Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
71
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
77
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
85
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
94 };
95
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 atomic_inc(&dreq->io_count);
104 }
105
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 return atomic_dec_and_test(&dreq->io_count);
109 }
110
111 /**
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
118 *
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
123 */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp->f_path.dentry->d_name.name,
129 (long long) pos, nr_segs);
130
131 return -EINVAL;
132 #else
133 VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
134 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
135
136 if (rw == READ || rw == KERNEL_READ)
137 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
138 rw == READ ? true : false);
139 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
140 rw == WRITE ? true : false);
141 #endif /* CONFIG_NFS_SWAP */
142 }
143
144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145 {
146 unsigned int i;
147 for (i = 0; i < npages; i++)
148 page_cache_release(pages[i]);
149 }
150
151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
152 struct nfs_direct_req *dreq)
153 {
154 cinfo->lock = &dreq->lock;
155 cinfo->mds = &dreq->mds_cinfo;
156 cinfo->ds = &dreq->ds_cinfo;
157 cinfo->dreq = dreq;
158 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
159 }
160
161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
162 {
163 struct nfs_direct_req *dreq;
164
165 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
166 if (!dreq)
167 return NULL;
168
169 kref_init(&dreq->kref);
170 kref_get(&dreq->kref);
171 init_completion(&dreq->completion);
172 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
173 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
174 spin_lock_init(&dreq->lock);
175
176 return dreq;
177 }
178
179 static void nfs_direct_req_free(struct kref *kref)
180 {
181 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
182
183 if (dreq->l_ctx != NULL)
184 nfs_put_lock_context(dreq->l_ctx);
185 if (dreq->ctx != NULL)
186 put_nfs_open_context(dreq->ctx);
187 kmem_cache_free(nfs_direct_cachep, dreq);
188 }
189
190 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
191 {
192 kref_put(&dreq->kref, nfs_direct_req_free);
193 }
194
195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
196 {
197 return dreq->bytes_left;
198 }
199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
200
201 /*
202 * Collects and returns the final error value/byte-count.
203 */
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
205 {
206 ssize_t result = -EIOCBQUEUED;
207
208 /* Async requests don't wait here */
209 if (dreq->iocb)
210 goto out;
211
212 result = wait_for_completion_killable(&dreq->completion);
213
214 if (!result)
215 result = dreq->error;
216 if (!result)
217 result = dreq->count;
218
219 out:
220 return (ssize_t) result;
221 }
222
223 /*
224 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
225 * the iocb is still valid here if this is a synchronous request.
226 */
227 static void nfs_direct_complete(struct nfs_direct_req *dreq)
228 {
229 if (dreq->iocb) {
230 long res = (long) dreq->error;
231 if (!res)
232 res = (long) dreq->count;
233 aio_complete(dreq->iocb, res, 0);
234 }
235 complete_all(&dreq->completion);
236
237 nfs_direct_req_release(dreq);
238 }
239
240 static void nfs_direct_readpage_release(struct nfs_page *req)
241 {
242 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
243 req->wb_context->dentry->d_inode->i_sb->s_id,
244 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
245 req->wb_bytes,
246 (long long)req_offset(req));
247 nfs_release_request(req);
248 }
249
250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
251 {
252 unsigned long bytes = 0;
253 struct nfs_direct_req *dreq = hdr->dreq;
254
255 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
256 goto out_put;
257
258 spin_lock(&dreq->lock);
259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
260 dreq->error = hdr->error;
261 else
262 dreq->count += hdr->good_bytes;
263 spin_unlock(&dreq->lock);
264
265 while (!list_empty(&hdr->pages)) {
266 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
267 struct page *page = req->wb_page;
268
269 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
270 if (bytes > hdr->good_bytes)
271 zero_user(page, 0, PAGE_SIZE);
272 else if (hdr->good_bytes - bytes < PAGE_SIZE)
273 zero_user_segment(page,
274 hdr->good_bytes & ~PAGE_MASK,
275 PAGE_SIZE);
276 }
277 if (!PageCompound(page)) {
278 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
279 if (bytes < hdr->good_bytes)
280 set_page_dirty(page);
281 } else
282 set_page_dirty(page);
283 }
284 bytes += req->wb_bytes;
285 nfs_list_remove_request(req);
286 nfs_direct_readpage_release(req);
287 }
288 out_put:
289 if (put_dreq(dreq))
290 nfs_direct_complete(dreq);
291 hdr->release(hdr);
292 }
293
294 static void nfs_read_sync_pgio_error(struct list_head *head)
295 {
296 struct nfs_page *req;
297
298 while (!list_empty(head)) {
299 req = nfs_list_entry(head->next);
300 nfs_list_remove_request(req);
301 nfs_release_request(req);
302 }
303 }
304
305 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
306 {
307 get_dreq(hdr->dreq);
308 }
309
310 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
311 .error_cleanup = nfs_read_sync_pgio_error,
312 .init_hdr = nfs_direct_pgio_init,
313 .completion = nfs_direct_read_completion,
314 };
315
316 /*
317 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
318 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
319 * bail and stop sending more reads. Read length accounting is
320 * handled automatically by nfs_direct_read_result(). Otherwise, if
321 * no requests have been sent, just return an error.
322 */
323 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
324 const struct iovec *iov,
325 loff_t pos, bool uio)
326 {
327 struct nfs_direct_req *dreq = desc->pg_dreq;
328 struct nfs_open_context *ctx = dreq->ctx;
329 struct inode *inode = ctx->dentry->d_inode;
330 unsigned long user_addr = (unsigned long)iov->iov_base;
331 size_t count = iov->iov_len;
332 size_t rsize = NFS_SERVER(inode)->rsize;
333 unsigned int pgbase;
334 int result;
335 ssize_t started = 0;
336 struct page **pagevec = NULL;
337 unsigned int npages;
338
339 do {
340 size_t bytes;
341 int i;
342
343 pgbase = user_addr & ~PAGE_MASK;
344 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
345
346 result = -ENOMEM;
347 npages = nfs_page_array_len(pgbase, bytes);
348 if (!pagevec)
349 pagevec = kmalloc(npages * sizeof(struct page *),
350 GFP_KERNEL);
351 if (!pagevec)
352 break;
353 if (uio) {
354 down_read(&current->mm->mmap_sem);
355 result = get_user_pages(current, current->mm, user_addr,
356 npages, 1, 0, pagevec, NULL);
357 up_read(&current->mm->mmap_sem);
358 if (result < 0)
359 break;
360 } else {
361 WARN_ON(npages != 1);
362 result = get_kernel_page(user_addr, 1, pagevec);
363 if (WARN_ON(result != 1))
364 break;
365 }
366
367 if ((unsigned)result < npages) {
368 bytes = result * PAGE_SIZE;
369 if (bytes <= pgbase) {
370 nfs_direct_release_pages(pagevec, result);
371 break;
372 }
373 bytes -= pgbase;
374 npages = result;
375 }
376
377 for (i = 0; i < npages; i++) {
378 struct nfs_page *req;
379 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380 /* XXX do we need to do the eof zeroing found in async_filler? */
381 req = nfs_create_request(dreq->ctx, dreq->inode,
382 pagevec[i],
383 pgbase, req_len);
384 if (IS_ERR(req)) {
385 result = PTR_ERR(req);
386 break;
387 }
388 req->wb_index = pos >> PAGE_SHIFT;
389 req->wb_offset = pos & ~PAGE_MASK;
390 if (!nfs_pageio_add_request(desc, req)) {
391 result = desc->pg_error;
392 nfs_release_request(req);
393 break;
394 }
395 pgbase = 0;
396 bytes -= req_len;
397 started += req_len;
398 user_addr += req_len;
399 pos += req_len;
400 count -= req_len;
401 dreq->bytes_left -= req_len;
402 }
403 /* The nfs_page now hold references to these pages */
404 nfs_direct_release_pages(pagevec, npages);
405 } while (count != 0 && result >= 0);
406
407 kfree(pagevec);
408
409 if (started)
410 return started;
411 return result < 0 ? (ssize_t) result : -EFAULT;
412 }
413
414 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
415 const struct iovec *iov,
416 unsigned long nr_segs,
417 loff_t pos, bool uio)
418 {
419 struct nfs_pageio_descriptor desc;
420 ssize_t result = -EINVAL;
421 size_t requested_bytes = 0;
422 unsigned long seg;
423
424 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
425 &nfs_direct_read_completion_ops);
426 get_dreq(dreq);
427 desc.pg_dreq = dreq;
428
429 for (seg = 0; seg < nr_segs; seg++) {
430 const struct iovec *vec = &iov[seg];
431 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
432 if (result < 0)
433 break;
434 requested_bytes += result;
435 if ((size_t)result < vec->iov_len)
436 break;
437 pos += vec->iov_len;
438 }
439
440 nfs_pageio_complete(&desc);
441
442 /*
443 * If no bytes were started, return the error, and let the
444 * generic layer handle the completion.
445 */
446 if (requested_bytes == 0) {
447 nfs_direct_req_release(dreq);
448 return result < 0 ? result : -EIO;
449 }
450
451 if (put_dreq(dreq))
452 nfs_direct_complete(dreq);
453 return 0;
454 }
455
456 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
457 unsigned long nr_segs, loff_t pos, bool uio)
458 {
459 ssize_t result = -ENOMEM;
460 struct inode *inode = iocb->ki_filp->f_mapping->host;
461 struct nfs_direct_req *dreq;
462 struct nfs_lock_context *l_ctx;
463
464 dreq = nfs_direct_req_alloc();
465 if (dreq == NULL)
466 goto out;
467
468 dreq->inode = inode;
469 dreq->bytes_left = iov_length(iov, nr_segs);
470 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
471 l_ctx = nfs_get_lock_context(dreq->ctx);
472 if (IS_ERR(l_ctx)) {
473 result = PTR_ERR(l_ctx);
474 goto out_release;
475 }
476 dreq->l_ctx = l_ctx;
477 if (!is_sync_kiocb(iocb))
478 dreq->iocb = iocb;
479
480 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
481 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
482 if (!result)
483 result = nfs_direct_wait(dreq);
484 out_release:
485 nfs_direct_req_release(dreq);
486 out:
487 return result;
488 }
489
490 static void nfs_inode_dio_write_done(struct inode *inode)
491 {
492 nfs_zap_mapping(inode, inode->i_mapping);
493 inode_dio_done(inode);
494 }
495
496 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
497 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
498 {
499 struct nfs_pageio_descriptor desc;
500 struct nfs_page *req, *tmp;
501 LIST_HEAD(reqs);
502 struct nfs_commit_info cinfo;
503 LIST_HEAD(failed);
504
505 nfs_init_cinfo_from_dreq(&cinfo, dreq);
506 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
507 spin_lock(cinfo.lock);
508 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
509 spin_unlock(cinfo.lock);
510
511 dreq->count = 0;
512 get_dreq(dreq);
513
514 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
515 &nfs_direct_write_completion_ops);
516 desc.pg_dreq = dreq;
517
518 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
519 if (!nfs_pageio_add_request(&desc, req)) {
520 nfs_list_remove_request(req);
521 nfs_list_add_request(req, &failed);
522 spin_lock(cinfo.lock);
523 dreq->flags = 0;
524 dreq->error = -EIO;
525 spin_unlock(cinfo.lock);
526 }
527 nfs_release_request(req);
528 }
529 nfs_pageio_complete(&desc);
530
531 while (!list_empty(&failed)) {
532 req = nfs_list_entry(failed.next);
533 nfs_list_remove_request(req);
534 nfs_unlock_and_release_request(req);
535 }
536
537 if (put_dreq(dreq))
538 nfs_direct_write_complete(dreq, dreq->inode);
539 }
540
541 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
542 {
543 struct nfs_direct_req *dreq = data->dreq;
544 struct nfs_commit_info cinfo;
545 struct nfs_page *req;
546 int status = data->task.tk_status;
547
548 nfs_init_cinfo_from_dreq(&cinfo, dreq);
549 if (status < 0) {
550 dprintk("NFS: %5u commit failed with error %d.\n",
551 data->task.tk_pid, status);
552 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
553 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
554 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
555 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
556 }
557
558 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
559 while (!list_empty(&data->pages)) {
560 req = nfs_list_entry(data->pages.next);
561 nfs_list_remove_request(req);
562 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
563 /* Note the rewrite will go through mds */
564 nfs_mark_request_commit(req, NULL, &cinfo);
565 } else
566 nfs_release_request(req);
567 nfs_unlock_and_release_request(req);
568 }
569
570 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
571 nfs_direct_write_complete(dreq, data->inode);
572 }
573
574 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
575 {
576 /* There is no lock to clear */
577 }
578
579 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
580 .completion = nfs_direct_commit_complete,
581 .error_cleanup = nfs_direct_error_cleanup,
582 };
583
584 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
585 {
586 int res;
587 struct nfs_commit_info cinfo;
588 LIST_HEAD(mds_list);
589
590 nfs_init_cinfo_from_dreq(&cinfo, dreq);
591 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
592 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
593 if (res < 0) /* res == -ENOMEM */
594 nfs_direct_write_reschedule(dreq);
595 }
596
597 static void nfs_direct_write_schedule_work(struct work_struct *work)
598 {
599 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
600 int flags = dreq->flags;
601
602 dreq->flags = 0;
603 switch (flags) {
604 case NFS_ODIRECT_DO_COMMIT:
605 nfs_direct_commit_schedule(dreq);
606 break;
607 case NFS_ODIRECT_RESCHED_WRITES:
608 nfs_direct_write_reschedule(dreq);
609 break;
610 default:
611 nfs_inode_dio_write_done(dreq->inode);
612 nfs_direct_complete(dreq);
613 }
614 }
615
616 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
617 {
618 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
619 }
620
621 #else
622 static void nfs_direct_write_schedule_work(struct work_struct *work)
623 {
624 }
625
626 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
627 {
628 nfs_inode_dio_write_done(inode);
629 nfs_direct_complete(dreq);
630 }
631 #endif
632
633 /*
634 * NB: Return the value of the first error return code. Subsequent
635 * errors after the first one are ignored.
636 */
637 /*
638 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
639 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
640 * bail and stop sending more writes. Write length accounting is
641 * handled automatically by nfs_direct_write_result(). Otherwise, if
642 * no requests have been sent, just return an error.
643 */
644 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
645 const struct iovec *iov,
646 loff_t pos, bool uio)
647 {
648 struct nfs_direct_req *dreq = desc->pg_dreq;
649 struct nfs_open_context *ctx = dreq->ctx;
650 struct inode *inode = ctx->dentry->d_inode;
651 unsigned long user_addr = (unsigned long)iov->iov_base;
652 size_t count = iov->iov_len;
653 size_t wsize = NFS_SERVER(inode)->wsize;
654 unsigned int pgbase;
655 int result;
656 ssize_t started = 0;
657 struct page **pagevec = NULL;
658 unsigned int npages;
659
660 do {
661 size_t bytes;
662 int i;
663
664 pgbase = user_addr & ~PAGE_MASK;
665 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
666
667 result = -ENOMEM;
668 npages = nfs_page_array_len(pgbase, bytes);
669 if (!pagevec)
670 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
671 if (!pagevec)
672 break;
673
674 if (uio) {
675 down_read(&current->mm->mmap_sem);
676 result = get_user_pages(current, current->mm, user_addr,
677 npages, 0, 0, pagevec, NULL);
678 up_read(&current->mm->mmap_sem);
679 if (result < 0)
680 break;
681 } else {
682 WARN_ON(npages != 1);
683 result = get_kernel_page(user_addr, 0, pagevec);
684 if (WARN_ON(result != 1))
685 break;
686 }
687
688 if ((unsigned)result < npages) {
689 bytes = result * PAGE_SIZE;
690 if (bytes <= pgbase) {
691 nfs_direct_release_pages(pagevec, result);
692 break;
693 }
694 bytes -= pgbase;
695 npages = result;
696 }
697
698 for (i = 0; i < npages; i++) {
699 struct nfs_page *req;
700 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
701
702 req = nfs_create_request(dreq->ctx, dreq->inode,
703 pagevec[i],
704 pgbase, req_len);
705 if (IS_ERR(req)) {
706 result = PTR_ERR(req);
707 break;
708 }
709 nfs_lock_request(req);
710 req->wb_index = pos >> PAGE_SHIFT;
711 req->wb_offset = pos & ~PAGE_MASK;
712 if (!nfs_pageio_add_request(desc, req)) {
713 result = desc->pg_error;
714 nfs_unlock_and_release_request(req);
715 break;
716 }
717 pgbase = 0;
718 bytes -= req_len;
719 started += req_len;
720 user_addr += req_len;
721 pos += req_len;
722 count -= req_len;
723 dreq->bytes_left -= req_len;
724 }
725 /* The nfs_page now hold references to these pages */
726 nfs_direct_release_pages(pagevec, npages);
727 } while (count != 0 && result >= 0);
728
729 kfree(pagevec);
730
731 if (started)
732 return started;
733 return result < 0 ? (ssize_t) result : -EFAULT;
734 }
735
736 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
737 {
738 struct nfs_direct_req *dreq = hdr->dreq;
739 struct nfs_commit_info cinfo;
740 int bit = -1;
741 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
742
743 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
744 goto out_put;
745
746 nfs_init_cinfo_from_dreq(&cinfo, dreq);
747
748 spin_lock(&dreq->lock);
749
750 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
751 dreq->flags = 0;
752 dreq->error = hdr->error;
753 }
754 if (dreq->error != 0)
755 bit = NFS_IOHDR_ERROR;
756 else {
757 dreq->count += hdr->good_bytes;
758 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
759 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
760 bit = NFS_IOHDR_NEED_RESCHED;
761 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
762 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
763 bit = NFS_IOHDR_NEED_RESCHED;
764 else if (dreq->flags == 0) {
765 memcpy(&dreq->verf, hdr->verf,
766 sizeof(dreq->verf));
767 bit = NFS_IOHDR_NEED_COMMIT;
768 dreq->flags = NFS_ODIRECT_DO_COMMIT;
769 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
770 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
771 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
772 bit = NFS_IOHDR_NEED_RESCHED;
773 } else
774 bit = NFS_IOHDR_NEED_COMMIT;
775 }
776 }
777 }
778 spin_unlock(&dreq->lock);
779
780 while (!list_empty(&hdr->pages)) {
781 req = nfs_list_entry(hdr->pages.next);
782 nfs_list_remove_request(req);
783 switch (bit) {
784 case NFS_IOHDR_NEED_RESCHED:
785 case NFS_IOHDR_NEED_COMMIT:
786 kref_get(&req->wb_kref);
787 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
788 }
789 nfs_unlock_and_release_request(req);
790 }
791
792 out_put:
793 if (put_dreq(dreq))
794 nfs_direct_write_complete(dreq, hdr->inode);
795 hdr->release(hdr);
796 }
797
798 static void nfs_write_sync_pgio_error(struct list_head *head)
799 {
800 struct nfs_page *req;
801
802 while (!list_empty(head)) {
803 req = nfs_list_entry(head->next);
804 nfs_list_remove_request(req);
805 nfs_unlock_and_release_request(req);
806 }
807 }
808
809 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
810 .error_cleanup = nfs_write_sync_pgio_error,
811 .init_hdr = nfs_direct_pgio_init,
812 .completion = nfs_direct_write_completion,
813 };
814
815 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
816 const struct iovec *iov,
817 unsigned long nr_segs,
818 loff_t pos, bool uio)
819 {
820 struct nfs_pageio_descriptor desc;
821 struct inode *inode = dreq->inode;
822 ssize_t result = 0;
823 size_t requested_bytes = 0;
824 unsigned long seg;
825
826 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
827 &nfs_direct_write_completion_ops);
828 desc.pg_dreq = dreq;
829 get_dreq(dreq);
830 atomic_inc(&inode->i_dio_count);
831
832 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
833 for (seg = 0; seg < nr_segs; seg++) {
834 const struct iovec *vec = &iov[seg];
835 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
836 if (result < 0)
837 break;
838 requested_bytes += result;
839 if ((size_t)result < vec->iov_len)
840 break;
841 pos += vec->iov_len;
842 }
843 nfs_pageio_complete(&desc);
844
845 /*
846 * If no bytes were started, return the error, and let the
847 * generic layer handle the completion.
848 */
849 if (requested_bytes == 0) {
850 inode_dio_done(inode);
851 nfs_direct_req_release(dreq);
852 return result < 0 ? result : -EIO;
853 }
854
855 if (put_dreq(dreq))
856 nfs_direct_write_complete(dreq, dreq->inode);
857 return 0;
858 }
859
860 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
861 unsigned long nr_segs, loff_t pos,
862 size_t count, bool uio)
863 {
864 ssize_t result = -ENOMEM;
865 struct inode *inode = iocb->ki_filp->f_mapping->host;
866 struct nfs_direct_req *dreq;
867 struct nfs_lock_context *l_ctx;
868
869 dreq = nfs_direct_req_alloc();
870 if (!dreq)
871 goto out;
872
873 dreq->inode = inode;
874 dreq->bytes_left = count;
875 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
876 l_ctx = nfs_get_lock_context(dreq->ctx);
877 if (IS_ERR(l_ctx)) {
878 result = PTR_ERR(l_ctx);
879 goto out_release;
880 }
881 dreq->l_ctx = l_ctx;
882 if (!is_sync_kiocb(iocb))
883 dreq->iocb = iocb;
884
885 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
886 if (!result)
887 result = nfs_direct_wait(dreq);
888 out_release:
889 nfs_direct_req_release(dreq);
890 out:
891 return result;
892 }
893
894 /**
895 * nfs_file_direct_read - file direct read operation for NFS files
896 * @iocb: target I/O control block
897 * @iov: vector of user buffers into which to read data
898 * @nr_segs: size of iov vector
899 * @pos: byte offset in file where reading starts
900 *
901 * We use this function for direct reads instead of calling
902 * generic_file_aio_read() in order to avoid gfar's check to see if
903 * the request starts before the end of the file. For that check
904 * to work, we must generate a GETATTR before each direct read, and
905 * even then there is a window between the GETATTR and the subsequent
906 * READ where the file size could change. Our preference is simply
907 * to do all reads the application wants, and the server will take
908 * care of managing the end of file boundary.
909 *
910 * This function also eliminates unnecessarily updating the file's
911 * atime locally, as the NFS server sets the file's atime, and this
912 * client must read the updated atime from the server back into its
913 * cache.
914 */
915 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
916 unsigned long nr_segs, loff_t pos, bool uio)
917 {
918 ssize_t retval = -EINVAL;
919 struct file *file = iocb->ki_filp;
920 struct address_space *mapping = file->f_mapping;
921 size_t count;
922
923 count = iov_length(iov, nr_segs);
924 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
925
926 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
927 file->f_path.dentry->d_parent->d_name.name,
928 file->f_path.dentry->d_name.name,
929 count, (long long) pos);
930
931 retval = 0;
932 if (!count)
933 goto out;
934
935 retval = nfs_sync_mapping(mapping);
936 if (retval)
937 goto out;
938
939 task_io_account_read(count);
940
941 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
942 if (retval > 0)
943 iocb->ki_pos = pos + retval;
944
945 out:
946 return retval;
947 }
948
949 /**
950 * nfs_file_direct_write - file direct write operation for NFS files
951 * @iocb: target I/O control block
952 * @iov: vector of user buffers from which to write data
953 * @nr_segs: size of iov vector
954 * @pos: byte offset in file where writing starts
955 *
956 * We use this function for direct writes instead of calling
957 * generic_file_aio_write() in order to avoid taking the inode
958 * semaphore and updating the i_size. The NFS server will set
959 * the new i_size and this client must read the updated size
960 * back into its cache. We let the server do generic write
961 * parameter checking and report problems.
962 *
963 * We eliminate local atime updates, see direct read above.
964 *
965 * We avoid unnecessary page cache invalidations for normal cached
966 * readers of this file.
967 *
968 * Note that O_APPEND is not supported for NFS direct writes, as there
969 * is no atomic O_APPEND write facility in the NFS protocol.
970 */
971 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
972 unsigned long nr_segs, loff_t pos, bool uio)
973 {
974 ssize_t retval = -EINVAL;
975 struct file *file = iocb->ki_filp;
976 struct address_space *mapping = file->f_mapping;
977 size_t count;
978
979 count = iov_length(iov, nr_segs);
980 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
981
982 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
983 file->f_path.dentry->d_parent->d_name.name,
984 file->f_path.dentry->d_name.name,
985 count, (long long) pos);
986
987 retval = generic_write_checks(file, &pos, &count, 0);
988 if (retval)
989 goto out;
990
991 retval = -EINVAL;
992 if ((ssize_t) count < 0)
993 goto out;
994 retval = 0;
995 if (!count)
996 goto out;
997
998 retval = nfs_sync_mapping(mapping);
999 if (retval)
1000 goto out;
1001
1002 task_io_account_write(count);
1003
1004 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
1005 if (retval > 0) {
1006 struct inode *inode = mapping->host;
1007
1008 iocb->ki_pos = pos + retval;
1009 spin_lock(&inode->i_lock);
1010 if (i_size_read(inode) < iocb->ki_pos)
1011 i_size_write(inode, iocb->ki_pos);
1012 spin_unlock(&inode->i_lock);
1013 }
1014 out:
1015 return retval;
1016 }
1017
1018 /**
1019 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1020 *
1021 */
1022 int __init nfs_init_directcache(void)
1023 {
1024 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1025 sizeof(struct nfs_direct_req),
1026 0, (SLAB_RECLAIM_ACCOUNT|
1027 SLAB_MEM_SPREAD),
1028 NULL);
1029 if (nfs_direct_cachep == NULL)
1030 return -ENOMEM;
1031
1032 return 0;
1033 }
1034
1035 /**
1036 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1037 *
1038 */
1039 void nfs_destroy_directcache(void)
1040 {
1041 kmem_cache_destroy(nfs_direct_cachep);
1042 }
This page took 0.062964 seconds and 5 git commands to generate.