remove ->write_super call in generic_shutdown_super
[deliverable/linux.git] / fs / nilfs2 / super.c
1 /*
2 * super.c - NILFS module and super block management.
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
21 */
22 /*
23 * linux/fs/ext2/super.c
24 *
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
29 *
30 * from
31 *
32 * linux/fs/minix/inode.c
33 *
34 * Copyright (C) 1991, 1992 Linus Torvalds
35 *
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
38 */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
62
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66 MODULE_LICENSE("GPL");
67
68 static void nilfs_write_super(struct super_block *sb);
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70 static int test_exclusive_mount(struct file_system_type *fs_type,
71 struct block_device *bdev, int flags);
72
73 /**
74 * nilfs_error() - report failure condition on a filesystem
75 *
76 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
77 * reporting an error message. It should be called when NILFS detects
78 * incoherences or defects of meta data on disk. As for sustainable
79 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
80 * function should be used instead.
81 *
82 * The segment constructor must not call this function because it can
83 * kill itself.
84 */
85 void nilfs_error(struct super_block *sb, const char *function,
86 const char *fmt, ...)
87 {
88 struct nilfs_sb_info *sbi = NILFS_SB(sb);
89 va_list args;
90
91 va_start(args, fmt);
92 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
93 vprintk(fmt, args);
94 printk("\n");
95 va_end(args);
96
97 if (!(sb->s_flags & MS_RDONLY)) {
98 struct the_nilfs *nilfs = sbi->s_nilfs;
99
100 if (!nilfs_test_opt(sbi, ERRORS_CONT))
101 nilfs_detach_segment_constructor(sbi);
102
103 down_write(&nilfs->ns_sem);
104 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
105 nilfs->ns_mount_state |= NILFS_ERROR_FS;
106 nilfs->ns_sbp[0]->s_state |=
107 cpu_to_le16(NILFS_ERROR_FS);
108 nilfs_commit_super(sbi, 1);
109 }
110 up_write(&nilfs->ns_sem);
111
112 if (nilfs_test_opt(sbi, ERRORS_RO)) {
113 printk(KERN_CRIT "Remounting filesystem read-only\n");
114 sb->s_flags |= MS_RDONLY;
115 }
116 }
117
118 if (nilfs_test_opt(sbi, ERRORS_PANIC))
119 panic("NILFS (device %s): panic forced after error\n",
120 sb->s_id);
121 }
122
123 void nilfs_warning(struct super_block *sb, const char *function,
124 const char *fmt, ...)
125 {
126 va_list args;
127
128 va_start(args, fmt);
129 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
130 sb->s_id, function);
131 vprintk(fmt, args);
132 printk("\n");
133 va_end(args);
134 }
135
136 static struct kmem_cache *nilfs_inode_cachep;
137
138 struct inode *nilfs_alloc_inode(struct super_block *sb)
139 {
140 struct nilfs_inode_info *ii;
141
142 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
143 if (!ii)
144 return NULL;
145 ii->i_bh = NULL;
146 ii->i_state = 0;
147 ii->vfs_inode.i_version = 1;
148 nilfs_btnode_cache_init(&ii->i_btnode_cache);
149 return &ii->vfs_inode;
150 }
151
152 void nilfs_destroy_inode(struct inode *inode)
153 {
154 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
155 }
156
157 static void init_once(void *obj)
158 {
159 struct nilfs_inode_info *ii = obj;
160
161 INIT_LIST_HEAD(&ii->i_dirty);
162 #ifdef CONFIG_NILFS_XATTR
163 init_rwsem(&ii->xattr_sem);
164 #endif
165 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
166 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
167 inode_init_once(&ii->vfs_inode);
168 }
169
170 static int nilfs_init_inode_cache(void)
171 {
172 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
173 sizeof(struct nilfs_inode_info),
174 0, SLAB_RECLAIM_ACCOUNT,
175 init_once);
176
177 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
178 }
179
180 static inline void nilfs_destroy_inode_cache(void)
181 {
182 kmem_cache_destroy(nilfs_inode_cachep);
183 }
184
185 static void nilfs_clear_inode(struct inode *inode)
186 {
187 struct nilfs_inode_info *ii = NILFS_I(inode);
188
189 #ifdef CONFIG_NILFS_POSIX_ACL
190 if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
191 posix_acl_release(ii->i_acl);
192 ii->i_acl = NILFS_ACL_NOT_CACHED;
193 }
194 if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
195 posix_acl_release(ii->i_default_acl);
196 ii->i_default_acl = NILFS_ACL_NOT_CACHED;
197 }
198 #endif
199 /*
200 * Free resources allocated in nilfs_read_inode(), here.
201 */
202 BUG_ON(!list_empty(&ii->i_dirty));
203 brelse(ii->i_bh);
204 ii->i_bh = NULL;
205
206 if (test_bit(NILFS_I_BMAP, &ii->i_state))
207 nilfs_bmap_clear(ii->i_bmap);
208
209 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
210 }
211
212 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
213 {
214 struct the_nilfs *nilfs = sbi->s_nilfs;
215 int err;
216 int barrier_done = 0;
217
218 if (nilfs_test_opt(sbi, BARRIER)) {
219 set_buffer_ordered(nilfs->ns_sbh[0]);
220 barrier_done = 1;
221 }
222 retry:
223 set_buffer_dirty(nilfs->ns_sbh[0]);
224 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
225 if (err == -EOPNOTSUPP && barrier_done) {
226 nilfs_warning(sbi->s_super, __func__,
227 "barrier-based sync failed. "
228 "disabling barriers\n");
229 nilfs_clear_opt(sbi, BARRIER);
230 barrier_done = 0;
231 clear_buffer_ordered(nilfs->ns_sbh[0]);
232 goto retry;
233 }
234 if (unlikely(err)) {
235 printk(KERN_ERR
236 "NILFS: unable to write superblock (err=%d)\n", err);
237 if (err == -EIO && nilfs->ns_sbh[1]) {
238 nilfs_fall_back_super_block(nilfs);
239 goto retry;
240 }
241 } else {
242 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
243
244 /*
245 * The latest segment becomes trailable from the position
246 * written in superblock.
247 */
248 clear_nilfs_discontinued(nilfs);
249
250 /* update GC protection for recent segments */
251 if (nilfs->ns_sbh[1]) {
252 sbp = NULL;
253 if (dupsb) {
254 set_buffer_dirty(nilfs->ns_sbh[1]);
255 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
256 sbp = nilfs->ns_sbp[1];
257 }
258 }
259 if (sbp) {
260 spin_lock(&nilfs->ns_last_segment_lock);
261 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
262 spin_unlock(&nilfs->ns_last_segment_lock);
263 }
264 }
265
266 return err;
267 }
268
269 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
270 {
271 struct the_nilfs *nilfs = sbi->s_nilfs;
272 struct nilfs_super_block **sbp = nilfs->ns_sbp;
273 sector_t nfreeblocks;
274 time_t t;
275 int err;
276
277 /* nilfs->sem must be locked by the caller. */
278 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
279 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
280 nilfs_swap_super_block(nilfs);
281 else {
282 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
283 sbi->s_super->s_id);
284 return -EIO;
285 }
286 }
287 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
288 if (unlikely(err)) {
289 printk(KERN_ERR "NILFS: failed to count free blocks\n");
290 return err;
291 }
292 spin_lock(&nilfs->ns_last_segment_lock);
293 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
294 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
295 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
296 spin_unlock(&nilfs->ns_last_segment_lock);
297
298 t = get_seconds();
299 nilfs->ns_sbwtime[0] = t;
300 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
301 sbp[0]->s_wtime = cpu_to_le64(t);
302 sbp[0]->s_sum = 0;
303 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
304 (unsigned char *)sbp[0],
305 nilfs->ns_sbsize));
306 if (dupsb && sbp[1]) {
307 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
308 nilfs->ns_sbwtime[1] = t;
309 }
310 sbi->s_super->s_dirt = 0;
311 return nilfs_sync_super(sbi, dupsb);
312 }
313
314 static void nilfs_put_super(struct super_block *sb)
315 {
316 struct nilfs_sb_info *sbi = NILFS_SB(sb);
317 struct the_nilfs *nilfs = sbi->s_nilfs;
318
319 if (sb->s_dirt)
320 nilfs_write_super(sb);
321
322 nilfs_detach_segment_constructor(sbi);
323
324 if (!(sb->s_flags & MS_RDONLY)) {
325 down_write(&nilfs->ns_sem);
326 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
327 nilfs_commit_super(sbi, 1);
328 up_write(&nilfs->ns_sem);
329 }
330
331 nilfs_detach_checkpoint(sbi);
332 put_nilfs(sbi->s_nilfs);
333 sbi->s_super = NULL;
334 sb->s_fs_info = NULL;
335 kfree(sbi);
336 }
337
338 /**
339 * nilfs_write_super - write super block(s) of NILFS
340 * @sb: super_block
341 *
342 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
343 * clears s_dirt. This function is called in the section protected by
344 * lock_super().
345 *
346 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
347 * of the struct the_nilfs. Lock order must be as follows:
348 *
349 * 1. lock_super()
350 * 2. down_write(&nilfs->ns_sem)
351 *
352 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
353 * of the super block (nilfs->ns_sbp[]).
354 *
355 * In most cases, VFS functions call lock_super() before calling these
356 * methods. So we must be careful not to bring on deadlocks when using
357 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
358 *
359 * Note that order of lock_kernel() and lock_super() depends on contexts
360 * of VFS. We should also note that lock_kernel() can be used in its
361 * protective section and only the outermost one has an effect.
362 */
363 static void nilfs_write_super(struct super_block *sb)
364 {
365 struct nilfs_sb_info *sbi = NILFS_SB(sb);
366 struct the_nilfs *nilfs = sbi->s_nilfs;
367
368 down_write(&nilfs->ns_sem);
369 if (!(sb->s_flags & MS_RDONLY)) {
370 struct nilfs_super_block **sbp = nilfs->ns_sbp;
371 u64 t = get_seconds();
372 int dupsb;
373
374 if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
375 t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
376 up_write(&nilfs->ns_sem);
377 return;
378 }
379 dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
380 nilfs_commit_super(sbi, dupsb);
381 }
382 sb->s_dirt = 0;
383 up_write(&nilfs->ns_sem);
384 }
385
386 static int nilfs_sync_fs(struct super_block *sb, int wait)
387 {
388 int err = 0;
389
390 /* This function is called when super block should be written back */
391 if (wait)
392 err = nilfs_construct_segment(sb);
393 return err;
394 }
395
396 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
397 {
398 struct the_nilfs *nilfs = sbi->s_nilfs;
399 struct nilfs_checkpoint *raw_cp;
400 struct buffer_head *bh_cp;
401 int err;
402
403 down_write(&nilfs->ns_sem);
404 list_add(&sbi->s_list, &nilfs->ns_supers);
405 up_write(&nilfs->ns_sem);
406
407 sbi->s_ifile = nilfs_mdt_new(
408 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
409 if (!sbi->s_ifile)
410 return -ENOMEM;
411
412 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
413 if (unlikely(err))
414 goto failed;
415
416 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
417 &bh_cp);
418 if (unlikely(err)) {
419 if (err == -ENOENT || err == -EINVAL) {
420 printk(KERN_ERR
421 "NILFS: Invalid checkpoint "
422 "(checkpoint number=%llu)\n",
423 (unsigned long long)cno);
424 err = -EINVAL;
425 }
426 goto failed;
427 }
428 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
429 if (unlikely(err))
430 goto failed_bh;
431 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
432 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
433
434 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
435 return 0;
436
437 failed_bh:
438 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
439 failed:
440 nilfs_mdt_destroy(sbi->s_ifile);
441 sbi->s_ifile = NULL;
442
443 down_write(&nilfs->ns_sem);
444 list_del_init(&sbi->s_list);
445 up_write(&nilfs->ns_sem);
446
447 return err;
448 }
449
450 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
451 {
452 struct the_nilfs *nilfs = sbi->s_nilfs;
453
454 nilfs_mdt_clear(sbi->s_ifile);
455 nilfs_mdt_destroy(sbi->s_ifile);
456 sbi->s_ifile = NULL;
457 down_write(&nilfs->ns_sem);
458 list_del_init(&sbi->s_list);
459 up_write(&nilfs->ns_sem);
460 }
461
462 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
463 {
464 struct the_nilfs *nilfs = sbi->s_nilfs;
465 int err = 0;
466
467 down_write(&nilfs->ns_sem);
468 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
469 nilfs->ns_mount_state |= NILFS_VALID_FS;
470 err = nilfs_commit_super(sbi, 1);
471 if (likely(!err))
472 printk(KERN_INFO "NILFS: recovery complete.\n");
473 }
474 up_write(&nilfs->ns_sem);
475 return err;
476 }
477
478 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
479 {
480 struct super_block *sb = dentry->d_sb;
481 struct nilfs_sb_info *sbi = NILFS_SB(sb);
482 struct the_nilfs *nilfs = sbi->s_nilfs;
483 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
484 unsigned long long blocks;
485 unsigned long overhead;
486 unsigned long nrsvblocks;
487 sector_t nfreeblocks;
488 int err;
489
490 /*
491 * Compute all of the segment blocks
492 *
493 * The blocks before first segment and after last segment
494 * are excluded.
495 */
496 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
497 - nilfs->ns_first_data_block;
498 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
499
500 /*
501 * Compute the overhead
502 *
503 * When distributing meta data blocks outside semgent structure,
504 * We must count them as the overhead.
505 */
506 overhead = 0;
507
508 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
509 if (unlikely(err))
510 return err;
511
512 buf->f_type = NILFS_SUPER_MAGIC;
513 buf->f_bsize = sb->s_blocksize;
514 buf->f_blocks = blocks - overhead;
515 buf->f_bfree = nfreeblocks;
516 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
517 (buf->f_bfree - nrsvblocks) : 0;
518 buf->f_files = atomic_read(&sbi->s_inodes_count);
519 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
520 buf->f_namelen = NILFS_NAME_LEN;
521 buf->f_fsid.val[0] = (u32)id;
522 buf->f_fsid.val[1] = (u32)(id >> 32);
523
524 return 0;
525 }
526
527 static struct super_operations nilfs_sops = {
528 .alloc_inode = nilfs_alloc_inode,
529 .destroy_inode = nilfs_destroy_inode,
530 .dirty_inode = nilfs_dirty_inode,
531 /* .write_inode = nilfs_write_inode, */
532 /* .put_inode = nilfs_put_inode, */
533 /* .drop_inode = nilfs_drop_inode, */
534 .delete_inode = nilfs_delete_inode,
535 .put_super = nilfs_put_super,
536 .write_super = nilfs_write_super,
537 .sync_fs = nilfs_sync_fs,
538 /* .write_super_lockfs */
539 /* .unlockfs */
540 .statfs = nilfs_statfs,
541 .remount_fs = nilfs_remount,
542 .clear_inode = nilfs_clear_inode,
543 /* .umount_begin */
544 /* .show_options */
545 };
546
547 static struct inode *
548 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
549 {
550 struct inode *inode;
551
552 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
553 ino != NILFS_SKETCH_INO)
554 return ERR_PTR(-ESTALE);
555
556 inode = nilfs_iget(sb, ino);
557 if (IS_ERR(inode))
558 return ERR_CAST(inode);
559 if (generation && inode->i_generation != generation) {
560 iput(inode);
561 return ERR_PTR(-ESTALE);
562 }
563
564 return inode;
565 }
566
567 static struct dentry *
568 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
569 int fh_type)
570 {
571 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
572 nilfs_nfs_get_inode);
573 }
574
575 static struct dentry *
576 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
577 int fh_type)
578 {
579 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
580 nilfs_nfs_get_inode);
581 }
582
583 static struct export_operations nilfs_export_ops = {
584 .fh_to_dentry = nilfs_fh_to_dentry,
585 .fh_to_parent = nilfs_fh_to_parent,
586 .get_parent = nilfs_get_parent,
587 };
588
589 enum {
590 Opt_err_cont, Opt_err_panic, Opt_err_ro,
591 Opt_barrier, Opt_snapshot, Opt_order,
592 Opt_err,
593 };
594
595 static match_table_t tokens = {
596 {Opt_err_cont, "errors=continue"},
597 {Opt_err_panic, "errors=panic"},
598 {Opt_err_ro, "errors=remount-ro"},
599 {Opt_barrier, "barrier=%s"},
600 {Opt_snapshot, "cp=%u"},
601 {Opt_order, "order=%s"},
602 {Opt_err, NULL}
603 };
604
605 static int match_bool(substring_t *s, int *result)
606 {
607 int len = s->to - s->from;
608
609 if (strncmp(s->from, "on", len) == 0)
610 *result = 1;
611 else if (strncmp(s->from, "off", len) == 0)
612 *result = 0;
613 else
614 return 1;
615 return 0;
616 }
617
618 static int parse_options(char *options, struct super_block *sb)
619 {
620 struct nilfs_sb_info *sbi = NILFS_SB(sb);
621 char *p;
622 substring_t args[MAX_OPT_ARGS];
623 int option;
624
625 if (!options)
626 return 1;
627
628 while ((p = strsep(&options, ",")) != NULL) {
629 int token;
630 if (!*p)
631 continue;
632
633 token = match_token(p, tokens, args);
634 switch (token) {
635 case Opt_barrier:
636 if (match_bool(&args[0], &option))
637 return 0;
638 if (option)
639 nilfs_set_opt(sbi, BARRIER);
640 else
641 nilfs_clear_opt(sbi, BARRIER);
642 break;
643 case Opt_order:
644 if (strcmp(args[0].from, "relaxed") == 0)
645 /* Ordered data semantics */
646 nilfs_clear_opt(sbi, STRICT_ORDER);
647 else if (strcmp(args[0].from, "strict") == 0)
648 /* Strict in-order semantics */
649 nilfs_set_opt(sbi, STRICT_ORDER);
650 else
651 return 0;
652 break;
653 case Opt_err_panic:
654 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
655 break;
656 case Opt_err_ro:
657 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
658 break;
659 case Opt_err_cont:
660 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
661 break;
662 case Opt_snapshot:
663 if (match_int(&args[0], &option) || option <= 0)
664 return 0;
665 if (!(sb->s_flags & MS_RDONLY))
666 return 0;
667 sbi->s_snapshot_cno = option;
668 nilfs_set_opt(sbi, SNAPSHOT);
669 break;
670 default:
671 printk(KERN_ERR
672 "NILFS: Unrecognized mount option \"%s\"\n", p);
673 return 0;
674 }
675 }
676 return 1;
677 }
678
679 static inline void
680 nilfs_set_default_options(struct nilfs_sb_info *sbi,
681 struct nilfs_super_block *sbp)
682 {
683 sbi->s_mount_opt =
684 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
685 }
686
687 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
688 {
689 struct the_nilfs *nilfs = sbi->s_nilfs;
690 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
691 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
692 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
693
694 /* nilfs->sem must be locked by the caller. */
695 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
696 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
697 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
698 printk(KERN_WARNING
699 "NILFS warning: mounting fs with errors\n");
700 #if 0
701 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
702 printk(KERN_WARNING
703 "NILFS warning: maximal mount count reached\n");
704 #endif
705 }
706 if (!max_mnt_count)
707 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
708
709 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
710 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
711 sbp->s_mtime = cpu_to_le64(get_seconds());
712 return nilfs_commit_super(sbi, 1);
713 }
714
715 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
716 u64 pos, int blocksize,
717 struct buffer_head **pbh)
718 {
719 unsigned long long sb_index = pos;
720 unsigned long offset;
721
722 offset = do_div(sb_index, blocksize);
723 *pbh = sb_bread(sb, sb_index);
724 if (!*pbh)
725 return NULL;
726 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
727 }
728
729 int nilfs_store_magic_and_option(struct super_block *sb,
730 struct nilfs_super_block *sbp,
731 char *data)
732 {
733 struct nilfs_sb_info *sbi = NILFS_SB(sb);
734
735 sb->s_magic = le16_to_cpu(sbp->s_magic);
736
737 /* FS independent flags */
738 #ifdef NILFS_ATIME_DISABLE
739 sb->s_flags |= MS_NOATIME;
740 #endif
741
742 nilfs_set_default_options(sbi, sbp);
743
744 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
745 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
746 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
747 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
748
749 return !parse_options(data, sb) ? -EINVAL : 0 ;
750 }
751
752 /**
753 * nilfs_fill_super() - initialize a super block instance
754 * @sb: super_block
755 * @data: mount options
756 * @silent: silent mode flag
757 * @nilfs: the_nilfs struct
758 *
759 * This function is called exclusively by bd_mount_mutex.
760 * So, the recovery process is protected from other simultaneous mounts.
761 */
762 static int
763 nilfs_fill_super(struct super_block *sb, void *data, int silent,
764 struct the_nilfs *nilfs)
765 {
766 struct nilfs_sb_info *sbi;
767 struct inode *root;
768 __u64 cno;
769 int err;
770
771 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
772 if (!sbi)
773 return -ENOMEM;
774
775 sb->s_fs_info = sbi;
776
777 get_nilfs(nilfs);
778 sbi->s_nilfs = nilfs;
779 sbi->s_super = sb;
780
781 err = init_nilfs(nilfs, sbi, (char *)data);
782 if (err)
783 goto failed_sbi;
784
785 spin_lock_init(&sbi->s_inode_lock);
786 INIT_LIST_HEAD(&sbi->s_dirty_files);
787 INIT_LIST_HEAD(&sbi->s_list);
788
789 /*
790 * Following initialization is overlapped because
791 * nilfs_sb_info structure has been cleared at the beginning.
792 * But we reserve them to keep our interest and make ready
793 * for the future change.
794 */
795 get_random_bytes(&sbi->s_next_generation,
796 sizeof(sbi->s_next_generation));
797 spin_lock_init(&sbi->s_next_gen_lock);
798
799 sb->s_op = &nilfs_sops;
800 sb->s_export_op = &nilfs_export_ops;
801 sb->s_root = NULL;
802 sb->s_time_gran = 1;
803
804 if (!nilfs_loaded(nilfs)) {
805 err = load_nilfs(nilfs, sbi);
806 if (err)
807 goto failed_sbi;
808 }
809 cno = nilfs_last_cno(nilfs);
810
811 if (sb->s_flags & MS_RDONLY) {
812 if (nilfs_test_opt(sbi, SNAPSHOT)) {
813 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
814 sbi->s_snapshot_cno);
815 if (err < 0)
816 goto failed_sbi;
817 if (!err) {
818 printk(KERN_ERR
819 "NILFS: The specified checkpoint is "
820 "not a snapshot "
821 "(checkpoint number=%llu).\n",
822 (unsigned long long)sbi->s_snapshot_cno);
823 err = -EINVAL;
824 goto failed_sbi;
825 }
826 cno = sbi->s_snapshot_cno;
827 } else
828 /* Read-only mount */
829 sbi->s_snapshot_cno = cno;
830 }
831
832 err = nilfs_attach_checkpoint(sbi, cno);
833 if (err) {
834 printk(KERN_ERR "NILFS: error loading a checkpoint"
835 " (checkpoint number=%llu).\n", (unsigned long long)cno);
836 goto failed_sbi;
837 }
838
839 if (!(sb->s_flags & MS_RDONLY)) {
840 err = nilfs_attach_segment_constructor(sbi);
841 if (err)
842 goto failed_checkpoint;
843 }
844
845 root = nilfs_iget(sb, NILFS_ROOT_INO);
846 if (IS_ERR(root)) {
847 printk(KERN_ERR "NILFS: get root inode failed\n");
848 err = PTR_ERR(root);
849 goto failed_segctor;
850 }
851 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
852 iput(root);
853 printk(KERN_ERR "NILFS: corrupt root inode.\n");
854 err = -EINVAL;
855 goto failed_segctor;
856 }
857 sb->s_root = d_alloc_root(root);
858 if (!sb->s_root) {
859 iput(root);
860 printk(KERN_ERR "NILFS: get root dentry failed\n");
861 err = -ENOMEM;
862 goto failed_segctor;
863 }
864
865 if (!(sb->s_flags & MS_RDONLY)) {
866 down_write(&nilfs->ns_sem);
867 nilfs_setup_super(sbi);
868 up_write(&nilfs->ns_sem);
869 }
870
871 err = nilfs_mark_recovery_complete(sbi);
872 if (unlikely(err)) {
873 printk(KERN_ERR "NILFS: recovery failed.\n");
874 goto failed_root;
875 }
876
877 return 0;
878
879 failed_root:
880 dput(sb->s_root);
881 sb->s_root = NULL;
882
883 failed_segctor:
884 nilfs_detach_segment_constructor(sbi);
885
886 failed_checkpoint:
887 nilfs_detach_checkpoint(sbi);
888
889 failed_sbi:
890 put_nilfs(nilfs);
891 sb->s_fs_info = NULL;
892 kfree(sbi);
893 return err;
894 }
895
896 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
897 {
898 struct nilfs_sb_info *sbi = NILFS_SB(sb);
899 struct nilfs_super_block *sbp;
900 struct the_nilfs *nilfs = sbi->s_nilfs;
901 unsigned long old_sb_flags;
902 struct nilfs_mount_options old_opts;
903 int err;
904
905 old_sb_flags = sb->s_flags;
906 old_opts.mount_opt = sbi->s_mount_opt;
907 old_opts.snapshot_cno = sbi->s_snapshot_cno;
908
909 if (!parse_options(data, sb)) {
910 err = -EINVAL;
911 goto restore_opts;
912 }
913 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
914
915 if ((*flags & MS_RDONLY) &&
916 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
917 printk(KERN_WARNING "NILFS (device %s): couldn't "
918 "remount to a different snapshot. \n",
919 sb->s_id);
920 err = -EINVAL;
921 goto restore_opts;
922 }
923
924 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
925 goto out;
926 if (*flags & MS_RDONLY) {
927 /* Shutting down the segment constructor */
928 nilfs_detach_segment_constructor(sbi);
929 sb->s_flags |= MS_RDONLY;
930
931 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
932 /* nilfs_set_opt(sbi, SNAPSHOT); */
933
934 /*
935 * Remounting a valid RW partition RDONLY, so set
936 * the RDONLY flag and then mark the partition as valid again.
937 */
938 down_write(&nilfs->ns_sem);
939 sbp = nilfs->ns_sbp[0];
940 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
941 (nilfs->ns_mount_state & NILFS_VALID_FS))
942 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
943 sbp->s_mtime = cpu_to_le64(get_seconds());
944 nilfs_commit_super(sbi, 1);
945 up_write(&nilfs->ns_sem);
946 } else {
947 /*
948 * Mounting a RDONLY partition read-write, so reread and
949 * store the current valid flag. (It may have been changed
950 * by fsck since we originally mounted the partition.)
951 */
952 down(&sb->s_bdev->bd_mount_sem);
953 /* Check existing RW-mount */
954 if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) {
955 printk(KERN_WARNING "NILFS (device %s): couldn't "
956 "remount because a RW-mount exists.\n",
957 sb->s_id);
958 err = -EBUSY;
959 goto rw_remount_failed;
960 }
961 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
962 printk(KERN_WARNING "NILFS (device %s): couldn't "
963 "remount because the current RO-mount is not "
964 "the latest one.\n",
965 sb->s_id);
966 err = -EINVAL;
967 goto rw_remount_failed;
968 }
969 sb->s_flags &= ~MS_RDONLY;
970 nilfs_clear_opt(sbi, SNAPSHOT);
971 sbi->s_snapshot_cno = 0;
972
973 err = nilfs_attach_segment_constructor(sbi);
974 if (err)
975 goto rw_remount_failed;
976
977 down_write(&nilfs->ns_sem);
978 nilfs_setup_super(sbi);
979 up_write(&nilfs->ns_sem);
980
981 up(&sb->s_bdev->bd_mount_sem);
982 }
983 out:
984 return 0;
985
986 rw_remount_failed:
987 up(&sb->s_bdev->bd_mount_sem);
988 restore_opts:
989 sb->s_flags = old_sb_flags;
990 sbi->s_mount_opt = old_opts.mount_opt;
991 sbi->s_snapshot_cno = old_opts.snapshot_cno;
992 return err;
993 }
994
995 struct nilfs_super_data {
996 struct block_device *bdev;
997 __u64 cno;
998 int flags;
999 };
1000
1001 /**
1002 * nilfs_identify - pre-read mount options needed to identify mount instance
1003 * @data: mount options
1004 * @sd: nilfs_super_data
1005 */
1006 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1007 {
1008 char *p, *options = data;
1009 substring_t args[MAX_OPT_ARGS];
1010 int option, token;
1011 int ret = 0;
1012
1013 do {
1014 p = strsep(&options, ",");
1015 if (p != NULL && *p) {
1016 token = match_token(p, tokens, args);
1017 if (token == Opt_snapshot) {
1018 if (!(sd->flags & MS_RDONLY))
1019 ret++;
1020 else {
1021 ret = match_int(&args[0], &option);
1022 if (!ret) {
1023 if (option > 0)
1024 sd->cno = option;
1025 else
1026 ret++;
1027 }
1028 }
1029 }
1030 if (ret)
1031 printk(KERN_ERR
1032 "NILFS: invalid mount option: %s\n", p);
1033 }
1034 if (!options)
1035 break;
1036 BUG_ON(options == data);
1037 *(options - 1) = ',';
1038 } while (!ret);
1039 return ret;
1040 }
1041
1042 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1043 {
1044 struct nilfs_super_data *sd = data;
1045
1046 s->s_bdev = sd->bdev;
1047 s->s_dev = s->s_bdev->bd_dev;
1048 return 0;
1049 }
1050
1051 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1052 {
1053 struct nilfs_super_data *sd = data;
1054
1055 return s->s_bdev == sd->bdev;
1056 }
1057
1058 static int nilfs_test_bdev_super2(struct super_block *s, void *data)
1059 {
1060 struct nilfs_super_data *sd = data;
1061 int ret;
1062
1063 if (s->s_bdev != sd->bdev)
1064 return 0;
1065
1066 if (!((s->s_flags | sd->flags) & MS_RDONLY))
1067 return 1; /* Reuse an old R/W-mode super_block */
1068
1069 if (s->s_flags & sd->flags & MS_RDONLY) {
1070 if (down_read_trylock(&s->s_umount)) {
1071 ret = s->s_root &&
1072 (sd->cno == NILFS_SB(s)->s_snapshot_cno);
1073 up_read(&s->s_umount);
1074 /*
1075 * This path is locked with sb_lock by sget().
1076 * So, drop_super() causes deadlock.
1077 */
1078 return ret;
1079 }
1080 }
1081 return 0;
1082 }
1083
1084 static int
1085 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1086 const char *dev_name, void *data, struct vfsmount *mnt)
1087 {
1088 struct nilfs_super_data sd;
1089 struct super_block *s, *s2;
1090 struct the_nilfs *nilfs = NULL;
1091 int err, need_to_close = 1;
1092
1093 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1094 if (IS_ERR(sd.bdev))
1095 return PTR_ERR(sd.bdev);
1096
1097 /*
1098 * To get mount instance using sget() vfs-routine, NILFS needs
1099 * much more information than normal filesystems to identify mount
1100 * instance. For snapshot mounts, not only a mount type (ro-mount
1101 * or rw-mount) but also a checkpoint number is required.
1102 * The results are passed in sget() using nilfs_super_data.
1103 */
1104 sd.cno = 0;
1105 sd.flags = flags;
1106 if (nilfs_identify((char *)data, &sd)) {
1107 err = -EINVAL;
1108 goto failed;
1109 }
1110
1111 /*
1112 * once the super is inserted into the list by sget, s_umount
1113 * will protect the lockfs code from trying to start a snapshot
1114 * while we are mounting
1115 */
1116 down(&sd.bdev->bd_mount_sem);
1117 if (!sd.cno &&
1118 (err = test_exclusive_mount(fs_type, sd.bdev, flags ^ MS_RDONLY))) {
1119 err = (err < 0) ? : -EBUSY;
1120 goto failed_unlock;
1121 }
1122
1123 /*
1124 * Phase-1: search any existent instance and get the_nilfs
1125 */
1126 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1127 if (IS_ERR(s))
1128 goto error_s;
1129
1130 if (!s->s_root) {
1131 err = -ENOMEM;
1132 nilfs = alloc_nilfs(sd.bdev);
1133 if (!nilfs)
1134 goto cancel_new;
1135 } else {
1136 struct nilfs_sb_info *sbi = NILFS_SB(s);
1137
1138 /*
1139 * s_umount protects super_block from unmount process;
1140 * It covers pointers of nilfs_sb_info and the_nilfs.
1141 */
1142 nilfs = sbi->s_nilfs;
1143 get_nilfs(nilfs);
1144 up_write(&s->s_umount);
1145
1146 /*
1147 * Phase-2: search specified snapshot or R/W mode super_block
1148 */
1149 if (!sd.cno)
1150 /* trying to get the latest checkpoint. */
1151 sd.cno = nilfs_last_cno(nilfs);
1152
1153 s2 = sget(fs_type, nilfs_test_bdev_super2,
1154 nilfs_set_bdev_super, &sd);
1155 deactivate_super(s);
1156 /*
1157 * Although deactivate_super() invokes close_bdev_exclusive() at
1158 * kill_block_super(). Here, s is an existent mount; we need
1159 * one more close_bdev_exclusive() call.
1160 */
1161 s = s2;
1162 if (IS_ERR(s))
1163 goto error_s;
1164 }
1165
1166 if (!s->s_root) {
1167 char b[BDEVNAME_SIZE];
1168
1169 s->s_flags = flags;
1170 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1171 sb_set_blocksize(s, block_size(sd.bdev));
1172
1173 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1174 if (err)
1175 goto cancel_new;
1176
1177 s->s_flags |= MS_ACTIVE;
1178 need_to_close = 0;
1179 } else if (!(s->s_flags & MS_RDONLY)) {
1180 err = -EBUSY;
1181 }
1182
1183 up(&sd.bdev->bd_mount_sem);
1184 put_nilfs(nilfs);
1185 if (need_to_close)
1186 close_bdev_exclusive(sd.bdev, flags);
1187 simple_set_mnt(mnt, s);
1188 return 0;
1189
1190 error_s:
1191 up(&sd.bdev->bd_mount_sem);
1192 if (nilfs)
1193 put_nilfs(nilfs);
1194 close_bdev_exclusive(sd.bdev, flags);
1195 return PTR_ERR(s);
1196
1197 failed_unlock:
1198 up(&sd.bdev->bd_mount_sem);
1199 failed:
1200 close_bdev_exclusive(sd.bdev, flags);
1201
1202 return err;
1203
1204 cancel_new:
1205 /* Abandoning the newly allocated superblock */
1206 up(&sd.bdev->bd_mount_sem);
1207 if (nilfs)
1208 put_nilfs(nilfs);
1209 up_write(&s->s_umount);
1210 deactivate_super(s);
1211 /*
1212 * deactivate_super() invokes close_bdev_exclusive().
1213 * We must finish all post-cleaning before this call;
1214 * put_nilfs() and unlocking bd_mount_sem need the block device.
1215 */
1216 return err;
1217 }
1218
1219 static int nilfs_test_bdev_super3(struct super_block *s, void *data)
1220 {
1221 struct nilfs_super_data *sd = data;
1222 int ret;
1223
1224 if (s->s_bdev != sd->bdev)
1225 return 0;
1226 if (down_read_trylock(&s->s_umount)) {
1227 ret = (s->s_flags & MS_RDONLY) && s->s_root &&
1228 nilfs_test_opt(NILFS_SB(s), SNAPSHOT);
1229 up_read(&s->s_umount);
1230 if (ret)
1231 return 0; /* ignore snapshot mounts */
1232 }
1233 return !((sd->flags ^ s->s_flags) & MS_RDONLY);
1234 }
1235
1236 static int __false_bdev_super(struct super_block *s, void *data)
1237 {
1238 #if 0 /* XXX: workaround for lock debug. This is not good idea */
1239 up_write(&s->s_umount);
1240 #endif
1241 return -EFAULT;
1242 }
1243
1244 /**
1245 * test_exclusive_mount - check whether an exclusive RW/RO mount exists or not.
1246 * fs_type: filesystem type
1247 * bdev: block device
1248 * flag: 0 (check rw-mount) or MS_RDONLY (check ro-mount)
1249 * res: pointer to an integer to store result
1250 *
1251 * This function must be called within a section protected by bd_mount_mutex.
1252 */
1253 static int test_exclusive_mount(struct file_system_type *fs_type,
1254 struct block_device *bdev, int flags)
1255 {
1256 struct super_block *s;
1257 struct nilfs_super_data sd = { .flags = flags, .bdev = bdev };
1258
1259 s = sget(fs_type, nilfs_test_bdev_super3, __false_bdev_super, &sd);
1260 if (IS_ERR(s)) {
1261 if (PTR_ERR(s) != -EFAULT)
1262 return PTR_ERR(s);
1263 return 0; /* Not found */
1264 }
1265 up_write(&s->s_umount);
1266 deactivate_super(s);
1267 return 1; /* Found */
1268 }
1269
1270 struct file_system_type nilfs_fs_type = {
1271 .owner = THIS_MODULE,
1272 .name = "nilfs2",
1273 .get_sb = nilfs_get_sb,
1274 .kill_sb = kill_block_super,
1275 .fs_flags = FS_REQUIRES_DEV,
1276 };
1277
1278 static int __init init_nilfs_fs(void)
1279 {
1280 int err;
1281
1282 err = nilfs_init_inode_cache();
1283 if (err)
1284 goto failed;
1285
1286 err = nilfs_init_transaction_cache();
1287 if (err)
1288 goto failed_inode_cache;
1289
1290 err = nilfs_init_segbuf_cache();
1291 if (err)
1292 goto failed_transaction_cache;
1293
1294 err = nilfs_btree_path_cache_init();
1295 if (err)
1296 goto failed_segbuf_cache;
1297
1298 err = register_filesystem(&nilfs_fs_type);
1299 if (err)
1300 goto failed_btree_path_cache;
1301
1302 return 0;
1303
1304 failed_btree_path_cache:
1305 nilfs_btree_path_cache_destroy();
1306
1307 failed_segbuf_cache:
1308 nilfs_destroy_segbuf_cache();
1309
1310 failed_transaction_cache:
1311 nilfs_destroy_transaction_cache();
1312
1313 failed_inode_cache:
1314 nilfs_destroy_inode_cache();
1315
1316 failed:
1317 return err;
1318 }
1319
1320 static void __exit exit_nilfs_fs(void)
1321 {
1322 nilfs_destroy_segbuf_cache();
1323 nilfs_destroy_transaction_cache();
1324 nilfs_destroy_inode_cache();
1325 nilfs_btree_path_cache_destroy();
1326 unregister_filesystem(&nilfs_fs_type);
1327 }
1328
1329 module_init(init_nilfs_fs)
1330 module_exit(exit_nilfs_fs)
This page took 0.065037 seconds and 5 git commands to generate.