NFS: Fix asynchronous read error handling
[deliverable/linux.git] / fs / nfs / read.c
1 /*
2 * linux/fs/nfs/read.c
3 *
4 * Block I/O for NFS
5 *
6 * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7 * modified for async RPC by okir@monad.swb.de
8 *
9 * We do an ugly hack here in order to return proper error codes to the
10 * user program when a read request failed: since generic_file_read
11 * only checks the return value of inode->i_op->readpage() which is always 0
12 * for async RPC, we set the error bit of the page to 1 when an error occurs,
13 * and make nfs_readpage transmit requests synchronously when encountering this.
14 * This is only a small problem, though, since we now retry all operations
15 * within the RPC code when root squashing is suspected.
16 */
17
18 #include <linux/time.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/fcntl.h>
22 #include <linux/stat.h>
23 #include <linux/mm.h>
24 #include <linux/slab.h>
25 #include <linux/pagemap.h>
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/nfs_fs.h>
28 #include <linux/nfs_page.h>
29 #include <linux/smp_lock.h>
30
31 #include <asm/system.h>
32
33 #include "iostat.h"
34
35 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
36
37 static int nfs_pagein_one(struct list_head *, struct inode *);
38 static const struct rpc_call_ops nfs_read_partial_ops;
39 static const struct rpc_call_ops nfs_read_full_ops;
40
41 static kmem_cache_t *nfs_rdata_cachep;
42 static mempool_t *nfs_rdata_mempool;
43
44 #define MIN_POOL_READ (32)
45
46 struct nfs_read_data *nfs_readdata_alloc(size_t len)
47 {
48 unsigned int pagecount = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
49 struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS);
50
51 if (p) {
52 memset(p, 0, sizeof(*p));
53 INIT_LIST_HEAD(&p->pages);
54 p->npages = pagecount;
55 if (pagecount <= ARRAY_SIZE(p->page_array))
56 p->pagevec = p->page_array;
57 else {
58 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
59 if (!p->pagevec) {
60 mempool_free(p, nfs_rdata_mempool);
61 p = NULL;
62 }
63 }
64 }
65 return p;
66 }
67
68 static void nfs_readdata_rcu_free(struct rcu_head *head)
69 {
70 struct nfs_read_data *p = container_of(head, struct nfs_read_data, task.u.tk_rcu);
71 if (p && (p->pagevec != &p->page_array[0]))
72 kfree(p->pagevec);
73 mempool_free(p, nfs_rdata_mempool);
74 }
75
76 static void nfs_readdata_free(struct nfs_read_data *rdata)
77 {
78 call_rcu_bh(&rdata->task.u.tk_rcu, nfs_readdata_rcu_free);
79 }
80
81 void nfs_readdata_release(void *data)
82 {
83 nfs_readdata_free(data);
84 }
85
86 static
87 unsigned int nfs_page_length(struct inode *inode, struct page *page)
88 {
89 loff_t i_size = i_size_read(inode);
90 unsigned long idx;
91
92 if (i_size <= 0)
93 return 0;
94 idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
95 if (page->index > idx)
96 return 0;
97 if (page->index != idx)
98 return PAGE_CACHE_SIZE;
99 return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
100 }
101
102 static
103 int nfs_return_empty_page(struct page *page)
104 {
105 memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
106 SetPageUptodate(page);
107 unlock_page(page);
108 return 0;
109 }
110
111 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
112 {
113 unsigned int remainder = data->args.count - data->res.count;
114 unsigned int base = data->args.pgbase + data->res.count;
115 unsigned int pglen;
116 struct page **pages;
117
118 if (data->res.eof == 0 || remainder == 0)
119 return;
120 /*
121 * Note: "remainder" can never be negative, since we check for
122 * this in the XDR code.
123 */
124 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
125 base &= ~PAGE_CACHE_MASK;
126 pglen = PAGE_CACHE_SIZE - base;
127 for (;;) {
128 if (remainder <= pglen) {
129 memclear_highpage_flush(*pages, base, remainder);
130 break;
131 }
132 memclear_highpage_flush(*pages, base, pglen);
133 pages++;
134 remainder -= pglen;
135 pglen = PAGE_CACHE_SIZE;
136 base = 0;
137 }
138 }
139
140 /*
141 * Read a page synchronously.
142 */
143 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
144 struct page *page)
145 {
146 unsigned int rsize = NFS_SERVER(inode)->rsize;
147 unsigned int count = PAGE_CACHE_SIZE;
148 int result;
149 struct nfs_read_data *rdata;
150
151 rdata = nfs_readdata_alloc(count);
152 if (!rdata)
153 return -ENOMEM;
154
155 memset(rdata, 0, sizeof(*rdata));
156 rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
157 rdata->cred = ctx->cred;
158 rdata->inode = inode;
159 INIT_LIST_HEAD(&rdata->pages);
160 rdata->args.fh = NFS_FH(inode);
161 rdata->args.context = ctx;
162 rdata->args.pages = &page;
163 rdata->args.pgbase = 0UL;
164 rdata->args.count = rsize;
165 rdata->res.fattr = &rdata->fattr;
166
167 dprintk("NFS: nfs_readpage_sync(%p)\n", page);
168
169 /*
170 * This works now because the socket layer never tries to DMA
171 * into this buffer directly.
172 */
173 do {
174 if (count < rsize)
175 rdata->args.count = count;
176 rdata->res.count = rdata->args.count;
177 rdata->args.offset = page_offset(page) + rdata->args.pgbase;
178
179 dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
180 NFS_SERVER(inode)->nfs_client->cl_hostname,
181 inode->i_sb->s_id,
182 (long long)NFS_FILEID(inode),
183 (unsigned long long)rdata->args.pgbase,
184 rdata->args.count);
185
186 lock_kernel();
187 result = NFS_PROTO(inode)->read(rdata);
188 unlock_kernel();
189
190 /*
191 * Even if we had a partial success we can't mark the page
192 * cache valid.
193 */
194 if (result < 0) {
195 if (result == -EISDIR)
196 result = -EINVAL;
197 goto io_error;
198 }
199 count -= result;
200 rdata->args.pgbase += result;
201 nfs_add_stats(inode, NFSIOS_SERVERREADBYTES, result);
202
203 /* Note: result == 0 should only happen if we're caching
204 * a write that extends the file and punches a hole.
205 */
206 if (rdata->res.eof != 0 || result == 0)
207 break;
208 } while (count);
209 spin_lock(&inode->i_lock);
210 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
211 spin_unlock(&inode->i_lock);
212
213 if (rdata->res.eof || rdata->res.count == rdata->args.count) {
214 SetPageUptodate(page);
215 if (rdata->res.eof && count != 0)
216 memclear_highpage_flush(page, rdata->args.pgbase, count);
217 }
218 result = 0;
219
220 io_error:
221 unlock_page(page);
222 nfs_readdata_free(rdata);
223 return result;
224 }
225
226 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
227 struct page *page)
228 {
229 LIST_HEAD(one_request);
230 struct nfs_page *new;
231 unsigned int len;
232
233 len = nfs_page_length(inode, page);
234 if (len == 0)
235 return nfs_return_empty_page(page);
236 new = nfs_create_request(ctx, inode, page, 0, len);
237 if (IS_ERR(new)) {
238 unlock_page(page);
239 return PTR_ERR(new);
240 }
241 if (len < PAGE_CACHE_SIZE)
242 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
243
244 nfs_list_add_request(new, &one_request);
245 nfs_pagein_one(&one_request, inode);
246 return 0;
247 }
248
249 static void nfs_readpage_release(struct nfs_page *req)
250 {
251 unlock_page(req->wb_page);
252
253 dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
254 req->wb_context->dentry->d_inode->i_sb->s_id,
255 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
256 req->wb_bytes,
257 (long long)req_offset(req));
258 nfs_clear_request(req);
259 nfs_release_request(req);
260 }
261
262 /*
263 * Set up the NFS read request struct
264 */
265 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
266 const struct rpc_call_ops *call_ops,
267 unsigned int count, unsigned int offset)
268 {
269 struct inode *inode;
270 int flags;
271
272 data->req = req;
273 data->inode = inode = req->wb_context->dentry->d_inode;
274 data->cred = req->wb_context->cred;
275
276 data->args.fh = NFS_FH(inode);
277 data->args.offset = req_offset(req) + offset;
278 data->args.pgbase = req->wb_pgbase + offset;
279 data->args.pages = data->pagevec;
280 data->args.count = count;
281 data->args.context = req->wb_context;
282
283 data->res.fattr = &data->fattr;
284 data->res.count = count;
285 data->res.eof = 0;
286 nfs_fattr_init(&data->fattr);
287
288 /* Set up the initial task struct. */
289 flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
290 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
291 NFS_PROTO(inode)->read_setup(data);
292
293 data->task.tk_cookie = (unsigned long)inode;
294
295 dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
296 data->task.tk_pid,
297 inode->i_sb->s_id,
298 (long long)NFS_FILEID(inode),
299 count,
300 (unsigned long long)data->args.offset);
301 }
302
303 static void
304 nfs_async_read_error(struct list_head *head)
305 {
306 struct nfs_page *req;
307
308 while (!list_empty(head)) {
309 req = nfs_list_entry(head->next);
310 nfs_list_remove_request(req);
311 SetPageError(req->wb_page);
312 nfs_readpage_release(req);
313 }
314 }
315
316 /*
317 * Start an async read operation
318 */
319 static void nfs_execute_read(struct nfs_read_data *data)
320 {
321 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
322 sigset_t oldset;
323
324 rpc_clnt_sigmask(clnt, &oldset);
325 lock_kernel();
326 rpc_execute(&data->task);
327 unlock_kernel();
328 rpc_clnt_sigunmask(clnt, &oldset);
329 }
330
331 /*
332 * Generate multiple requests to fill a single page.
333 *
334 * We optimize to reduce the number of read operations on the wire. If we
335 * detect that we're reading a page, or an area of a page, that is past the
336 * end of file, we do not generate NFS read operations but just clear the
337 * parts of the page that would have come back zero from the server anyway.
338 *
339 * We rely on the cached value of i_size to make this determination; another
340 * client can fill pages on the server past our cached end-of-file, but we
341 * won't see the new data until our attribute cache is updated. This is more
342 * or less conventional NFS client behavior.
343 */
344 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
345 {
346 struct nfs_page *req = nfs_list_entry(head->next);
347 struct page *page = req->wb_page;
348 struct nfs_read_data *data;
349 size_t rsize = NFS_SERVER(inode)->rsize, nbytes;
350 unsigned int offset;
351 int requests = 0;
352 LIST_HEAD(list);
353
354 nfs_list_remove_request(req);
355
356 nbytes = req->wb_bytes;
357 do {
358 size_t len = min(nbytes,rsize);
359
360 data = nfs_readdata_alloc(len);
361 if (!data)
362 goto out_bad;
363 INIT_LIST_HEAD(&data->pages);
364 list_add(&data->pages, &list);
365 requests++;
366 nbytes -= len;
367 } while(nbytes != 0);
368 atomic_set(&req->wb_complete, requests);
369
370 ClearPageError(page);
371 offset = 0;
372 nbytes = req->wb_bytes;
373 do {
374 data = list_entry(list.next, struct nfs_read_data, pages);
375 list_del_init(&data->pages);
376
377 data->pagevec[0] = page;
378
379 if (nbytes > rsize) {
380 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
381 rsize, offset);
382 offset += rsize;
383 nbytes -= rsize;
384 } else {
385 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
386 nbytes, offset);
387 nbytes = 0;
388 }
389 nfs_execute_read(data);
390 } while (nbytes != 0);
391
392 return 0;
393
394 out_bad:
395 while (!list_empty(&list)) {
396 data = list_entry(list.next, struct nfs_read_data, pages);
397 list_del(&data->pages);
398 nfs_readdata_free(data);
399 }
400 SetPageError(page);
401 nfs_readpage_release(req);
402 return -ENOMEM;
403 }
404
405 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
406 {
407 struct nfs_page *req;
408 struct page **pages;
409 struct nfs_read_data *data;
410 unsigned int count;
411
412 if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
413 return nfs_pagein_multi(head, inode);
414
415 data = nfs_readdata_alloc(NFS_SERVER(inode)->rsize);
416 if (!data)
417 goto out_bad;
418
419 INIT_LIST_HEAD(&data->pages);
420 pages = data->pagevec;
421 count = 0;
422 while (!list_empty(head)) {
423 req = nfs_list_entry(head->next);
424 nfs_list_remove_request(req);
425 nfs_list_add_request(req, &data->pages);
426 ClearPageError(req->wb_page);
427 *pages++ = req->wb_page;
428 count += req->wb_bytes;
429 }
430 req = nfs_list_entry(data->pages.next);
431
432 nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
433
434 nfs_execute_read(data);
435 return 0;
436 out_bad:
437 nfs_async_read_error(head);
438 return -ENOMEM;
439 }
440
441 static int
442 nfs_pagein_list(struct list_head *head, int rpages)
443 {
444 LIST_HEAD(one_request);
445 struct nfs_page *req;
446 int error = 0;
447 unsigned int pages = 0;
448
449 while (!list_empty(head)) {
450 pages += nfs_coalesce_requests(head, &one_request, rpages);
451 req = nfs_list_entry(one_request.next);
452 error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
453 if (error < 0)
454 break;
455 }
456 if (error >= 0)
457 return pages;
458
459 nfs_async_read_error(head);
460 return error;
461 }
462
463 /*
464 * This is the callback from RPC telling us whether a reply was
465 * received or some error occurred (timeout or socket shutdown).
466 */
467 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
468 {
469 int status;
470
471 dprintk("%s: %4d, (status %d)\n", __FUNCTION__, task->tk_pid,
472 task->tk_status);
473
474 status = NFS_PROTO(data->inode)->read_done(task, data);
475 if (status != 0)
476 return status;
477
478 nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, data->res.count);
479
480 if (task->tk_status == -ESTALE) {
481 set_bit(NFS_INO_STALE, &NFS_FLAGS(data->inode));
482 nfs_mark_for_revalidate(data->inode);
483 }
484 spin_lock(&data->inode->i_lock);
485 NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
486 spin_unlock(&data->inode->i_lock);
487 return 0;
488 }
489
490 static int nfs_readpage_retry(struct rpc_task *task, struct nfs_read_data *data)
491 {
492 struct nfs_readargs *argp = &data->args;
493 struct nfs_readres *resp = &data->res;
494
495 if (resp->eof || resp->count == argp->count)
496 return 0;
497
498 /* This is a short read! */
499 nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
500 /* Has the server at least made some progress? */
501 if (resp->count == 0)
502 return 0;
503
504 /* Yes, so retry the read at the end of the data */
505 argp->offset += resp->count;
506 argp->pgbase += resp->count;
507 argp->count -= resp->count;
508 rpc_restart_call(task);
509 return -EAGAIN;
510 }
511
512 /*
513 * Handle a read reply that fills part of a page.
514 */
515 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
516 {
517 struct nfs_read_data *data = calldata;
518 struct nfs_page *req = data->req;
519 struct page *page = req->wb_page;
520
521 if (nfs_readpage_result(task, data) != 0)
522 return;
523
524 if (likely(task->tk_status >= 0)) {
525 nfs_readpage_truncate_uninitialised_page(data);
526 if (nfs_readpage_retry(task, data) != 0)
527 return;
528 }
529 if (unlikely(task->tk_status < 0))
530 SetPageError(page);
531 if (atomic_dec_and_test(&req->wb_complete)) {
532 if (!PageError(page))
533 SetPageUptodate(page);
534 nfs_readpage_release(req);
535 }
536 }
537
538 static const struct rpc_call_ops nfs_read_partial_ops = {
539 .rpc_call_done = nfs_readpage_result_partial,
540 .rpc_release = nfs_readdata_release,
541 };
542
543 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
544 {
545 unsigned int count = data->res.count;
546 unsigned int base = data->args.pgbase;
547 struct page **pages;
548
549 if (data->res.eof)
550 count = data->args.count;
551 if (unlikely(count == 0))
552 return;
553 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
554 base &= ~PAGE_CACHE_MASK;
555 count += base;
556 for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
557 SetPageUptodate(*pages);
558 if (count == 0)
559 return;
560 /* Was this a short read? */
561 if (data->res.eof || data->res.count == data->args.count)
562 SetPageUptodate(*pages);
563 }
564
565 /*
566 * This is the callback from RPC telling us whether a reply was
567 * received or some error occurred (timeout or socket shutdown).
568 */
569 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
570 {
571 struct nfs_read_data *data = calldata;
572
573 if (nfs_readpage_result(task, data) != 0)
574 return;
575 /*
576 * Note: nfs_readpage_retry may change the values of
577 * data->args. In the multi-page case, we therefore need
578 * to ensure that we call nfs_readpage_set_pages_uptodate()
579 * first.
580 */
581 if (likely(task->tk_status >= 0)) {
582 nfs_readpage_truncate_uninitialised_page(data);
583 nfs_readpage_set_pages_uptodate(data);
584 if (nfs_readpage_retry(task, data) != 0)
585 return;
586 }
587 while (!list_empty(&data->pages)) {
588 struct nfs_page *req = nfs_list_entry(data->pages.next);
589
590 nfs_list_remove_request(req);
591 nfs_readpage_release(req);
592 }
593 }
594
595 static const struct rpc_call_ops nfs_read_full_ops = {
596 .rpc_call_done = nfs_readpage_result_full,
597 .rpc_release = nfs_readdata_release,
598 };
599
600 /*
601 * Read a page over NFS.
602 * We read the page synchronously in the following case:
603 * - The error flag is set for this page. This happens only when a
604 * previous async read operation failed.
605 */
606 int nfs_readpage(struct file *file, struct page *page)
607 {
608 struct nfs_open_context *ctx;
609 struct inode *inode = page->mapping->host;
610 int error;
611
612 dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
613 page, PAGE_CACHE_SIZE, page->index);
614 nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
615 nfs_add_stats(inode, NFSIOS_READPAGES, 1);
616
617 /*
618 * Try to flush any pending writes to the file..
619 *
620 * NOTE! Because we own the page lock, there cannot
621 * be any new pending writes generated at this point
622 * for this page (other pages can be written to).
623 */
624 error = nfs_wb_page(inode, page);
625 if (error)
626 goto out_error;
627
628 error = -ESTALE;
629 if (NFS_STALE(inode))
630 goto out_error;
631
632 if (file == NULL) {
633 ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
634 if (ctx == NULL)
635 return -EBADF;
636 } else
637 ctx = get_nfs_open_context((struct nfs_open_context *)
638 file->private_data);
639 if (!IS_SYNC(inode)) {
640 error = nfs_readpage_async(ctx, inode, page);
641 goto out;
642 }
643
644 error = nfs_readpage_sync(ctx, inode, page);
645 if (error < 0 && IS_SWAPFILE(inode))
646 printk("Aiee.. nfs swap-in of page failed!\n");
647 out:
648 put_nfs_open_context(ctx);
649 return error;
650
651 out_error:
652 unlock_page(page);
653 return error;
654 }
655
656 struct nfs_readdesc {
657 struct list_head *head;
658 struct nfs_open_context *ctx;
659 };
660
661 static int
662 readpage_async_filler(void *data, struct page *page)
663 {
664 struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
665 struct inode *inode = page->mapping->host;
666 struct nfs_page *new;
667 unsigned int len;
668
669 nfs_wb_page(inode, page);
670 len = nfs_page_length(inode, page);
671 if (len == 0)
672 return nfs_return_empty_page(page);
673 new = nfs_create_request(desc->ctx, inode, page, 0, len);
674 if (IS_ERR(new)) {
675 SetPageError(page);
676 unlock_page(page);
677 return PTR_ERR(new);
678 }
679 if (len < PAGE_CACHE_SIZE)
680 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
681 nfs_list_add_request(new, desc->head);
682 return 0;
683 }
684
685 int nfs_readpages(struct file *filp, struct address_space *mapping,
686 struct list_head *pages, unsigned nr_pages)
687 {
688 LIST_HEAD(head);
689 struct nfs_readdesc desc = {
690 .head = &head,
691 };
692 struct inode *inode = mapping->host;
693 struct nfs_server *server = NFS_SERVER(inode);
694 int ret = -ESTALE;
695
696 dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
697 inode->i_sb->s_id,
698 (long long)NFS_FILEID(inode),
699 nr_pages);
700 nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
701
702 if (NFS_STALE(inode))
703 goto out;
704
705 if (filp == NULL) {
706 desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
707 if (desc.ctx == NULL)
708 return -EBADF;
709 } else
710 desc.ctx = get_nfs_open_context((struct nfs_open_context *)
711 filp->private_data);
712 ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
713 if (!list_empty(&head)) {
714 int err = nfs_pagein_list(&head, server->rpages);
715 if (!ret)
716 nfs_add_stats(inode, NFSIOS_READPAGES, err);
717 ret = err;
718 }
719 put_nfs_open_context(desc.ctx);
720 out:
721 return ret;
722 }
723
724 int __init nfs_init_readpagecache(void)
725 {
726 nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
727 sizeof(struct nfs_read_data),
728 0, SLAB_HWCACHE_ALIGN,
729 NULL, NULL);
730 if (nfs_rdata_cachep == NULL)
731 return -ENOMEM;
732
733 nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
734 nfs_rdata_cachep);
735 if (nfs_rdata_mempool == NULL)
736 return -ENOMEM;
737
738 return 0;
739 }
740
741 void nfs_destroy_readpagecache(void)
742 {
743 mempool_destroy(nfs_rdata_mempool);
744 kmem_cache_destroy(nfs_rdata_cachep);
745 }
This page took 0.067268 seconds and 6 git commands to generate.