NFS: Remove use of the Big Kernel Lock around calls to rpc_call_sync
[deliverable/linux.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (HZ/10)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 if (err < -1000) {
73 dprintk("%s could not handle NFSv4 error %d\n",
74 __FUNCTION__, -err);
75 return -EIO;
76 }
77 return err;
78 }
79
80 /*
81 * This is our standard bitmap for GETATTR requests.
82 */
83 const u32 nfs4_fattr_bitmap[2] = {
84 FATTR4_WORD0_TYPE
85 | FATTR4_WORD0_CHANGE
86 | FATTR4_WORD0_SIZE
87 | FATTR4_WORD0_FSID
88 | FATTR4_WORD0_FILEID,
89 FATTR4_WORD1_MODE
90 | FATTR4_WORD1_NUMLINKS
91 | FATTR4_WORD1_OWNER
92 | FATTR4_WORD1_OWNER_GROUP
93 | FATTR4_WORD1_RAWDEV
94 | FATTR4_WORD1_SPACE_USED
95 | FATTR4_WORD1_TIME_ACCESS
96 | FATTR4_WORD1_TIME_METADATA
97 | FATTR4_WORD1_TIME_MODIFY
98 };
99
100 const u32 nfs4_statfs_bitmap[2] = {
101 FATTR4_WORD0_FILES_AVAIL
102 | FATTR4_WORD0_FILES_FREE
103 | FATTR4_WORD0_FILES_TOTAL,
104 FATTR4_WORD1_SPACE_AVAIL
105 | FATTR4_WORD1_SPACE_FREE
106 | FATTR4_WORD1_SPACE_TOTAL
107 };
108
109 const u32 nfs4_pathconf_bitmap[2] = {
110 FATTR4_WORD0_MAXLINK
111 | FATTR4_WORD0_MAXNAME,
112 0
113 };
114
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 | FATTR4_WORD0_MAXREAD
117 | FATTR4_WORD0_MAXWRITE
118 | FATTR4_WORD0_LEASE_TIME,
119 0
120 };
121
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 FATTR4_WORD0_TYPE
124 | FATTR4_WORD0_CHANGE
125 | FATTR4_WORD0_SIZE
126 | FATTR4_WORD0_FSID
127 | FATTR4_WORD0_FILEID
128 | FATTR4_WORD0_FS_LOCATIONS,
129 FATTR4_WORD1_MODE
130 | FATTR4_WORD1_NUMLINKS
131 | FATTR4_WORD1_OWNER
132 | FATTR4_WORD1_OWNER_GROUP
133 | FATTR4_WORD1_RAWDEV
134 | FATTR4_WORD1_SPACE_USED
135 | FATTR4_WORD1_TIME_ACCESS
136 | FATTR4_WORD1_TIME_METADATA
137 | FATTR4_WORD1_TIME_MODIFY
138 | FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 struct nfs4_readdir_arg *readdir)
143 {
144 __be32 *start, *p;
145
146 BUG_ON(readdir->count < 80);
147 if (cookie > 2) {
148 readdir->cookie = cookie;
149 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 return;
151 }
152
153 readdir->cookie = 0;
154 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 if (cookie == 2)
156 return;
157
158 /*
159 * NFSv4 servers do not return entries for '.' and '..'
160 * Therefore, we fake these entries here. We let '.'
161 * have cookie 0 and '..' have cookie 1. Note that
162 * when talking to the server, we always send cookie 0
163 * instead of 1 or 2.
164 */
165 start = p = kmap_atomic(*readdir->pages, KM_USER0);
166
167 if (cookie == 0) {
168 *p++ = xdr_one; /* next */
169 *p++ = xdr_zero; /* cookie, first word */
170 *p++ = xdr_one; /* cookie, second word */
171 *p++ = xdr_one; /* entry len */
172 memcpy(p, ".\0\0\0", 4); /* entry */
173 p++;
174 *p++ = xdr_one; /* bitmap length */
175 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
176 *p++ = htonl(8); /* attribute buffer length */
177 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 }
179
180 *p++ = xdr_one; /* next */
181 *p++ = xdr_zero; /* cookie, first word */
182 *p++ = xdr_two; /* cookie, second word */
183 *p++ = xdr_two; /* entry len */
184 memcpy(p, "..\0\0", 4); /* entry */
185 p++;
186 *p++ = xdr_one; /* bitmap length */
187 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
188 *p++ = htonl(8); /* attribute buffer length */
189 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190
191 readdir->pgbase = (char *)p - (char *)start;
192 readdir->count -= readdir->pgbase;
193 kunmap_atomic(start, KM_USER0);
194 }
195
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 struct nfs_client *clp = server->nfs_client;
199 spin_lock(&clp->cl_lock);
200 if (time_before(clp->cl_last_renewal,timestamp))
201 clp->cl_last_renewal = timestamp;
202 spin_unlock(&clp->cl_lock);
203 }
204
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 struct nfs_inode *nfsi = NFS_I(dir);
208
209 spin_lock(&dir->i_lock);
210 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 nfsi->change_attr = cinfo->after;
213 spin_unlock(&dir->i_lock);
214 }
215
216 struct nfs4_opendata {
217 atomic_t count;
218 struct nfs_openargs o_arg;
219 struct nfs_openres o_res;
220 struct nfs_open_confirmargs c_arg;
221 struct nfs_open_confirmres c_res;
222 struct nfs_fattr f_attr;
223 struct nfs_fattr dir_attr;
224 struct dentry *dentry;
225 struct dentry *dir;
226 struct nfs4_state_owner *owner;
227 struct iattr attrs;
228 unsigned long timestamp;
229 int rpc_status;
230 int cancelled;
231 };
232
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
234 struct nfs4_state_owner *sp, int flags,
235 const struct iattr *attrs)
236 {
237 struct dentry *parent = dget_parent(dentry);
238 struct inode *dir = parent->d_inode;
239 struct nfs_server *server = NFS_SERVER(dir);
240 struct nfs4_opendata *p;
241
242 p = kzalloc(sizeof(*p), GFP_KERNEL);
243 if (p == NULL)
244 goto err;
245 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 if (p->o_arg.seqid == NULL)
247 goto err_free;
248 atomic_set(&p->count, 1);
249 p->dentry = dget(dentry);
250 p->dir = parent;
251 p->owner = sp;
252 atomic_inc(&sp->so_count);
253 p->o_arg.fh = NFS_FH(dir);
254 p->o_arg.open_flags = flags,
255 p->o_arg.clientid = server->nfs_client->cl_clientid;
256 p->o_arg.id = sp->so_id;
257 p->o_arg.name = &dentry->d_name;
258 p->o_arg.server = server;
259 p->o_arg.bitmask = server->attr_bitmask;
260 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 p->o_res.f_attr = &p->f_attr;
262 p->o_res.dir_attr = &p->dir_attr;
263 p->o_res.server = server;
264 nfs_fattr_init(&p->f_attr);
265 nfs_fattr_init(&p->dir_attr);
266 if (flags & O_EXCL) {
267 u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 s[0] = jiffies;
269 s[1] = current->pid;
270 } else if (flags & O_CREAT) {
271 p->o_arg.u.attrs = &p->attrs;
272 memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 }
274 p->c_arg.fh = &p->o_res.fh;
275 p->c_arg.stateid = &p->o_res.stateid;
276 p->c_arg.seqid = p->o_arg.seqid;
277 return p;
278 err_free:
279 kfree(p);
280 err:
281 dput(parent);
282 return NULL;
283 }
284
285 static void nfs4_opendata_free(struct nfs4_opendata *p)
286 {
287 if (p != NULL && atomic_dec_and_test(&p->count)) {
288 nfs_free_seqid(p->o_arg.seqid);
289 nfs4_put_state_owner(p->owner);
290 dput(p->dir);
291 dput(p->dentry);
292 kfree(p);
293 }
294 }
295
296 /* Helper for asynchronous RPC calls */
297 static int nfs4_call_async(struct rpc_clnt *clnt,
298 const struct rpc_call_ops *tk_ops, void *calldata)
299 {
300 struct rpc_task *task;
301
302 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
303 return -ENOMEM;
304 rpc_execute(task);
305 return 0;
306 }
307
308 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
309 {
310 sigset_t oldset;
311 int ret;
312
313 rpc_clnt_sigmask(task->tk_client, &oldset);
314 ret = rpc_wait_for_completion_task(task);
315 rpc_clnt_sigunmask(task->tk_client, &oldset);
316 return ret;
317 }
318
319 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
320 {
321 switch (open_flags) {
322 case FMODE_WRITE:
323 state->n_wronly++;
324 break;
325 case FMODE_READ:
326 state->n_rdonly++;
327 break;
328 case FMODE_READ|FMODE_WRITE:
329 state->n_rdwr++;
330 }
331 }
332
333 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
334 {
335 struct inode *inode = state->inode;
336
337 open_flags &= (FMODE_READ|FMODE_WRITE);
338 /* Protect against nfs4_find_state_byowner() */
339 spin_lock(&state->owner->so_lock);
340 spin_lock(&inode->i_lock);
341 memcpy(&state->stateid, stateid, sizeof(state->stateid));
342 update_open_stateflags(state, open_flags);
343 nfs4_state_set_mode_locked(state, state->state | open_flags);
344 spin_unlock(&inode->i_lock);
345 spin_unlock(&state->owner->so_lock);
346 }
347
348 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
349 {
350 struct inode *inode;
351 struct nfs4_state *state = NULL;
352
353 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
354 goto out;
355 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
356 if (IS_ERR(inode))
357 goto out;
358 state = nfs4_get_open_state(inode, data->owner);
359 if (state == NULL)
360 goto put_inode;
361 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
362 put_inode:
363 iput(inode);
364 out:
365 return state;
366 }
367
368 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
369 {
370 struct nfs_inode *nfsi = NFS_I(state->inode);
371 struct nfs_open_context *ctx;
372
373 spin_lock(&state->inode->i_lock);
374 list_for_each_entry(ctx, &nfsi->open_files, list) {
375 if (ctx->state != state)
376 continue;
377 get_nfs_open_context(ctx);
378 spin_unlock(&state->inode->i_lock);
379 return ctx;
380 }
381 spin_unlock(&state->inode->i_lock);
382 return ERR_PTR(-ENOENT);
383 }
384
385 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
386 {
387 int ret;
388
389 opendata->o_arg.open_flags = openflags;
390 ret = _nfs4_proc_open(opendata);
391 if (ret != 0)
392 return ret;
393 memcpy(stateid->data, opendata->o_res.stateid.data,
394 sizeof(stateid->data));
395 return 0;
396 }
397
398 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
399 {
400 nfs4_stateid stateid;
401 struct nfs4_state *newstate;
402 int mode = 0;
403 int delegation = 0;
404 int ret;
405
406 /* memory barrier prior to reading state->n_* */
407 smp_rmb();
408 if (state->n_rdwr != 0) {
409 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
410 if (ret != 0)
411 return ret;
412 mode |= FMODE_READ|FMODE_WRITE;
413 if (opendata->o_res.delegation_type != 0)
414 delegation = opendata->o_res.delegation_type;
415 smp_rmb();
416 }
417 if (state->n_wronly != 0) {
418 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
419 if (ret != 0)
420 return ret;
421 mode |= FMODE_WRITE;
422 if (opendata->o_res.delegation_type != 0)
423 delegation = opendata->o_res.delegation_type;
424 smp_rmb();
425 }
426 if (state->n_rdonly != 0) {
427 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
428 if (ret != 0)
429 return ret;
430 mode |= FMODE_READ;
431 }
432 clear_bit(NFS_DELEGATED_STATE, &state->flags);
433 if (mode == 0)
434 return 0;
435 if (opendata->o_res.delegation_type == 0)
436 opendata->o_res.delegation_type = delegation;
437 opendata->o_arg.open_flags |= mode;
438 newstate = nfs4_opendata_to_nfs4_state(opendata);
439 if (newstate != NULL) {
440 if (opendata->o_res.delegation_type != 0) {
441 struct nfs_inode *nfsi = NFS_I(newstate->inode);
442 int delegation_flags = 0;
443 if (nfsi->delegation)
444 delegation_flags = nfsi->delegation->flags;
445 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
446 nfs_inode_set_delegation(newstate->inode,
447 opendata->owner->so_cred,
448 &opendata->o_res);
449 else
450 nfs_inode_reclaim_delegation(newstate->inode,
451 opendata->owner->so_cred,
452 &opendata->o_res);
453 }
454 nfs4_close_state(newstate, opendata->o_arg.open_flags);
455 }
456 if (newstate != state)
457 return -ESTALE;
458 return 0;
459 }
460
461 /*
462 * OPEN_RECLAIM:
463 * reclaim state on the server after a reboot.
464 */
465 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
466 {
467 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
468 struct nfs4_opendata *opendata;
469 int delegation_type = 0;
470 int status;
471
472 if (delegation != NULL) {
473 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
474 memcpy(&state->stateid, &delegation->stateid,
475 sizeof(state->stateid));
476 set_bit(NFS_DELEGATED_STATE, &state->flags);
477 return 0;
478 }
479 delegation_type = delegation->type;
480 }
481 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
482 if (opendata == NULL)
483 return -ENOMEM;
484 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
485 opendata->o_arg.fh = NFS_FH(state->inode);
486 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
487 opendata->o_arg.u.delegation_type = delegation_type;
488 status = nfs4_open_recover(opendata, state);
489 nfs4_opendata_free(opendata);
490 return status;
491 }
492
493 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
494 {
495 struct nfs_server *server = NFS_SERVER(state->inode);
496 struct nfs4_exception exception = { };
497 int err;
498 do {
499 err = _nfs4_do_open_reclaim(sp, state, dentry);
500 if (err != -NFS4ERR_DELAY)
501 break;
502 nfs4_handle_exception(server, err, &exception);
503 } while (exception.retry);
504 return err;
505 }
506
507 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
508 {
509 struct nfs_open_context *ctx;
510 int ret;
511
512 ctx = nfs4_state_find_open_context(state);
513 if (IS_ERR(ctx))
514 return PTR_ERR(ctx);
515 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
516 put_nfs_open_context(ctx);
517 return ret;
518 }
519
520 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
521 {
522 struct nfs4_state_owner *sp = state->owner;
523 struct nfs4_opendata *opendata;
524 int ret;
525
526 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
527 return 0;
528 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
529 if (opendata == NULL)
530 return -ENOMEM;
531 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
532 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
533 sizeof(opendata->o_arg.u.delegation.data));
534 ret = nfs4_open_recover(opendata, state);
535 nfs4_opendata_free(opendata);
536 return ret;
537 }
538
539 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
540 {
541 struct nfs4_exception exception = { };
542 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
543 int err;
544 do {
545 err = _nfs4_open_delegation_recall(dentry, state);
546 switch (err) {
547 case 0:
548 return err;
549 case -NFS4ERR_STALE_CLIENTID:
550 case -NFS4ERR_STALE_STATEID:
551 case -NFS4ERR_EXPIRED:
552 /* Don't recall a delegation if it was lost */
553 nfs4_schedule_state_recovery(server->nfs_client);
554 return err;
555 }
556 err = nfs4_handle_exception(server, err, &exception);
557 } while (exception.retry);
558 return err;
559 }
560
561 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
562 {
563 struct nfs4_opendata *data = calldata;
564 struct rpc_message msg = {
565 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
566 .rpc_argp = &data->c_arg,
567 .rpc_resp = &data->c_res,
568 .rpc_cred = data->owner->so_cred,
569 };
570 data->timestamp = jiffies;
571 rpc_call_setup(task, &msg, 0);
572 }
573
574 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
575 {
576 struct nfs4_opendata *data = calldata;
577
578 data->rpc_status = task->tk_status;
579 if (RPC_ASSASSINATED(task))
580 return;
581 if (data->rpc_status == 0) {
582 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
583 sizeof(data->o_res.stateid.data));
584 renew_lease(data->o_res.server, data->timestamp);
585 }
586 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
587 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
588 }
589
590 static void nfs4_open_confirm_release(void *calldata)
591 {
592 struct nfs4_opendata *data = calldata;
593 struct nfs4_state *state = NULL;
594
595 /* If this request hasn't been cancelled, do nothing */
596 if (data->cancelled == 0)
597 goto out_free;
598 /* In case of error, no cleanup! */
599 if (data->rpc_status != 0)
600 goto out_free;
601 nfs_confirm_seqid(&data->owner->so_seqid, 0);
602 state = nfs4_opendata_to_nfs4_state(data);
603 if (state != NULL)
604 nfs4_close_state(state, data->o_arg.open_flags);
605 out_free:
606 nfs4_opendata_free(data);
607 }
608
609 static const struct rpc_call_ops nfs4_open_confirm_ops = {
610 .rpc_call_prepare = nfs4_open_confirm_prepare,
611 .rpc_call_done = nfs4_open_confirm_done,
612 .rpc_release = nfs4_open_confirm_release,
613 };
614
615 /*
616 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
617 */
618 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
619 {
620 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
621 struct rpc_task *task;
622 int status;
623
624 atomic_inc(&data->count);
625 /*
626 * If rpc_run_task() ends up calling ->rpc_release(), we
627 * want to ensure that it takes the 'error' code path.
628 */
629 data->rpc_status = -ENOMEM;
630 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
631 if (IS_ERR(task))
632 return PTR_ERR(task);
633 status = nfs4_wait_for_completion_rpc_task(task);
634 if (status != 0) {
635 data->cancelled = 1;
636 smp_wmb();
637 } else
638 status = data->rpc_status;
639 rpc_put_task(task);
640 return status;
641 }
642
643 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
644 {
645 struct nfs4_opendata *data = calldata;
646 struct nfs4_state_owner *sp = data->owner;
647 struct rpc_message msg = {
648 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
649 .rpc_argp = &data->o_arg,
650 .rpc_resp = &data->o_res,
651 .rpc_cred = sp->so_cred,
652 };
653
654 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
655 return;
656 /* Update sequence id. */
657 data->o_arg.id = sp->so_id;
658 data->o_arg.clientid = sp->so_client->cl_clientid;
659 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
660 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
661 data->timestamp = jiffies;
662 rpc_call_setup(task, &msg, 0);
663 }
664
665 static void nfs4_open_done(struct rpc_task *task, void *calldata)
666 {
667 struct nfs4_opendata *data = calldata;
668
669 data->rpc_status = task->tk_status;
670 if (RPC_ASSASSINATED(task))
671 return;
672 if (task->tk_status == 0) {
673 switch (data->o_res.f_attr->mode & S_IFMT) {
674 case S_IFREG:
675 break;
676 case S_IFLNK:
677 data->rpc_status = -ELOOP;
678 break;
679 case S_IFDIR:
680 data->rpc_status = -EISDIR;
681 break;
682 default:
683 data->rpc_status = -ENOTDIR;
684 }
685 renew_lease(data->o_res.server, data->timestamp);
686 }
687 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
688 }
689
690 static void nfs4_open_release(void *calldata)
691 {
692 struct nfs4_opendata *data = calldata;
693 struct nfs4_state *state = NULL;
694
695 /* If this request hasn't been cancelled, do nothing */
696 if (data->cancelled == 0)
697 goto out_free;
698 /* In case of error, no cleanup! */
699 if (data->rpc_status != 0)
700 goto out_free;
701 /* In case we need an open_confirm, no cleanup! */
702 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
703 goto out_free;
704 nfs_confirm_seqid(&data->owner->so_seqid, 0);
705 state = nfs4_opendata_to_nfs4_state(data);
706 if (state != NULL)
707 nfs4_close_state(state, data->o_arg.open_flags);
708 out_free:
709 nfs4_opendata_free(data);
710 }
711
712 static const struct rpc_call_ops nfs4_open_ops = {
713 .rpc_call_prepare = nfs4_open_prepare,
714 .rpc_call_done = nfs4_open_done,
715 .rpc_release = nfs4_open_release,
716 };
717
718 /*
719 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
720 */
721 static int _nfs4_proc_open(struct nfs4_opendata *data)
722 {
723 struct inode *dir = data->dir->d_inode;
724 struct nfs_server *server = NFS_SERVER(dir);
725 struct nfs_openargs *o_arg = &data->o_arg;
726 struct nfs_openres *o_res = &data->o_res;
727 struct rpc_task *task;
728 int status;
729
730 atomic_inc(&data->count);
731 /*
732 * If rpc_run_task() ends up calling ->rpc_release(), we
733 * want to ensure that it takes the 'error' code path.
734 */
735 data->rpc_status = -ENOMEM;
736 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
737 if (IS_ERR(task))
738 return PTR_ERR(task);
739 status = nfs4_wait_for_completion_rpc_task(task);
740 if (status != 0) {
741 data->cancelled = 1;
742 smp_wmb();
743 } else
744 status = data->rpc_status;
745 rpc_put_task(task);
746 if (status != 0)
747 return status;
748
749 if (o_arg->open_flags & O_CREAT) {
750 update_changeattr(dir, &o_res->cinfo);
751 nfs_post_op_update_inode(dir, o_res->dir_attr);
752 } else
753 nfs_refresh_inode(dir, o_res->dir_attr);
754 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
755 status = _nfs4_proc_open_confirm(data);
756 if (status != 0)
757 return status;
758 }
759 nfs_confirm_seqid(&data->owner->so_seqid, 0);
760 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
761 return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
762 return 0;
763 }
764
765 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
766 {
767 struct nfs_access_entry cache;
768 int mask = 0;
769 int status;
770
771 if (openflags & FMODE_READ)
772 mask |= MAY_READ;
773 if (openflags & FMODE_WRITE)
774 mask |= MAY_WRITE;
775 status = nfs_access_get_cached(inode, cred, &cache);
776 if (status == 0)
777 goto out;
778
779 /* Be clever: ask server to check for all possible rights */
780 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
781 cache.cred = cred;
782 cache.jiffies = jiffies;
783 status = _nfs4_proc_access(inode, &cache);
784 if (status != 0)
785 return status;
786 nfs_access_add_cache(inode, &cache);
787 out:
788 if ((cache.mask & mask) == mask)
789 return 0;
790 return -EACCES;
791 }
792
793 int nfs4_recover_expired_lease(struct nfs_server *server)
794 {
795 struct nfs_client *clp = server->nfs_client;
796 int ret;
797
798 for (;;) {
799 ret = nfs4_wait_clnt_recover(server->client, clp);
800 if (ret != 0)
801 return ret;
802 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
803 break;
804 nfs4_schedule_state_recovery(clp);
805 }
806 return 0;
807 }
808
809 /*
810 * OPEN_EXPIRED:
811 * reclaim state on the server after a network partition.
812 * Assumes caller holds the appropriate lock
813 */
814 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
815 {
816 struct inode *inode = state->inode;
817 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
818 struct nfs4_opendata *opendata;
819 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
820 int ret;
821
822 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
823 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
824 if (ret < 0)
825 return ret;
826 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
827 set_bit(NFS_DELEGATED_STATE, &state->flags);
828 return 0;
829 }
830 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
831 if (opendata == NULL)
832 return -ENOMEM;
833 ret = nfs4_open_recover(opendata, state);
834 if (ret == -ESTALE) {
835 /* Invalidate the state owner so we don't ever use it again */
836 nfs4_drop_state_owner(sp);
837 d_drop(dentry);
838 }
839 nfs4_opendata_free(opendata);
840 return ret;
841 }
842
843 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
844 {
845 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
846 struct nfs4_exception exception = { };
847 int err;
848
849 do {
850 err = _nfs4_open_expired(sp, state, dentry);
851 if (err == -NFS4ERR_DELAY)
852 nfs4_handle_exception(server, err, &exception);
853 } while (exception.retry);
854 return err;
855 }
856
857 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
858 {
859 struct nfs_open_context *ctx;
860 int ret;
861
862 ctx = nfs4_state_find_open_context(state);
863 if (IS_ERR(ctx))
864 return PTR_ERR(ctx);
865 ret = nfs4_do_open_expired(sp, state, ctx->dentry);
866 put_nfs_open_context(ctx);
867 return ret;
868 }
869
870 /*
871 * Returns a referenced nfs4_state if there is an open delegation on the file
872 */
873 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
874 {
875 struct nfs_delegation *delegation;
876 struct nfs_server *server = NFS_SERVER(inode);
877 struct nfs_client *clp = server->nfs_client;
878 struct nfs_inode *nfsi = NFS_I(inode);
879 struct nfs4_state_owner *sp = NULL;
880 struct nfs4_state *state = NULL;
881 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
882 int err;
883
884 err = -ENOMEM;
885 if (!(sp = nfs4_get_state_owner(server, cred))) {
886 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
887 return err;
888 }
889 err = nfs4_recover_expired_lease(server);
890 if (err != 0)
891 goto out_put_state_owner;
892 /* Protect against reboot recovery - NOTE ORDER! */
893 down_read(&clp->cl_sem);
894 /* Protect against delegation recall */
895 down_read(&nfsi->rwsem);
896 delegation = NFS_I(inode)->delegation;
897 err = -ENOENT;
898 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
899 goto out_err;
900 err = -ENOMEM;
901 state = nfs4_get_open_state(inode, sp);
902 if (state == NULL)
903 goto out_err;
904
905 err = -ENOENT;
906 if ((state->state & open_flags) == open_flags) {
907 spin_lock(&inode->i_lock);
908 update_open_stateflags(state, open_flags);
909 spin_unlock(&inode->i_lock);
910 goto out_ok;
911 } else if (state->state != 0)
912 goto out_put_open_state;
913
914 lock_kernel();
915 err = _nfs4_do_access(inode, cred, open_flags);
916 unlock_kernel();
917 if (err != 0)
918 goto out_put_open_state;
919 set_bit(NFS_DELEGATED_STATE, &state->flags);
920 update_open_stateid(state, &delegation->stateid, open_flags);
921 out_ok:
922 nfs4_put_state_owner(sp);
923 up_read(&nfsi->rwsem);
924 up_read(&clp->cl_sem);
925 *res = state;
926 return 0;
927 out_put_open_state:
928 nfs4_put_open_state(state);
929 out_err:
930 up_read(&nfsi->rwsem);
931 up_read(&clp->cl_sem);
932 if (err != -EACCES)
933 nfs_inode_return_delegation(inode);
934 out_put_state_owner:
935 nfs4_put_state_owner(sp);
936 return err;
937 }
938
939 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
940 {
941 struct nfs4_exception exception = { };
942 struct nfs4_state *res = ERR_PTR(-EIO);
943 int err;
944
945 do {
946 err = _nfs4_open_delegated(inode, flags, cred, &res);
947 if (err == 0)
948 break;
949 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
950 err, &exception));
951 } while (exception.retry);
952 return res;
953 }
954
955 /*
956 * Returns a referenced nfs4_state
957 */
958 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
959 {
960 struct nfs4_state_owner *sp;
961 struct nfs4_state *state = NULL;
962 struct nfs_server *server = NFS_SERVER(dir);
963 struct nfs_client *clp = server->nfs_client;
964 struct nfs4_opendata *opendata;
965 int status;
966
967 /* Protect against reboot recovery conflicts */
968 status = -ENOMEM;
969 if (!(sp = nfs4_get_state_owner(server, cred))) {
970 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
971 goto out_err;
972 }
973 status = nfs4_recover_expired_lease(server);
974 if (status != 0)
975 goto err_put_state_owner;
976 down_read(&clp->cl_sem);
977 status = -ENOMEM;
978 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
979 if (opendata == NULL)
980 goto err_release_rwsem;
981
982 status = _nfs4_proc_open(opendata);
983 if (status != 0)
984 goto err_opendata_free;
985
986 status = -ENOMEM;
987 state = nfs4_opendata_to_nfs4_state(opendata);
988 if (state == NULL)
989 goto err_opendata_free;
990 if (opendata->o_res.delegation_type != 0)
991 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
992 nfs4_opendata_free(opendata);
993 nfs4_put_state_owner(sp);
994 up_read(&clp->cl_sem);
995 *res = state;
996 return 0;
997 err_opendata_free:
998 nfs4_opendata_free(opendata);
999 err_release_rwsem:
1000 up_read(&clp->cl_sem);
1001 err_put_state_owner:
1002 nfs4_put_state_owner(sp);
1003 out_err:
1004 *res = NULL;
1005 return status;
1006 }
1007
1008
1009 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1010 {
1011 struct nfs4_exception exception = { };
1012 struct nfs4_state *res;
1013 int status;
1014
1015 do {
1016 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1017 if (status == 0)
1018 break;
1019 /* NOTE: BAD_SEQID means the server and client disagree about the
1020 * book-keeping w.r.t. state-changing operations
1021 * (OPEN/CLOSE/LOCK/LOCKU...)
1022 * It is actually a sign of a bug on the client or on the server.
1023 *
1024 * If we receive a BAD_SEQID error in the particular case of
1025 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1026 * have unhashed the old state_owner for us, and that we can
1027 * therefore safely retry using a new one. We should still warn
1028 * the user though...
1029 */
1030 if (status == -NFS4ERR_BAD_SEQID) {
1031 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1032 exception.retry = 1;
1033 continue;
1034 }
1035 /*
1036 * BAD_STATEID on OPEN means that the server cancelled our
1037 * state before it received the OPEN_CONFIRM.
1038 * Recover by retrying the request as per the discussion
1039 * on Page 181 of RFC3530.
1040 */
1041 if (status == -NFS4ERR_BAD_STATEID) {
1042 exception.retry = 1;
1043 continue;
1044 }
1045 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1046 status, &exception));
1047 } while (exception.retry);
1048 return res;
1049 }
1050
1051 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1052 struct iattr *sattr, struct nfs4_state *state)
1053 {
1054 struct nfs_server *server = NFS_SERVER(inode);
1055 struct nfs_setattrargs arg = {
1056 .fh = NFS_FH(inode),
1057 .iap = sattr,
1058 .server = server,
1059 .bitmask = server->attr_bitmask,
1060 };
1061 struct nfs_setattrres res = {
1062 .fattr = fattr,
1063 .server = server,
1064 };
1065 struct rpc_message msg = {
1066 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1067 .rpc_argp = &arg,
1068 .rpc_resp = &res,
1069 };
1070 unsigned long timestamp = jiffies;
1071 int status;
1072
1073 nfs_fattr_init(fattr);
1074
1075 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1076 /* Use that stateid */
1077 } else if (state != NULL) {
1078 msg.rpc_cred = state->owner->so_cred;
1079 nfs4_copy_stateid(&arg.stateid, state, current->files);
1080 } else
1081 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1082
1083 status = rpc_call_sync(server->client, &msg, 0);
1084 if (status == 0 && state != NULL)
1085 renew_lease(server, timestamp);
1086 return status;
1087 }
1088
1089 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1090 struct iattr *sattr, struct nfs4_state *state)
1091 {
1092 struct nfs_server *server = NFS_SERVER(inode);
1093 struct nfs4_exception exception = { };
1094 int err;
1095 do {
1096 err = nfs4_handle_exception(server,
1097 _nfs4_do_setattr(inode, fattr, sattr, state),
1098 &exception);
1099 } while (exception.retry);
1100 return err;
1101 }
1102
1103 struct nfs4_closedata {
1104 struct inode *inode;
1105 struct nfs4_state *state;
1106 struct nfs_closeargs arg;
1107 struct nfs_closeres res;
1108 struct nfs_fattr fattr;
1109 unsigned long timestamp;
1110 };
1111
1112 static void nfs4_free_closedata(void *data)
1113 {
1114 struct nfs4_closedata *calldata = data;
1115 struct nfs4_state_owner *sp = calldata->state->owner;
1116
1117 nfs4_put_open_state(calldata->state);
1118 nfs_free_seqid(calldata->arg.seqid);
1119 nfs4_put_state_owner(sp);
1120 kfree(calldata);
1121 }
1122
1123 static void nfs4_close_done(struct rpc_task *task, void *data)
1124 {
1125 struct nfs4_closedata *calldata = data;
1126 struct nfs4_state *state = calldata->state;
1127 struct nfs_server *server = NFS_SERVER(calldata->inode);
1128
1129 if (RPC_ASSASSINATED(task))
1130 return;
1131 /* hmm. we are done with the inode, and in the process of freeing
1132 * the state_owner. we keep this around to process errors
1133 */
1134 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1135 switch (task->tk_status) {
1136 case 0:
1137 memcpy(&state->stateid, &calldata->res.stateid,
1138 sizeof(state->stateid));
1139 renew_lease(server, calldata->timestamp);
1140 break;
1141 case -NFS4ERR_STALE_STATEID:
1142 case -NFS4ERR_EXPIRED:
1143 nfs4_schedule_state_recovery(server->nfs_client);
1144 break;
1145 default:
1146 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1147 rpc_restart_call(task);
1148 return;
1149 }
1150 }
1151 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1152 }
1153
1154 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1155 {
1156 struct nfs4_closedata *calldata = data;
1157 struct nfs4_state *state = calldata->state;
1158 struct rpc_message msg = {
1159 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1160 .rpc_argp = &calldata->arg,
1161 .rpc_resp = &calldata->res,
1162 .rpc_cred = state->owner->so_cred,
1163 };
1164 int mode = 0, old_mode;
1165
1166 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1167 return;
1168 /* Recalculate the new open mode in case someone reopened the file
1169 * while we were waiting in line to be scheduled.
1170 */
1171 spin_lock(&state->owner->so_lock);
1172 spin_lock(&calldata->inode->i_lock);
1173 mode = old_mode = state->state;
1174 if (state->n_rdwr == 0) {
1175 if (state->n_rdonly == 0)
1176 mode &= ~FMODE_READ;
1177 if (state->n_wronly == 0)
1178 mode &= ~FMODE_WRITE;
1179 }
1180 nfs4_state_set_mode_locked(state, mode);
1181 spin_unlock(&calldata->inode->i_lock);
1182 spin_unlock(&state->owner->so_lock);
1183 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1184 /* Note: exit _without_ calling nfs4_close_done */
1185 task->tk_action = NULL;
1186 return;
1187 }
1188 nfs_fattr_init(calldata->res.fattr);
1189 if (mode != 0)
1190 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1191 calldata->arg.open_flags = mode;
1192 calldata->timestamp = jiffies;
1193 rpc_call_setup(task, &msg, 0);
1194 }
1195
1196 static const struct rpc_call_ops nfs4_close_ops = {
1197 .rpc_call_prepare = nfs4_close_prepare,
1198 .rpc_call_done = nfs4_close_done,
1199 .rpc_release = nfs4_free_closedata,
1200 };
1201
1202 /*
1203 * It is possible for data to be read/written from a mem-mapped file
1204 * after the sys_close call (which hits the vfs layer as a flush).
1205 * This means that we can't safely call nfsv4 close on a file until
1206 * the inode is cleared. This in turn means that we are not good
1207 * NFSv4 citizens - we do not indicate to the server to update the file's
1208 * share state even when we are done with one of the three share
1209 * stateid's in the inode.
1210 *
1211 * NOTE: Caller must be holding the sp->so_owner semaphore!
1212 */
1213 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1214 {
1215 struct nfs_server *server = NFS_SERVER(inode);
1216 struct nfs4_closedata *calldata;
1217 int status = -ENOMEM;
1218
1219 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1220 if (calldata == NULL)
1221 goto out;
1222 calldata->inode = inode;
1223 calldata->state = state;
1224 calldata->arg.fh = NFS_FH(inode);
1225 calldata->arg.stateid = &state->stateid;
1226 /* Serialization for the sequence id */
1227 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1228 if (calldata->arg.seqid == NULL)
1229 goto out_free_calldata;
1230 calldata->arg.bitmask = server->attr_bitmask;
1231 calldata->res.fattr = &calldata->fattr;
1232 calldata->res.server = server;
1233
1234 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1235 if (status == 0)
1236 goto out;
1237
1238 nfs_free_seqid(calldata->arg.seqid);
1239 out_free_calldata:
1240 kfree(calldata);
1241 out:
1242 return status;
1243 }
1244
1245 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1246 {
1247 struct file *filp;
1248
1249 filp = lookup_instantiate_filp(nd, dentry, NULL);
1250 if (!IS_ERR(filp)) {
1251 struct nfs_open_context *ctx;
1252 ctx = (struct nfs_open_context *)filp->private_data;
1253 ctx->state = state;
1254 return 0;
1255 }
1256 nfs4_close_state(state, nd->intent.open.flags);
1257 return PTR_ERR(filp);
1258 }
1259
1260 struct dentry *
1261 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1262 {
1263 struct iattr attr;
1264 struct rpc_cred *cred;
1265 struct nfs4_state *state;
1266 struct dentry *res;
1267
1268 if (nd->flags & LOOKUP_CREATE) {
1269 attr.ia_mode = nd->intent.open.create_mode;
1270 attr.ia_valid = ATTR_MODE;
1271 if (!IS_POSIXACL(dir))
1272 attr.ia_mode &= ~current->fs->umask;
1273 } else {
1274 attr.ia_valid = 0;
1275 BUG_ON(nd->intent.open.flags & O_CREAT);
1276 }
1277
1278 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1279 if (IS_ERR(cred))
1280 return (struct dentry *)cred;
1281 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1282 put_rpccred(cred);
1283 if (IS_ERR(state)) {
1284 if (PTR_ERR(state) == -ENOENT)
1285 d_add(dentry, NULL);
1286 return (struct dentry *)state;
1287 }
1288 res = d_add_unique(dentry, igrab(state->inode));
1289 if (res != NULL)
1290 dentry = res;
1291 nfs4_intent_set_file(nd, dentry, state);
1292 return res;
1293 }
1294
1295 int
1296 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1297 {
1298 struct rpc_cred *cred;
1299 struct nfs4_state *state;
1300
1301 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1302 if (IS_ERR(cred))
1303 return PTR_ERR(cred);
1304 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1305 if (IS_ERR(state))
1306 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1307 put_rpccred(cred);
1308 if (IS_ERR(state)) {
1309 switch (PTR_ERR(state)) {
1310 case -EPERM:
1311 case -EACCES:
1312 case -EDQUOT:
1313 case -ENOSPC:
1314 case -EROFS:
1315 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1316 return 1;
1317 default:
1318 goto out_drop;
1319 }
1320 }
1321 if (state->inode == dentry->d_inode) {
1322 nfs4_intent_set_file(nd, dentry, state);
1323 return 1;
1324 }
1325 nfs4_close_state(state, openflags);
1326 out_drop:
1327 d_drop(dentry);
1328 return 0;
1329 }
1330
1331
1332 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1333 {
1334 struct nfs4_server_caps_res res = {};
1335 struct rpc_message msg = {
1336 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1337 .rpc_argp = fhandle,
1338 .rpc_resp = &res,
1339 };
1340 int status;
1341
1342 status = rpc_call_sync(server->client, &msg, 0);
1343 if (status == 0) {
1344 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1345 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1346 server->caps |= NFS_CAP_ACLS;
1347 if (res.has_links != 0)
1348 server->caps |= NFS_CAP_HARDLINKS;
1349 if (res.has_symlinks != 0)
1350 server->caps |= NFS_CAP_SYMLINKS;
1351 server->acl_bitmask = res.acl_bitmask;
1352 }
1353 return status;
1354 }
1355
1356 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1357 {
1358 struct nfs4_exception exception = { };
1359 int err;
1360 do {
1361 err = nfs4_handle_exception(server,
1362 _nfs4_server_capabilities(server, fhandle),
1363 &exception);
1364 } while (exception.retry);
1365 return err;
1366 }
1367
1368 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1369 struct nfs_fsinfo *info)
1370 {
1371 struct nfs4_lookup_root_arg args = {
1372 .bitmask = nfs4_fattr_bitmap,
1373 };
1374 struct nfs4_lookup_res res = {
1375 .server = server,
1376 .fattr = info->fattr,
1377 .fh = fhandle,
1378 };
1379 struct rpc_message msg = {
1380 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1381 .rpc_argp = &args,
1382 .rpc_resp = &res,
1383 };
1384 nfs_fattr_init(info->fattr);
1385 return rpc_call_sync(server->client, &msg, 0);
1386 }
1387
1388 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1389 struct nfs_fsinfo *info)
1390 {
1391 struct nfs4_exception exception = { };
1392 int err;
1393 do {
1394 err = nfs4_handle_exception(server,
1395 _nfs4_lookup_root(server, fhandle, info),
1396 &exception);
1397 } while (exception.retry);
1398 return err;
1399 }
1400
1401 /*
1402 * get the file handle for the "/" directory on the server
1403 */
1404 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1405 struct nfs_fsinfo *info)
1406 {
1407 int status;
1408
1409 status = nfs4_lookup_root(server, fhandle, info);
1410 if (status == 0)
1411 status = nfs4_server_capabilities(server, fhandle);
1412 if (status == 0)
1413 status = nfs4_do_fsinfo(server, fhandle, info);
1414 return nfs4_map_errors(status);
1415 }
1416
1417 /*
1418 * Get locations and (maybe) other attributes of a referral.
1419 * Note that we'll actually follow the referral later when
1420 * we detect fsid mismatch in inode revalidation
1421 */
1422 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1423 {
1424 int status = -ENOMEM;
1425 struct page *page = NULL;
1426 struct nfs4_fs_locations *locations = NULL;
1427 struct dentry dentry = {};
1428
1429 page = alloc_page(GFP_KERNEL);
1430 if (page == NULL)
1431 goto out;
1432 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1433 if (locations == NULL)
1434 goto out;
1435
1436 dentry.d_name.name = name->name;
1437 dentry.d_name.len = name->len;
1438 status = nfs4_proc_fs_locations(dir, &dentry, locations, page);
1439 if (status != 0)
1440 goto out;
1441 /* Make sure server returned a different fsid for the referral */
1442 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1443 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1444 status = -EIO;
1445 goto out;
1446 }
1447
1448 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1449 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1450 if (!fattr->mode)
1451 fattr->mode = S_IFDIR;
1452 memset(fhandle, 0, sizeof(struct nfs_fh));
1453 out:
1454 if (page)
1455 __free_page(page);
1456 if (locations)
1457 kfree(locations);
1458 return status;
1459 }
1460
1461 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1462 {
1463 struct nfs4_getattr_arg args = {
1464 .fh = fhandle,
1465 .bitmask = server->attr_bitmask,
1466 };
1467 struct nfs4_getattr_res res = {
1468 .fattr = fattr,
1469 .server = server,
1470 };
1471 struct rpc_message msg = {
1472 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1473 .rpc_argp = &args,
1474 .rpc_resp = &res,
1475 };
1476
1477 nfs_fattr_init(fattr);
1478 return rpc_call_sync(server->client, &msg, 0);
1479 }
1480
1481 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1482 {
1483 struct nfs4_exception exception = { };
1484 int err;
1485 do {
1486 err = nfs4_handle_exception(server,
1487 _nfs4_proc_getattr(server, fhandle, fattr),
1488 &exception);
1489 } while (exception.retry);
1490 return err;
1491 }
1492
1493 /*
1494 * The file is not closed if it is opened due to the a request to change
1495 * the size of the file. The open call will not be needed once the
1496 * VFS layer lookup-intents are implemented.
1497 *
1498 * Close is called when the inode is destroyed.
1499 * If we haven't opened the file for O_WRONLY, we
1500 * need to in the size_change case to obtain a stateid.
1501 *
1502 * Got race?
1503 * Because OPEN is always done by name in nfsv4, it is
1504 * possible that we opened a different file by the same
1505 * name. We can recognize this race condition, but we
1506 * can't do anything about it besides returning an error.
1507 *
1508 * This will be fixed with VFS changes (lookup-intent).
1509 */
1510 static int
1511 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1512 struct iattr *sattr)
1513 {
1514 struct rpc_cred *cred;
1515 struct inode *inode = dentry->d_inode;
1516 struct nfs_open_context *ctx;
1517 struct nfs4_state *state = NULL;
1518 int status;
1519
1520 nfs_fattr_init(fattr);
1521
1522 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1523 if (IS_ERR(cred))
1524 return PTR_ERR(cred);
1525
1526 /* Search for an existing open(O_WRITE) file */
1527 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1528 if (ctx != NULL)
1529 state = ctx->state;
1530
1531 status = nfs4_do_setattr(inode, fattr, sattr, state);
1532 if (status == 0)
1533 nfs_setattr_update_inode(inode, sattr);
1534 if (ctx != NULL)
1535 put_nfs_open_context(ctx);
1536 put_rpccred(cred);
1537 return status;
1538 }
1539
1540 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1541 struct qstr *name, struct nfs_fh *fhandle,
1542 struct nfs_fattr *fattr)
1543 {
1544 int status;
1545 struct nfs4_lookup_arg args = {
1546 .bitmask = server->attr_bitmask,
1547 .dir_fh = dirfh,
1548 .name = name,
1549 };
1550 struct nfs4_lookup_res res = {
1551 .server = server,
1552 .fattr = fattr,
1553 .fh = fhandle,
1554 };
1555 struct rpc_message msg = {
1556 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1557 .rpc_argp = &args,
1558 .rpc_resp = &res,
1559 };
1560
1561 nfs_fattr_init(fattr);
1562
1563 dprintk("NFS call lookupfh %s\n", name->name);
1564 status = rpc_call_sync(server->client, &msg, 0);
1565 dprintk("NFS reply lookupfh: %d\n", status);
1566 if (status == -NFS4ERR_MOVED)
1567 status = -EREMOTE;
1568 return status;
1569 }
1570
1571 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1572 struct qstr *name, struct nfs_fh *fhandle,
1573 struct nfs_fattr *fattr)
1574 {
1575 struct nfs4_exception exception = { };
1576 int err;
1577 do {
1578 err = nfs4_handle_exception(server,
1579 _nfs4_proc_lookupfh(server, dirfh, name,
1580 fhandle, fattr),
1581 &exception);
1582 } while (exception.retry);
1583 return err;
1584 }
1585
1586 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1587 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1588 {
1589 int status;
1590 struct nfs_server *server = NFS_SERVER(dir);
1591 struct nfs4_lookup_arg args = {
1592 .bitmask = server->attr_bitmask,
1593 .dir_fh = NFS_FH(dir),
1594 .name = name,
1595 };
1596 struct nfs4_lookup_res res = {
1597 .server = server,
1598 .fattr = fattr,
1599 .fh = fhandle,
1600 };
1601 struct rpc_message msg = {
1602 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1603 .rpc_argp = &args,
1604 .rpc_resp = &res,
1605 };
1606
1607 nfs_fattr_init(fattr);
1608
1609 dprintk("NFS call lookup %s\n", name->name);
1610 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1611 if (status == -NFS4ERR_MOVED)
1612 status = nfs4_get_referral(dir, name, fattr, fhandle);
1613 dprintk("NFS reply lookup: %d\n", status);
1614 return status;
1615 }
1616
1617 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 struct nfs4_exception exception = { };
1620 int err;
1621 do {
1622 err = nfs4_handle_exception(NFS_SERVER(dir),
1623 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1624 &exception);
1625 } while (exception.retry);
1626 return err;
1627 }
1628
1629 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1630 {
1631 struct nfs4_accessargs args = {
1632 .fh = NFS_FH(inode),
1633 };
1634 struct nfs4_accessres res = { 0 };
1635 struct rpc_message msg = {
1636 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1637 .rpc_argp = &args,
1638 .rpc_resp = &res,
1639 .rpc_cred = entry->cred,
1640 };
1641 int mode = entry->mask;
1642 int status;
1643
1644 /*
1645 * Determine which access bits we want to ask for...
1646 */
1647 if (mode & MAY_READ)
1648 args.access |= NFS4_ACCESS_READ;
1649 if (S_ISDIR(inode->i_mode)) {
1650 if (mode & MAY_WRITE)
1651 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1652 if (mode & MAY_EXEC)
1653 args.access |= NFS4_ACCESS_LOOKUP;
1654 } else {
1655 if (mode & MAY_WRITE)
1656 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1657 if (mode & MAY_EXEC)
1658 args.access |= NFS4_ACCESS_EXECUTE;
1659 }
1660 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1661 if (!status) {
1662 entry->mask = 0;
1663 if (res.access & NFS4_ACCESS_READ)
1664 entry->mask |= MAY_READ;
1665 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1666 entry->mask |= MAY_WRITE;
1667 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1668 entry->mask |= MAY_EXEC;
1669 }
1670 return status;
1671 }
1672
1673 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1674 {
1675 struct nfs4_exception exception = { };
1676 int err;
1677 do {
1678 err = nfs4_handle_exception(NFS_SERVER(inode),
1679 _nfs4_proc_access(inode, entry),
1680 &exception);
1681 } while (exception.retry);
1682 return err;
1683 }
1684
1685 /*
1686 * TODO: For the time being, we don't try to get any attributes
1687 * along with any of the zero-copy operations READ, READDIR,
1688 * READLINK, WRITE.
1689 *
1690 * In the case of the first three, we want to put the GETATTR
1691 * after the read-type operation -- this is because it is hard
1692 * to predict the length of a GETATTR response in v4, and thus
1693 * align the READ data correctly. This means that the GETATTR
1694 * may end up partially falling into the page cache, and we should
1695 * shift it into the 'tail' of the xdr_buf before processing.
1696 * To do this efficiently, we need to know the total length
1697 * of data received, which doesn't seem to be available outside
1698 * of the RPC layer.
1699 *
1700 * In the case of WRITE, we also want to put the GETATTR after
1701 * the operation -- in this case because we want to make sure
1702 * we get the post-operation mtime and size. This means that
1703 * we can't use xdr_encode_pages() as written: we need a variant
1704 * of it which would leave room in the 'tail' iovec.
1705 *
1706 * Both of these changes to the XDR layer would in fact be quite
1707 * minor, but I decided to leave them for a subsequent patch.
1708 */
1709 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1710 unsigned int pgbase, unsigned int pglen)
1711 {
1712 struct nfs4_readlink args = {
1713 .fh = NFS_FH(inode),
1714 .pgbase = pgbase,
1715 .pglen = pglen,
1716 .pages = &page,
1717 };
1718 struct rpc_message msg = {
1719 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1720 .rpc_argp = &args,
1721 .rpc_resp = NULL,
1722 };
1723
1724 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1725 }
1726
1727 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1728 unsigned int pgbase, unsigned int pglen)
1729 {
1730 struct nfs4_exception exception = { };
1731 int err;
1732 do {
1733 err = nfs4_handle_exception(NFS_SERVER(inode),
1734 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1735 &exception);
1736 } while (exception.retry);
1737 return err;
1738 }
1739
1740 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1741 {
1742 int flags = rdata->flags;
1743 struct inode *inode = rdata->inode;
1744 struct nfs_fattr *fattr = rdata->res.fattr;
1745 struct nfs_server *server = NFS_SERVER(inode);
1746 struct rpc_message msg = {
1747 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
1748 .rpc_argp = &rdata->args,
1749 .rpc_resp = &rdata->res,
1750 .rpc_cred = rdata->cred,
1751 };
1752 unsigned long timestamp = jiffies;
1753 int status;
1754
1755 dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
1756 (long long) rdata->args.offset);
1757
1758 nfs_fattr_init(fattr);
1759 status = rpc_call_sync(server->client, &msg, flags);
1760 if (!status)
1761 renew_lease(server, timestamp);
1762 dprintk("NFS reply read: %d\n", status);
1763 return status;
1764 }
1765
1766 static int nfs4_proc_read(struct nfs_read_data *rdata)
1767 {
1768 struct nfs4_exception exception = { };
1769 int err;
1770 do {
1771 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1772 _nfs4_proc_read(rdata),
1773 &exception);
1774 } while (exception.retry);
1775 return err;
1776 }
1777
1778 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1779 {
1780 int rpcflags = wdata->flags;
1781 struct inode *inode = wdata->inode;
1782 struct nfs_fattr *fattr = wdata->res.fattr;
1783 struct nfs_server *server = NFS_SERVER(inode);
1784 struct rpc_message msg = {
1785 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1786 .rpc_argp = &wdata->args,
1787 .rpc_resp = &wdata->res,
1788 .rpc_cred = wdata->cred,
1789 };
1790 int status;
1791
1792 dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
1793 (long long) wdata->args.offset);
1794
1795 wdata->args.bitmask = server->attr_bitmask;
1796 wdata->res.server = server;
1797 wdata->timestamp = jiffies;
1798 nfs_fattr_init(fattr);
1799 status = rpc_call_sync(server->client, &msg, rpcflags);
1800 dprintk("NFS reply write: %d\n", status);
1801 if (status < 0)
1802 return status;
1803 renew_lease(server, wdata->timestamp);
1804 nfs_post_op_update_inode(inode, fattr);
1805 return wdata->res.count;
1806 }
1807
1808 static int nfs4_proc_write(struct nfs_write_data *wdata)
1809 {
1810 struct nfs4_exception exception = { };
1811 int err;
1812 do {
1813 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1814 _nfs4_proc_write(wdata),
1815 &exception);
1816 } while (exception.retry);
1817 return err;
1818 }
1819
1820 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1821 {
1822 struct inode *inode = cdata->inode;
1823 struct nfs_fattr *fattr = cdata->res.fattr;
1824 struct nfs_server *server = NFS_SERVER(inode);
1825 struct rpc_message msg = {
1826 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1827 .rpc_argp = &cdata->args,
1828 .rpc_resp = &cdata->res,
1829 .rpc_cred = cdata->cred,
1830 };
1831 int status;
1832
1833 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
1834 (long long) cdata->args.offset);
1835
1836 cdata->args.bitmask = server->attr_bitmask;
1837 cdata->res.server = server;
1838 cdata->timestamp = jiffies;
1839 nfs_fattr_init(fattr);
1840 status = rpc_call_sync(server->client, &msg, 0);
1841 if (status >= 0)
1842 renew_lease(server, cdata->timestamp);
1843 dprintk("NFS reply commit: %d\n", status);
1844 if (status >= 0)
1845 nfs_post_op_update_inode(inode, fattr);
1846 return status;
1847 }
1848
1849 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1850 {
1851 struct nfs4_exception exception = { };
1852 int err;
1853 do {
1854 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1855 _nfs4_proc_commit(cdata),
1856 &exception);
1857 } while (exception.retry);
1858 return err;
1859 }
1860
1861 /*
1862 * Got race?
1863 * We will need to arrange for the VFS layer to provide an atomic open.
1864 * Until then, this create/open method is prone to inefficiency and race
1865 * conditions due to the lookup, create, and open VFS calls from sys_open()
1866 * placed on the wire.
1867 *
1868 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1869 * The file will be opened again in the subsequent VFS open call
1870 * (nfs4_proc_file_open).
1871 *
1872 * The open for read will just hang around to be used by any process that
1873 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1874 */
1875
1876 static int
1877 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1878 int flags, struct nameidata *nd)
1879 {
1880 struct nfs4_state *state;
1881 struct rpc_cred *cred;
1882 int status = 0;
1883
1884 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1885 if (IS_ERR(cred)) {
1886 status = PTR_ERR(cred);
1887 goto out;
1888 }
1889 state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1890 put_rpccred(cred);
1891 if (IS_ERR(state)) {
1892 status = PTR_ERR(state);
1893 goto out;
1894 }
1895 d_instantiate(dentry, igrab(state->inode));
1896 if (flags & O_EXCL) {
1897 struct nfs_fattr fattr;
1898 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1899 if (status == 0)
1900 nfs_setattr_update_inode(state->inode, sattr);
1901 }
1902 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1903 status = nfs4_intent_set_file(nd, dentry, state);
1904 else
1905 nfs4_close_state(state, flags);
1906 out:
1907 return status;
1908 }
1909
1910 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1911 {
1912 struct nfs_server *server = NFS_SERVER(dir);
1913 struct nfs4_remove_arg args = {
1914 .fh = NFS_FH(dir),
1915 .name = name,
1916 .bitmask = server->attr_bitmask,
1917 };
1918 struct nfs_fattr dir_attr;
1919 struct nfs4_remove_res res = {
1920 .server = server,
1921 .dir_attr = &dir_attr,
1922 };
1923 struct rpc_message msg = {
1924 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1925 .rpc_argp = &args,
1926 .rpc_resp = &res,
1927 };
1928 int status;
1929
1930 nfs_fattr_init(res.dir_attr);
1931 status = rpc_call_sync(server->client, &msg, 0);
1932 if (status == 0) {
1933 update_changeattr(dir, &res.cinfo);
1934 nfs_post_op_update_inode(dir, res.dir_attr);
1935 }
1936 return status;
1937 }
1938
1939 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1940 {
1941 struct nfs4_exception exception = { };
1942 int err;
1943 do {
1944 err = nfs4_handle_exception(NFS_SERVER(dir),
1945 _nfs4_proc_remove(dir, name),
1946 &exception);
1947 } while (exception.retry);
1948 return err;
1949 }
1950
1951 struct unlink_desc {
1952 struct nfs4_remove_arg args;
1953 struct nfs4_remove_res res;
1954 struct nfs_fattr dir_attr;
1955 };
1956
1957 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1958 struct qstr *name)
1959 {
1960 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1961 struct unlink_desc *up;
1962
1963 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1964 if (!up)
1965 return -ENOMEM;
1966
1967 up->args.fh = NFS_FH(dir->d_inode);
1968 up->args.name = name;
1969 up->args.bitmask = server->attr_bitmask;
1970 up->res.server = server;
1971 up->res.dir_attr = &up->dir_attr;
1972
1973 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1974 msg->rpc_argp = &up->args;
1975 msg->rpc_resp = &up->res;
1976 return 0;
1977 }
1978
1979 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1980 {
1981 struct rpc_message *msg = &task->tk_msg;
1982 struct unlink_desc *up;
1983
1984 if (msg->rpc_resp != NULL) {
1985 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1986 update_changeattr(dir->d_inode, &up->res.cinfo);
1987 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1988 kfree(up);
1989 msg->rpc_resp = NULL;
1990 msg->rpc_argp = NULL;
1991 }
1992 return 0;
1993 }
1994
1995 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1996 struct inode *new_dir, struct qstr *new_name)
1997 {
1998 struct nfs_server *server = NFS_SERVER(old_dir);
1999 struct nfs4_rename_arg arg = {
2000 .old_dir = NFS_FH(old_dir),
2001 .new_dir = NFS_FH(new_dir),
2002 .old_name = old_name,
2003 .new_name = new_name,
2004 .bitmask = server->attr_bitmask,
2005 };
2006 struct nfs_fattr old_fattr, new_fattr;
2007 struct nfs4_rename_res res = {
2008 .server = server,
2009 .old_fattr = &old_fattr,
2010 .new_fattr = &new_fattr,
2011 };
2012 struct rpc_message msg = {
2013 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2014 .rpc_argp = &arg,
2015 .rpc_resp = &res,
2016 };
2017 int status;
2018
2019 nfs_fattr_init(res.old_fattr);
2020 nfs_fattr_init(res.new_fattr);
2021 status = rpc_call_sync(server->client, &msg, 0);
2022
2023 if (!status) {
2024 update_changeattr(old_dir, &res.old_cinfo);
2025 nfs_post_op_update_inode(old_dir, res.old_fattr);
2026 update_changeattr(new_dir, &res.new_cinfo);
2027 nfs_post_op_update_inode(new_dir, res.new_fattr);
2028 }
2029 return status;
2030 }
2031
2032 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2033 struct inode *new_dir, struct qstr *new_name)
2034 {
2035 struct nfs4_exception exception = { };
2036 int err;
2037 do {
2038 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2039 _nfs4_proc_rename(old_dir, old_name,
2040 new_dir, new_name),
2041 &exception);
2042 } while (exception.retry);
2043 return err;
2044 }
2045
2046 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2047 {
2048 struct nfs_server *server = NFS_SERVER(inode);
2049 struct nfs4_link_arg arg = {
2050 .fh = NFS_FH(inode),
2051 .dir_fh = NFS_FH(dir),
2052 .name = name,
2053 .bitmask = server->attr_bitmask,
2054 };
2055 struct nfs_fattr fattr, dir_attr;
2056 struct nfs4_link_res res = {
2057 .server = server,
2058 .fattr = &fattr,
2059 .dir_attr = &dir_attr,
2060 };
2061 struct rpc_message msg = {
2062 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2063 .rpc_argp = &arg,
2064 .rpc_resp = &res,
2065 };
2066 int status;
2067
2068 nfs_fattr_init(res.fattr);
2069 nfs_fattr_init(res.dir_attr);
2070 status = rpc_call_sync(server->client, &msg, 0);
2071 if (!status) {
2072 update_changeattr(dir, &res.cinfo);
2073 nfs_post_op_update_inode(dir, res.dir_attr);
2074 nfs_post_op_update_inode(inode, res.fattr);
2075 }
2076
2077 return status;
2078 }
2079
2080 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2081 {
2082 struct nfs4_exception exception = { };
2083 int err;
2084 do {
2085 err = nfs4_handle_exception(NFS_SERVER(inode),
2086 _nfs4_proc_link(inode, dir, name),
2087 &exception);
2088 } while (exception.retry);
2089 return err;
2090 }
2091
2092 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2093 struct page *page, unsigned int len, struct iattr *sattr)
2094 {
2095 struct nfs_server *server = NFS_SERVER(dir);
2096 struct nfs_fh fhandle;
2097 struct nfs_fattr fattr, dir_fattr;
2098 struct nfs4_create_arg arg = {
2099 .dir_fh = NFS_FH(dir),
2100 .server = server,
2101 .name = &dentry->d_name,
2102 .attrs = sattr,
2103 .ftype = NF4LNK,
2104 .bitmask = server->attr_bitmask,
2105 };
2106 struct nfs4_create_res res = {
2107 .server = server,
2108 .fh = &fhandle,
2109 .fattr = &fattr,
2110 .dir_fattr = &dir_fattr,
2111 };
2112 struct rpc_message msg = {
2113 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2114 .rpc_argp = &arg,
2115 .rpc_resp = &res,
2116 };
2117 int status;
2118
2119 if (len > NFS4_MAXPATHLEN)
2120 return -ENAMETOOLONG;
2121
2122 arg.u.symlink.pages = &page;
2123 arg.u.symlink.len = len;
2124 nfs_fattr_init(&fattr);
2125 nfs_fattr_init(&dir_fattr);
2126
2127 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2128 if (!status) {
2129 update_changeattr(dir, &res.dir_cinfo);
2130 nfs_post_op_update_inode(dir, res.dir_fattr);
2131 status = nfs_instantiate(dentry, &fhandle, &fattr);
2132 }
2133 return status;
2134 }
2135
2136 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2137 struct page *page, unsigned int len, struct iattr *sattr)
2138 {
2139 struct nfs4_exception exception = { };
2140 int err;
2141 do {
2142 err = nfs4_handle_exception(NFS_SERVER(dir),
2143 _nfs4_proc_symlink(dir, dentry, page,
2144 len, sattr),
2145 &exception);
2146 } while (exception.retry);
2147 return err;
2148 }
2149
2150 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2151 struct iattr *sattr)
2152 {
2153 struct nfs_server *server = NFS_SERVER(dir);
2154 struct nfs_fh fhandle;
2155 struct nfs_fattr fattr, dir_fattr;
2156 struct nfs4_create_arg arg = {
2157 .dir_fh = NFS_FH(dir),
2158 .server = server,
2159 .name = &dentry->d_name,
2160 .attrs = sattr,
2161 .ftype = NF4DIR,
2162 .bitmask = server->attr_bitmask,
2163 };
2164 struct nfs4_create_res res = {
2165 .server = server,
2166 .fh = &fhandle,
2167 .fattr = &fattr,
2168 .dir_fattr = &dir_fattr,
2169 };
2170 struct rpc_message msg = {
2171 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2172 .rpc_argp = &arg,
2173 .rpc_resp = &res,
2174 };
2175 int status;
2176
2177 nfs_fattr_init(&fattr);
2178 nfs_fattr_init(&dir_fattr);
2179
2180 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2181 if (!status) {
2182 update_changeattr(dir, &res.dir_cinfo);
2183 nfs_post_op_update_inode(dir, res.dir_fattr);
2184 status = nfs_instantiate(dentry, &fhandle, &fattr);
2185 }
2186 return status;
2187 }
2188
2189 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2190 struct iattr *sattr)
2191 {
2192 struct nfs4_exception exception = { };
2193 int err;
2194 do {
2195 err = nfs4_handle_exception(NFS_SERVER(dir),
2196 _nfs4_proc_mkdir(dir, dentry, sattr),
2197 &exception);
2198 } while (exception.retry);
2199 return err;
2200 }
2201
2202 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2203 u64 cookie, struct page *page, unsigned int count, int plus)
2204 {
2205 struct inode *dir = dentry->d_inode;
2206 struct nfs4_readdir_arg args = {
2207 .fh = NFS_FH(dir),
2208 .pages = &page,
2209 .pgbase = 0,
2210 .count = count,
2211 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2212 };
2213 struct nfs4_readdir_res res;
2214 struct rpc_message msg = {
2215 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2216 .rpc_argp = &args,
2217 .rpc_resp = &res,
2218 .rpc_cred = cred,
2219 };
2220 int status;
2221
2222 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2223 dentry->d_parent->d_name.name,
2224 dentry->d_name.name,
2225 (unsigned long long)cookie);
2226 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2227 res.pgbase = args.pgbase;
2228 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2229 if (status == 0)
2230 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2231 dprintk("%s: returns %d\n", __FUNCTION__, status);
2232 return status;
2233 }
2234
2235 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2236 u64 cookie, struct page *page, unsigned int count, int plus)
2237 {
2238 struct nfs4_exception exception = { };
2239 int err;
2240 do {
2241 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2242 _nfs4_proc_readdir(dentry, cred, cookie,
2243 page, count, plus),
2244 &exception);
2245 } while (exception.retry);
2246 return err;
2247 }
2248
2249 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2250 struct iattr *sattr, dev_t rdev)
2251 {
2252 struct nfs_server *server = NFS_SERVER(dir);
2253 struct nfs_fh fh;
2254 struct nfs_fattr fattr, dir_fattr;
2255 struct nfs4_create_arg arg = {
2256 .dir_fh = NFS_FH(dir),
2257 .server = server,
2258 .name = &dentry->d_name,
2259 .attrs = sattr,
2260 .bitmask = server->attr_bitmask,
2261 };
2262 struct nfs4_create_res res = {
2263 .server = server,
2264 .fh = &fh,
2265 .fattr = &fattr,
2266 .dir_fattr = &dir_fattr,
2267 };
2268 struct rpc_message msg = {
2269 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2270 .rpc_argp = &arg,
2271 .rpc_resp = &res,
2272 };
2273 int status;
2274 int mode = sattr->ia_mode;
2275
2276 nfs_fattr_init(&fattr);
2277 nfs_fattr_init(&dir_fattr);
2278
2279 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2280 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2281 if (S_ISFIFO(mode))
2282 arg.ftype = NF4FIFO;
2283 else if (S_ISBLK(mode)) {
2284 arg.ftype = NF4BLK;
2285 arg.u.device.specdata1 = MAJOR(rdev);
2286 arg.u.device.specdata2 = MINOR(rdev);
2287 }
2288 else if (S_ISCHR(mode)) {
2289 arg.ftype = NF4CHR;
2290 arg.u.device.specdata1 = MAJOR(rdev);
2291 arg.u.device.specdata2 = MINOR(rdev);
2292 }
2293 else
2294 arg.ftype = NF4SOCK;
2295
2296 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2297 if (status == 0) {
2298 update_changeattr(dir, &res.dir_cinfo);
2299 nfs_post_op_update_inode(dir, res.dir_fattr);
2300 status = nfs_instantiate(dentry, &fh, &fattr);
2301 }
2302 return status;
2303 }
2304
2305 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2306 struct iattr *sattr, dev_t rdev)
2307 {
2308 struct nfs4_exception exception = { };
2309 int err;
2310 do {
2311 err = nfs4_handle_exception(NFS_SERVER(dir),
2312 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2313 &exception);
2314 } while (exception.retry);
2315 return err;
2316 }
2317
2318 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2319 struct nfs_fsstat *fsstat)
2320 {
2321 struct nfs4_statfs_arg args = {
2322 .fh = fhandle,
2323 .bitmask = server->attr_bitmask,
2324 };
2325 struct rpc_message msg = {
2326 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2327 .rpc_argp = &args,
2328 .rpc_resp = fsstat,
2329 };
2330
2331 nfs_fattr_init(fsstat->fattr);
2332 return rpc_call_sync(server->client, &msg, 0);
2333 }
2334
2335 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2336 {
2337 struct nfs4_exception exception = { };
2338 int err;
2339 do {
2340 err = nfs4_handle_exception(server,
2341 _nfs4_proc_statfs(server, fhandle, fsstat),
2342 &exception);
2343 } while (exception.retry);
2344 return err;
2345 }
2346
2347 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2348 struct nfs_fsinfo *fsinfo)
2349 {
2350 struct nfs4_fsinfo_arg args = {
2351 .fh = fhandle,
2352 .bitmask = server->attr_bitmask,
2353 };
2354 struct rpc_message msg = {
2355 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2356 .rpc_argp = &args,
2357 .rpc_resp = fsinfo,
2358 };
2359
2360 return rpc_call_sync(server->client, &msg, 0);
2361 }
2362
2363 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2364 {
2365 struct nfs4_exception exception = { };
2366 int err;
2367
2368 do {
2369 err = nfs4_handle_exception(server,
2370 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2371 &exception);
2372 } while (exception.retry);
2373 return err;
2374 }
2375
2376 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2377 {
2378 nfs_fattr_init(fsinfo->fattr);
2379 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2380 }
2381
2382 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2383 struct nfs_pathconf *pathconf)
2384 {
2385 struct nfs4_pathconf_arg args = {
2386 .fh = fhandle,
2387 .bitmask = server->attr_bitmask,
2388 };
2389 struct rpc_message msg = {
2390 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2391 .rpc_argp = &args,
2392 .rpc_resp = pathconf,
2393 };
2394
2395 /* None of the pathconf attributes are mandatory to implement */
2396 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2397 memset(pathconf, 0, sizeof(*pathconf));
2398 return 0;
2399 }
2400
2401 nfs_fattr_init(pathconf->fattr);
2402 return rpc_call_sync(server->client, &msg, 0);
2403 }
2404
2405 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2406 struct nfs_pathconf *pathconf)
2407 {
2408 struct nfs4_exception exception = { };
2409 int err;
2410
2411 do {
2412 err = nfs4_handle_exception(server,
2413 _nfs4_proc_pathconf(server, fhandle, pathconf),
2414 &exception);
2415 } while (exception.retry);
2416 return err;
2417 }
2418
2419 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2420 {
2421 struct nfs_server *server = NFS_SERVER(data->inode);
2422
2423 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2424 rpc_restart_call(task);
2425 return -EAGAIN;
2426 }
2427 if (task->tk_status > 0)
2428 renew_lease(server, data->timestamp);
2429 return 0;
2430 }
2431
2432 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2433 {
2434 struct rpc_message msg = {
2435 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2436 .rpc_argp = &data->args,
2437 .rpc_resp = &data->res,
2438 .rpc_cred = data->cred,
2439 };
2440
2441 data->timestamp = jiffies;
2442
2443 rpc_call_setup(&data->task, &msg, 0);
2444 }
2445
2446 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2447 {
2448 struct inode *inode = data->inode;
2449
2450 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2451 rpc_restart_call(task);
2452 return -EAGAIN;
2453 }
2454 if (task->tk_status >= 0) {
2455 renew_lease(NFS_SERVER(inode), data->timestamp);
2456 nfs_post_op_update_inode(inode, data->res.fattr);
2457 }
2458 return 0;
2459 }
2460
2461 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2462 {
2463 struct rpc_message msg = {
2464 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2465 .rpc_argp = &data->args,
2466 .rpc_resp = &data->res,
2467 .rpc_cred = data->cred,
2468 };
2469 struct inode *inode = data->inode;
2470 struct nfs_server *server = NFS_SERVER(inode);
2471 int stable;
2472
2473 if (how & FLUSH_STABLE) {
2474 if (!NFS_I(inode)->ncommit)
2475 stable = NFS_FILE_SYNC;
2476 else
2477 stable = NFS_DATA_SYNC;
2478 } else
2479 stable = NFS_UNSTABLE;
2480 data->args.stable = stable;
2481 data->args.bitmask = server->attr_bitmask;
2482 data->res.server = server;
2483
2484 data->timestamp = jiffies;
2485
2486 /* Finalize the task. */
2487 rpc_call_setup(&data->task, &msg, 0);
2488 }
2489
2490 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2491 {
2492 struct inode *inode = data->inode;
2493
2494 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2495 rpc_restart_call(task);
2496 return -EAGAIN;
2497 }
2498 if (task->tk_status >= 0)
2499 nfs_post_op_update_inode(inode, data->res.fattr);
2500 return 0;
2501 }
2502
2503 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2504 {
2505 struct rpc_message msg = {
2506 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2507 .rpc_argp = &data->args,
2508 .rpc_resp = &data->res,
2509 .rpc_cred = data->cred,
2510 };
2511 struct nfs_server *server = NFS_SERVER(data->inode);
2512
2513 data->args.bitmask = server->attr_bitmask;
2514 data->res.server = server;
2515
2516 rpc_call_setup(&data->task, &msg, 0);
2517 }
2518
2519 /*
2520 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2521 * standalone procedure for queueing an asynchronous RENEW.
2522 */
2523 static void nfs4_renew_done(struct rpc_task *task, void *data)
2524 {
2525 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2526 unsigned long timestamp = (unsigned long)data;
2527
2528 if (task->tk_status < 0) {
2529 switch (task->tk_status) {
2530 case -NFS4ERR_STALE_CLIENTID:
2531 case -NFS4ERR_EXPIRED:
2532 case -NFS4ERR_CB_PATH_DOWN:
2533 nfs4_schedule_state_recovery(clp);
2534 }
2535 return;
2536 }
2537 spin_lock(&clp->cl_lock);
2538 if (time_before(clp->cl_last_renewal,timestamp))
2539 clp->cl_last_renewal = timestamp;
2540 spin_unlock(&clp->cl_lock);
2541 }
2542
2543 static const struct rpc_call_ops nfs4_renew_ops = {
2544 .rpc_call_done = nfs4_renew_done,
2545 };
2546
2547 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2548 {
2549 struct rpc_message msg = {
2550 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2551 .rpc_argp = clp,
2552 .rpc_cred = cred,
2553 };
2554
2555 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2556 &nfs4_renew_ops, (void *)jiffies);
2557 }
2558
2559 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2560 {
2561 struct rpc_message msg = {
2562 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2563 .rpc_argp = clp,
2564 .rpc_cred = cred,
2565 };
2566 unsigned long now = jiffies;
2567 int status;
2568
2569 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2570 if (status < 0)
2571 return status;
2572 spin_lock(&clp->cl_lock);
2573 if (time_before(clp->cl_last_renewal,now))
2574 clp->cl_last_renewal = now;
2575 spin_unlock(&clp->cl_lock);
2576 return 0;
2577 }
2578
2579 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2580 {
2581 return (server->caps & NFS_CAP_ACLS)
2582 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2583 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2584 }
2585
2586 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2587 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2588 * the stack.
2589 */
2590 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2591
2592 static void buf_to_pages(const void *buf, size_t buflen,
2593 struct page **pages, unsigned int *pgbase)
2594 {
2595 const void *p = buf;
2596
2597 *pgbase = offset_in_page(buf);
2598 p -= *pgbase;
2599 while (p < buf + buflen) {
2600 *(pages++) = virt_to_page(p);
2601 p += PAGE_CACHE_SIZE;
2602 }
2603 }
2604
2605 struct nfs4_cached_acl {
2606 int cached;
2607 size_t len;
2608 char data[0];
2609 };
2610
2611 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2612 {
2613 struct nfs_inode *nfsi = NFS_I(inode);
2614
2615 spin_lock(&inode->i_lock);
2616 kfree(nfsi->nfs4_acl);
2617 nfsi->nfs4_acl = acl;
2618 spin_unlock(&inode->i_lock);
2619 }
2620
2621 static void nfs4_zap_acl_attr(struct inode *inode)
2622 {
2623 nfs4_set_cached_acl(inode, NULL);
2624 }
2625
2626 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2627 {
2628 struct nfs_inode *nfsi = NFS_I(inode);
2629 struct nfs4_cached_acl *acl;
2630 int ret = -ENOENT;
2631
2632 spin_lock(&inode->i_lock);
2633 acl = nfsi->nfs4_acl;
2634 if (acl == NULL)
2635 goto out;
2636 if (buf == NULL) /* user is just asking for length */
2637 goto out_len;
2638 if (acl->cached == 0)
2639 goto out;
2640 ret = -ERANGE; /* see getxattr(2) man page */
2641 if (acl->len > buflen)
2642 goto out;
2643 memcpy(buf, acl->data, acl->len);
2644 out_len:
2645 ret = acl->len;
2646 out:
2647 spin_unlock(&inode->i_lock);
2648 return ret;
2649 }
2650
2651 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2652 {
2653 struct nfs4_cached_acl *acl;
2654
2655 if (buf && acl_len <= PAGE_SIZE) {
2656 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2657 if (acl == NULL)
2658 goto out;
2659 acl->cached = 1;
2660 memcpy(acl->data, buf, acl_len);
2661 } else {
2662 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2663 if (acl == NULL)
2664 goto out;
2665 acl->cached = 0;
2666 }
2667 acl->len = acl_len;
2668 out:
2669 nfs4_set_cached_acl(inode, acl);
2670 }
2671
2672 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2673 {
2674 struct page *pages[NFS4ACL_MAXPAGES];
2675 struct nfs_getaclargs args = {
2676 .fh = NFS_FH(inode),
2677 .acl_pages = pages,
2678 .acl_len = buflen,
2679 };
2680 size_t resp_len = buflen;
2681 void *resp_buf;
2682 struct rpc_message msg = {
2683 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2684 .rpc_argp = &args,
2685 .rpc_resp = &resp_len,
2686 };
2687 struct page *localpage = NULL;
2688 int ret;
2689
2690 if (buflen < PAGE_SIZE) {
2691 /* As long as we're doing a round trip to the server anyway,
2692 * let's be prepared for a page of acl data. */
2693 localpage = alloc_page(GFP_KERNEL);
2694 resp_buf = page_address(localpage);
2695 if (localpage == NULL)
2696 return -ENOMEM;
2697 args.acl_pages[0] = localpage;
2698 args.acl_pgbase = 0;
2699 resp_len = args.acl_len = PAGE_SIZE;
2700 } else {
2701 resp_buf = buf;
2702 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2703 }
2704 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2705 if (ret)
2706 goto out_free;
2707 if (resp_len > args.acl_len)
2708 nfs4_write_cached_acl(inode, NULL, resp_len);
2709 else
2710 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2711 if (buf) {
2712 ret = -ERANGE;
2713 if (resp_len > buflen)
2714 goto out_free;
2715 if (localpage)
2716 memcpy(buf, resp_buf, resp_len);
2717 }
2718 ret = resp_len;
2719 out_free:
2720 if (localpage)
2721 __free_page(localpage);
2722 return ret;
2723 }
2724
2725 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2726 {
2727 struct nfs4_exception exception = { };
2728 ssize_t ret;
2729 do {
2730 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2731 if (ret >= 0)
2732 break;
2733 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2734 } while (exception.retry);
2735 return ret;
2736 }
2737
2738 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2739 {
2740 struct nfs_server *server = NFS_SERVER(inode);
2741 int ret;
2742
2743 if (!nfs4_server_supports_acls(server))
2744 return -EOPNOTSUPP;
2745 ret = nfs_revalidate_inode(server, inode);
2746 if (ret < 0)
2747 return ret;
2748 ret = nfs4_read_cached_acl(inode, buf, buflen);
2749 if (ret != -ENOENT)
2750 return ret;
2751 return nfs4_get_acl_uncached(inode, buf, buflen);
2752 }
2753
2754 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2755 {
2756 struct nfs_server *server = NFS_SERVER(inode);
2757 struct page *pages[NFS4ACL_MAXPAGES];
2758 struct nfs_setaclargs arg = {
2759 .fh = NFS_FH(inode),
2760 .acl_pages = pages,
2761 .acl_len = buflen,
2762 };
2763 struct rpc_message msg = {
2764 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2765 .rpc_argp = &arg,
2766 .rpc_resp = NULL,
2767 };
2768 int ret;
2769
2770 if (!nfs4_server_supports_acls(server))
2771 return -EOPNOTSUPP;
2772 nfs_inode_return_delegation(inode);
2773 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2774 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2775 if (ret == 0)
2776 nfs4_write_cached_acl(inode, buf, buflen);
2777 return ret;
2778 }
2779
2780 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2781 {
2782 struct nfs4_exception exception = { };
2783 int err;
2784 do {
2785 err = nfs4_handle_exception(NFS_SERVER(inode),
2786 __nfs4_proc_set_acl(inode, buf, buflen),
2787 &exception);
2788 } while (exception.retry);
2789 return err;
2790 }
2791
2792 static int
2793 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2794 {
2795 struct nfs_client *clp = server->nfs_client;
2796
2797 if (!clp || task->tk_status >= 0)
2798 return 0;
2799 switch(task->tk_status) {
2800 case -NFS4ERR_STALE_CLIENTID:
2801 case -NFS4ERR_STALE_STATEID:
2802 case -NFS4ERR_EXPIRED:
2803 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2804 nfs4_schedule_state_recovery(clp);
2805 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2806 rpc_wake_up_task(task);
2807 task->tk_status = 0;
2808 return -EAGAIN;
2809 case -NFS4ERR_DELAY:
2810 nfs_inc_server_stats((struct nfs_server *) server,
2811 NFSIOS_DELAY);
2812 case -NFS4ERR_GRACE:
2813 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2814 task->tk_status = 0;
2815 return -EAGAIN;
2816 case -NFS4ERR_OLD_STATEID:
2817 task->tk_status = 0;
2818 return -EAGAIN;
2819 }
2820 task->tk_status = nfs4_map_errors(task->tk_status);
2821 return 0;
2822 }
2823
2824 static int nfs4_wait_bit_interruptible(void *word)
2825 {
2826 if (signal_pending(current))
2827 return -ERESTARTSYS;
2828 schedule();
2829 return 0;
2830 }
2831
2832 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2833 {
2834 sigset_t oldset;
2835 int res;
2836
2837 might_sleep();
2838
2839 rpc_clnt_sigmask(clnt, &oldset);
2840 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2841 nfs4_wait_bit_interruptible,
2842 TASK_INTERRUPTIBLE);
2843 rpc_clnt_sigunmask(clnt, &oldset);
2844 return res;
2845 }
2846
2847 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2848 {
2849 sigset_t oldset;
2850 int res = 0;
2851
2852 might_sleep();
2853
2854 if (*timeout <= 0)
2855 *timeout = NFS4_POLL_RETRY_MIN;
2856 if (*timeout > NFS4_POLL_RETRY_MAX)
2857 *timeout = NFS4_POLL_RETRY_MAX;
2858 rpc_clnt_sigmask(clnt, &oldset);
2859 if (clnt->cl_intr) {
2860 schedule_timeout_interruptible(*timeout);
2861 if (signalled())
2862 res = -ERESTARTSYS;
2863 } else
2864 schedule_timeout_uninterruptible(*timeout);
2865 rpc_clnt_sigunmask(clnt, &oldset);
2866 *timeout <<= 1;
2867 return res;
2868 }
2869
2870 /* This is the error handling routine for processes that are allowed
2871 * to sleep.
2872 */
2873 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2874 {
2875 struct nfs_client *clp = server->nfs_client;
2876 int ret = errorcode;
2877
2878 exception->retry = 0;
2879 switch(errorcode) {
2880 case 0:
2881 return 0;
2882 case -NFS4ERR_STALE_CLIENTID:
2883 case -NFS4ERR_STALE_STATEID:
2884 case -NFS4ERR_EXPIRED:
2885 nfs4_schedule_state_recovery(clp);
2886 ret = nfs4_wait_clnt_recover(server->client, clp);
2887 if (ret == 0)
2888 exception->retry = 1;
2889 break;
2890 case -NFS4ERR_FILE_OPEN:
2891 case -NFS4ERR_GRACE:
2892 case -NFS4ERR_DELAY:
2893 ret = nfs4_delay(server->client, &exception->timeout);
2894 if (ret != 0)
2895 break;
2896 case -NFS4ERR_OLD_STATEID:
2897 exception->retry = 1;
2898 }
2899 /* We failed to handle the error */
2900 return nfs4_map_errors(ret);
2901 }
2902
2903 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2904 {
2905 nfs4_verifier sc_verifier;
2906 struct nfs4_setclientid setclientid = {
2907 .sc_verifier = &sc_verifier,
2908 .sc_prog = program,
2909 };
2910 struct rpc_message msg = {
2911 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2912 .rpc_argp = &setclientid,
2913 .rpc_resp = clp,
2914 .rpc_cred = cred,
2915 };
2916 __be32 *p;
2917 int loop = 0;
2918 int status;
2919
2920 p = (__be32*)sc_verifier.data;
2921 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2922 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2923
2924 for(;;) {
2925 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2926 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2927 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2928 cred->cr_ops->cr_name,
2929 clp->cl_id_uniquifier);
2930 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2931 sizeof(setclientid.sc_netid), "tcp");
2932 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2933 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2934 clp->cl_ipaddr, port >> 8, port & 255);
2935
2936 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2937 if (status != -NFS4ERR_CLID_INUSE)
2938 break;
2939 if (signalled())
2940 break;
2941 if (loop++ & 1)
2942 ssleep(clp->cl_lease_time + 1);
2943 else
2944 if (++clp->cl_id_uniquifier == 0)
2945 break;
2946 }
2947 return status;
2948 }
2949
2950 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2951 {
2952 struct nfs_fsinfo fsinfo;
2953 struct rpc_message msg = {
2954 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2955 .rpc_argp = clp,
2956 .rpc_resp = &fsinfo,
2957 .rpc_cred = cred,
2958 };
2959 unsigned long now;
2960 int status;
2961
2962 now = jiffies;
2963 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2964 if (status == 0) {
2965 spin_lock(&clp->cl_lock);
2966 clp->cl_lease_time = fsinfo.lease_time * HZ;
2967 clp->cl_last_renewal = now;
2968 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2969 spin_unlock(&clp->cl_lock);
2970 }
2971 return status;
2972 }
2973
2974 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2975 {
2976 long timeout;
2977 int err;
2978 do {
2979 err = _nfs4_proc_setclientid_confirm(clp, cred);
2980 switch (err) {
2981 case 0:
2982 return err;
2983 case -NFS4ERR_RESOURCE:
2984 /* The IBM lawyers misread another document! */
2985 case -NFS4ERR_DELAY:
2986 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2987 }
2988 } while (err == 0);
2989 return err;
2990 }
2991
2992 struct nfs4_delegreturndata {
2993 struct nfs4_delegreturnargs args;
2994 struct nfs4_delegreturnres res;
2995 struct nfs_fh fh;
2996 nfs4_stateid stateid;
2997 struct rpc_cred *cred;
2998 unsigned long timestamp;
2999 struct nfs_fattr fattr;
3000 int rpc_status;
3001 };
3002
3003 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
3004 {
3005 struct nfs4_delegreturndata *data = calldata;
3006 struct rpc_message msg = {
3007 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3008 .rpc_argp = &data->args,
3009 .rpc_resp = &data->res,
3010 .rpc_cred = data->cred,
3011 };
3012 nfs_fattr_init(data->res.fattr);
3013 rpc_call_setup(task, &msg, 0);
3014 }
3015
3016 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3017 {
3018 struct nfs4_delegreturndata *data = calldata;
3019 data->rpc_status = task->tk_status;
3020 if (data->rpc_status == 0)
3021 renew_lease(data->res.server, data->timestamp);
3022 }
3023
3024 static void nfs4_delegreturn_release(void *calldata)
3025 {
3026 struct nfs4_delegreturndata *data = calldata;
3027
3028 put_rpccred(data->cred);
3029 kfree(calldata);
3030 }
3031
3032 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3033 .rpc_call_prepare = nfs4_delegreturn_prepare,
3034 .rpc_call_done = nfs4_delegreturn_done,
3035 .rpc_release = nfs4_delegreturn_release,
3036 };
3037
3038 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3039 {
3040 struct nfs4_delegreturndata *data;
3041 struct nfs_server *server = NFS_SERVER(inode);
3042 struct rpc_task *task;
3043 int status;
3044
3045 data = kmalloc(sizeof(*data), GFP_KERNEL);
3046 if (data == NULL)
3047 return -ENOMEM;
3048 data->args.fhandle = &data->fh;
3049 data->args.stateid = &data->stateid;
3050 data->args.bitmask = server->attr_bitmask;
3051 nfs_copy_fh(&data->fh, NFS_FH(inode));
3052 memcpy(&data->stateid, stateid, sizeof(data->stateid));
3053 data->res.fattr = &data->fattr;
3054 data->res.server = server;
3055 data->cred = get_rpccred(cred);
3056 data->timestamp = jiffies;
3057 data->rpc_status = 0;
3058
3059 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3060 if (IS_ERR(task))
3061 return PTR_ERR(task);
3062 status = nfs4_wait_for_completion_rpc_task(task);
3063 if (status == 0) {
3064 status = data->rpc_status;
3065 if (status == 0)
3066 nfs_post_op_update_inode(inode, &data->fattr);
3067 }
3068 rpc_put_task(task);
3069 return status;
3070 }
3071
3072 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3073 {
3074 struct nfs_server *server = NFS_SERVER(inode);
3075 struct nfs4_exception exception = { };
3076 int err;
3077 do {
3078 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3079 switch (err) {
3080 case -NFS4ERR_STALE_STATEID:
3081 case -NFS4ERR_EXPIRED:
3082 nfs4_schedule_state_recovery(server->nfs_client);
3083 case 0:
3084 return 0;
3085 }
3086 err = nfs4_handle_exception(server, err, &exception);
3087 } while (exception.retry);
3088 return err;
3089 }
3090
3091 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3092 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3093
3094 /*
3095 * sleep, with exponential backoff, and retry the LOCK operation.
3096 */
3097 static unsigned long
3098 nfs4_set_lock_task_retry(unsigned long timeout)
3099 {
3100 schedule_timeout_interruptible(timeout);
3101 timeout <<= 1;
3102 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3103 return NFS4_LOCK_MAXTIMEOUT;
3104 return timeout;
3105 }
3106
3107 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3108 {
3109 struct inode *inode = state->inode;
3110 struct nfs_server *server = NFS_SERVER(inode);
3111 struct nfs_client *clp = server->nfs_client;
3112 struct nfs_lockt_args arg = {
3113 .fh = NFS_FH(inode),
3114 .fl = request,
3115 };
3116 struct nfs_lockt_res res = {
3117 .denied = request,
3118 };
3119 struct rpc_message msg = {
3120 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3121 .rpc_argp = &arg,
3122 .rpc_resp = &res,
3123 .rpc_cred = state->owner->so_cred,
3124 };
3125 struct nfs4_lock_state *lsp;
3126 int status;
3127
3128 down_read(&clp->cl_sem);
3129 arg.lock_owner.clientid = clp->cl_clientid;
3130 status = nfs4_set_lock_state(state, request);
3131 if (status != 0)
3132 goto out;
3133 lsp = request->fl_u.nfs4_fl.owner;
3134 arg.lock_owner.id = lsp->ls_id;
3135 status = rpc_call_sync(server->client, &msg, 0);
3136 switch (status) {
3137 case 0:
3138 request->fl_type = F_UNLCK;
3139 break;
3140 case -NFS4ERR_DENIED:
3141 status = 0;
3142 }
3143 out:
3144 up_read(&clp->cl_sem);
3145 return status;
3146 }
3147
3148 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3149 {
3150 struct nfs4_exception exception = { };
3151 int err;
3152
3153 do {
3154 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3155 _nfs4_proc_getlk(state, cmd, request),
3156 &exception);
3157 } while (exception.retry);
3158 return err;
3159 }
3160
3161 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3162 {
3163 int res = 0;
3164 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3165 case FL_POSIX:
3166 res = posix_lock_file_wait(file, fl);
3167 break;
3168 case FL_FLOCK:
3169 res = flock_lock_file_wait(file, fl);
3170 break;
3171 default:
3172 BUG();
3173 }
3174 return res;
3175 }
3176
3177 struct nfs4_unlockdata {
3178 struct nfs_locku_args arg;
3179 struct nfs_locku_res res;
3180 struct nfs4_lock_state *lsp;
3181 struct nfs_open_context *ctx;
3182 struct file_lock fl;
3183 const struct nfs_server *server;
3184 unsigned long timestamp;
3185 };
3186
3187 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3188 struct nfs_open_context *ctx,
3189 struct nfs4_lock_state *lsp,
3190 struct nfs_seqid *seqid)
3191 {
3192 struct nfs4_unlockdata *p;
3193 struct inode *inode = lsp->ls_state->inode;
3194
3195 p = kmalloc(sizeof(*p), GFP_KERNEL);
3196 if (p == NULL)
3197 return NULL;
3198 p->arg.fh = NFS_FH(inode);
3199 p->arg.fl = &p->fl;
3200 p->arg.seqid = seqid;
3201 p->arg.stateid = &lsp->ls_stateid;
3202 p->lsp = lsp;
3203 atomic_inc(&lsp->ls_count);
3204 /* Ensure we don't close file until we're done freeing locks! */
3205 p->ctx = get_nfs_open_context(ctx);
3206 memcpy(&p->fl, fl, sizeof(p->fl));
3207 p->server = NFS_SERVER(inode);
3208 return p;
3209 }
3210
3211 static void nfs4_locku_release_calldata(void *data)
3212 {
3213 struct nfs4_unlockdata *calldata = data;
3214 nfs_free_seqid(calldata->arg.seqid);
3215 nfs4_put_lock_state(calldata->lsp);
3216 put_nfs_open_context(calldata->ctx);
3217 kfree(calldata);
3218 }
3219
3220 static void nfs4_locku_done(struct rpc_task *task, void *data)
3221 {
3222 struct nfs4_unlockdata *calldata = data;
3223
3224 if (RPC_ASSASSINATED(task))
3225 return;
3226 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3227 switch (task->tk_status) {
3228 case 0:
3229 memcpy(calldata->lsp->ls_stateid.data,
3230 calldata->res.stateid.data,
3231 sizeof(calldata->lsp->ls_stateid.data));
3232 renew_lease(calldata->server, calldata->timestamp);
3233 break;
3234 case -NFS4ERR_STALE_STATEID:
3235 case -NFS4ERR_EXPIRED:
3236 nfs4_schedule_state_recovery(calldata->server->nfs_client);
3237 break;
3238 default:
3239 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3240 rpc_restart_call(task);
3241 }
3242 }
3243 }
3244
3245 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3246 {
3247 struct nfs4_unlockdata *calldata = data;
3248 struct rpc_message msg = {
3249 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3250 .rpc_argp = &calldata->arg,
3251 .rpc_resp = &calldata->res,
3252 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3253 };
3254
3255 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3256 return;
3257 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3258 /* Note: exit _without_ running nfs4_locku_done */
3259 task->tk_action = NULL;
3260 return;
3261 }
3262 calldata->timestamp = jiffies;
3263 rpc_call_setup(task, &msg, 0);
3264 }
3265
3266 static const struct rpc_call_ops nfs4_locku_ops = {
3267 .rpc_call_prepare = nfs4_locku_prepare,
3268 .rpc_call_done = nfs4_locku_done,
3269 .rpc_release = nfs4_locku_release_calldata,
3270 };
3271
3272 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3273 struct nfs_open_context *ctx,
3274 struct nfs4_lock_state *lsp,
3275 struct nfs_seqid *seqid)
3276 {
3277 struct nfs4_unlockdata *data;
3278
3279 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3280 if (data == NULL) {
3281 nfs_free_seqid(seqid);
3282 return ERR_PTR(-ENOMEM);
3283 }
3284
3285 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3286 }
3287
3288 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3289 {
3290 struct nfs_seqid *seqid;
3291 struct nfs4_lock_state *lsp;
3292 struct rpc_task *task;
3293 int status = 0;
3294
3295 status = nfs4_set_lock_state(state, request);
3296 /* Unlock _before_ we do the RPC call */
3297 request->fl_flags |= FL_EXISTS;
3298 if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3299 goto out;
3300 if (status != 0)
3301 goto out;
3302 /* Is this a delegated lock? */
3303 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3304 goto out;
3305 lsp = request->fl_u.nfs4_fl.owner;
3306 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3307 status = -ENOMEM;
3308 if (seqid == NULL)
3309 goto out;
3310 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3311 status = PTR_ERR(task);
3312 if (IS_ERR(task))
3313 goto out;
3314 status = nfs4_wait_for_completion_rpc_task(task);
3315 rpc_put_task(task);
3316 out:
3317 return status;
3318 }
3319
3320 struct nfs4_lockdata {
3321 struct nfs_lock_args arg;
3322 struct nfs_lock_res res;
3323 struct nfs4_lock_state *lsp;
3324 struct nfs_open_context *ctx;
3325 struct file_lock fl;
3326 unsigned long timestamp;
3327 int rpc_status;
3328 int cancelled;
3329 };
3330
3331 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3332 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3333 {
3334 struct nfs4_lockdata *p;
3335 struct inode *inode = lsp->ls_state->inode;
3336 struct nfs_server *server = NFS_SERVER(inode);
3337
3338 p = kzalloc(sizeof(*p), GFP_KERNEL);
3339 if (p == NULL)
3340 return NULL;
3341
3342 p->arg.fh = NFS_FH(inode);
3343 p->arg.fl = &p->fl;
3344 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3345 if (p->arg.lock_seqid == NULL)
3346 goto out_free;
3347 p->arg.lock_stateid = &lsp->ls_stateid;
3348 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3349 p->arg.lock_owner.id = lsp->ls_id;
3350 p->lsp = lsp;
3351 atomic_inc(&lsp->ls_count);
3352 p->ctx = get_nfs_open_context(ctx);
3353 memcpy(&p->fl, fl, sizeof(p->fl));
3354 return p;
3355 out_free:
3356 kfree(p);
3357 return NULL;
3358 }
3359
3360 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3361 {
3362 struct nfs4_lockdata *data = calldata;
3363 struct nfs4_state *state = data->lsp->ls_state;
3364 struct nfs4_state_owner *sp = state->owner;
3365 struct rpc_message msg = {
3366 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3367 .rpc_argp = &data->arg,
3368 .rpc_resp = &data->res,
3369 .rpc_cred = sp->so_cred,
3370 };
3371
3372 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3373 return;
3374 dprintk("%s: begin!\n", __FUNCTION__);
3375 /* Do we need to do an open_to_lock_owner? */
3376 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3377 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3378 if (data->arg.open_seqid == NULL) {
3379 data->rpc_status = -ENOMEM;
3380 task->tk_action = NULL;
3381 goto out;
3382 }
3383 data->arg.open_stateid = &state->stateid;
3384 data->arg.new_lock_owner = 1;
3385 }
3386 data->timestamp = jiffies;
3387 rpc_call_setup(task, &msg, 0);
3388 out:
3389 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3390 }
3391
3392 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3393 {
3394 struct nfs4_lockdata *data = calldata;
3395
3396 dprintk("%s: begin!\n", __FUNCTION__);
3397
3398 data->rpc_status = task->tk_status;
3399 if (RPC_ASSASSINATED(task))
3400 goto out;
3401 if (data->arg.new_lock_owner != 0) {
3402 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3403 if (data->rpc_status == 0)
3404 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3405 else
3406 goto out;
3407 }
3408 if (data->rpc_status == 0) {
3409 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3410 sizeof(data->lsp->ls_stateid.data));
3411 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3412 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3413 }
3414 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3415 out:
3416 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3417 }
3418
3419 static void nfs4_lock_release(void *calldata)
3420 {
3421 struct nfs4_lockdata *data = calldata;
3422
3423 dprintk("%s: begin!\n", __FUNCTION__);
3424 if (data->arg.open_seqid != NULL)
3425 nfs_free_seqid(data->arg.open_seqid);
3426 if (data->cancelled != 0) {
3427 struct rpc_task *task;
3428 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3429 data->arg.lock_seqid);
3430 if (!IS_ERR(task))
3431 rpc_put_task(task);
3432 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3433 } else
3434 nfs_free_seqid(data->arg.lock_seqid);
3435 nfs4_put_lock_state(data->lsp);
3436 put_nfs_open_context(data->ctx);
3437 kfree(data);
3438 dprintk("%s: done!\n", __FUNCTION__);
3439 }
3440
3441 static const struct rpc_call_ops nfs4_lock_ops = {
3442 .rpc_call_prepare = nfs4_lock_prepare,
3443 .rpc_call_done = nfs4_lock_done,
3444 .rpc_release = nfs4_lock_release,
3445 };
3446
3447 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3448 {
3449 struct nfs4_lockdata *data;
3450 struct rpc_task *task;
3451 int ret;
3452
3453 dprintk("%s: begin!\n", __FUNCTION__);
3454 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3455 fl->fl_u.nfs4_fl.owner);
3456 if (data == NULL)
3457 return -ENOMEM;
3458 if (IS_SETLKW(cmd))
3459 data->arg.block = 1;
3460 if (reclaim != 0)
3461 data->arg.reclaim = 1;
3462 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3463 &nfs4_lock_ops, data);
3464 if (IS_ERR(task))
3465 return PTR_ERR(task);
3466 ret = nfs4_wait_for_completion_rpc_task(task);
3467 if (ret == 0) {
3468 ret = data->rpc_status;
3469 if (ret == -NFS4ERR_DENIED)
3470 ret = -EAGAIN;
3471 } else
3472 data->cancelled = 1;
3473 rpc_put_task(task);
3474 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3475 return ret;
3476 }
3477
3478 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3479 {
3480 struct nfs_server *server = NFS_SERVER(state->inode);
3481 struct nfs4_exception exception = { };
3482 int err;
3483
3484 do {
3485 /* Cache the lock if possible... */
3486 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3487 return 0;
3488 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3489 if (err != -NFS4ERR_DELAY)
3490 break;
3491 nfs4_handle_exception(server, err, &exception);
3492 } while (exception.retry);
3493 return err;
3494 }
3495
3496 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3497 {
3498 struct nfs_server *server = NFS_SERVER(state->inode);
3499 struct nfs4_exception exception = { };
3500 int err;
3501
3502 err = nfs4_set_lock_state(state, request);
3503 if (err != 0)
3504 return err;
3505 do {
3506 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3507 return 0;
3508 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3509 if (err != -NFS4ERR_DELAY)
3510 break;
3511 nfs4_handle_exception(server, err, &exception);
3512 } while (exception.retry);
3513 return err;
3514 }
3515
3516 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3517 {
3518 struct nfs_client *clp = state->owner->so_client;
3519 unsigned char fl_flags = request->fl_flags;
3520 int status;
3521
3522 /* Is this a delegated open? */
3523 status = nfs4_set_lock_state(state, request);
3524 if (status != 0)
3525 goto out;
3526 request->fl_flags |= FL_ACCESS;
3527 status = do_vfs_lock(request->fl_file, request);
3528 if (status < 0)
3529 goto out;
3530 down_read(&clp->cl_sem);
3531 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3532 struct nfs_inode *nfsi = NFS_I(state->inode);
3533 /* Yes: cache locks! */
3534 down_read(&nfsi->rwsem);
3535 /* ...but avoid races with delegation recall... */
3536 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3537 request->fl_flags = fl_flags & ~FL_SLEEP;
3538 status = do_vfs_lock(request->fl_file, request);
3539 up_read(&nfsi->rwsem);
3540 goto out_unlock;
3541 }
3542 up_read(&nfsi->rwsem);
3543 }
3544 status = _nfs4_do_setlk(state, cmd, request, 0);
3545 if (status != 0)
3546 goto out_unlock;
3547 /* Note: we always want to sleep here! */
3548 request->fl_flags = fl_flags | FL_SLEEP;
3549 if (do_vfs_lock(request->fl_file, request) < 0)
3550 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3551 out_unlock:
3552 up_read(&clp->cl_sem);
3553 out:
3554 request->fl_flags = fl_flags;
3555 return status;
3556 }
3557
3558 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3559 {
3560 struct nfs4_exception exception = { };
3561 int err;
3562
3563 do {
3564 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3565 _nfs4_proc_setlk(state, cmd, request),
3566 &exception);
3567 } while (exception.retry);
3568 return err;
3569 }
3570
3571 static int
3572 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3573 {
3574 struct nfs_open_context *ctx;
3575 struct nfs4_state *state;
3576 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3577 int status;
3578
3579 /* verify open state */
3580 ctx = (struct nfs_open_context *)filp->private_data;
3581 state = ctx->state;
3582
3583 if (request->fl_start < 0 || request->fl_end < 0)
3584 return -EINVAL;
3585
3586 if (IS_GETLK(cmd))
3587 return nfs4_proc_getlk(state, F_GETLK, request);
3588
3589 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3590 return -EINVAL;
3591
3592 if (request->fl_type == F_UNLCK)
3593 return nfs4_proc_unlck(state, cmd, request);
3594
3595 do {
3596 status = nfs4_proc_setlk(state, cmd, request);
3597 if ((status != -EAGAIN) || IS_SETLK(cmd))
3598 break;
3599 timeout = nfs4_set_lock_task_retry(timeout);
3600 status = -ERESTARTSYS;
3601 if (signalled())
3602 break;
3603 } while(status < 0);
3604 return status;
3605 }
3606
3607 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3608 {
3609 struct nfs_server *server = NFS_SERVER(state->inode);
3610 struct nfs4_exception exception = { };
3611 int err;
3612
3613 err = nfs4_set_lock_state(state, fl);
3614 if (err != 0)
3615 goto out;
3616 do {
3617 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3618 if (err != -NFS4ERR_DELAY)
3619 break;
3620 err = nfs4_handle_exception(server, err, &exception);
3621 } while (exception.retry);
3622 out:
3623 return err;
3624 }
3625
3626 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3627
3628 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3629 size_t buflen, int flags)
3630 {
3631 struct inode *inode = dentry->d_inode;
3632
3633 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3634 return -EOPNOTSUPP;
3635
3636 if (!S_ISREG(inode->i_mode) &&
3637 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3638 return -EPERM;
3639
3640 return nfs4_proc_set_acl(inode, buf, buflen);
3641 }
3642
3643 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3644 * and that's what we'll do for e.g. user attributes that haven't been set.
3645 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3646 * attributes in kernel-managed attribute namespaces. */
3647 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3648 size_t buflen)
3649 {
3650 struct inode *inode = dentry->d_inode;
3651
3652 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3653 return -EOPNOTSUPP;
3654
3655 return nfs4_proc_get_acl(inode, buf, buflen);
3656 }
3657
3658 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3659 {
3660 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3661
3662 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3663 return 0;
3664 if (buf && buflen < len)
3665 return -ERANGE;
3666 if (buf)
3667 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3668 return len;
3669 }
3670
3671 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3672 struct nfs4_fs_locations *fs_locations, struct page *page)
3673 {
3674 struct nfs_server *server = NFS_SERVER(dir);
3675 u32 bitmask[2] = {
3676 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3677 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3678 };
3679 struct nfs4_fs_locations_arg args = {
3680 .dir_fh = NFS_FH(dir),
3681 .name = &dentry->d_name,
3682 .page = page,
3683 .bitmask = bitmask,
3684 };
3685 struct rpc_message msg = {
3686 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3687 .rpc_argp = &args,
3688 .rpc_resp = fs_locations,
3689 };
3690 int status;
3691
3692 dprintk("%s: start\n", __FUNCTION__);
3693 fs_locations->fattr.valid = 0;
3694 fs_locations->server = server;
3695 fs_locations->nlocations = 0;
3696 status = rpc_call_sync(server->client, &msg, 0);
3697 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3698 return status;
3699 }
3700
3701 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3702 .recover_open = nfs4_open_reclaim,
3703 .recover_lock = nfs4_lock_reclaim,
3704 };
3705
3706 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3707 .recover_open = nfs4_open_expired,
3708 .recover_lock = nfs4_lock_expired,
3709 };
3710
3711 static struct inode_operations nfs4_file_inode_operations = {
3712 .permission = nfs_permission,
3713 .getattr = nfs_getattr,
3714 .setattr = nfs_setattr,
3715 .getxattr = nfs4_getxattr,
3716 .setxattr = nfs4_setxattr,
3717 .listxattr = nfs4_listxattr,
3718 };
3719
3720 const struct nfs_rpc_ops nfs_v4_clientops = {
3721 .version = 4, /* protocol version */
3722 .dentry_ops = &nfs4_dentry_operations,
3723 .dir_inode_ops = &nfs4_dir_inode_operations,
3724 .file_inode_ops = &nfs4_file_inode_operations,
3725 .getroot = nfs4_proc_get_root,
3726 .getattr = nfs4_proc_getattr,
3727 .setattr = nfs4_proc_setattr,
3728 .lookupfh = nfs4_proc_lookupfh,
3729 .lookup = nfs4_proc_lookup,
3730 .access = nfs4_proc_access,
3731 .readlink = nfs4_proc_readlink,
3732 .read = nfs4_proc_read,
3733 .write = nfs4_proc_write,
3734 .commit = nfs4_proc_commit,
3735 .create = nfs4_proc_create,
3736 .remove = nfs4_proc_remove,
3737 .unlink_setup = nfs4_proc_unlink_setup,
3738 .unlink_done = nfs4_proc_unlink_done,
3739 .rename = nfs4_proc_rename,
3740 .link = nfs4_proc_link,
3741 .symlink = nfs4_proc_symlink,
3742 .mkdir = nfs4_proc_mkdir,
3743 .rmdir = nfs4_proc_remove,
3744 .readdir = nfs4_proc_readdir,
3745 .mknod = nfs4_proc_mknod,
3746 .statfs = nfs4_proc_statfs,
3747 .fsinfo = nfs4_proc_fsinfo,
3748 .pathconf = nfs4_proc_pathconf,
3749 .set_capabilities = nfs4_server_capabilities,
3750 .decode_dirent = nfs4_decode_dirent,
3751 .read_setup = nfs4_proc_read_setup,
3752 .read_done = nfs4_read_done,
3753 .write_setup = nfs4_proc_write_setup,
3754 .write_done = nfs4_write_done,
3755 .commit_setup = nfs4_proc_commit_setup,
3756 .commit_done = nfs4_commit_done,
3757 .file_open = nfs_open,
3758 .file_release = nfs_release,
3759 .lock = nfs4_proc_lock,
3760 .clear_acl_cache = nfs4_zap_acl_attr,
3761 };
3762
3763 /*
3764 * Local variables:
3765 * c-basic-offset: 8
3766 * End:
3767 */
This page took 0.132209 seconds and 5 git commands to generate.