the server that might have invalidated our dcache.
732 *
733 * The caller should be holding dir->i_lock
734 */
735 void nfs_force_lookup_revalidate(struct inode *dir)
736 {
737 NFS_I(dir)->cache_change_attribute++;
738 }
739
740 /*
741 * A check for whether or not the parent directory has changed.
742 * In the case it has, we assume that the dentries are untrustworthy
743 * and may need to be looked up again.
744 */
745 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
746 {
747 if (IS_ROOT(dentry))
748 return 1;
749 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
750 return 0;
751 if (!nfs_verify_change_attribute(dir, dentry->d_time))
752 return 0;
753 /* Revalidate nfsi->cache_change_attribute before we declare a match */
754 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
755 return 0;
756 if (!nfs_verify_change_attribute(dir, dentry->d_time))
757 return 0;
758 return 1;
759 }
760
761 /*
762 * Return the intent data that applies to this particular path component
763 *
764 * Note that the current set of intents only apply to the very last
765 * component of the path.
766 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
767 */
768 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
769 {
770 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
771 return 0;
772 return nd->flags & mask;
773 }
774
775 /*
776 * Use intent information to check whether or not we're going to do
777 * an O_EXCL create using this path component.
778 */
779 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
780 {
781 if (NFS_PROTO(dir)->version == 2)
782 return 0;
783 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
784 }
785
786 /*
787 * Inode and filehandle revalidation for lookups.
788 *
789 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
790 * or if the intent information indicates that we're about to open this
791 * particular file and the "nocto" mount flag is not set.
792 *
793 */
794 static inline
795 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
796 {
797 struct nfs_server *server = NFS_SERVER(inode);
798
799 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
800 return 0;
801 if (nd != NULL) {
802 /* VFS wants an on-the-wire revalidation */
803 if (nd->flags & LOOKUP_REVAL)
804 goto out_force;
805 /* This is an open(2) */
806 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
807 !(server->flags & NFS_MOUNT_NOCTO) &&
808 (S_ISREG(inode->i_mode) ||
809 S_ISDIR(inode->i_mode)))
810 goto out_force;
811 return 0;
812 }
813 return nfs_revalidate_inode(server, inode);
814 out_force:
815 return __nfs_revalidate_inode(server, inode);
816 }
817
818 /*
819 * We judge how long we want to trust negative
820 * dentries by looking at the parent inode mtime.
821 *
822 * If parent mtime has changed, we revalidate, else we wait for a
823 * period corresponding to the parent's attribute cache timeout value.
824 */
825 static inline
826 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
827 struct nameidata *nd)
828 {
829 /* Don't revalidate a negative dentry if we're creating a new file */
830 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
831 return 0;
832 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
833 return 1;
834 return !nfs_check_verifier(dir, dentry);
835 }
836
837 /*
838 * This is called every time the dcache has a lookup hit,
839 * and we should check whether we can really trust that
840 * lookup.
841 *
842 * NOTE! The hit can be a negative hit too, don't assume
843 * we have an inode!
844 *
845 * If the parent directory is seen to have changed, we throw out the
846 * cached dentry and do a new lookup.
847 */
848 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
849 {
850 struct inode *dir;
851 struct inode *inode;
852 struct dentry *parent;
853 struct nfs_fh *fhandle = NULL;
854 struct nfs_fattr *fattr = NULL;
855 int error;
856
857 parent = dget_parent(dentry);
858 dir = parent->d_inode;
859 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
860 inode = dentry->d_inode;
861
862 if (!inode) {
863 if (nfs_neg_need_reval(dir, dentry, nd))
864 goto out_bad;
865 goto out_valid;
866 }
867
868 if (is_bad_inode(inode)) {
869 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
870 __func__, dentry->d_parent->d_name.name,
871 dentry->d_name.name);
872 goto out_bad;
873 }
874
875 if (nfs_have_delegation(inode, FMODE_READ))
876 goto out_set_verifier;
877
878 /* Force a full look up iff the parent directory has changed */
879 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
880 if (nfs_lookup_verify_inode(inode, nd))
881 goto out_zap_parent;
882 goto out_valid;
883 }
884
885 if (NFS_STALE(inode))
886 goto out_bad;
887
888 error = -ENOMEM;
889 fhandle = nfs_alloc_fhandle();
890 fattr = nfs_alloc_fattr();
891 if (fhandle == NULL || fattr == NULL)
892 goto out_error;
893
894 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
895 if (error)
896 goto out_bad;
897 if (nfs_compare_fh(NFS_FH(inode), fhandle))
898 goto out_bad;
899 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
900 goto out_bad;
901
902 nfs_free_fattr(fattr);
903 nfs_free_fhandle(fhandle);
904 out_set_verifier:
905 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
906 out_valid:
907 dput(parent);
908 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
909 __func__, dentry->d_parent->d_name.name,
910 dentry->d_name.name);
911 return 1;
912 out_zap_parent:
913 nfs_zap_caches(dir);
914 out_bad:
915 nfs_mark_for_revalidate(dir);
916 if (inode && S_ISDIR(inode->i_mode)) {
917 /* Purge readdir caches. */
918 nfs_zap_caches(inode);
919 /* If we have submounts, don't unhash ! */
920 if (have_submounts(dentry))
921 goto out_valid;
922 if (dentry->d_flags & DCACHE_DISCONNECTED)
923 goto out_valid;
924 shrink_dcache_parent(dentry);
925 }
926 d_drop(dentry);
927 nfs_free_fattr(fattr);
928 nfs_free_fhandle(fhandle);
929 dput(parent);
930 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
931 __func__, dentry->d_parent->d_name.name,
932 dentry->d_name.name);
933 return 0;
934 out_error:
935 nfs_free_fattr(fattr);
936 nfs_free_fhandle(fhandle);
937 dput(parent);
938 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
939 __func__, dentry->d_parent->d_name.name,
940 dentry->d_name.name, error);
941 return error;
942 }
943
944 /*
945 * This is called from dput() when d_count is going to 0.
946 */
947 static int nfs_dentry_delete(struct dentry *dentry)
948 {
949 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
950 dentry->d_parent->d_name.name, dentry->d_name.name,
951 dentry->d_flags);
952
953 /* Unhash any dentry with a stale inode */
954 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
955 return 1;
956
957 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
958 /* Unhash it, so that ->d_iput() would be called */
959 return 1;
960 }
961 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
962 /* Unhash it, so that ancestors of killed async unlink
963 * files will be cleaned up during umount */
964 return 1;
965 }
966 return 0;
967
968 }
969
970 static void nfs_drop_nlink(struct inode *inode)
971 {
972 spin_lock(&inode->i_lock);
973 if (inode->i_nlink > 0)
974 drop_nlink(inode);
975 spin_unlock(&inode->i_lock);
976 }
977
978 /*
979 * Called when the dentry loses inode.
980 * We use it to clean up silly-renamed files.
981 */
982 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
983 {
984 if (S_ISDIR(inode->i_mode))
985 /* drop any readdir cache as it could easily be old */
986 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
987
988 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
989 drop_nlink(inode);
990 nfs_complete_unlink(dentry, inode);
991 }
992 iput(inode);
993 }
994
995 const struct dentry_operations nfs_dentry_operations = {
996 .d_revalidate = nfs_lookup_revalidate,
997 .d_delete = nfs_dentry_delete,
998 .d_iput = nfs_dentry_iput,
999 };
1000
1001 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1002 {
1003 struct dentry *res;
1004 struct dentry *parent;
1005 struct inode *inode = NULL;
1006 struct nfs_fh *fhandle = NULL;
1007 struct nfs_fattr *fattr = NULL;
1008 int error;
1009
1010 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1011 dentry->d_parent->d_name.name, dentry->d_name.name);
1012 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1013
1014 res = ERR_PTR(-ENAMETOOLONG);
1015 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1016 goto out;
1017
1018 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1019
1020 /*
1021 * If we're doing an exclusive create, optimize away the lookup
1022 * but don't hash the dentry.
1023 */
1024 if (nfs_is_exclusive_create(dir, nd)) {
1025 d_instantiate(dentry, NULL);
1026 res = NULL;
1027 goto out;
1028 }
1029
1030 res = ERR_PTR(-ENOMEM);
1031 fhandle = nfs_alloc_fhandle();
1032 fattr = nfs_alloc_fattr();
1033 if (fhandle == NULL || fattr == NULL)
1034 goto out;
1035
1036 parent = dentry->d_parent;
1037 /* Protect against concurrent sillydeletes */
1038 nfs_block_sillyrename(parent);
1039 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1040 if (error == -ENOENT)
1041 goto no_entry;
1042 if (error < 0) {
1043 res = ERR_PTR(error);
1044 goto out_unblock_sillyrename;
1045 }
1046 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1047 res = (struct dentry *)inode;
1048 if (IS_ERR(res))
1049 goto out_unblock_sillyrename;
1050
1051 no_entry:
1052 res = d_materialise_unique(dentry, inode);
1053 if (res != NULL) {
1054 if (IS_ERR(res))
1055 goto out_unblock_sillyrename;
1056 dentry = res;
1057 }
1058 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1059 out_unblock_sillyrename:
1060 nfs_unblock_sillyrename(parent);
1061 out:
1062 nfs_free_fattr(fattr);
1063 nfs_free_fhandle(fhandle);
1064 return res;
1065 }
1066
1067 #ifdef CONFIG_NFS_V4
1068 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1069
1070 const struct dentry_operations nfs4_dentry_operations = {
1071 .d_revalidate = nfs_open_revalidate,
1072 .d_delete = nfs_dentry_delete,
1073 .d_iput = nfs_dentry_iput,
1074 };
1075
1076 /*
1077 * Use intent information to determine whether we need to substitute
1078 * the NFSv4-style stateful OPEN for the LOOKUP call
1079 */
1080 static int is_atomic_open(struct nameidata *nd)
1081 {
1082 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1083 return 0;
1084 /* NFS does not (yet) have a stateful open for directories */
1085 if (nd->flags & LOOKUP_DIRECTORY)
1086 return 0;
1087 /* Are we trying to write to a read only partition? */
1088 if (__mnt_is_readonly(nd->path.mnt) &&
1089 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1090 return 0;
1091 return 1;
1092 }
1093
1094 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1095 {
1096 struct path path = {
1097 .mnt = nd->path.mnt,
1098 .dentry = dentry,
1099 };
1100 struct nfs_open_context *ctx;
1101 struct rpc_cred *cred;
1102 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1103
1104 cred = rpc_lookup_cred();
1105 if (IS_ERR(cred))
1106 return ERR_CAST(cred);
1107 ctx = alloc_nfs_open_context(&path, cred, fmode);
1108 put_rpccred(cred);
1109 if (ctx == NULL)
1110 return ERR_PTR(-ENOMEM);
1111 return ctx;
1112 }
1113
1114 static int do_open(struct inode *inode, struct file *filp)
1115 {
1116 nfs_fscache_set_inode_cookie(inode, filp);
1117 return 0;
1118 }
1119
1120 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1121 {
1122 struct file *filp;
1123 int ret = 0;
1124
1125 /* If the open_intent is for execute, we have an extra check to make */
1126 if (ctx->mode & FMODE_EXEC) {
1127 ret = nfs_may_open(ctx->path.dentry->d_inode,
1128 ctx->cred,
1129 nd->intent.open.flags);
1130 if (ret < 0)
1131 goto out;
1132 }
1133 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1134 if (IS_ERR(filp))
1135 ret = PTR_ERR(filp);
1136 else
1137 nfs_file_set_open_context(filp, ctx);
1138 out:
1139 put_nfs_open_context(ctx);
1140 return ret;
1141 }
1142
1143 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1144 {
1145 struct nfs_open_context *ctx;
1146 struct iattr attr;
1147 struct dentry *res = NULL;
1148 struct inode *inode;
1149 int open_flags;
1150 int err;
1151
1152 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1153 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1154
1155 /* Check that we are indeed trying to open this file */
1156 if (!is_atomic_open(nd))
1157 goto no_open;
1158
1159 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1160 res = ERR_PTR(-ENAMETOOLONG);
1161 goto out;
1162 }
1163 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1164
1165 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1166 * the dentry. */
1167 if (nd->flags & LOOKUP_EXCL) {
1168 d_instantiate(dentry, NULL);
1169 goto out;
1170 }
1171
1172 ctx = nameidata_to_nfs_open_context(dentry, nd);
1173 res = ERR_CAST(ctx);
1174 if (IS_ERR(ctx))
1175 goto out;
1176
1177 open_flags = nd->intent.open.flags;
1178 if (nd->flags & LOOKUP_CREATE) {
1179 attr.ia_mode = nd->intent.open.create_mode;
1180 attr.ia_valid = ATTR_MODE;
1181 if (!IS_POSIXACL(dir))
1182 attr.ia_mode &= ~current_umask();
1183 } else {
1184 open_flags &= ~(O_EXCL | O_CREAT);
1185 attr.ia_valid = 0;
1186 }
1187
1188 /* Open the file on the server */
1189 nfs_block_sillyrename(dentry->d_parent);
1190 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1191 if (IS_ERR(inode)) {
1192 nfs_unblock_sillyrename(dentry->d_parent);
1193 put_nfs_open_context(ctx);
1194 switch (PTR_ERR(inode)) {
1195 /* Make a negative dentry */
1196 case -ENOENT:
1197 d_add(dentry, NULL);
1198 res = NULL;
1199 goto out;
1200 /* This turned out not to be a regular file */
1201 case -EISDIR:
1202 case -ENOTDIR:
1203 goto no_open;
1204 case -ELOOP:
1205 if (!(nd->intent.open.flags & O_NOFOLLOW))
1206 goto no_open;
1207 /* case -EINVAL: */
1208 default:
1209 res = ERR_CAST(inode);
1210 goto out;
1211 }
1212 }
1213 res = d_add_unique(dentry, inode);
1214 nfs_unblock_sillyrename(dentry->d_parent);
1215 if (res != NULL) {
1216 dput(ctx->path.dentry);
1217 ctx->path.dentry = dget(res);
1218 dentry = res;
1219 }
1220 err = nfs_intent_set_file(nd, ctx);
1221 if (err < 0) {
1222 if (res != NULL)
1223 dput(res);
1224 return ERR_PTR(err);
1225 }
1226 out:
1227 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1228 return res;
1229 no_open:
1230 return nfs_lookup(dir, dentry, nd);
1231 }
1232
1233 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1234 {
1235 struct dentry *parent = NULL;
1236 struct inode *inode = dentry->d_inode;
1237 struct inode *dir;
1238 struct nfs_open_context *ctx;
1239 int openflags, ret = 0;
1240
1241 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1242 goto no_open;
1243
1244 parent = dget_parent(dentry);
1245 dir = parent->d_inode;
1246
1247 /* We can't create new files in nfs_open_revalidate(), so we
1248 * optimize away revalidation of negative dentries.
1249 */
1250 if (inode == NULL) {
1251 if (!nfs_neg_need_reval(dir, dentry, nd))
1252 ret = 1;
1253 goto out;
1254 }
1255
1256 /* NFS only supports OPEN on regular files */
1257 if (!S_ISREG(inode->i_mode))
1258 goto no_open_dput;
1259 openflags = nd->intent.open.flags;
1260 /* We cannot do exclusive creation on a positive dentry */
1261 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1262 goto no_open_dput;
1263 /* We can't create new files, or truncate existing ones here */
1264 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1265
1266 ctx = nameidata_to_nfs_open_context(dentry, nd);
1267 ret = PTR_ERR(ctx);
1268 if (IS_ERR(ctx))
1269 goto out;
1270 /*
1271 * Note: we're not holding inode->i_mutex and so may be racing with
1272 * operations that change the directory. We therefore save the
1273 * change attribute *before* we do the RPC call.
1274 */
1275 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1276 if (IS_ERR(inode)) {
1277 ret = PTR_ERR(inode);
1278 switch (ret) {
1279 case -EPERM:
1280 case -EACCES:
1281 case -EDQUOT:
1282 case -ENOSPC:
1283 case -EROFS:
1284 goto out_put_ctx;
1285 default:
1286 goto out_drop;
1287 }
1288 }
1289 iput(inode);
1290 if (inode != dentry->d_inode)
1291 goto out_drop;
1292
1293 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1294 ret = nfs_intent_set_file(nd, ctx);
1295 if (ret >= 0)
1296 ret = 1;
1297 out:
1298 dput(parent);
1299 return ret;
1300 out_drop:
1301 d_drop(dentry);
1302 ret = 0;
1303 out_put_ctx:
1304 put_nfs_open_context(ctx);
1305 goto out;
1306
1307 no_open_dput:
1308 dput(parent);
1309 no_open:
1310 return nfs_lookup_revalidate(dentry, nd);
1311 }
1312
1313 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1314 struct nameidata *nd)
1315 {
1316 struct nfs_open_context *ctx = NULL;
1317 struct iattr attr;
1318 int error;
1319 int open_flags = 0;
1320
1321 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1322 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1323
1324 attr.ia_mode = mode;
1325 attr.ia_valid = ATTR_MODE;
1326
1327 if ((nd->flags & LOOKUP_CREATE) != 0) {
1328 open_flags = nd->intent.open.flags;
1329
1330 ctx = nameidata_to_nfs_open_context(dentry, nd);
1331 error = PTR_ERR(ctx);
1332 if (IS_ERR(ctx))
1333 goto out_err_drop;
1334 }
1335
1336 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1337 if (error != 0)
1338 goto out_put_ctx;
1339 if (ctx != NULL) {
1340 error = nfs_intent_set_file(nd, ctx);
1341 if (error < 0)
1342 goto out_err;
1343 }
1344 return 0;
1345 out_put_ctx:
1346 if (ctx != NULL)
1347 put_nfs_open_context(ctx);
1348 out_err_drop:
1349 d_drop(dentry);
1350 out_err:
1351 return error;
1352 }
1353
1354 #endif /* CONFIG_NFSV4 */
1355
1356 /*
1357 * Code common to create, mkdir, and mknod.
1358 */
1359 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1360 struct nfs_fattr *fattr)
1361 {
1362 struct dentry *parent = dget_parent(dentry);
1363 struct inode *dir = parent->d_inode;
1364 struct inode *inode;
1365 int error = -EACCES;
1366
1367 d_drop(dentry);
1368
1369 /* We may have been initialized further down */
1370 if (dentry->d_inode)
1371 goto out;
1372 if (fhandle->size == 0) {
1373 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1374 if (error)
1375 goto out_error;
1376 }
1377 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1378 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1379 struct nfs_server *server = NFS_SB(dentry->d_sb);
1380 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1381 if (error < 0)
1382 goto out_error;
1383 }
1384 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1385 error = PTR_ERR(inode);
1386 if (IS_ERR(inode))
1387 goto out_error;
1388 d_add(dentry, inode);
1389 out:
1390 dput(parent);
1391 return 0;
1392 out_error:
1393 nfs_mark_for_revalidate(dir);
1394 dput(parent);
1395 return error;
1396 }
1397
1398 /*
1399 * Following a failed create operation, we drop the dentry rather
1400 * than retain a negative dentry. This avoids a problem in the event
1401 * that the operation succeeded on the server, but an error in the
1402 * reply path made it appear to have failed.
1403 */
1404 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1405 struct nameidata *nd)
1406 {
1407 struct iattr attr;
1408 int error;
1409
1410 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1411 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1412
1413 attr.ia_mode = mode;
1414 attr.ia_valid = ATTR_MODE;
1415
1416 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1417 if (error != 0)
1418 goto out_err;
1419 return 0;
1420 out_err:
1421 d_drop(dentry);
1422 return error;
1423 }
1424
1425 /*
1426 * See comments for nfs_proc_create regarding failed operations.
1427 */
1428 static int
1429 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1430 {
1431 struct iattr attr;
1432 int status;
1433
1434 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1435 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1436
1437 if (!new_valid_dev(rdev))
1438 return -EINVAL;
1439
1440 attr.ia_mode = mode;
1441 attr.ia_valid = ATTR_MODE;
1442
1443 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1444 if (status != 0)
1445 goto out_err;
1446 return 0;
1447 out_err:
1448 d_drop(dentry);
1449 return status;
1450 }
1451
1452 /*
1453 * See comments for nfs_proc_create regarding failed operations.
1454 */
1455 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1456 {
1457 struct iattr attr;
1458 int error;
1459
1460 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1461 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1462
1463 attr.ia_valid = ATTR_MODE;
1464 attr.ia_mode = mode | S_IFDIR;
1465
1466 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1467 if (error != 0)
1468 goto out_err;
1469 return 0;
1470 out_err:
1471 d_drop(dentry);
1472 return error;
1473 }
1474
1475 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1476 {
1477 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1478 d_delete(dentry);
1479 }
1480
1481 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1482 {
1483 int error;
1484
1485 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1486 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1487
1488 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1489 /* Ensure the VFS deletes this inode */
1490 if (error == 0 && dentry->d_inode != NULL)
1491 clear_nlink(dentry->d_inode);
1492 else if (error == -ENOENT)
1493 nfs_dentry_handle_enoent(dentry);
1494
1495 return error;
1496 }
1497
1498 /*
1499 * Remove a file after making sure there are no pending writes,
1500 * and after checking that the file has only one user.
1501 *
1502 * We invalidate the attribute cache and free the inode prior to the operation
1503 * to avoid possible races if the server reuses the inode.
1504 */
1505 static int nfs_safe_remove(struct dentry *dentry)
1506 {
1507 struct inode *dir = dentry->d_parent->d_inode;
1508 struct inode *inode = dentry->d_inode;
1509 int error = -EBUSY;
1510
1511 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1512 dentry->d_parent->d_name.name, dentry->d_name.name);
1513
1514 /* If the dentry was sillyrenamed, we simply call d_delete() */
1515 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1516 error = 0;
1517 goto out;
1518 }
1519
1520 if (inode != NULL) {
1521 nfs_inode_return_delegation(inode);
1522 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1523 /* The VFS may want to delete this inode */
1524 if (error == 0)
1525 nfs_drop_nlink(inode);
1526 nfs_mark_for_revalidate(inode);
1527 } else
1528 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1529 if (error == -ENOENT)
1530 nfs_dentry_handle_enoent(dentry);
1531 out:
1532 return error;
1533 }
1534
1535 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1536 * belongs to an active ".nfs..." file and we return -EBUSY.
1537 *
1538 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1539 */
1540 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1541 {
1542 int error;
1543 int need_rehash = 0;
1544
1545 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1546 dir->i_ino, dentry->d_name.name);
1547
1548 spin_lock(&dcache_lock);
1549 spin_lock(&dentry->d_lock);
1550 if (atomic_read(&dentry->d_count) > 1) {
1551 spin_unlock(&dentry->d_lock);
1552 spin_unlock(&dcache_lock);
1553 /* Start asynchronous writeout of the inode */
1554 write_inode_now(dentry->d_inode, 0);
1555 error = nfs_sillyrename(dir, dentry);
1556 return error;
1557 }
1558 if (!d_unhashed(dentry)) {
1559 __d_drop(dentry);
1560 need_rehash = 1;
1561 }
1562 spin_unlock(&dentry->d_lock);
1563 spin_unlock(&dcache_lock);
1564 error = nfs_safe_remove(dentry);
1565 if (!error || error == -ENOENT) {
1566 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1567 } else if (need_rehash)
1568 d_rehash(dentry);
1569 return error;
1570 }
1571
1572 /*
1573 * To create a symbolic link, most file systems instantiate a new inode,
1574 * add a page to it containing the path, then write it out to the disk
1575 * using prepare_write/commit_write.
1576 *
1577 * Unfortunately the NFS client can't create the in-core inode first
1578 * because it needs a file handle to create an in-core inode (see
1579 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1580 * symlink request has completed on the server.
1581 *
1582 * So instead we allocate a raw page, copy the symname into it, then do
1583 * the SYMLINK request with the page as the buffer. If it succeeds, we
1584 * now have a new file handle and can instantiate an in-core NFS inode
1585 * and move the raw page into its mapping.
1586 */
1587 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1588 {
1589 struct pagevec lru_pvec;
1590 struct page *page;
1591 char *kaddr;
1592 struct iattr attr;
1593 unsigned int pathlen = strlen(symname);
1594 int error;
1595
1596 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1597 dir->i_ino, dentry->d_name.name, symname);
1598
1599 if (pathlen > PAGE_SIZE)
1600 return -ENAMETOOLONG;
1601
1602 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1603 attr.ia_valid = ATTR_MODE;
1604
1605 page = alloc_page(GFP_HIGHUSER);
1606 if (!page)
1607 return -ENOMEM;
1608
1609 kaddr = kmap_atomic(page, KM_USER0);
1610 memcpy(kaddr, symname, pathlen);
1611 if (pathlen < PAGE_SIZE)
1612 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1613 kunmap_atomic(kaddr, KM_USER0);
1614
1615 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1616 if (error != 0) {
1617 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1618 dir->i_sb->s_id, dir->i_ino,
1619 dentry->d_name.name, symname, error);
1620 d_drop(dentry);
1621 __free_page(page);
1622 return error;
1623 }
1624
1625 /*
1626 * No big deal if we can't add this page to the page cache here.
1627 * READLINK will get the missing page from the server if needed.
1628 */
1629 pagevec_init(&lru_pvec, 0);
1630 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1631 GFP_KERNEL)) {
1632 pagevec_add(&lru_pvec, page);
1633 pagevec_lru_add_file(&lru_pvec);
1634 SetPageUptodate(page);
1635 unlock_page(page);
1636 } else
1637 __free_page(page);
1638
1639 return 0;
1640 }
1641
1642 static int
1643 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1644 {
1645 struct inode *inode = old_dentry->d_inode;
1646 int error;
1647
1648 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1649 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1650 dentry->d_parent->d_name.name, dentry->d_name.name);
1651
1652 nfs_inode_return_delegation(inode);
1653
1654 d_drop(dentry);
1655 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1656 if (error == 0) {
1657 atomic_inc(&inode->i_count);
1658 d_add(dentry, inode);
1659 }
1660 return error;
1661 }
1662
1663 /*
1664 * RENAME
1665 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1666 * different file handle for the same inode after a rename (e.g. when
1667 * moving to a different directory). A fail-safe method to do so would
1668 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1669 * rename the old file using the sillyrename stuff. This way, the original
1670 * file in old_dir will go away when the last process iput()s the inode.
1671 *
1672 * FIXED.
1673 *
1674 * It actually works quite well. One needs to have the possibility for
1675 * at least one ".nfs..." file in each directory the file ever gets
1676 * moved or linked to which happens automagically with the new
1677 * implementation that only depends on the dcache stuff instead of
1678 * using the inode layer
1679 *
1680 * Unfortunately, things are a little more complicated than indicated
1681 * above. For a cross-directory move, we want to make sure we can get
1682 * rid of the old inode after the operation. This means there must be
1683 * no pending writes (if it's a file), and the use count must be 1.
1684 * If these conditions are met, we can drop the dentries before doing
1685 * the rename.
1686 */
1687 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1688 struct inode *new_dir, struct dentry *new_dentry)
1689 {
1690 struct inode *old_inode = old_dentry->d_inode;
1691 struct inode *new_inode = new_dentry->d_inode;
1692 struct dentry *dentry = NULL, *rehash = NULL;
1693 int error = -EBUSY;
1694
1695 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1696 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1697 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1698 atomic_read(&new_dentry->d_count));
1699
1700 /*
1701 * For non-directories, check whether the target is busy and if so,
1702 * make a copy of the dentry and then do a silly-rename. If the
1703 * silly-rename succeeds, the copied dentry is hashed and becomes
1704 * the new target.
1705 */
1706 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1707 /*
1708 * To prevent any new references to the target during the
1709 * rename, we unhash the dentry in advance.
1710 */
1711 if (!d_unhashed(new_dentry)) {
1712 d_drop(new_dentry);
1713 rehash = new_dentry;
1714 }
1715
1716 if (atomic_read(&new_dentry->d_count) > 2) {
1717 int err;
1718
1719 /* copy the target dentry's name */
1720 dentry = d_alloc(new_dentry->d_parent,
1721 &new_dentry->d_name);
1722 if (!dentry)
1723 goto out;
1724
1725 /* silly-rename the existing target ... */
1726 err = nfs_sillyrename(new_dir, new_dentry);
1727 if (err)
1728 goto out;
1729
1730 new_dentry = dentry;
1731 rehash = NULL;
1732 new_inode = NULL;
1733 }
1734 }
1735
1736 nfs_inode_return_delegation(old_inode);
1737 if (new_inode != NULL)
1738 nfs_inode_return_delegation(new_inode);
1739
1740 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1741 new_dir, &new_dentry->d_name);
1742 nfs_mark_for_revalidate(old_inode);
1743 out:
1744 if (rehash)
1745 d_rehash(rehash);
1746 if (!error) {
1747 if (new_inode != NULL)
1748 nfs_drop_nlink(new_inode);
1749 d_move(old_dentry, new_dentry);
1750 nfs_set_verifier(new_dentry,
1751 nfs_save_change_attribute(new_dir));
1752 } else if (error == -ENOENT)
1753 nfs_dentry_handle_enoent(old_dentry);
1754
1755 /* new dentry created? */
1756 if (dentry)
1757 dput(dentry);
1758 return error;
1759 }
1760
1761 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1762 static LIST_HEAD(nfs_access_lru_list);
1763 static atomic_long_t nfs_access_nr_entries;
1764
1765 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1766 {
1767 put_rpccred(entry->cred);
1768 kfree(entry);
1769 smp_mb__before_atomic_dec();
1770 atomic_long_dec(&nfs_access_nr_entries);
1771 smp_mb__after_atomic_dec();
1772 }
1773
1774 static void nfs_access_free_list(struct list_head *head)
1775 {
1776 struct nfs_access_entry *cache;
1777
1778 while (!list_empty(head)) {
1779 cache = list_entry(head->next, struct nfs_access_entry, lru);
1780 list_del(&cache->lru);
1781 nfs_access_free_entry(cache);
1782 }
1783 }
1784
1785 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1786 {
1787 LIST_HEAD(head);
1788 struct nfs_inode *nfsi, *next;
1789 struct nfs_access_entry *cache;
1790
1791 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1792 return (nr_to_scan == 0) ? 0 : -1;
1793
1794 spin_lock(&nfs_access_lru_lock);
1795 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1796 struct inode *inode;
1797
1798 if (nr_to_scan-- == 0)
1799 break;
1800 inode = &nfsi->vfs_inode;
1801 spin_lock(&inode->i_lock);
1802 if (list_empty(&nfsi->access_cache_entry_lru))
1803 goto remove_lru_entry;
1804 cache = list_entry(nfsi->access_cache_entry_lru.next,
1805 struct nfs_access_entry, lru);
1806 list_move(&cache->lru, &head);
1807 rb_erase(&cache->rb_node, &nfsi->access_cache);
1808 if (!list_empty(&nfsi->access_cache_entry_lru))
1809 list_move_tail(&nfsi->access_cache_inode_lru,
1810 &nfs_access_lru_list);
1811 else {
1812 remove_lru_entry:
1813 list_del_init(&nfsi->access_cache_inode_lru);
1814 smp_mb__before_clear_bit();
1815 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1816 smp_mb__after_clear_bit();
1817 }
1818 spin_unlock(&inode->i_lock);
1819 }
1820 spin_unlock(&nfs_access_lru_lock);
1821 nfs_access_free_list(&head);
1822 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1823 }
1824
1825 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1826 {
1827 struct rb_root *root_node = &nfsi->access_cache;
1828 struct rb_node *n;
1829 struct nfs_access_entry *entry;
1830
1831 /* Unhook entries from the cache */
1832 while ((n = rb_first(root_node)) != NULL) {
1833 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1834 rb_erase(n, root_node);
1835 list_move(&entry->lru, head);
1836 }
1837 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1838 }
1839
1840 void nfs_access_zap_cache(struct inode *inode)
1841 {
1842 LIST_HEAD(head);
1843
1844 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1845 return;
1846 /* Remove from global LRU init */
1847 spin_lock(&nfs_access_lru_lock);
1848 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1849 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1850
1851 spin_lock(&inode->i_lock);
1852 __nfs_access_zap_cache(NFS_I(inode), &head);
1853 spin_unlock(&inode->i_lock);
1854 spin_unlock(&nfs_access_lru_lock);
1855 nfs_access_free_list(&head);
1856 }
1857
1858 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1859 {
1860 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1861 struct nfs_access_entry *entry;
1862
1863 while (n != NULL) {
1864 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1865
1866 if (cred < entry->cred)
1867 n = n->rb_left;
1868 else if (cred > entry->cred)
1869 n = n->rb_right;
1870 else
1871 return entry;
1872 }
1873 return NULL;
1874 }
1875
1876 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1877 {
1878 struct nfs_inode *nfsi = NFS_I(inode);
1879 struct nfs_access_entry *cache;
1880 int err = -ENOENT;
1881
1882 spin_lock(&inode->i_lock);
1883 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1884 goto out_zap;
1885 cache = nfs_access_search_rbtree(inode, cred);
1886 if (cache == NULL)
1887 goto out;
1888 if (!nfs_have_delegated_attributes(inode) &&
1889 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1890 goto out_stale;
1891 res->jiffies = cache->jiffies;
1892 res->cred = cache->cred;
1893 res->mask = cache->mask;
1894 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1895 err = 0;
1896 out:
1897 spin_unlock(&inode->i_lock);
1898 return err;
1899 out_stale:
1900 rb_erase(&cache->rb_node, &nfsi->access_cache);
1901 list_del(&cache->lru);
1902 spin_unlock(&inode->i_lock);
1903 nfs_access_free_entry(cache);
1904 return -ENOENT;
1905 out_zap:
1906 spin_unlock(&inode->i_lock);
1907 nfs_access_zap_cache(inode);
1908 return -ENOENT;
1909 }
1910
1911 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1912 {
1913 struct nfs_inode *nfsi = NFS_I(inode);
1914 struct rb_root *root_node = &nfsi->access_cache;
1915 struct rb_node **p = &root_node->rb_node;
1916 struct rb_node *parent = NULL;
1917 struct nfs_access_entry *entry;
1918
1919 spin_lock(&inode->i_lock);
1920 while (*p != NULL) {
1921 parent = *p;
1922 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1923
1924 if (set->cred < entry->cred)
1925 p = &parent->rb_left;
1926 else if (set->cred > entry->cred)
1927 p = &parent->rb_right;
1928 else
1929 goto found;
1930 }
1931 rb_link_node(&set->rb_node, parent, p);
1932 rb_insert_color(&set->rb_node, root_node);
1933 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1934 spin_unlock(&inode->i_lock);
1935 return;
1936 found:
1937 rb_replace_node(parent, &set->rb_node, root_node);
1938 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1939 list_del(&entry->lru);
1940 spin_unlock(&inode->i_lock);
1941 nfs_access_free_entry(entry);
1942 }
1943
1944 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1945 {
1946 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1947 if (cache == NULL)
1948 return;
1949 RB_CLEAR_NODE(&cache->rb_node);
1950 cache->jiffies = set->jiffies;
1951 cache->cred = get_rpccred(set->cred);
1952 cache->mask = set->mask;
1953
1954 nfs_access_add_rbtree(inode, cache);
1955
1956 /* Update accounting */
1957 smp_mb__before_atomic_inc();
1958 atomic_long_inc(&nfs_access_nr_entries);
1959 smp_mb__after_atomic_inc();
1960
1961 /* Add inode to global LRU list */
1962 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1963 spin_lock(&nfs_access_lru_lock);
1964 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1965 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1966 &nfs_access_lru_list);
1967 spin_unlock(&nfs_access_lru_lock);
1968 }
1969 }
1970
1971 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1972 {
1973 struct nfs_access_entry cache;
1974 int status;
1975
1976 status = nfs_access_get_cached(inode, cred, &cache);
1977 if (status == 0)
1978 goto out;
1979
1980 /* Be clever: ask server to check for all possible rights */
1981 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1982 cache.cred = cred;
1983 cache.jiffies = jiffies;
1984 status = NFS_PROTO(inode)->access(inode, &cache);
1985 if (status != 0) {
1986 if (status == -ESTALE) {
1987 nfs_zap_caches(inode);
1988 if (!S_ISDIR(inode->i_mode))
1989 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1990 }
1991 return status;
1992 }
1993 nfs_access_add_cache(inode, &cache);
1994 out:
1995 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1996 return 0;
1997 return -EACCES;
1998 }
1999
2000 static int nfs_open_permission_mask(int openflags)
2001 {
2002 int mask = 0;
2003
2004 if (openflags & FMODE_READ)
2005 mask |= MAY_READ;
2006 if (openflags & FMODE_WRITE)
2007 mask |= MAY_WRITE;
2008 if (openflags & FMODE_EXEC)
2009 mask |= MAY_EXEC;
2010 return mask;
2011 }
2012
2013 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2014 {
2015 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2016 }
2017
2018 int nfs_permission(struct inode *inode, int mask)
2019 {
2020 struct rpc_cred *cred;
2021 int res = 0;
2022
2023 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2024
2025 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2026 goto out;
2027 /* Is this sys_access() ? */
2028 if (mask & (MAY_ACCESS | MAY_CHDIR))
2029 goto force_lookup;
2030
2031 switch (inode->i_mode & S_IFMT) {
2032 case S_IFLNK:
2033 goto out;
2034 case S_IFREG:
2035 /* NFSv4 has atomic_open... */
2036 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2037 && (mask & MAY_OPEN)
2038 && !(mask & MAY_EXEC))
2039 goto out;
2040 break;
2041 case S_IFDIR:
2042 /*
2043 * Optimize away all write operations, since the server
2044 * will check permissions when we perform the op.
2045 */
2046 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2047 goto out;
2048 }
2049
2050 force_lookup:
2051 if (!NFS_PROTO(inode)->access)
2052 goto out_notsup;
2053
2054 cred = rpc_lookup_cred();
2055 if (!IS_ERR(cred)) {
2056 res = nfs_do_access(inode, cred, mask);
2057 put_rpccred(cred);
2058 } else
2059 res = PTR_ERR(cred);
2060 out:
2061 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2062 res = -EACCES;
2063
2064 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2065 inode->i_sb->s_id, inode->i_ino, mask, res);
2066 return res;
2067 out_notsup:
2068 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2069 if (res == 0)
2070 res = generic_permission(inode, mask, NULL);
2071 goto out;
2072 }
2073
2074 /*
2075 * Local variables:
2076 * version-control: t
2077 * kept-new-versions: 5
2078 * End:
2079 */
This page took 0.113134 seconds and 6 git commands to generate.