nilfs2: move cleanup code of metadata file from inode routines
[deliverable/linux.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi.
17 */
18 /*
19 * linux/fs/ext2/super.c
20 *
21 * Copyright (C) 1992, 1993, 1994, 1995
22 * Remy Card (card@masi.ibp.fr)
23 * Laboratoire MASI - Institut Blaise Pascal
24 * Universite Pierre et Marie Curie (Paris VI)
25 *
26 * from
27 *
28 * linux/fs/minix/inode.c
29 *
30 * Copyright (C) 1991, 1992 Linus Torvalds
31 *
32 * Big-endian to little-endian byte-swapping/bitmaps by
33 * David S. Miller (davem@caip.rutgers.edu), 1995
34 */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63 "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 static void nilfs_set_error(struct super_block *sb)
75 {
76 struct the_nilfs *nilfs = sb->s_fs_info;
77 struct nilfs_super_block **sbp;
78
79 down_write(&nilfs->ns_sem);
80 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81 nilfs->ns_mount_state |= NILFS_ERROR_FS;
82 sbp = nilfs_prepare_super(sb, 0);
83 if (likely(sbp)) {
84 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85 if (sbp[1])
86 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88 }
89 }
90 up_write(&nilfs->ns_sem);
91 }
92
93 /**
94 * nilfs_error() - report failure condition on a filesystem
95 *
96 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
97 * reporting an error message. It should be called when NILFS detects
98 * incoherences or defects of meta data on disk. As for sustainable
99 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
100 * function should be used instead.
101 *
102 * The segment constructor must not call this function because it can
103 * kill itself.
104 */
105 void nilfs_error(struct super_block *sb, const char *function,
106 const char *fmt, ...)
107 {
108 struct the_nilfs *nilfs = sb->s_fs_info;
109 struct va_format vaf;
110 va_list args;
111
112 va_start(args, fmt);
113
114 vaf.fmt = fmt;
115 vaf.va = &args;
116
117 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
118 sb->s_id, function, &vaf);
119
120 va_end(args);
121
122 if (!(sb->s_flags & MS_RDONLY)) {
123 nilfs_set_error(sb);
124
125 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
126 printk(KERN_CRIT "Remounting filesystem read-only\n");
127 sb->s_flags |= MS_RDONLY;
128 }
129 }
130
131 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
132 panic("NILFS (device %s): panic forced after error\n",
133 sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137 const char *fmt, ...)
138 {
139 struct va_format vaf;
140 va_list args;
141
142 va_start(args, fmt);
143
144 vaf.fmt = fmt;
145 vaf.va = &args;
146
147 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
148 sb->s_id, function, &vaf);
149
150 va_end(args);
151 }
152
153
154 struct inode *nilfs_alloc_inode(struct super_block *sb)
155 {
156 struct nilfs_inode_info *ii;
157
158 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159 if (!ii)
160 return NULL;
161 ii->i_bh = NULL;
162 ii->i_state = 0;
163 ii->i_cno = 0;
164 ii->vfs_inode.i_version = 1;
165 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
166 return &ii->vfs_inode;
167 }
168
169 static void nilfs_i_callback(struct rcu_head *head)
170 {
171 struct inode *inode = container_of(head, struct inode, i_rcu);
172
173 if (nilfs_is_metadata_file_inode(inode))
174 nilfs_mdt_destroy(inode);
175
176 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
177 }
178
179 void nilfs_destroy_inode(struct inode *inode)
180 {
181 call_rcu(&inode->i_rcu, nilfs_i_callback);
182 }
183
184 static int nilfs_sync_super(struct super_block *sb, int flag)
185 {
186 struct the_nilfs *nilfs = sb->s_fs_info;
187 int err;
188
189 retry:
190 set_buffer_dirty(nilfs->ns_sbh[0]);
191 if (nilfs_test_opt(nilfs, BARRIER)) {
192 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
193 WRITE_SYNC | WRITE_FLUSH_FUA);
194 } else {
195 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
196 }
197
198 if (unlikely(err)) {
199 printk(KERN_ERR
200 "NILFS: unable to write superblock (err=%d)\n", err);
201 if (err == -EIO && nilfs->ns_sbh[1]) {
202 /*
203 * sbp[0] points to newer log than sbp[1],
204 * so copy sbp[0] to sbp[1] to take over sbp[0].
205 */
206 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
207 nilfs->ns_sbsize);
208 nilfs_fall_back_super_block(nilfs);
209 goto retry;
210 }
211 } else {
212 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
213
214 nilfs->ns_sbwcount++;
215
216 /*
217 * The latest segment becomes trailable from the position
218 * written in superblock.
219 */
220 clear_nilfs_discontinued(nilfs);
221
222 /* update GC protection for recent segments */
223 if (nilfs->ns_sbh[1]) {
224 if (flag == NILFS_SB_COMMIT_ALL) {
225 set_buffer_dirty(nilfs->ns_sbh[1]);
226 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
227 goto out;
228 }
229 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
230 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
231 sbp = nilfs->ns_sbp[1];
232 }
233
234 spin_lock(&nilfs->ns_last_segment_lock);
235 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
236 spin_unlock(&nilfs->ns_last_segment_lock);
237 }
238 out:
239 return err;
240 }
241
242 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
243 struct the_nilfs *nilfs)
244 {
245 sector_t nfreeblocks;
246
247 /* nilfs->ns_sem must be locked by the caller. */
248 nilfs_count_free_blocks(nilfs, &nfreeblocks);
249 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
250
251 spin_lock(&nilfs->ns_last_segment_lock);
252 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
253 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
254 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
255 spin_unlock(&nilfs->ns_last_segment_lock);
256 }
257
258 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
259 int flip)
260 {
261 struct the_nilfs *nilfs = sb->s_fs_info;
262 struct nilfs_super_block **sbp = nilfs->ns_sbp;
263
264 /* nilfs->ns_sem must be locked by the caller. */
265 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
266 if (sbp[1] &&
267 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
268 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
269 } else {
270 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
271 sb->s_id);
272 return NULL;
273 }
274 } else if (sbp[1] &&
275 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
276 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
277 }
278
279 if (flip && sbp[1])
280 nilfs_swap_super_block(nilfs);
281
282 return sbp;
283 }
284
285 int nilfs_commit_super(struct super_block *sb, int flag)
286 {
287 struct the_nilfs *nilfs = sb->s_fs_info;
288 struct nilfs_super_block **sbp = nilfs->ns_sbp;
289 time_t t;
290
291 /* nilfs->ns_sem must be locked by the caller. */
292 t = get_seconds();
293 nilfs->ns_sbwtime = t;
294 sbp[0]->s_wtime = cpu_to_le64(t);
295 sbp[0]->s_sum = 0;
296 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297 (unsigned char *)sbp[0],
298 nilfs->ns_sbsize));
299 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
300 sbp[1]->s_wtime = sbp[0]->s_wtime;
301 sbp[1]->s_sum = 0;
302 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 (unsigned char *)sbp[1],
304 nilfs->ns_sbsize));
305 }
306 clear_nilfs_sb_dirty(nilfs);
307 nilfs->ns_flushed_device = 1;
308 /* make sure store to ns_flushed_device cannot be reordered */
309 smp_wmb();
310 return nilfs_sync_super(sb, flag);
311 }
312
313 /**
314 * nilfs_cleanup_super() - write filesystem state for cleanup
315 * @sb: super block instance to be unmounted or degraded to read-only
316 *
317 * This function restores state flags in the on-disk super block.
318 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
319 * filesystem was not clean previously.
320 */
321 int nilfs_cleanup_super(struct super_block *sb)
322 {
323 struct the_nilfs *nilfs = sb->s_fs_info;
324 struct nilfs_super_block **sbp;
325 int flag = NILFS_SB_COMMIT;
326 int ret = -EIO;
327
328 sbp = nilfs_prepare_super(sb, 0);
329 if (sbp) {
330 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
331 nilfs_set_log_cursor(sbp[0], nilfs);
332 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
333 /*
334 * make the "clean" flag also to the opposite
335 * super block if both super blocks point to
336 * the same checkpoint.
337 */
338 sbp[1]->s_state = sbp[0]->s_state;
339 flag = NILFS_SB_COMMIT_ALL;
340 }
341 ret = nilfs_commit_super(sb, flag);
342 }
343 return ret;
344 }
345
346 /**
347 * nilfs_move_2nd_super - relocate secondary super block
348 * @sb: super block instance
349 * @sb2off: new offset of the secondary super block (in bytes)
350 */
351 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
352 {
353 struct the_nilfs *nilfs = sb->s_fs_info;
354 struct buffer_head *nsbh;
355 struct nilfs_super_block *nsbp;
356 sector_t blocknr, newblocknr;
357 unsigned long offset;
358 int sb2i; /* array index of the secondary superblock */
359 int ret = 0;
360
361 /* nilfs->ns_sem must be locked by the caller. */
362 if (nilfs->ns_sbh[1] &&
363 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
364 sb2i = 1;
365 blocknr = nilfs->ns_sbh[1]->b_blocknr;
366 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
367 sb2i = 0;
368 blocknr = nilfs->ns_sbh[0]->b_blocknr;
369 } else {
370 sb2i = -1;
371 blocknr = 0;
372 }
373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374 goto out; /* super block location is unchanged */
375
376 /* Get new super block buffer */
377 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378 offset = sb2off & (nilfs->ns_blocksize - 1);
379 nsbh = sb_getblk(sb, newblocknr);
380 if (!nsbh) {
381 printk(KERN_WARNING
382 "NILFS warning: unable to move secondary superblock "
383 "to block %llu\n", (unsigned long long)newblocknr);
384 ret = -EIO;
385 goto out;
386 }
387 nsbp = (void *)nsbh->b_data + offset;
388 memset(nsbp, 0, nilfs->ns_blocksize);
389
390 if (sb2i >= 0) {
391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392 brelse(nilfs->ns_sbh[sb2i]);
393 nilfs->ns_sbh[sb2i] = nsbh;
394 nilfs->ns_sbp[sb2i] = nsbp;
395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396 /* secondary super block will be restored to index 1 */
397 nilfs->ns_sbh[1] = nsbh;
398 nilfs->ns_sbp[1] = nsbp;
399 } else {
400 brelse(nsbh);
401 }
402 out:
403 return ret;
404 }
405
406 /**
407 * nilfs_resize_fs - resize the filesystem
408 * @sb: super block instance
409 * @newsize: new size of the filesystem (in bytes)
410 */
411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
412 {
413 struct the_nilfs *nilfs = sb->s_fs_info;
414 struct nilfs_super_block **sbp;
415 __u64 devsize, newnsegs;
416 loff_t sb2off;
417 int ret;
418
419 ret = -ERANGE;
420 devsize = i_size_read(sb->s_bdev->bd_inode);
421 if (newsize > devsize)
422 goto out;
423
424 /*
425 * Write lock is required to protect some functions depending
426 * on the number of segments, the number of reserved segments,
427 * and so forth.
428 */
429 down_write(&nilfs->ns_segctor_sem);
430
431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433 do_div(newnsegs, nilfs->ns_blocks_per_segment);
434
435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436 up_write(&nilfs->ns_segctor_sem);
437 if (ret < 0)
438 goto out;
439
440 ret = nilfs_construct_segment(sb);
441 if (ret < 0)
442 goto out;
443
444 down_write(&nilfs->ns_sem);
445 nilfs_move_2nd_super(sb, sb2off);
446 ret = -EIO;
447 sbp = nilfs_prepare_super(sb, 0);
448 if (likely(sbp)) {
449 nilfs_set_log_cursor(sbp[0], nilfs);
450 /*
451 * Drop NILFS_RESIZE_FS flag for compatibility with
452 * mount-time resize which may be implemented in a
453 * future release.
454 */
455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456 ~NILFS_RESIZE_FS);
457 sbp[0]->s_dev_size = cpu_to_le64(newsize);
458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459 if (sbp[1])
460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
462 }
463 up_write(&nilfs->ns_sem);
464
465 /*
466 * Reset the range of allocatable segments last. This order
467 * is important in the case of expansion because the secondary
468 * superblock must be protected from log write until migration
469 * completes.
470 */
471 if (!ret)
472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473 out:
474 return ret;
475 }
476
477 static void nilfs_put_super(struct super_block *sb)
478 {
479 struct the_nilfs *nilfs = sb->s_fs_info;
480
481 nilfs_detach_log_writer(sb);
482
483 if (!(sb->s_flags & MS_RDONLY)) {
484 down_write(&nilfs->ns_sem);
485 nilfs_cleanup_super(sb);
486 up_write(&nilfs->ns_sem);
487 }
488
489 iput(nilfs->ns_sufile);
490 iput(nilfs->ns_cpfile);
491 iput(nilfs->ns_dat);
492
493 destroy_nilfs(nilfs);
494 sb->s_fs_info = NULL;
495 }
496
497 static int nilfs_sync_fs(struct super_block *sb, int wait)
498 {
499 struct the_nilfs *nilfs = sb->s_fs_info;
500 struct nilfs_super_block **sbp;
501 int err = 0;
502
503 /* This function is called when super block should be written back */
504 if (wait)
505 err = nilfs_construct_segment(sb);
506
507 down_write(&nilfs->ns_sem);
508 if (nilfs_sb_dirty(nilfs)) {
509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510 if (likely(sbp)) {
511 nilfs_set_log_cursor(sbp[0], nilfs);
512 nilfs_commit_super(sb, NILFS_SB_COMMIT);
513 }
514 }
515 up_write(&nilfs->ns_sem);
516
517 if (!err)
518 err = nilfs_flush_device(nilfs);
519
520 return err;
521 }
522
523 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
524 struct nilfs_root **rootp)
525 {
526 struct the_nilfs *nilfs = sb->s_fs_info;
527 struct nilfs_root *root;
528 struct nilfs_checkpoint *raw_cp;
529 struct buffer_head *bh_cp;
530 int err = -ENOMEM;
531
532 root = nilfs_find_or_create_root(
533 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
534 if (!root)
535 return err;
536
537 if (root->ifile)
538 goto reuse; /* already attached checkpoint */
539
540 down_read(&nilfs->ns_segctor_sem);
541 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
542 &bh_cp);
543 up_read(&nilfs->ns_segctor_sem);
544 if (unlikely(err)) {
545 if (err == -ENOENT || err == -EINVAL) {
546 printk(KERN_ERR
547 "NILFS: Invalid checkpoint "
548 "(checkpoint number=%llu)\n",
549 (unsigned long long)cno);
550 err = -EINVAL;
551 }
552 goto failed;
553 }
554
555 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
556 &raw_cp->cp_ifile_inode, &root->ifile);
557 if (err)
558 goto failed_bh;
559
560 atomic64_set(&root->inodes_count,
561 le64_to_cpu(raw_cp->cp_inodes_count));
562 atomic64_set(&root->blocks_count,
563 le64_to_cpu(raw_cp->cp_blocks_count));
564
565 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
566
567 reuse:
568 *rootp = root;
569 return 0;
570
571 failed_bh:
572 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
573 failed:
574 nilfs_put_root(root);
575
576 return err;
577 }
578
579 static int nilfs_freeze(struct super_block *sb)
580 {
581 struct the_nilfs *nilfs = sb->s_fs_info;
582 int err;
583
584 if (sb->s_flags & MS_RDONLY)
585 return 0;
586
587 /* Mark super block clean */
588 down_write(&nilfs->ns_sem);
589 err = nilfs_cleanup_super(sb);
590 up_write(&nilfs->ns_sem);
591 return err;
592 }
593
594 static int nilfs_unfreeze(struct super_block *sb)
595 {
596 struct the_nilfs *nilfs = sb->s_fs_info;
597
598 if (sb->s_flags & MS_RDONLY)
599 return 0;
600
601 down_write(&nilfs->ns_sem);
602 nilfs_setup_super(sb, false);
603 up_write(&nilfs->ns_sem);
604 return 0;
605 }
606
607 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
608 {
609 struct super_block *sb = dentry->d_sb;
610 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
611 struct the_nilfs *nilfs = root->nilfs;
612 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
613 unsigned long long blocks;
614 unsigned long overhead;
615 unsigned long nrsvblocks;
616 sector_t nfreeblocks;
617 u64 nmaxinodes, nfreeinodes;
618 int err;
619
620 /*
621 * Compute all of the segment blocks
622 *
623 * The blocks before first segment and after last segment
624 * are excluded.
625 */
626 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
627 - nilfs->ns_first_data_block;
628 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
629
630 /*
631 * Compute the overhead
632 *
633 * When distributing meta data blocks outside segment structure,
634 * We must count them as the overhead.
635 */
636 overhead = 0;
637
638 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
639 if (unlikely(err))
640 return err;
641
642 err = nilfs_ifile_count_free_inodes(root->ifile,
643 &nmaxinodes, &nfreeinodes);
644 if (unlikely(err)) {
645 printk(KERN_WARNING
646 "NILFS warning: fail to count free inodes: err %d.\n",
647 err);
648 if (err == -ERANGE) {
649 /*
650 * If nilfs_palloc_count_max_entries() returns
651 * -ERANGE error code then we simply treat
652 * curent inodes count as maximum possible and
653 * zero as free inodes value.
654 */
655 nmaxinodes = atomic64_read(&root->inodes_count);
656 nfreeinodes = 0;
657 err = 0;
658 } else
659 return err;
660 }
661
662 buf->f_type = NILFS_SUPER_MAGIC;
663 buf->f_bsize = sb->s_blocksize;
664 buf->f_blocks = blocks - overhead;
665 buf->f_bfree = nfreeblocks;
666 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
667 (buf->f_bfree - nrsvblocks) : 0;
668 buf->f_files = nmaxinodes;
669 buf->f_ffree = nfreeinodes;
670 buf->f_namelen = NILFS_NAME_LEN;
671 buf->f_fsid.val[0] = (u32)id;
672 buf->f_fsid.val[1] = (u32)(id >> 32);
673
674 return 0;
675 }
676
677 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
678 {
679 struct super_block *sb = dentry->d_sb;
680 struct the_nilfs *nilfs = sb->s_fs_info;
681 struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
682
683 if (!nilfs_test_opt(nilfs, BARRIER))
684 seq_puts(seq, ",nobarrier");
685 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
686 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
687 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
688 seq_puts(seq, ",errors=panic");
689 if (nilfs_test_opt(nilfs, ERRORS_CONT))
690 seq_puts(seq, ",errors=continue");
691 if (nilfs_test_opt(nilfs, STRICT_ORDER))
692 seq_puts(seq, ",order=strict");
693 if (nilfs_test_opt(nilfs, NORECOVERY))
694 seq_puts(seq, ",norecovery");
695 if (nilfs_test_opt(nilfs, DISCARD))
696 seq_puts(seq, ",discard");
697
698 return 0;
699 }
700
701 static const struct super_operations nilfs_sops = {
702 .alloc_inode = nilfs_alloc_inode,
703 .destroy_inode = nilfs_destroy_inode,
704 .dirty_inode = nilfs_dirty_inode,
705 .evict_inode = nilfs_evict_inode,
706 .put_super = nilfs_put_super,
707 .sync_fs = nilfs_sync_fs,
708 .freeze_fs = nilfs_freeze,
709 .unfreeze_fs = nilfs_unfreeze,
710 .statfs = nilfs_statfs,
711 .remount_fs = nilfs_remount,
712 .show_options = nilfs_show_options
713 };
714
715 enum {
716 Opt_err_cont, Opt_err_panic, Opt_err_ro,
717 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
718 Opt_discard, Opt_nodiscard, Opt_err,
719 };
720
721 static match_table_t tokens = {
722 {Opt_err_cont, "errors=continue"},
723 {Opt_err_panic, "errors=panic"},
724 {Opt_err_ro, "errors=remount-ro"},
725 {Opt_barrier, "barrier"},
726 {Opt_nobarrier, "nobarrier"},
727 {Opt_snapshot, "cp=%u"},
728 {Opt_order, "order=%s"},
729 {Opt_norecovery, "norecovery"},
730 {Opt_discard, "discard"},
731 {Opt_nodiscard, "nodiscard"},
732 {Opt_err, NULL}
733 };
734
735 static int parse_options(char *options, struct super_block *sb, int is_remount)
736 {
737 struct the_nilfs *nilfs = sb->s_fs_info;
738 char *p;
739 substring_t args[MAX_OPT_ARGS];
740
741 if (!options)
742 return 1;
743
744 while ((p = strsep(&options, ",")) != NULL) {
745 int token;
746 if (!*p)
747 continue;
748
749 token = match_token(p, tokens, args);
750 switch (token) {
751 case Opt_barrier:
752 nilfs_set_opt(nilfs, BARRIER);
753 break;
754 case Opt_nobarrier:
755 nilfs_clear_opt(nilfs, BARRIER);
756 break;
757 case Opt_order:
758 if (strcmp(args[0].from, "relaxed") == 0)
759 /* Ordered data semantics */
760 nilfs_clear_opt(nilfs, STRICT_ORDER);
761 else if (strcmp(args[0].from, "strict") == 0)
762 /* Strict in-order semantics */
763 nilfs_set_opt(nilfs, STRICT_ORDER);
764 else
765 return 0;
766 break;
767 case Opt_err_panic:
768 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
769 break;
770 case Opt_err_ro:
771 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
772 break;
773 case Opt_err_cont:
774 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
775 break;
776 case Opt_snapshot:
777 if (is_remount) {
778 printk(KERN_ERR
779 "NILFS: \"%s\" option is invalid "
780 "for remount.\n", p);
781 return 0;
782 }
783 break;
784 case Opt_norecovery:
785 nilfs_set_opt(nilfs, NORECOVERY);
786 break;
787 case Opt_discard:
788 nilfs_set_opt(nilfs, DISCARD);
789 break;
790 case Opt_nodiscard:
791 nilfs_clear_opt(nilfs, DISCARD);
792 break;
793 default:
794 printk(KERN_ERR
795 "NILFS: Unrecognized mount option \"%s\"\n", p);
796 return 0;
797 }
798 }
799 return 1;
800 }
801
802 static inline void
803 nilfs_set_default_options(struct super_block *sb,
804 struct nilfs_super_block *sbp)
805 {
806 struct the_nilfs *nilfs = sb->s_fs_info;
807
808 nilfs->ns_mount_opt =
809 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
810 }
811
812 static int nilfs_setup_super(struct super_block *sb, int is_mount)
813 {
814 struct the_nilfs *nilfs = sb->s_fs_info;
815 struct nilfs_super_block **sbp;
816 int max_mnt_count;
817 int mnt_count;
818
819 /* nilfs->ns_sem must be locked by the caller. */
820 sbp = nilfs_prepare_super(sb, 0);
821 if (!sbp)
822 return -EIO;
823
824 if (!is_mount)
825 goto skip_mount_setup;
826
827 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
828 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
829
830 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
831 printk(KERN_WARNING
832 "NILFS warning: mounting fs with errors\n");
833 #if 0
834 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
835 printk(KERN_WARNING
836 "NILFS warning: maximal mount count reached\n");
837 #endif
838 }
839 if (!max_mnt_count)
840 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
841
842 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
843 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
844
845 skip_mount_setup:
846 sbp[0]->s_state =
847 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
848 /* synchronize sbp[1] with sbp[0] */
849 if (sbp[1])
850 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
851 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
852 }
853
854 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
855 u64 pos, int blocksize,
856 struct buffer_head **pbh)
857 {
858 unsigned long long sb_index = pos;
859 unsigned long offset;
860
861 offset = do_div(sb_index, blocksize);
862 *pbh = sb_bread(sb, sb_index);
863 if (!*pbh)
864 return NULL;
865 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
866 }
867
868 int nilfs_store_magic_and_option(struct super_block *sb,
869 struct nilfs_super_block *sbp,
870 char *data)
871 {
872 struct the_nilfs *nilfs = sb->s_fs_info;
873
874 sb->s_magic = le16_to_cpu(sbp->s_magic);
875
876 /* FS independent flags */
877 #ifdef NILFS_ATIME_DISABLE
878 sb->s_flags |= MS_NOATIME;
879 #endif
880
881 nilfs_set_default_options(sb, sbp);
882
883 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
884 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
885 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
886 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
887
888 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
889 }
890
891 int nilfs_check_feature_compatibility(struct super_block *sb,
892 struct nilfs_super_block *sbp)
893 {
894 __u64 features;
895
896 features = le64_to_cpu(sbp->s_feature_incompat) &
897 ~NILFS_FEATURE_INCOMPAT_SUPP;
898 if (features) {
899 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
900 "optional features (%llx)\n",
901 (unsigned long long)features);
902 return -EINVAL;
903 }
904 features = le64_to_cpu(sbp->s_feature_compat_ro) &
905 ~NILFS_FEATURE_COMPAT_RO_SUPP;
906 if (!(sb->s_flags & MS_RDONLY) && features) {
907 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
908 "unsupported optional features (%llx)\n",
909 (unsigned long long)features);
910 return -EINVAL;
911 }
912 return 0;
913 }
914
915 static int nilfs_get_root_dentry(struct super_block *sb,
916 struct nilfs_root *root,
917 struct dentry **root_dentry)
918 {
919 struct inode *inode;
920 struct dentry *dentry;
921 int ret = 0;
922
923 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
924 if (IS_ERR(inode)) {
925 printk(KERN_ERR "NILFS: get root inode failed\n");
926 ret = PTR_ERR(inode);
927 goto out;
928 }
929 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
930 iput(inode);
931 printk(KERN_ERR "NILFS: corrupt root inode.\n");
932 ret = -EINVAL;
933 goto out;
934 }
935
936 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
937 dentry = d_find_alias(inode);
938 if (!dentry) {
939 dentry = d_make_root(inode);
940 if (!dentry) {
941 ret = -ENOMEM;
942 goto failed_dentry;
943 }
944 } else {
945 iput(inode);
946 }
947 } else {
948 dentry = d_obtain_root(inode);
949 if (IS_ERR(dentry)) {
950 ret = PTR_ERR(dentry);
951 goto failed_dentry;
952 }
953 }
954 *root_dentry = dentry;
955 out:
956 return ret;
957
958 failed_dentry:
959 printk(KERN_ERR "NILFS: get root dentry failed\n");
960 goto out;
961 }
962
963 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
964 struct dentry **root_dentry)
965 {
966 struct the_nilfs *nilfs = s->s_fs_info;
967 struct nilfs_root *root;
968 int ret;
969
970 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
971
972 down_read(&nilfs->ns_segctor_sem);
973 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
974 up_read(&nilfs->ns_segctor_sem);
975 if (ret < 0) {
976 ret = (ret == -ENOENT) ? -EINVAL : ret;
977 goto out;
978 } else if (!ret) {
979 printk(KERN_ERR "NILFS: The specified checkpoint is "
980 "not a snapshot (checkpoint number=%llu).\n",
981 (unsigned long long)cno);
982 ret = -EINVAL;
983 goto out;
984 }
985
986 ret = nilfs_attach_checkpoint(s, cno, false, &root);
987 if (ret) {
988 printk(KERN_ERR "NILFS: error loading snapshot "
989 "(checkpoint number=%llu).\n",
990 (unsigned long long)cno);
991 goto out;
992 }
993 ret = nilfs_get_root_dentry(s, root, root_dentry);
994 nilfs_put_root(root);
995 out:
996 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
997 return ret;
998 }
999
1000 /**
1001 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1002 * @root_dentry: root dentry of the tree to be shrunk
1003 *
1004 * This function returns true if the tree was in-use.
1005 */
1006 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1007 {
1008 shrink_dcache_parent(root_dentry);
1009 return d_count(root_dentry) > 1;
1010 }
1011
1012 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1013 {
1014 struct the_nilfs *nilfs = sb->s_fs_info;
1015 struct nilfs_root *root;
1016 struct inode *inode;
1017 struct dentry *dentry;
1018 int ret;
1019
1020 if (cno > nilfs->ns_cno)
1021 return false;
1022
1023 if (cno >= nilfs_last_cno(nilfs))
1024 return true; /* protect recent checkpoints */
1025
1026 ret = false;
1027 root = nilfs_lookup_root(nilfs, cno);
1028 if (root) {
1029 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1030 if (inode) {
1031 dentry = d_find_alias(inode);
1032 if (dentry) {
1033 ret = nilfs_tree_is_busy(dentry);
1034 dput(dentry);
1035 }
1036 iput(inode);
1037 }
1038 nilfs_put_root(root);
1039 }
1040 return ret;
1041 }
1042
1043 /**
1044 * nilfs_fill_super() - initialize a super block instance
1045 * @sb: super_block
1046 * @data: mount options
1047 * @silent: silent mode flag
1048 *
1049 * This function is called exclusively by nilfs->ns_mount_mutex.
1050 * So, the recovery process is protected from other simultaneous mounts.
1051 */
1052 static int
1053 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1054 {
1055 struct the_nilfs *nilfs;
1056 struct nilfs_root *fsroot;
1057 __u64 cno;
1058 int err;
1059
1060 nilfs = alloc_nilfs(sb->s_bdev);
1061 if (!nilfs)
1062 return -ENOMEM;
1063
1064 sb->s_fs_info = nilfs;
1065
1066 err = init_nilfs(nilfs, sb, (char *)data);
1067 if (err)
1068 goto failed_nilfs;
1069
1070 sb->s_op = &nilfs_sops;
1071 sb->s_export_op = &nilfs_export_ops;
1072 sb->s_root = NULL;
1073 sb->s_time_gran = 1;
1074 sb->s_max_links = NILFS_LINK_MAX;
1075
1076 sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1077
1078 err = load_nilfs(nilfs, sb);
1079 if (err)
1080 goto failed_nilfs;
1081
1082 cno = nilfs_last_cno(nilfs);
1083 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1084 if (err) {
1085 printk(KERN_ERR "NILFS: error loading last checkpoint "
1086 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1087 goto failed_unload;
1088 }
1089
1090 if (!(sb->s_flags & MS_RDONLY)) {
1091 err = nilfs_attach_log_writer(sb, fsroot);
1092 if (err)
1093 goto failed_checkpoint;
1094 }
1095
1096 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1097 if (err)
1098 goto failed_segctor;
1099
1100 nilfs_put_root(fsroot);
1101
1102 if (!(sb->s_flags & MS_RDONLY)) {
1103 down_write(&nilfs->ns_sem);
1104 nilfs_setup_super(sb, true);
1105 up_write(&nilfs->ns_sem);
1106 }
1107
1108 return 0;
1109
1110 failed_segctor:
1111 nilfs_detach_log_writer(sb);
1112
1113 failed_checkpoint:
1114 nilfs_put_root(fsroot);
1115
1116 failed_unload:
1117 iput(nilfs->ns_sufile);
1118 iput(nilfs->ns_cpfile);
1119 iput(nilfs->ns_dat);
1120
1121 failed_nilfs:
1122 destroy_nilfs(nilfs);
1123 return err;
1124 }
1125
1126 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1127 {
1128 struct the_nilfs *nilfs = sb->s_fs_info;
1129 unsigned long old_sb_flags;
1130 unsigned long old_mount_opt;
1131 int err;
1132
1133 sync_filesystem(sb);
1134 old_sb_flags = sb->s_flags;
1135 old_mount_opt = nilfs->ns_mount_opt;
1136
1137 if (!parse_options(data, sb, 1)) {
1138 err = -EINVAL;
1139 goto restore_opts;
1140 }
1141 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1142
1143 err = -EINVAL;
1144
1145 if (!nilfs_valid_fs(nilfs)) {
1146 printk(KERN_WARNING "NILFS (device %s): couldn't "
1147 "remount because the filesystem is in an "
1148 "incomplete recovery state.\n", sb->s_id);
1149 goto restore_opts;
1150 }
1151
1152 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1153 goto out;
1154 if (*flags & MS_RDONLY) {
1155 /* Shutting down log writer */
1156 nilfs_detach_log_writer(sb);
1157 sb->s_flags |= MS_RDONLY;
1158
1159 /*
1160 * Remounting a valid RW partition RDONLY, so set
1161 * the RDONLY flag and then mark the partition as valid again.
1162 */
1163 down_write(&nilfs->ns_sem);
1164 nilfs_cleanup_super(sb);
1165 up_write(&nilfs->ns_sem);
1166 } else {
1167 __u64 features;
1168 struct nilfs_root *root;
1169
1170 /*
1171 * Mounting a RDONLY partition read-write, so reread and
1172 * store the current valid flag. (It may have been changed
1173 * by fsck since we originally mounted the partition.)
1174 */
1175 down_read(&nilfs->ns_sem);
1176 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1177 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1178 up_read(&nilfs->ns_sem);
1179 if (features) {
1180 printk(KERN_WARNING "NILFS (device %s): couldn't "
1181 "remount RDWR because of unsupported optional "
1182 "features (%llx)\n",
1183 sb->s_id, (unsigned long long)features);
1184 err = -EROFS;
1185 goto restore_opts;
1186 }
1187
1188 sb->s_flags &= ~MS_RDONLY;
1189
1190 root = NILFS_I(d_inode(sb->s_root))->i_root;
1191 err = nilfs_attach_log_writer(sb, root);
1192 if (err)
1193 goto restore_opts;
1194
1195 down_write(&nilfs->ns_sem);
1196 nilfs_setup_super(sb, true);
1197 up_write(&nilfs->ns_sem);
1198 }
1199 out:
1200 return 0;
1201
1202 restore_opts:
1203 sb->s_flags = old_sb_flags;
1204 nilfs->ns_mount_opt = old_mount_opt;
1205 return err;
1206 }
1207
1208 struct nilfs_super_data {
1209 struct block_device *bdev;
1210 __u64 cno;
1211 int flags;
1212 };
1213
1214 /**
1215 * nilfs_identify - pre-read mount options needed to identify mount instance
1216 * @data: mount options
1217 * @sd: nilfs_super_data
1218 */
1219 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1220 {
1221 char *p, *options = data;
1222 substring_t args[MAX_OPT_ARGS];
1223 int token;
1224 int ret = 0;
1225
1226 do {
1227 p = strsep(&options, ",");
1228 if (p != NULL && *p) {
1229 token = match_token(p, tokens, args);
1230 if (token == Opt_snapshot) {
1231 if (!(sd->flags & MS_RDONLY)) {
1232 ret++;
1233 } else {
1234 sd->cno = simple_strtoull(args[0].from,
1235 NULL, 0);
1236 /*
1237 * No need to see the end pointer;
1238 * match_token() has done syntax
1239 * checking.
1240 */
1241 if (sd->cno == 0)
1242 ret++;
1243 }
1244 }
1245 if (ret)
1246 printk(KERN_ERR
1247 "NILFS: invalid mount option: %s\n", p);
1248 }
1249 if (!options)
1250 break;
1251 BUG_ON(options == data);
1252 *(options - 1) = ',';
1253 } while (!ret);
1254 return ret;
1255 }
1256
1257 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1258 {
1259 s->s_bdev = data;
1260 s->s_dev = s->s_bdev->bd_dev;
1261 return 0;
1262 }
1263
1264 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1265 {
1266 return (void *)s->s_bdev == data;
1267 }
1268
1269 static struct dentry *
1270 nilfs_mount(struct file_system_type *fs_type, int flags,
1271 const char *dev_name, void *data)
1272 {
1273 struct nilfs_super_data sd;
1274 struct super_block *s;
1275 fmode_t mode = FMODE_READ | FMODE_EXCL;
1276 struct dentry *root_dentry;
1277 int err, s_new = false;
1278
1279 if (!(flags & MS_RDONLY))
1280 mode |= FMODE_WRITE;
1281
1282 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1283 if (IS_ERR(sd.bdev))
1284 return ERR_CAST(sd.bdev);
1285
1286 sd.cno = 0;
1287 sd.flags = flags;
1288 if (nilfs_identify((char *)data, &sd)) {
1289 err = -EINVAL;
1290 goto failed;
1291 }
1292
1293 /*
1294 * once the super is inserted into the list by sget, s_umount
1295 * will protect the lockfs code from trying to start a snapshot
1296 * while we are mounting
1297 */
1298 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1299 if (sd.bdev->bd_fsfreeze_count > 0) {
1300 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301 err = -EBUSY;
1302 goto failed;
1303 }
1304 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1305 sd.bdev);
1306 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307 if (IS_ERR(s)) {
1308 err = PTR_ERR(s);
1309 goto failed;
1310 }
1311
1312 if (!s->s_root) {
1313 s_new = true;
1314
1315 /* New superblock instance created */
1316 s->s_mode = mode;
1317 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1318 sb_set_blocksize(s, block_size(sd.bdev));
1319
1320 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1321 if (err)
1322 goto failed_super;
1323
1324 s->s_flags |= MS_ACTIVE;
1325 } else if (!sd.cno) {
1326 if (nilfs_tree_is_busy(s->s_root)) {
1327 if ((flags ^ s->s_flags) & MS_RDONLY) {
1328 printk(KERN_ERR "NILFS: the device already "
1329 "has a %s mount.\n",
1330 (s->s_flags & MS_RDONLY) ?
1331 "read-only" : "read/write");
1332 err = -EBUSY;
1333 goto failed_super;
1334 }
1335 } else {
1336 /*
1337 * Try remount to setup mount states if the current
1338 * tree is not mounted and only snapshots use this sb.
1339 */
1340 err = nilfs_remount(s, &flags, data);
1341 if (err)
1342 goto failed_super;
1343 }
1344 }
1345
1346 if (sd.cno) {
1347 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1348 if (err)
1349 goto failed_super;
1350 } else {
1351 root_dentry = dget(s->s_root);
1352 }
1353
1354 if (!s_new)
1355 blkdev_put(sd.bdev, mode);
1356
1357 return root_dentry;
1358
1359 failed_super:
1360 deactivate_locked_super(s);
1361
1362 failed:
1363 if (!s_new)
1364 blkdev_put(sd.bdev, mode);
1365 return ERR_PTR(err);
1366 }
1367
1368 struct file_system_type nilfs_fs_type = {
1369 .owner = THIS_MODULE,
1370 .name = "nilfs2",
1371 .mount = nilfs_mount,
1372 .kill_sb = kill_block_super,
1373 .fs_flags = FS_REQUIRES_DEV,
1374 };
1375 MODULE_ALIAS_FS("nilfs2");
1376
1377 static void nilfs_inode_init_once(void *obj)
1378 {
1379 struct nilfs_inode_info *ii = obj;
1380
1381 INIT_LIST_HEAD(&ii->i_dirty);
1382 #ifdef CONFIG_NILFS_XATTR
1383 init_rwsem(&ii->xattr_sem);
1384 #endif
1385 address_space_init_once(&ii->i_btnode_cache);
1386 ii->i_bmap = &ii->i_bmap_data;
1387 inode_init_once(&ii->vfs_inode);
1388 }
1389
1390 static void nilfs_segbuf_init_once(void *obj)
1391 {
1392 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1393 }
1394
1395 static void nilfs_destroy_cachep(void)
1396 {
1397 /*
1398 * Make sure all delayed rcu free inodes are flushed before we
1399 * destroy cache.
1400 */
1401 rcu_barrier();
1402
1403 kmem_cache_destroy(nilfs_inode_cachep);
1404 kmem_cache_destroy(nilfs_transaction_cachep);
1405 kmem_cache_destroy(nilfs_segbuf_cachep);
1406 kmem_cache_destroy(nilfs_btree_path_cache);
1407 }
1408
1409 static int __init nilfs_init_cachep(void)
1410 {
1411 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1412 sizeof(struct nilfs_inode_info), 0,
1413 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1414 nilfs_inode_init_once);
1415 if (!nilfs_inode_cachep)
1416 goto fail;
1417
1418 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1419 sizeof(struct nilfs_transaction_info), 0,
1420 SLAB_RECLAIM_ACCOUNT, NULL);
1421 if (!nilfs_transaction_cachep)
1422 goto fail;
1423
1424 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1425 sizeof(struct nilfs_segment_buffer), 0,
1426 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1427 if (!nilfs_segbuf_cachep)
1428 goto fail;
1429
1430 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1431 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1432 0, 0, NULL);
1433 if (!nilfs_btree_path_cache)
1434 goto fail;
1435
1436 return 0;
1437
1438 fail:
1439 nilfs_destroy_cachep();
1440 return -ENOMEM;
1441 }
1442
1443 static int __init init_nilfs_fs(void)
1444 {
1445 int err;
1446
1447 err = nilfs_init_cachep();
1448 if (err)
1449 goto fail;
1450
1451 err = nilfs_sysfs_init();
1452 if (err)
1453 goto free_cachep;
1454
1455 err = register_filesystem(&nilfs_fs_type);
1456 if (err)
1457 goto deinit_sysfs_entry;
1458
1459 printk(KERN_INFO "NILFS version 2 loaded\n");
1460 return 0;
1461
1462 deinit_sysfs_entry:
1463 nilfs_sysfs_exit();
1464 free_cachep:
1465 nilfs_destroy_cachep();
1466 fail:
1467 return err;
1468 }
1469
1470 static void __exit exit_nilfs_fs(void)
1471 {
1472 nilfs_destroy_cachep();
1473 nilfs_sysfs_exit();
1474 unregister_filesystem(&nilfs_fs_type);
1475 }
1476
1477 module_init(init_nilfs_fs)
1478 module_exit(exit_nilfs_fs)
This page took 0.078544 seconds and 5 git commands to generate.