2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include <linux/slab.h>
49 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
51 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
52 appended in collection retry loop */
54 /* Construction mode */
56 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
57 SC_LSEG_DSYNC
, /* Flush data blocks of a given file and make
58 a logical segment without a super root */
59 SC_FLUSH_FILE
, /* Flush data files, leads to segment writes without
60 creating a checkpoint */
61 SC_FLUSH_DAT
, /* Flush DAT file. This also creates segments without
65 /* Stage numbers of dirty block collection */
68 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
74 NILFS_ST_SR
, /* Super root */
75 NILFS_ST_DSYNC
, /* Data sync blocks */
79 /* State flags of collection */
80 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
81 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
82 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
83 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
85 /* Operations depending on the construction mode and file type */
86 struct nilfs_sc_operations
{
87 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
89 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
91 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
93 void (*write_data_binfo
)(struct nilfs_sc_info
*,
94 struct nilfs_segsum_pointer
*,
96 void (*write_node_binfo
)(struct nilfs_sc_info
*,
97 struct nilfs_segsum_pointer
*,
104 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
105 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
106 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
107 static void nilfs_dispose_list(struct the_nilfs
*, struct list_head
*, int);
109 #define nilfs_cnt32_gt(a, b) \
110 (typecheck(__u32, a) && typecheck(__u32, b) && \
111 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b) \
113 (typecheck(__u32, a) && typecheck(__u32, b) && \
114 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
118 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info
*ti
)
120 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
124 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
125 return ++cur_ti
->ti_count
;
128 * If journal_info field is occupied by other FS,
129 * it is saved and will be restored on
130 * nilfs_transaction_commit().
133 "NILFS warning: journal info from a different "
135 save
= current
->journal_info
;
139 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
142 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
148 ti
->ti_magic
= NILFS_TI_MAGIC
;
149 current
->journal_info
= ti
;
154 * nilfs_transaction_begin - start indivisible file operations.
156 * @ti: nilfs_transaction_info
157 * @vacancy_check: flags for vacancy rate checks
159 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
160 * the segment semaphore, to make a segment construction and write tasks
161 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
162 * The region enclosed by these two functions can be nested. To avoid a
163 * deadlock, the semaphore is only acquired or released in the outermost call.
165 * This function allocates a nilfs_transaction_info struct to keep context
166 * information on it. It is initialized and hooked onto the current task in
167 * the outermost call. If a pre-allocated struct is given to @ti, it is used
168 * instead; otherwise a new struct is assigned from a slab.
170 * When @vacancy_check flag is set, this function will check the amount of
171 * free space, and will wait for the GC to reclaim disk space if low capacity.
173 * Return Value: On success, 0 is returned. On error, one of the following
174 * negative error code is returned.
176 * %-ENOMEM - Insufficient memory available.
178 * %-ENOSPC - No space left on device
180 int nilfs_transaction_begin(struct super_block
*sb
,
181 struct nilfs_transaction_info
*ti
,
184 struct the_nilfs
*nilfs
;
185 int ret
= nilfs_prepare_segment_lock(ti
);
187 if (unlikely(ret
< 0))
192 vfs_check_frozen(sb
, SB_FREEZE_WRITE
);
194 nilfs
= sb
->s_fs_info
;
195 down_read(&nilfs
->ns_segctor_sem
);
196 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
197 up_read(&nilfs
->ns_segctor_sem
);
204 ti
= current
->journal_info
;
205 current
->journal_info
= ti
->ti_save
;
206 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
207 kmem_cache_free(nilfs_transaction_cachep
, ti
);
212 * nilfs_transaction_commit - commit indivisible file operations.
215 * nilfs_transaction_commit() releases the read semaphore which is
216 * acquired by nilfs_transaction_begin(). This is only performed
217 * in outermost call of this function. If a commit flag is set,
218 * nilfs_transaction_commit() sets a timer to start the segment
219 * constructor. If a sync flag is set, it starts construction
222 int nilfs_transaction_commit(struct super_block
*sb
)
224 struct nilfs_transaction_info
*ti
= current
->journal_info
;
225 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
228 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
229 ti
->ti_flags
|= NILFS_TI_COMMIT
;
230 if (ti
->ti_count
> 0) {
234 if (nilfs
->ns_writer
) {
235 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
237 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
238 nilfs_segctor_start_timer(sci
);
239 if (atomic_read(&nilfs
->ns_ndirtyblks
) > sci
->sc_watermark
)
240 nilfs_segctor_do_flush(sci
, 0);
242 up_read(&nilfs
->ns_segctor_sem
);
243 current
->journal_info
= ti
->ti_save
;
245 if (ti
->ti_flags
& NILFS_TI_SYNC
)
246 err
= nilfs_construct_segment(sb
);
247 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
248 kmem_cache_free(nilfs_transaction_cachep
, ti
);
252 void nilfs_transaction_abort(struct super_block
*sb
)
254 struct nilfs_transaction_info
*ti
= current
->journal_info
;
255 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
257 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
258 if (ti
->ti_count
> 0) {
262 up_read(&nilfs
->ns_segctor_sem
);
264 current
->journal_info
= ti
->ti_save
;
265 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
266 kmem_cache_free(nilfs_transaction_cachep
, ti
);
269 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
271 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
272 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
274 if (!sci
|| !sci
->sc_flush_request
)
277 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
278 up_read(&nilfs
->ns_segctor_sem
);
280 down_write(&nilfs
->ns_segctor_sem
);
281 if (sci
->sc_flush_request
&&
282 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
283 struct nilfs_transaction_info
*ti
= current
->journal_info
;
285 ti
->ti_flags
|= NILFS_TI_WRITER
;
286 nilfs_segctor_do_immediate_flush(sci
);
287 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
289 downgrade_write(&nilfs
->ns_segctor_sem
);
292 static void nilfs_transaction_lock(struct super_block
*sb
,
293 struct nilfs_transaction_info
*ti
,
296 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
297 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
298 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
301 ti
->ti_flags
= NILFS_TI_WRITER
;
303 ti
->ti_save
= cur_ti
;
304 ti
->ti_magic
= NILFS_TI_MAGIC
;
305 INIT_LIST_HEAD(&ti
->ti_garbage
);
306 current
->journal_info
= ti
;
309 down_write(&nilfs
->ns_segctor_sem
);
310 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
))
313 nilfs_segctor_do_immediate_flush(sci
);
315 up_write(&nilfs
->ns_segctor_sem
);
319 ti
->ti_flags
|= NILFS_TI_GC
;
322 static void nilfs_transaction_unlock(struct super_block
*sb
)
324 struct nilfs_transaction_info
*ti
= current
->journal_info
;
325 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
327 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
328 BUG_ON(ti
->ti_count
> 0);
330 up_write(&nilfs
->ns_segctor_sem
);
331 current
->journal_info
= ti
->ti_save
;
332 if (!list_empty(&ti
->ti_garbage
))
333 nilfs_dispose_list(nilfs
, &ti
->ti_garbage
, 0);
336 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
337 struct nilfs_segsum_pointer
*ssp
,
340 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
341 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
344 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
346 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
347 &segbuf
->sb_segsum_buffers
));
348 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
350 p
= ssp
->bh
->b_data
+ ssp
->offset
;
351 ssp
->offset
+= bytes
;
356 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
357 * @sci: nilfs_sc_info
359 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
361 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
362 struct buffer_head
*sumbh
;
367 if (nilfs_doing_gc())
369 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
, sci
->sc_cno
);
373 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
374 sumbytes
= segbuf
->sb_sum
.sumbytes
;
375 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
376 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
377 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
381 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
383 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
384 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
385 return -E2BIG
; /* The current segment is filled up
387 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
388 return nilfs_segctor_reset_segment_buffer(sci
);
391 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
393 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
396 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
397 err
= nilfs_segctor_feed_segment(sci
);
400 segbuf
= sci
->sc_curseg
;
402 err
= nilfs_segbuf_extend_payload(segbuf
, &segbuf
->sb_super_root
);
404 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
409 * Functions for making segment summary and payloads
411 static int nilfs_segctor_segsum_block_required(
412 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
415 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
416 /* Size of finfo and binfo is enough small against blocksize */
418 return ssp
->offset
+ binfo_size
+
419 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
423 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
426 sci
->sc_curseg
->sb_sum
.nfinfo
++;
427 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
428 nilfs_segctor_map_segsum_entry(
429 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
431 if (NILFS_I(inode
)->i_root
&&
432 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
433 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
437 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
440 struct nilfs_finfo
*finfo
;
441 struct nilfs_inode_info
*ii
;
442 struct nilfs_segment_buffer
*segbuf
;
445 if (sci
->sc_blk_cnt
== 0)
450 if (test_bit(NILFS_I_GCINODE
, &ii
->i_state
))
452 else if (NILFS_ROOT_METADATA_FILE(inode
->i_ino
))
457 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
459 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
460 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
461 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
462 finfo
->fi_cno
= cpu_to_le64(cno
);
464 segbuf
= sci
->sc_curseg
;
465 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
466 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
467 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
468 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
471 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
472 struct buffer_head
*bh
,
476 struct nilfs_segment_buffer
*segbuf
;
477 int required
, err
= 0;
480 segbuf
= sci
->sc_curseg
;
481 required
= nilfs_segctor_segsum_block_required(
482 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
483 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
484 nilfs_segctor_end_finfo(sci
, inode
);
485 err
= nilfs_segctor_feed_segment(sci
);
490 if (unlikely(required
)) {
491 err
= nilfs_segbuf_extend_segsum(segbuf
);
495 if (sci
->sc_blk_cnt
== 0)
496 nilfs_segctor_begin_finfo(sci
, inode
);
498 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
499 /* Substitution to vblocknr is delayed until update_blocknr() */
500 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
507 * Callback functions that enumerate, mark, and collect dirty blocks
509 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
510 struct buffer_head
*bh
, struct inode
*inode
)
514 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
518 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
519 sizeof(struct nilfs_binfo_v
));
521 sci
->sc_datablk_cnt
++;
525 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
526 struct buffer_head
*bh
,
529 return nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
532 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
533 struct buffer_head
*bh
,
536 WARN_ON(!buffer_dirty(bh
));
537 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
540 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
541 struct nilfs_segsum_pointer
*ssp
,
542 union nilfs_binfo
*binfo
)
544 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
545 sci
, ssp
, sizeof(*binfo_v
));
546 *binfo_v
= binfo
->bi_v
;
549 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
550 struct nilfs_segsum_pointer
*ssp
,
551 union nilfs_binfo
*binfo
)
553 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
554 sci
, ssp
, sizeof(*vblocknr
));
555 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
558 static struct nilfs_sc_operations nilfs_sc_file_ops
= {
559 .collect_data
= nilfs_collect_file_data
,
560 .collect_node
= nilfs_collect_file_node
,
561 .collect_bmap
= nilfs_collect_file_bmap
,
562 .write_data_binfo
= nilfs_write_file_data_binfo
,
563 .write_node_binfo
= nilfs_write_file_node_binfo
,
566 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
567 struct buffer_head
*bh
, struct inode
*inode
)
571 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
575 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
577 sci
->sc_datablk_cnt
++;
581 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
582 struct buffer_head
*bh
, struct inode
*inode
)
584 WARN_ON(!buffer_dirty(bh
));
585 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
586 sizeof(struct nilfs_binfo_dat
));
589 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
590 struct nilfs_segsum_pointer
*ssp
,
591 union nilfs_binfo
*binfo
)
593 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
595 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
598 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
599 struct nilfs_segsum_pointer
*ssp
,
600 union nilfs_binfo
*binfo
)
602 struct nilfs_binfo_dat
*binfo_dat
=
603 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
604 *binfo_dat
= binfo
->bi_dat
;
607 static struct nilfs_sc_operations nilfs_sc_dat_ops
= {
608 .collect_data
= nilfs_collect_dat_data
,
609 .collect_node
= nilfs_collect_file_node
,
610 .collect_bmap
= nilfs_collect_dat_bmap
,
611 .write_data_binfo
= nilfs_write_dat_data_binfo
,
612 .write_node_binfo
= nilfs_write_dat_node_binfo
,
615 static struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
616 .collect_data
= nilfs_collect_file_data
,
617 .collect_node
= NULL
,
618 .collect_bmap
= NULL
,
619 .write_data_binfo
= nilfs_write_file_data_binfo
,
620 .write_node_binfo
= NULL
,
623 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
624 struct list_head
*listp
,
626 loff_t start
, loff_t end
)
628 struct address_space
*mapping
= inode
->i_mapping
;
630 pgoff_t index
= 0, last
= ULONG_MAX
;
634 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
636 * A valid range is given for sync-ing data pages. The
637 * range is rounded to per-page; extra dirty buffers
638 * may be included if blocksize < pagesize.
640 index
= start
>> PAGE_SHIFT
;
641 last
= end
>> PAGE_SHIFT
;
643 pagevec_init(&pvec
, 0);
645 if (unlikely(index
> last
) ||
646 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
647 min_t(pgoff_t
, last
- index
,
648 PAGEVEC_SIZE
- 1) + 1))
651 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
652 struct buffer_head
*bh
, *head
;
653 struct page
*page
= pvec
.pages
[i
];
655 if (unlikely(page
->index
> last
))
660 if (!page_has_buffers(page
))
661 create_empty_buffers(page
,
662 1 << inode
->i_blkbits
, 0);
666 bh
= head
= page_buffers(page
);
668 if (!buffer_dirty(bh
))
671 list_add_tail(&bh
->b_assoc_buffers
, listp
);
673 if (unlikely(ndirties
>= nlimit
)) {
674 pagevec_release(&pvec
);
678 } while (bh
= bh
->b_this_page
, bh
!= head
);
680 pagevec_release(&pvec
);
685 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
686 struct list_head
*listp
)
688 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
689 struct address_space
*mapping
= &ii
->i_btnode_cache
;
691 struct buffer_head
*bh
, *head
;
695 pagevec_init(&pvec
, 0);
697 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
699 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
700 bh
= head
= page_buffers(pvec
.pages
[i
]);
702 if (buffer_dirty(bh
)) {
704 list_add_tail(&bh
->b_assoc_buffers
,
707 bh
= bh
->b_this_page
;
708 } while (bh
!= head
);
710 pagevec_release(&pvec
);
715 static void nilfs_dispose_list(struct the_nilfs
*nilfs
,
716 struct list_head
*head
, int force
)
718 struct nilfs_inode_info
*ii
, *n
;
719 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
722 while (!list_empty(head
)) {
723 spin_lock(&nilfs
->ns_inode_lock
);
724 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
725 list_del_init(&ii
->i_dirty
);
727 if (unlikely(ii
->i_bh
)) {
731 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
732 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
733 list_add_tail(&ii
->i_dirty
,
734 &nilfs
->ns_dirty_files
);
738 if (nv
== SC_N_INODEVEC
)
741 spin_unlock(&nilfs
->ns_inode_lock
);
743 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
744 iput(&(*pii
)->vfs_inode
);
748 static int nilfs_test_metadata_dirty(struct the_nilfs
*nilfs
,
749 struct nilfs_root
*root
)
753 if (nilfs_mdt_fetch_dirty(root
->ifile
))
755 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
757 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
759 if ((ret
|| nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs
->ns_dat
))
764 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
766 return list_empty(&sci
->sc_dirty_files
) &&
767 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
768 sci
->sc_nfreesegs
== 0 &&
769 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
772 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
774 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
777 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
778 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
780 spin_lock(&nilfs
->ns_inode_lock
);
781 if (list_empty(&nilfs
->ns_dirty_files
) && nilfs_segctor_clean(sci
))
784 spin_unlock(&nilfs
->ns_inode_lock
);
788 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
790 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
792 nilfs_mdt_clear_dirty(sci
->sc_root
->ifile
);
793 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
794 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
795 nilfs_mdt_clear_dirty(nilfs
->ns_dat
);
798 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
800 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
801 struct buffer_head
*bh_cp
;
802 struct nilfs_checkpoint
*raw_cp
;
805 /* XXX: this interface will be changed */
806 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
809 /* The following code is duplicated with cpfile. But, it is
810 needed to collect the checkpoint even if it was not newly
812 nilfs_mdt_mark_buffer_dirty(bh_cp
);
813 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
814 nilfs_cpfile_put_checkpoint(
815 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
817 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
822 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
824 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
825 struct buffer_head
*bh_cp
;
826 struct nilfs_checkpoint
*raw_cp
;
829 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
832 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
835 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
836 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
837 raw_cp
->cp_inodes_count
=
838 cpu_to_le64(atomic_read(&sci
->sc_root
->inodes_count
));
839 raw_cp
->cp_blocks_count
=
840 cpu_to_le64(atomic_read(&sci
->sc_root
->blocks_count
));
841 raw_cp
->cp_nblk_inc
=
842 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
843 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
844 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
846 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
847 nilfs_checkpoint_clear_minor(raw_cp
);
849 nilfs_checkpoint_set_minor(raw_cp
);
851 nilfs_write_inode_common(sci
->sc_root
->ifile
,
852 &raw_cp
->cp_ifile_inode
, 1);
853 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
860 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
861 struct nilfs_inode_info
*ii
)
864 struct buffer_head
*ibh
;
865 struct nilfs_inode
*raw_inode
;
867 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
870 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
872 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
873 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
877 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
)
879 struct nilfs_inode_info
*ii
;
881 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
882 nilfs_fill_in_file_bmap(sci
->sc_root
->ifile
, ii
);
883 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
887 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
888 struct the_nilfs
*nilfs
)
890 struct buffer_head
*bh_sr
;
891 struct nilfs_super_root
*raw_sr
;
892 unsigned isz
= nilfs
->ns_inode_size
;
894 bh_sr
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
)->sb_super_root
;
895 raw_sr
= (struct nilfs_super_root
*)bh_sr
->b_data
;
897 raw_sr
->sr_bytes
= cpu_to_le16(NILFS_SR_BYTES
);
898 raw_sr
->sr_nongc_ctime
899 = cpu_to_le64(nilfs_doing_gc() ?
900 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
901 raw_sr
->sr_flags
= 0;
903 nilfs_write_inode_common(nilfs
->ns_dat
, (void *)raw_sr
+
904 NILFS_SR_DAT_OFFSET(isz
), 1);
905 nilfs_write_inode_common(nilfs
->ns_cpfile
, (void *)raw_sr
+
906 NILFS_SR_CPFILE_OFFSET(isz
), 1);
907 nilfs_write_inode_common(nilfs
->ns_sufile
, (void *)raw_sr
+
908 NILFS_SR_SUFILE_OFFSET(isz
), 1);
911 static void nilfs_redirty_inodes(struct list_head
*head
)
913 struct nilfs_inode_info
*ii
;
915 list_for_each_entry(ii
, head
, i_dirty
) {
916 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
917 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
921 static void nilfs_drop_collected_inodes(struct list_head
*head
)
923 struct nilfs_inode_info
*ii
;
925 list_for_each_entry(ii
, head
, i_dirty
) {
926 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
929 clear_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
);
930 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
934 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
936 struct list_head
*listp
,
937 int (*collect
)(struct nilfs_sc_info
*,
938 struct buffer_head
*,
941 struct buffer_head
*bh
, *n
;
945 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
946 list_del_init(&bh
->b_assoc_buffers
);
947 err
= collect(sci
, bh
, inode
);
950 goto dispose_buffers
;
956 while (!list_empty(listp
)) {
957 bh
= list_entry(listp
->next
, struct buffer_head
,
959 list_del_init(&bh
->b_assoc_buffers
);
965 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
967 /* Remaining number of blocks within segment buffer */
968 return sci
->sc_segbuf_nblocks
-
969 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
972 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
974 struct nilfs_sc_operations
*sc_ops
)
976 LIST_HEAD(data_buffers
);
977 LIST_HEAD(node_buffers
);
980 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
981 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
983 n
= nilfs_lookup_dirty_data_buffers(
984 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
986 err
= nilfs_segctor_apply_buffers(
987 sci
, inode
, &data_buffers
,
988 sc_ops
->collect_data
);
989 BUG_ON(!err
); /* always receive -E2BIG or true error */
993 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
995 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
996 err
= nilfs_segctor_apply_buffers(
997 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
999 /* dispose node list */
1000 nilfs_segctor_apply_buffers(
1001 sci
, inode
, &node_buffers
, NULL
);
1004 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1007 err
= nilfs_segctor_apply_buffers(
1008 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1012 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1013 err
= nilfs_segctor_apply_buffers(
1014 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1018 nilfs_segctor_end_finfo(sci
, inode
);
1019 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1025 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1026 struct inode
*inode
)
1028 LIST_HEAD(data_buffers
);
1029 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1032 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1033 sci
->sc_dsync_start
,
1036 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1037 nilfs_collect_file_data
);
1039 nilfs_segctor_end_finfo(sci
, inode
);
1041 /* always receive -E2BIG or true error if n > rest */
1046 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1048 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1049 struct list_head
*head
;
1050 struct nilfs_inode_info
*ii
;
1054 switch (sci
->sc_stage
.scnt
) {
1057 sci
->sc_stage
.flags
= 0;
1059 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1060 sci
->sc_nblk_inc
= 0;
1061 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1062 if (mode
== SC_LSEG_DSYNC
) {
1063 sci
->sc_stage
.scnt
= NILFS_ST_DSYNC
;
1068 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1069 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1070 if (mode
== SC_FLUSH_DAT
) {
1071 sci
->sc_stage
.scnt
= NILFS_ST_DAT
;
1074 sci
->sc_stage
.scnt
++; /* Fall through */
1076 if (nilfs_doing_gc()) {
1077 head
= &sci
->sc_gc_inodes
;
1078 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1080 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1081 err
= nilfs_segctor_scan_file(
1082 sci
, &ii
->vfs_inode
,
1083 &nilfs_sc_file_ops
);
1084 if (unlikely(err
)) {
1085 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1087 struct nilfs_inode_info
,
1091 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1093 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1095 sci
->sc_stage
.scnt
++; /* Fall through */
1097 head
= &sci
->sc_dirty_files
;
1098 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1100 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1101 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1103 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1104 &nilfs_sc_file_ops
);
1105 if (unlikely(err
)) {
1106 sci
->sc_stage
.dirty_file_ptr
=
1107 list_entry(ii
->i_dirty
.prev
,
1108 struct nilfs_inode_info
,
1112 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1113 /* XXX: required ? */
1115 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1116 if (mode
== SC_FLUSH_FILE
) {
1117 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1120 sci
->sc_stage
.scnt
++;
1121 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1123 case NILFS_ST_IFILE
:
1124 err
= nilfs_segctor_scan_file(sci
, sci
->sc_root
->ifile
,
1125 &nilfs_sc_file_ops
);
1128 sci
->sc_stage
.scnt
++;
1129 /* Creating a checkpoint */
1130 err
= nilfs_segctor_create_checkpoint(sci
);
1134 case NILFS_ST_CPFILE
:
1135 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1136 &nilfs_sc_file_ops
);
1139 sci
->sc_stage
.scnt
++; /* Fall through */
1140 case NILFS_ST_SUFILE
:
1141 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1142 sci
->sc_nfreesegs
, &ndone
);
1143 if (unlikely(err
)) {
1144 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1145 sci
->sc_freesegs
, ndone
,
1149 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1151 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1152 &nilfs_sc_file_ops
);
1155 sci
->sc_stage
.scnt
++; /* Fall through */
1158 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_dat
,
1162 if (mode
== SC_FLUSH_DAT
) {
1163 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1166 sci
->sc_stage
.scnt
++; /* Fall through */
1168 if (mode
== SC_LSEG_SR
) {
1169 /* Appending a super root */
1170 err
= nilfs_segctor_add_super_root(sci
);
1174 /* End of a logical segment */
1175 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1176 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1178 case NILFS_ST_DSYNC
:
1180 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1181 ii
= sci
->sc_dsync_inode
;
1182 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1185 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1188 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1189 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1202 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1203 * @sci: nilfs_sc_info
1204 * @nilfs: nilfs object
1206 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1207 struct the_nilfs
*nilfs
)
1209 struct nilfs_segment_buffer
*segbuf
, *prev
;
1213 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1214 if (unlikely(!segbuf
))
1217 if (list_empty(&sci
->sc_write_logs
)) {
1218 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1219 nilfs
->ns_pseg_offset
, nilfs
);
1220 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1221 nilfs_shift_to_next_segment(nilfs
);
1222 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1225 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1226 nextnum
= nilfs
->ns_nextnum
;
1228 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1229 /* Start from the head of a new full segment */
1233 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1234 nilfs_segbuf_map_cont(segbuf
, prev
);
1235 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1236 nextnum
= prev
->sb_nextnum
;
1238 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1239 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1240 segbuf
->sb_sum
.seg_seq
++;
1245 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1250 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1254 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1256 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1257 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1258 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1262 nilfs_segbuf_free(segbuf
);
1266 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1267 struct the_nilfs
*nilfs
, int nadd
)
1269 struct nilfs_segment_buffer
*segbuf
, *prev
;
1270 struct inode
*sufile
= nilfs
->ns_sufile
;
1275 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1277 * Since the segment specified with nextnum might be allocated during
1278 * the previous construction, the buffer including its segusage may
1279 * not be dirty. The following call ensures that the buffer is dirty
1280 * and will pin the buffer on memory until the sufile is written.
1282 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1286 for (i
= 0; i
< nadd
; i
++) {
1287 /* extend segment info */
1289 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1290 if (unlikely(!segbuf
))
1293 /* map this buffer to region of segment on-disk */
1294 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1295 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1297 /* allocate the next next full segment */
1298 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1302 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1303 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1305 list_add_tail(&segbuf
->sb_list
, &list
);
1308 list_splice_tail(&list
, &sci
->sc_segbufs
);
1312 nilfs_segbuf_free(segbuf
);
1314 list_for_each_entry(segbuf
, &list
, sb_list
) {
1315 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1316 WARN_ON(ret
); /* never fails */
1318 nilfs_destroy_logs(&list
);
1322 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1323 struct the_nilfs
*nilfs
)
1325 struct nilfs_segment_buffer
*segbuf
, *prev
;
1326 struct inode
*sufile
= nilfs
->ns_sufile
;
1329 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1330 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1331 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1332 WARN_ON(ret
); /* never fails */
1334 if (atomic_read(&segbuf
->sb_err
)) {
1335 /* Case 1: The first segment failed */
1336 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1337 /* Case 1a: Partial segment appended into an existing
1339 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1340 segbuf
->sb_fseg_end
);
1341 else /* Case 1b: New full segment */
1342 set_nilfs_discontinued(nilfs
);
1346 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1347 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1348 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1349 WARN_ON(ret
); /* never fails */
1351 if (atomic_read(&segbuf
->sb_err
) &&
1352 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1353 /* Case 2: extended segment (!= next) failed */
1354 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1359 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1360 struct inode
*sufile
)
1362 struct nilfs_segment_buffer
*segbuf
;
1363 unsigned long live_blocks
;
1366 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1367 live_blocks
= segbuf
->sb_sum
.nblocks
+
1368 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1369 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1372 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1376 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1378 struct nilfs_segment_buffer
*segbuf
;
1381 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1382 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1383 segbuf
->sb_pseg_start
-
1384 segbuf
->sb_fseg_start
, 0);
1385 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1387 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1388 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1390 WARN_ON(ret
); /* always succeed */
1394 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1395 struct nilfs_segment_buffer
*last
,
1396 struct inode
*sufile
)
1398 struct nilfs_segment_buffer
*segbuf
= last
;
1401 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1402 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1403 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1406 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1410 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1411 struct the_nilfs
*nilfs
, int mode
)
1413 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1416 /* Collection retry loop */
1418 sci
->sc_nblk_this_inc
= 0;
1419 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1421 err
= nilfs_segctor_reset_segment_buffer(sci
);
1425 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1426 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1430 if (unlikely(err
!= -E2BIG
))
1433 /* The current segment is filled up */
1434 if (mode
!= SC_LSEG_SR
|| sci
->sc_stage
.scnt
< NILFS_ST_CPFILE
)
1437 nilfs_clear_logs(&sci
->sc_segbufs
);
1439 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1443 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1444 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1448 WARN_ON(err
); /* do not happen */
1450 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1451 sci
->sc_stage
= prev_stage
;
1453 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1460 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1461 struct buffer_head
*new_bh
)
1463 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1465 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1466 /* The caller must release old_bh */
1470 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1471 struct nilfs_segment_buffer
*segbuf
,
1474 struct inode
*inode
= NULL
;
1476 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1477 unsigned long nblocks
= 0, ndatablk
= 0;
1478 struct nilfs_sc_operations
*sc_op
= NULL
;
1479 struct nilfs_segsum_pointer ssp
;
1480 struct nilfs_finfo
*finfo
= NULL
;
1481 union nilfs_binfo binfo
;
1482 struct buffer_head
*bh
, *bh_org
;
1489 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1490 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1491 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1493 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1494 if (bh
== segbuf
->sb_super_root
)
1497 finfo
= nilfs_segctor_map_segsum_entry(
1498 sci
, &ssp
, sizeof(*finfo
));
1499 ino
= le64_to_cpu(finfo
->fi_ino
);
1500 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1501 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1503 if (buffer_nilfs_node(bh
))
1504 inode
= NILFS_BTNC_I(bh
->b_page
->mapping
);
1506 inode
= NILFS_AS_I(bh
->b_page
->mapping
);
1508 if (mode
== SC_LSEG_DSYNC
)
1509 sc_op
= &nilfs_sc_dsync_ops
;
1510 else if (ino
== NILFS_DAT_INO
)
1511 sc_op
= &nilfs_sc_dat_ops
;
1512 else /* file blocks */
1513 sc_op
= &nilfs_sc_file_ops
;
1517 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1520 nilfs_list_replace_buffer(bh_org
, bh
);
1526 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1528 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1531 if (--nblocks
== 0) {
1535 } else if (ndatablk
> 0)
1545 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1547 struct nilfs_segment_buffer
*segbuf
;
1550 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1551 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1554 nilfs_segbuf_fill_in_segsum(segbuf
);
1560 nilfs_copy_replace_page_buffers(struct page
*page
, struct list_head
*out
)
1562 struct page
*clone_page
;
1563 struct buffer_head
*bh
, *head
, *bh2
;
1566 bh
= head
= page_buffers(page
);
1568 clone_page
= nilfs_alloc_private_page(bh
->b_bdev
, bh
->b_size
, 0);
1569 if (unlikely(!clone_page
))
1572 bh2
= page_buffers(clone_page
);
1573 kaddr
= kmap_atomic(page
, KM_USER0
);
1575 if (list_empty(&bh
->b_assoc_buffers
))
1578 page_cache_get(clone_page
); /* for each bh */
1579 memcpy(bh2
->b_data
, kaddr
+ bh_offset(bh
), bh2
->b_size
);
1580 bh2
->b_blocknr
= bh
->b_blocknr
;
1581 list_replace(&bh
->b_assoc_buffers
, &bh2
->b_assoc_buffers
);
1582 list_add_tail(&bh
->b_assoc_buffers
, out
);
1583 } while (bh
= bh
->b_this_page
, bh2
= bh2
->b_this_page
, bh
!= head
);
1584 kunmap_atomic(kaddr
, KM_USER0
);
1586 if (!TestSetPageWriteback(clone_page
))
1587 account_page_writeback(clone_page
);
1588 unlock_page(clone_page
);
1593 static int nilfs_test_page_to_be_frozen(struct page
*page
)
1595 struct address_space
*mapping
= page
->mapping
;
1597 if (!mapping
|| !mapping
->host
|| S_ISDIR(mapping
->host
->i_mode
))
1600 if (page_mapped(page
)) {
1601 ClearPageChecked(page
);
1604 return PageChecked(page
);
1607 static int nilfs_begin_page_io(struct page
*page
, struct list_head
*out
)
1609 if (!page
|| PageWriteback(page
))
1610 /* For split b-tree node pages, this function may be called
1611 twice. We ignore the 2nd or later calls by this check. */
1615 clear_page_dirty_for_io(page
);
1616 set_page_writeback(page
);
1619 if (nilfs_test_page_to_be_frozen(page
)) {
1620 int err
= nilfs_copy_replace_page_buffers(page
, out
);
1627 static int nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
,
1628 struct page
**failed_page
)
1630 struct nilfs_segment_buffer
*segbuf
;
1631 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1632 struct list_head
*list
= &sci
->sc_copied_buffers
;
1635 *failed_page
= NULL
;
1636 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1637 struct buffer_head
*bh
;
1639 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1641 if (bh
->b_page
!= bd_page
) {
1644 clear_page_dirty_for_io(bd_page
);
1645 set_page_writeback(bd_page
);
1646 unlock_page(bd_page
);
1648 bd_page
= bh
->b_page
;
1652 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1654 if (bh
== segbuf
->sb_super_root
) {
1655 if (bh
->b_page
!= bd_page
) {
1657 clear_page_dirty_for_io(bd_page
);
1658 set_page_writeback(bd_page
);
1659 unlock_page(bd_page
);
1660 bd_page
= bh
->b_page
;
1664 if (bh
->b_page
!= fs_page
) {
1665 err
= nilfs_begin_page_io(fs_page
, list
);
1666 if (unlikely(err
)) {
1667 *failed_page
= fs_page
;
1670 fs_page
= bh
->b_page
;
1676 clear_page_dirty_for_io(bd_page
);
1677 set_page_writeback(bd_page
);
1678 unlock_page(bd_page
);
1680 err
= nilfs_begin_page_io(fs_page
, list
);
1682 *failed_page
= fs_page
;
1687 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1688 struct the_nilfs
*nilfs
)
1692 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1693 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1697 static void __nilfs_end_page_io(struct page
*page
, int err
)
1700 if (!nilfs_page_buffers_clean(page
))
1701 __set_page_dirty_nobuffers(page
);
1702 ClearPageError(page
);
1704 __set_page_dirty_nobuffers(page
);
1708 if (buffer_nilfs_allocated(page_buffers(page
))) {
1709 if (TestClearPageWriteback(page
))
1710 dec_zone_page_state(page
, NR_WRITEBACK
);
1712 end_page_writeback(page
);
1715 static void nilfs_end_page_io(struct page
*page
, int err
)
1720 if (buffer_nilfs_node(page_buffers(page
)) && !PageWriteback(page
)) {
1722 * For b-tree node pages, this function may be called twice
1723 * or more because they might be split in a segment.
1725 if (PageDirty(page
)) {
1727 * For pages holding split b-tree node buffers, dirty
1728 * flag on the buffers may be cleared discretely.
1729 * In that case, the page is once redirtied for
1730 * remaining buffers, and it must be cancelled if
1731 * all the buffers get cleaned later.
1734 if (nilfs_page_buffers_clean(page
))
1735 __nilfs_clear_page_dirty(page
);
1741 __nilfs_end_page_io(page
, err
);
1744 static void nilfs_clear_copied_buffers(struct list_head
*list
, int err
)
1746 struct buffer_head
*bh
, *head
;
1749 while (!list_empty(list
)) {
1750 bh
= list_entry(list
->next
, struct buffer_head
,
1753 page_cache_get(page
);
1754 head
= bh
= page_buffers(page
);
1756 if (!list_empty(&bh
->b_assoc_buffers
)) {
1757 list_del_init(&bh
->b_assoc_buffers
);
1759 set_buffer_uptodate(bh
);
1760 clear_buffer_dirty(bh
);
1761 clear_buffer_delay(bh
);
1762 clear_buffer_nilfs_volatile(bh
);
1764 brelse(bh
); /* for b_assoc_buffers */
1766 } while ((bh
= bh
->b_this_page
) != head
);
1768 __nilfs_end_page_io(page
, err
);
1769 page_cache_release(page
);
1773 static void nilfs_abort_logs(struct list_head
*logs
, struct page
*failed_page
,
1776 struct nilfs_segment_buffer
*segbuf
;
1777 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1778 struct buffer_head
*bh
;
1780 if (list_empty(logs
))
1783 list_for_each_entry(segbuf
, logs
, sb_list
) {
1784 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1786 if (bh
->b_page
!= bd_page
) {
1788 end_page_writeback(bd_page
);
1789 bd_page
= bh
->b_page
;
1793 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1795 if (bh
== segbuf
->sb_super_root
) {
1796 if (bh
->b_page
!= bd_page
) {
1797 end_page_writeback(bd_page
);
1798 bd_page
= bh
->b_page
;
1802 if (bh
->b_page
!= fs_page
) {
1803 nilfs_end_page_io(fs_page
, err
);
1804 if (fs_page
&& fs_page
== failed_page
)
1806 fs_page
= bh
->b_page
;
1811 end_page_writeback(bd_page
);
1813 nilfs_end_page_io(fs_page
, err
);
1816 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1817 struct the_nilfs
*nilfs
, int err
)
1822 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1823 ret
= nilfs_wait_on_logs(&logs
);
1824 nilfs_abort_logs(&logs
, NULL
, ret
? : err
);
1826 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1827 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1828 nilfs_free_incomplete_logs(&logs
, nilfs
);
1829 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, err
);
1831 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1832 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1836 WARN_ON(ret
); /* do not happen */
1839 nilfs_destroy_logs(&logs
);
1842 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1843 struct nilfs_segment_buffer
*segbuf
)
1845 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1846 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1847 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1848 + segbuf
->sb_sum
.nblocks
;
1849 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1850 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1853 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1855 struct nilfs_segment_buffer
*segbuf
;
1856 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1857 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1858 int update_sr
= false;
1860 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1861 struct buffer_head
*bh
;
1863 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1865 set_buffer_uptodate(bh
);
1866 clear_buffer_dirty(bh
);
1867 if (bh
->b_page
!= bd_page
) {
1869 end_page_writeback(bd_page
);
1870 bd_page
= bh
->b_page
;
1874 * We assume that the buffers which belong to the same page
1875 * continue over the buffer list.
1876 * Under this assumption, the last BHs of pages is
1877 * identifiable by the discontinuity of bh->b_page
1878 * (page != fs_page).
1880 * For B-tree node blocks, however, this assumption is not
1881 * guaranteed. The cleanup code of B-tree node pages needs
1884 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1886 set_buffer_uptodate(bh
);
1887 clear_buffer_dirty(bh
);
1888 clear_buffer_delay(bh
);
1889 clear_buffer_nilfs_volatile(bh
);
1890 clear_buffer_nilfs_redirected(bh
);
1891 if (bh
== segbuf
->sb_super_root
) {
1892 if (bh
->b_page
!= bd_page
) {
1893 end_page_writeback(bd_page
);
1894 bd_page
= bh
->b_page
;
1899 if (bh
->b_page
!= fs_page
) {
1900 nilfs_end_page_io(fs_page
, 0);
1901 fs_page
= bh
->b_page
;
1905 if (!nilfs_segbuf_simplex(segbuf
)) {
1906 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGBGN
) {
1907 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1908 sci
->sc_lseg_stime
= jiffies
;
1910 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGEND
)
1911 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1915 * Since pages may continue over multiple segment buffers,
1916 * end of the last page must be checked outside of the loop.
1919 end_page_writeback(bd_page
);
1921 nilfs_end_page_io(fs_page
, 0);
1923 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, 0);
1925 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
1927 if (nilfs_doing_gc())
1928 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
1930 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
1932 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
1934 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1935 nilfs_set_next_segment(nilfs
, segbuf
);
1938 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
1939 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
1941 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
1942 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
1943 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1944 nilfs_segctor_clear_metadata_dirty(sci
);
1946 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1949 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
1953 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
1955 nilfs_segctor_complete_write(sci
);
1956 nilfs_destroy_logs(&sci
->sc_write_logs
);
1961 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info
*sci
,
1962 struct the_nilfs
*nilfs
)
1964 struct nilfs_inode_info
*ii
, *n
;
1965 struct inode
*ifile
= sci
->sc_root
->ifile
;
1967 spin_lock(&nilfs
->ns_inode_lock
);
1969 list_for_each_entry_safe(ii
, n
, &nilfs
->ns_dirty_files
, i_dirty
) {
1971 struct buffer_head
*ibh
;
1974 spin_unlock(&nilfs
->ns_inode_lock
);
1975 err
= nilfs_ifile_get_inode_block(
1976 ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
1977 if (unlikely(err
)) {
1978 nilfs_warning(sci
->sc_super
, __func__
,
1979 "failed to get inode block.\n");
1982 nilfs_mdt_mark_buffer_dirty(ibh
);
1983 nilfs_mdt_mark_dirty(ifile
);
1984 spin_lock(&nilfs
->ns_inode_lock
);
1985 if (likely(!ii
->i_bh
))
1992 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
1993 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
1994 list_del(&ii
->i_dirty
);
1995 list_add_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
1997 spin_unlock(&nilfs
->ns_inode_lock
);
2002 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info
*sci
,
2003 struct the_nilfs
*nilfs
)
2005 struct nilfs_transaction_info
*ti
= current
->journal_info
;
2006 struct nilfs_inode_info
*ii
, *n
;
2008 spin_lock(&nilfs
->ns_inode_lock
);
2009 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
2010 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
2011 test_bit(NILFS_I_DIRTY
, &ii
->i_state
))
2014 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
2017 list_del(&ii
->i_dirty
);
2018 list_add_tail(&ii
->i_dirty
, &ti
->ti_garbage
);
2020 spin_unlock(&nilfs
->ns_inode_lock
);
2024 * Main procedure of segment constructor
2026 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2028 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2029 struct page
*failed_page
;
2032 sci
->sc_stage
.scnt
= NILFS_ST_INIT
;
2033 sci
->sc_cno
= nilfs
->ns_cno
;
2035 err
= nilfs_segctor_collect_dirty_files(sci
, nilfs
);
2039 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
2040 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2042 if (nilfs_segctor_clean(sci
))
2046 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2048 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2052 /* Update time stamp */
2053 sci
->sc_seg_ctime
= get_seconds();
2055 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2059 /* Avoid empty segment */
2060 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
&&
2061 nilfs_segbuf_empty(sci
->sc_curseg
)) {
2062 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2066 err
= nilfs_segctor_assign(sci
, mode
);
2070 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2071 nilfs_segctor_fill_in_file_bmap(sci
);
2073 if (mode
== SC_LSEG_SR
&&
2074 sci
->sc_stage
.scnt
>= NILFS_ST_CPFILE
) {
2075 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2077 goto failed_to_write
;
2079 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2081 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2083 /* Write partial segments */
2084 err
= nilfs_segctor_prepare_write(sci
, &failed_page
);
2086 nilfs_abort_logs(&sci
->sc_segbufs
, failed_page
, err
);
2087 goto failed_to_write
;
2090 nilfs_add_checksums_on_logs(&sci
->sc_segbufs
,
2091 nilfs
->ns_crc_seed
);
2093 err
= nilfs_segctor_write(sci
, nilfs
);
2095 goto failed_to_write
;
2097 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
||
2098 nilfs
->ns_blocksize_bits
!= PAGE_CACHE_SHIFT
) {
2100 * At this point, we avoid double buffering
2101 * for blocksize < pagesize because page dirty
2102 * flag is turned off during write and dirty
2103 * buffers are not properly collected for
2104 * pages crossing over segments.
2106 err
= nilfs_segctor_wait(sci
);
2108 goto failed_to_write
;
2110 } while (sci
->sc_stage
.scnt
!= NILFS_ST_DONE
);
2113 nilfs_segctor_drop_written_files(sci
, nilfs
);
2117 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2118 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2121 if (nilfs_doing_gc())
2122 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2123 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2128 * nilfs_segctor_start_timer - set timer of background write
2129 * @sci: nilfs_sc_info
2131 * If the timer has already been set, it ignores the new request.
2132 * This function MUST be called within a section locking the segment
2135 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2137 spin_lock(&sci
->sc_state_lock
);
2138 if (!(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2139 sci
->sc_timer
.expires
= jiffies
+ sci
->sc_interval
;
2140 add_timer(&sci
->sc_timer
);
2141 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2143 spin_unlock(&sci
->sc_state_lock
);
2146 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2148 spin_lock(&sci
->sc_state_lock
);
2149 if (!(sci
->sc_flush_request
& (1 << bn
))) {
2150 unsigned long prev_req
= sci
->sc_flush_request
;
2152 sci
->sc_flush_request
|= (1 << bn
);
2154 wake_up(&sci
->sc_wait_daemon
);
2156 spin_unlock(&sci
->sc_state_lock
);
2160 * nilfs_flush_segment - trigger a segment construction for resource control
2162 * @ino: inode number of the file to be flushed out.
2164 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2166 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2167 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2169 if (!sci
|| nilfs_doing_construction())
2171 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2172 /* assign bit 0 to data files */
2175 struct nilfs_segctor_wait_request
{
2182 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2184 struct nilfs_segctor_wait_request wait_req
;
2187 spin_lock(&sci
->sc_state_lock
);
2188 init_wait(&wait_req
.wq
);
2190 atomic_set(&wait_req
.done
, 0);
2191 wait_req
.seq
= ++sci
->sc_seq_request
;
2192 spin_unlock(&sci
->sc_state_lock
);
2194 init_waitqueue_entry(&wait_req
.wq
, current
);
2195 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2196 set_current_state(TASK_INTERRUPTIBLE
);
2197 wake_up(&sci
->sc_wait_daemon
);
2200 if (atomic_read(&wait_req
.done
)) {
2204 if (!signal_pending(current
)) {
2211 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2215 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2217 struct nilfs_segctor_wait_request
*wrq
, *n
;
2218 unsigned long flags
;
2220 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2221 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2223 if (!atomic_read(&wrq
->done
) &&
2224 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2226 atomic_set(&wrq
->done
, 1);
2228 if (atomic_read(&wrq
->done
)) {
2229 wrq
->wq
.func(&wrq
->wq
,
2230 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2234 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2238 * nilfs_construct_segment - construct a logical segment
2241 * Return Value: On success, 0 is retured. On errors, one of the following
2242 * negative error code is returned.
2244 * %-EROFS - Read only filesystem.
2248 * %-ENOSPC - No space left on device (only in a panic state).
2250 * %-ERESTARTSYS - Interrupted.
2252 * %-ENOMEM - Insufficient memory available.
2254 int nilfs_construct_segment(struct super_block
*sb
)
2256 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2257 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2258 struct nilfs_transaction_info
*ti
;
2264 /* A call inside transactions causes a deadlock. */
2265 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2267 err
= nilfs_segctor_sync(sci
);
2272 * nilfs_construct_dsync_segment - construct a data-only logical segment
2274 * @inode: inode whose data blocks should be written out
2275 * @start: start byte offset
2276 * @end: end byte offset (inclusive)
2278 * Return Value: On success, 0 is retured. On errors, one of the following
2279 * negative error code is returned.
2281 * %-EROFS - Read only filesystem.
2285 * %-ENOSPC - No space left on device (only in a panic state).
2287 * %-ERESTARTSYS - Interrupted.
2289 * %-ENOMEM - Insufficient memory available.
2291 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2292 loff_t start
, loff_t end
)
2294 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2295 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2296 struct nilfs_inode_info
*ii
;
2297 struct nilfs_transaction_info ti
;
2303 nilfs_transaction_lock(sb
, &ti
, 0);
2305 ii
= NILFS_I(inode
);
2306 if (test_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
) ||
2307 nilfs_test_opt(nilfs
, STRICT_ORDER
) ||
2308 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2309 nilfs_discontinued(nilfs
)) {
2310 nilfs_transaction_unlock(sb
);
2311 err
= nilfs_segctor_sync(sci
);
2315 spin_lock(&nilfs
->ns_inode_lock
);
2316 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2317 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2318 spin_unlock(&nilfs
->ns_inode_lock
);
2319 nilfs_transaction_unlock(sb
);
2322 spin_unlock(&nilfs
->ns_inode_lock
);
2323 sci
->sc_dsync_inode
= ii
;
2324 sci
->sc_dsync_start
= start
;
2325 sci
->sc_dsync_end
= end
;
2327 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2329 nilfs_transaction_unlock(sb
);
2333 #define FLUSH_FILE_BIT (0x1) /* data file only */
2334 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2337 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2338 * @sci: segment constructor object
2340 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2342 spin_lock(&sci
->sc_state_lock
);
2343 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2344 spin_unlock(&sci
->sc_state_lock
);
2345 del_timer_sync(&sci
->sc_timer
);
2349 * nilfs_segctor_notify - notify the result of request to caller threads
2350 * @sci: segment constructor object
2351 * @mode: mode of log forming
2352 * @err: error code to be notified
2354 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2356 /* Clear requests (even when the construction failed) */
2357 spin_lock(&sci
->sc_state_lock
);
2359 if (mode
== SC_LSEG_SR
) {
2360 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2361 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2362 nilfs_segctor_wakeup(sci
, err
);
2363 sci
->sc_flush_request
= 0;
2365 if (mode
== SC_FLUSH_FILE
)
2366 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2367 else if (mode
== SC_FLUSH_DAT
)
2368 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2370 /* re-enable timer if checkpoint creation was not done */
2371 if ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2372 time_before(jiffies
, sci
->sc_timer
.expires
))
2373 add_timer(&sci
->sc_timer
);
2375 spin_unlock(&sci
->sc_state_lock
);
2379 * nilfs_segctor_construct - form logs and write them to disk
2380 * @sci: segment constructor object
2381 * @mode: mode of log forming
2383 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2385 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2386 struct nilfs_super_block
**sbp
;
2389 nilfs_segctor_accept(sci
);
2391 if (nilfs_discontinued(nilfs
))
2393 if (!nilfs_segctor_confirm(sci
))
2394 err
= nilfs_segctor_do_construct(sci
, mode
);
2397 if (mode
!= SC_FLUSH_DAT
)
2398 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2399 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2400 nilfs_discontinued(nilfs
)) {
2401 down_write(&nilfs
->ns_sem
);
2403 sbp
= nilfs_prepare_super(sci
->sc_super
,
2404 nilfs_sb_will_flip(nilfs
));
2406 nilfs_set_log_cursor(sbp
[0], nilfs
);
2407 err
= nilfs_commit_super(sci
->sc_super
,
2410 up_write(&nilfs
->ns_sem
);
2414 nilfs_segctor_notify(sci
, mode
, err
);
2418 static void nilfs_construction_timeout(unsigned long data
)
2420 struct task_struct
*p
= (struct task_struct
*)data
;
2425 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2427 struct nilfs_inode_info
*ii
, *n
;
2429 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2430 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2432 list_del_init(&ii
->i_dirty
);
2433 iput(&ii
->vfs_inode
);
2437 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2440 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2441 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2442 struct nilfs_transaction_info ti
;
2448 nilfs_transaction_lock(sb
, &ti
, 1);
2450 err
= nilfs_mdt_save_to_shadow_map(nilfs
->ns_dat
);
2454 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2455 if (unlikely(err
)) {
2456 nilfs_mdt_restore_from_shadow_map(nilfs
->ns_dat
);
2460 sci
->sc_freesegs
= kbufs
[4];
2461 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2462 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2465 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2466 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2471 nilfs_warning(sb
, __func__
,
2472 "segment construction failed. (err=%d)", err
);
2473 set_current_state(TASK_INTERRUPTIBLE
);
2474 schedule_timeout(sci
->sc_interval
);
2476 if (nilfs_test_opt(nilfs
, DISCARD
)) {
2477 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2481 "NILFS warning: error %d on discard request, "
2482 "turning discards off for the device\n", ret
);
2483 nilfs_clear_opt(nilfs
, DISCARD
);
2488 sci
->sc_freesegs
= NULL
;
2489 sci
->sc_nfreesegs
= 0;
2490 nilfs_mdt_clear_shadow_map(nilfs
->ns_dat
);
2491 nilfs_transaction_unlock(sb
);
2495 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2497 struct nilfs_transaction_info ti
;
2499 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2500 nilfs_segctor_construct(sci
, mode
);
2503 * Unclosed segment should be retried. We do this using sc_timer.
2504 * Timeout of sc_timer will invoke complete construction which leads
2505 * to close the current logical segment.
2507 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2508 nilfs_segctor_start_timer(sci
);
2510 nilfs_transaction_unlock(sci
->sc_super
);
2513 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2518 spin_lock(&sci
->sc_state_lock
);
2519 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2520 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2521 spin_unlock(&sci
->sc_state_lock
);
2524 err
= nilfs_segctor_do_construct(sci
, mode
);
2526 spin_lock(&sci
->sc_state_lock
);
2527 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2528 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2529 spin_unlock(&sci
->sc_state_lock
);
2531 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2534 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2536 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2537 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2538 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2539 return SC_FLUSH_FILE
;
2540 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2541 return SC_FLUSH_DAT
;
2547 * nilfs_segctor_thread - main loop of the segment constructor thread.
2548 * @arg: pointer to a struct nilfs_sc_info.
2550 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2551 * to execute segment constructions.
2553 static int nilfs_segctor_thread(void *arg
)
2555 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2556 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2559 sci
->sc_timer
.data
= (unsigned long)current
;
2560 sci
->sc_timer
.function
= nilfs_construction_timeout
;
2563 sci
->sc_task
= current
;
2564 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2566 "segctord starting. Construction interval = %lu seconds, "
2567 "CP frequency < %lu seconds\n",
2568 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2570 spin_lock(&sci
->sc_state_lock
);
2575 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2578 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2580 else if (!sci
->sc_flush_request
)
2583 mode
= nilfs_segctor_flush_mode(sci
);
2585 spin_unlock(&sci
->sc_state_lock
);
2586 nilfs_segctor_thread_construct(sci
, mode
);
2587 spin_lock(&sci
->sc_state_lock
);
2592 if (freezing(current
)) {
2593 spin_unlock(&sci
->sc_state_lock
);
2595 spin_lock(&sci
->sc_state_lock
);
2598 int should_sleep
= 1;
2600 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2601 TASK_INTERRUPTIBLE
);
2603 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2605 else if (sci
->sc_flush_request
)
2607 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2608 should_sleep
= time_before(jiffies
,
2609 sci
->sc_timer
.expires
);
2612 spin_unlock(&sci
->sc_state_lock
);
2614 spin_lock(&sci
->sc_state_lock
);
2616 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2617 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2618 time_after_eq(jiffies
, sci
->sc_timer
.expires
));
2620 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2621 set_nilfs_discontinued(nilfs
);
2626 spin_unlock(&sci
->sc_state_lock
);
2629 sci
->sc_task
= NULL
;
2630 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2634 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2636 struct task_struct
*t
;
2638 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2640 int err
= PTR_ERR(t
);
2642 printk(KERN_ERR
"NILFS: error %d creating segctord thread\n",
2646 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2650 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2651 __acquires(&sci
->sc_state_lock
)
2652 __releases(&sci
->sc_state_lock
)
2654 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2656 while (sci
->sc_task
) {
2657 wake_up(&sci
->sc_wait_daemon
);
2658 spin_unlock(&sci
->sc_state_lock
);
2659 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2660 spin_lock(&sci
->sc_state_lock
);
2665 * Setup & clean-up functions
2667 static struct nilfs_sc_info
*nilfs_segctor_new(struct super_block
*sb
,
2668 struct nilfs_root
*root
)
2670 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2671 struct nilfs_sc_info
*sci
;
2673 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2679 nilfs_get_root(root
);
2680 sci
->sc_root
= root
;
2682 init_waitqueue_head(&sci
->sc_wait_request
);
2683 init_waitqueue_head(&sci
->sc_wait_daemon
);
2684 init_waitqueue_head(&sci
->sc_wait_task
);
2685 spin_lock_init(&sci
->sc_state_lock
);
2686 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2687 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2688 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2689 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2690 INIT_LIST_HEAD(&sci
->sc_copied_buffers
);
2691 init_timer(&sci
->sc_timer
);
2693 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2694 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2695 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2697 if (nilfs
->ns_interval
)
2698 sci
->sc_interval
= nilfs
->ns_interval
;
2699 if (nilfs
->ns_watermark
)
2700 sci
->sc_watermark
= nilfs
->ns_watermark
;
2704 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2706 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2708 /* The segctord thread was stopped and its timer was removed.
2709 But some tasks remain. */
2711 struct nilfs_transaction_info ti
;
2713 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2714 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2715 nilfs_transaction_unlock(sci
->sc_super
);
2717 } while (ret
&& retrycount
-- > 0);
2721 * nilfs_segctor_destroy - destroy the segment constructor.
2722 * @sci: nilfs_sc_info
2724 * nilfs_segctor_destroy() kills the segctord thread and frees
2725 * the nilfs_sc_info struct.
2726 * Caller must hold the segment semaphore.
2728 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2730 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2733 up_write(&nilfs
->ns_segctor_sem
);
2735 spin_lock(&sci
->sc_state_lock
);
2736 nilfs_segctor_kill_thread(sci
);
2737 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2738 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2739 spin_unlock(&sci
->sc_state_lock
);
2741 if (flag
|| !nilfs_segctor_confirm(sci
))
2742 nilfs_segctor_write_out(sci
);
2744 WARN_ON(!list_empty(&sci
->sc_copied_buffers
));
2746 if (!list_empty(&sci
->sc_dirty_files
)) {
2747 nilfs_warning(sci
->sc_super
, __func__
,
2748 "dirty file(s) after the final construction\n");
2749 nilfs_dispose_list(nilfs
, &sci
->sc_dirty_files
, 1);
2752 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2753 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2755 nilfs_put_root(sci
->sc_root
);
2757 down_write(&nilfs
->ns_segctor_sem
);
2759 del_timer_sync(&sci
->sc_timer
);
2764 * nilfs_attach_log_writer - attach log writer
2765 * @sb: super block instance
2766 * @root: root object of the current filesystem tree
2768 * This allocates a log writer object, initializes it, and starts the
2771 * Return Value: On success, 0 is returned. On error, one of the following
2772 * negative error code is returned.
2774 * %-ENOMEM - Insufficient memory available.
2776 int nilfs_attach_log_writer(struct super_block
*sb
, struct nilfs_root
*root
)
2778 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2781 if (nilfs
->ns_writer
) {
2783 * This happens if the filesystem was remounted
2784 * read/write after nilfs_error degenerated it into a
2787 nilfs_detach_log_writer(sb
);
2790 nilfs
->ns_writer
= nilfs_segctor_new(sb
, root
);
2791 if (!nilfs
->ns_writer
)
2794 err
= nilfs_segctor_start_thread(nilfs
->ns_writer
);
2796 kfree(nilfs
->ns_writer
);
2797 nilfs
->ns_writer
= NULL
;
2803 * nilfs_detach_log_writer - destroy log writer
2804 * @sb: super block instance
2806 * This kills log writer daemon, frees the log writer object, and
2807 * destroys list of dirty files.
2809 void nilfs_detach_log_writer(struct super_block
*sb
)
2811 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2812 LIST_HEAD(garbage_list
);
2814 down_write(&nilfs
->ns_segctor_sem
);
2815 if (nilfs
->ns_writer
) {
2816 nilfs_segctor_destroy(nilfs
->ns_writer
);
2817 nilfs
->ns_writer
= NULL
;
2820 /* Force to free the list of dirty files */
2821 spin_lock(&nilfs
->ns_inode_lock
);
2822 if (!list_empty(&nilfs
->ns_dirty_files
)) {
2823 list_splice_init(&nilfs
->ns_dirty_files
, &garbage_list
);
2824 nilfs_warning(sb
, __func__
,
2825 "Hit dirty file after stopped log writer\n");
2827 spin_unlock(&nilfs
->ns_inode_lock
);
2828 up_write(&nilfs
->ns_segctor_sem
);
2830 nilfs_dispose_list(nilfs
, &garbage_list
, 1);