Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/aoe-2.6
[deliverable/linux.git] / fs / ntfs / super.c
1 /*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2006 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_hardsect_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
34
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "aops.h"
43 #include "layout.h"
44 #include "malloc.h"
45 #include "ntfs.h"
46
47 /* Number of mounted filesystems which have compression enabled. */
48 static unsigned long ntfs_nr_compression_users;
49
50 /* A global default upcase table and a corresponding reference count. */
51 static ntfschar *default_upcase = NULL;
52 static unsigned long ntfs_nr_upcase_users = 0;
53
54 /* Error constants/strings used in inode.c::ntfs_show_options(). */
55 typedef enum {
56 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
57 ON_ERRORS_PANIC = 0x01,
58 ON_ERRORS_REMOUNT_RO = 0x02,
59 ON_ERRORS_CONTINUE = 0x04,
60 /* Optional, can be combined with any of the above. */
61 ON_ERRORS_RECOVER = 0x10,
62 } ON_ERRORS_ACTIONS;
63
64 const option_t on_errors_arr[] = {
65 { ON_ERRORS_PANIC, "panic" },
66 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
67 { ON_ERRORS_CONTINUE, "continue", },
68 { ON_ERRORS_RECOVER, "recover" },
69 { 0, NULL }
70 };
71
72 /**
73 * simple_getbool -
74 *
75 * Copied from old ntfs driver (which copied from vfat driver).
76 */
77 static int simple_getbool(char *s, BOOL *setval)
78 {
79 if (s) {
80 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
81 *setval = TRUE;
82 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
83 !strcmp(s, "false"))
84 *setval = FALSE;
85 else
86 return 0;
87 } else
88 *setval = TRUE;
89 return 1;
90 }
91
92 /**
93 * parse_options - parse the (re)mount options
94 * @vol: ntfs volume
95 * @opt: string containing the (re)mount options
96 *
97 * Parse the recognized options in @opt for the ntfs volume described by @vol.
98 */
99 static BOOL parse_options(ntfs_volume *vol, char *opt)
100 {
101 char *p, *v, *ov;
102 static char *utf8 = "utf8";
103 int errors = 0, sloppy = 0;
104 uid_t uid = (uid_t)-1;
105 gid_t gid = (gid_t)-1;
106 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
107 int mft_zone_multiplier = -1, on_errors = -1;
108 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
109 struct nls_table *nls_map = NULL, *old_nls;
110
111 /* I am lazy... (-8 */
112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
113 if (!strcmp(p, option)) { \
114 if (!v || !*v) \
115 variable = default_value; \
116 else { \
117 variable = simple_strtoul(ov = v, &v, 0); \
118 if (*v) \
119 goto needs_val; \
120 } \
121 }
122 #define NTFS_GETOPT(option, variable) \
123 if (!strcmp(p, option)) { \
124 if (!v || !*v) \
125 goto needs_arg; \
126 variable = simple_strtoul(ov = v, &v, 0); \
127 if (*v) \
128 goto needs_val; \
129 }
130 #define NTFS_GETOPT_OCTAL(option, variable) \
131 if (!strcmp(p, option)) { \
132 if (!v || !*v) \
133 goto needs_arg; \
134 variable = simple_strtoul(ov = v, &v, 8); \
135 if (*v) \
136 goto needs_val; \
137 }
138 #define NTFS_GETOPT_BOOL(option, variable) \
139 if (!strcmp(p, option)) { \
140 BOOL val; \
141 if (!simple_getbool(v, &val)) \
142 goto needs_bool; \
143 variable = val; \
144 }
145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
146 if (!strcmp(p, option)) { \
147 int _i; \
148 if (!v || !*v) \
149 goto needs_arg; \
150 ov = v; \
151 if (variable == -1) \
152 variable = 0; \
153 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
154 if (!strcmp(opt_array[_i].str, v)) { \
155 variable |= opt_array[_i].val; \
156 break; \
157 } \
158 if (!opt_array[_i].str || !*opt_array[_i].str) \
159 goto needs_val; \
160 }
161 if (!opt || !*opt)
162 goto no_mount_options;
163 ntfs_debug("Entering with mount options string: %s", opt);
164 while ((p = strsep(&opt, ","))) {
165 if ((v = strchr(p, '=')))
166 *v++ = 0;
167 NTFS_GETOPT("uid", uid)
168 else NTFS_GETOPT("gid", gid)
169 else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
170 else NTFS_GETOPT_OCTAL("fmask", fmask)
171 else NTFS_GETOPT_OCTAL("dmask", dmask)
172 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
173 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE)
174 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
175 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
176 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
177 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
178 on_errors_arr)
179 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
180 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
181 p);
182 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
183 if (!strcmp(p, "iocharset"))
184 ntfs_warning(vol->sb, "Option iocharset is "
185 "deprecated. Please use "
186 "option nls=<charsetname> in "
187 "the future.");
188 if (!v || !*v)
189 goto needs_arg;
190 use_utf8:
191 old_nls = nls_map;
192 nls_map = load_nls(v);
193 if (!nls_map) {
194 if (!old_nls) {
195 ntfs_error(vol->sb, "NLS character set "
196 "%s not found.", v);
197 return FALSE;
198 }
199 ntfs_error(vol->sb, "NLS character set %s not "
200 "found. Using previous one %s.",
201 v, old_nls->charset);
202 nls_map = old_nls;
203 } else /* nls_map */ {
204 if (old_nls)
205 unload_nls(old_nls);
206 }
207 } else if (!strcmp(p, "utf8")) {
208 BOOL val = FALSE;
209 ntfs_warning(vol->sb, "Option utf8 is no longer "
210 "supported, using option nls=utf8. Please "
211 "use option nls=utf8 in the future and "
212 "make sure utf8 is compiled either as a "
213 "module or into the kernel.");
214 if (!v || !*v)
215 val = TRUE;
216 else if (!simple_getbool(v, &val))
217 goto needs_bool;
218 if (val) {
219 v = utf8;
220 goto use_utf8;
221 }
222 } else {
223 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
224 if (errors < INT_MAX)
225 errors++;
226 }
227 #undef NTFS_GETOPT_OPTIONS_ARRAY
228 #undef NTFS_GETOPT_BOOL
229 #undef NTFS_GETOPT
230 #undef NTFS_GETOPT_WITH_DEFAULT
231 }
232 no_mount_options:
233 if (errors && !sloppy)
234 return FALSE;
235 if (sloppy)
236 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
237 "unrecognized mount option(s) and continuing.");
238 /* Keep this first! */
239 if (on_errors != -1) {
240 if (!on_errors) {
241 ntfs_error(vol->sb, "Invalid errors option argument "
242 "or bug in options parser.");
243 return FALSE;
244 }
245 }
246 if (nls_map) {
247 if (vol->nls_map && vol->nls_map != nls_map) {
248 ntfs_error(vol->sb, "Cannot change NLS character set "
249 "on remount.");
250 return FALSE;
251 } /* else (!vol->nls_map) */
252 ntfs_debug("Using NLS character set %s.", nls_map->charset);
253 vol->nls_map = nls_map;
254 } else /* (!nls_map) */ {
255 if (!vol->nls_map) {
256 vol->nls_map = load_nls_default();
257 if (!vol->nls_map) {
258 ntfs_error(vol->sb, "Failed to load default "
259 "NLS character set.");
260 return FALSE;
261 }
262 ntfs_debug("Using default NLS character set (%s).",
263 vol->nls_map->charset);
264 }
265 }
266 if (mft_zone_multiplier != -1) {
267 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
268 mft_zone_multiplier) {
269 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
270 "on remount.");
271 return FALSE;
272 }
273 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
274 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
275 "Using default value, i.e. 1.");
276 mft_zone_multiplier = 1;
277 }
278 vol->mft_zone_multiplier = mft_zone_multiplier;
279 }
280 if (!vol->mft_zone_multiplier)
281 vol->mft_zone_multiplier = 1;
282 if (on_errors != -1)
283 vol->on_errors = on_errors;
284 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
285 vol->on_errors |= ON_ERRORS_CONTINUE;
286 if (uid != (uid_t)-1)
287 vol->uid = uid;
288 if (gid != (gid_t)-1)
289 vol->gid = gid;
290 if (fmask != (mode_t)-1)
291 vol->fmask = fmask;
292 if (dmask != (mode_t)-1)
293 vol->dmask = dmask;
294 if (show_sys_files != -1) {
295 if (show_sys_files)
296 NVolSetShowSystemFiles(vol);
297 else
298 NVolClearShowSystemFiles(vol);
299 }
300 if (case_sensitive != -1) {
301 if (case_sensitive)
302 NVolSetCaseSensitive(vol);
303 else
304 NVolClearCaseSensitive(vol);
305 }
306 if (disable_sparse != -1) {
307 if (disable_sparse)
308 NVolClearSparseEnabled(vol);
309 else {
310 if (!NVolSparseEnabled(vol) &&
311 vol->major_ver && vol->major_ver < 3)
312 ntfs_warning(vol->sb, "Not enabling sparse "
313 "support due to NTFS volume "
314 "version %i.%i (need at least "
315 "version 3.0).", vol->major_ver,
316 vol->minor_ver);
317 else
318 NVolSetSparseEnabled(vol);
319 }
320 }
321 return TRUE;
322 needs_arg:
323 ntfs_error(vol->sb, "The %s option requires an argument.", p);
324 return FALSE;
325 needs_bool:
326 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
327 return FALSE;
328 needs_val:
329 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
330 return FALSE;
331 }
332
333 #ifdef NTFS_RW
334
335 /**
336 * ntfs_write_volume_flags - write new flags to the volume information flags
337 * @vol: ntfs volume on which to modify the flags
338 * @flags: new flags value for the volume information flags
339 *
340 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
341 * instead (see below).
342 *
343 * Replace the volume information flags on the volume @vol with the value
344 * supplied in @flags. Note, this overwrites the volume information flags, so
345 * make sure to combine the flags you want to modify with the old flags and use
346 * the result when calling ntfs_write_volume_flags().
347 *
348 * Return 0 on success and -errno on error.
349 */
350 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
351 {
352 ntfs_inode *ni = NTFS_I(vol->vol_ino);
353 MFT_RECORD *m;
354 VOLUME_INFORMATION *vi;
355 ntfs_attr_search_ctx *ctx;
356 int err;
357
358 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
359 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
360 if (vol->vol_flags == flags)
361 goto done;
362 BUG_ON(!ni);
363 m = map_mft_record(ni);
364 if (IS_ERR(m)) {
365 err = PTR_ERR(m);
366 goto err_out;
367 }
368 ctx = ntfs_attr_get_search_ctx(ni, m);
369 if (!ctx) {
370 err = -ENOMEM;
371 goto put_unm_err_out;
372 }
373 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
374 ctx);
375 if (err)
376 goto put_unm_err_out;
377 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
378 le16_to_cpu(ctx->attr->data.resident.value_offset));
379 vol->vol_flags = vi->flags = flags;
380 flush_dcache_mft_record_page(ctx->ntfs_ino);
381 mark_mft_record_dirty(ctx->ntfs_ino);
382 ntfs_attr_put_search_ctx(ctx);
383 unmap_mft_record(ni);
384 done:
385 ntfs_debug("Done.");
386 return 0;
387 put_unm_err_out:
388 if (ctx)
389 ntfs_attr_put_search_ctx(ctx);
390 unmap_mft_record(ni);
391 err_out:
392 ntfs_error(vol->sb, "Failed with error code %i.", -err);
393 return err;
394 }
395
396 /**
397 * ntfs_set_volume_flags - set bits in the volume information flags
398 * @vol: ntfs volume on which to modify the flags
399 * @flags: flags to set on the volume
400 *
401 * Set the bits in @flags in the volume information flags on the volume @vol.
402 *
403 * Return 0 on success and -errno on error.
404 */
405 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
406 {
407 flags &= VOLUME_FLAGS_MASK;
408 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
409 }
410
411 /**
412 * ntfs_clear_volume_flags - clear bits in the volume information flags
413 * @vol: ntfs volume on which to modify the flags
414 * @flags: flags to clear on the volume
415 *
416 * Clear the bits in @flags in the volume information flags on the volume @vol.
417 *
418 * Return 0 on success and -errno on error.
419 */
420 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
421 {
422 flags &= VOLUME_FLAGS_MASK;
423 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
424 return ntfs_write_volume_flags(vol, flags);
425 }
426
427 #endif /* NTFS_RW */
428
429 /**
430 * ntfs_remount - change the mount options of a mounted ntfs filesystem
431 * @sb: superblock of mounted ntfs filesystem
432 * @flags: remount flags
433 * @opt: remount options string
434 *
435 * Change the mount options of an already mounted ntfs filesystem.
436 *
437 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
438 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
439 * @sb->s_flags are not changed.
440 */
441 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
442 {
443 ntfs_volume *vol = NTFS_SB(sb);
444
445 ntfs_debug("Entering with remount options string: %s", opt);
446 #ifndef NTFS_RW
447 /* For read-only compiled driver, enforce read-only flag. */
448 *flags |= MS_RDONLY;
449 #else /* NTFS_RW */
450 /*
451 * For the read-write compiled driver, if we are remounting read-write,
452 * make sure there are no volume errors and that no unsupported volume
453 * flags are set. Also, empty the logfile journal as it would become
454 * stale as soon as something is written to the volume and mark the
455 * volume dirty so that chkdsk is run if the volume is not umounted
456 * cleanly. Finally, mark the quotas out of date so Windows rescans
457 * the volume on boot and updates them.
458 *
459 * When remounting read-only, mark the volume clean if no volume errors
460 * have occured.
461 */
462 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
463 static const char *es = ". Cannot remount read-write.";
464
465 /* Remounting read-write. */
466 if (NVolErrors(vol)) {
467 ntfs_error(sb, "Volume has errors and is read-only%s",
468 es);
469 return -EROFS;
470 }
471 if (vol->vol_flags & VOLUME_IS_DIRTY) {
472 ntfs_error(sb, "Volume is dirty and read-only%s", es);
473 return -EROFS;
474 }
475 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
476 ntfs_error(sb, "Volume has been modified by chkdsk "
477 "and is read-only%s", es);
478 return -EROFS;
479 }
480 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
481 ntfs_error(sb, "Volume has unsupported flags set "
482 "(0x%x) and is read-only%s",
483 (unsigned)le16_to_cpu(vol->vol_flags),
484 es);
485 return -EROFS;
486 }
487 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
488 ntfs_error(sb, "Failed to set dirty bit in volume "
489 "information flags%s", es);
490 return -EROFS;
491 }
492 #if 0
493 // TODO: Enable this code once we start modifying anything that
494 // is different between NTFS 1.2 and 3.x...
495 /* Set NT4 compatibility flag on newer NTFS version volumes. */
496 if ((vol->major_ver > 1)) {
497 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
498 ntfs_error(sb, "Failed to set NT4 "
499 "compatibility flag%s", es);
500 NVolSetErrors(vol);
501 return -EROFS;
502 }
503 }
504 #endif
505 if (!ntfs_empty_logfile(vol->logfile_ino)) {
506 ntfs_error(sb, "Failed to empty journal $LogFile%s",
507 es);
508 NVolSetErrors(vol);
509 return -EROFS;
510 }
511 if (!ntfs_mark_quotas_out_of_date(vol)) {
512 ntfs_error(sb, "Failed to mark quotas out of date%s",
513 es);
514 NVolSetErrors(vol);
515 return -EROFS;
516 }
517 if (!ntfs_stamp_usnjrnl(vol)) {
518 ntfs_error(sb, "Failed to stamp transation log "
519 "($UsnJrnl)%s", es);
520 NVolSetErrors(vol);
521 return -EROFS;
522 }
523 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
524 /* Remounting read-only. */
525 if (!NVolErrors(vol)) {
526 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
527 ntfs_warning(sb, "Failed to clear dirty bit "
528 "in volume information "
529 "flags. Run chkdsk.");
530 }
531 }
532 #endif /* NTFS_RW */
533
534 // TODO: Deal with *flags.
535
536 if (!parse_options(vol, opt))
537 return -EINVAL;
538 ntfs_debug("Done.");
539 return 0;
540 }
541
542 /**
543 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
544 * @sb: Super block of the device to which @b belongs.
545 * @b: Boot sector of device @sb to check.
546 * @silent: If TRUE, all output will be silenced.
547 *
548 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
549 * sector. Returns TRUE if it is valid and FALSE if not.
550 *
551 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
552 * is TRUE.
553 */
554 static BOOL is_boot_sector_ntfs(const struct super_block *sb,
555 const NTFS_BOOT_SECTOR *b, const BOOL silent)
556 {
557 /*
558 * Check that checksum == sum of u32 values from b to the checksum
559 * field. If checksum is zero, no checking is done. We will work when
560 * the checksum test fails, since some utilities update the boot sector
561 * ignoring the checksum which leaves the checksum out-of-date. We
562 * report a warning if this is the case.
563 */
564 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
565 le32 *u;
566 u32 i;
567
568 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
569 i += le32_to_cpup(u);
570 if (le32_to_cpu(b->checksum) != i)
571 ntfs_warning(sb, "Invalid boot sector checksum.");
572 }
573 /* Check OEMidentifier is "NTFS " */
574 if (b->oem_id != magicNTFS)
575 goto not_ntfs;
576 /* Check bytes per sector value is between 256 and 4096. */
577 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
578 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
579 goto not_ntfs;
580 /* Check sectors per cluster value is valid. */
581 switch (b->bpb.sectors_per_cluster) {
582 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
583 break;
584 default:
585 goto not_ntfs;
586 }
587 /* Check the cluster size is not above the maximum (64kiB). */
588 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
589 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
590 goto not_ntfs;
591 /* Check reserved/unused fields are really zero. */
592 if (le16_to_cpu(b->bpb.reserved_sectors) ||
593 le16_to_cpu(b->bpb.root_entries) ||
594 le16_to_cpu(b->bpb.sectors) ||
595 le16_to_cpu(b->bpb.sectors_per_fat) ||
596 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
597 goto not_ntfs;
598 /* Check clusters per file mft record value is valid. */
599 if ((u8)b->clusters_per_mft_record < 0xe1 ||
600 (u8)b->clusters_per_mft_record > 0xf7)
601 switch (b->clusters_per_mft_record) {
602 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
603 break;
604 default:
605 goto not_ntfs;
606 }
607 /* Check clusters per index block value is valid. */
608 if ((u8)b->clusters_per_index_record < 0xe1 ||
609 (u8)b->clusters_per_index_record > 0xf7)
610 switch (b->clusters_per_index_record) {
611 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
612 break;
613 default:
614 goto not_ntfs;
615 }
616 /*
617 * Check for valid end of sector marker. We will work without it, but
618 * many BIOSes will refuse to boot from a bootsector if the magic is
619 * incorrect, so we emit a warning.
620 */
621 if (!silent && b->end_of_sector_marker != const_cpu_to_le16(0xaa55))
622 ntfs_warning(sb, "Invalid end of sector marker.");
623 return TRUE;
624 not_ntfs:
625 return FALSE;
626 }
627
628 /**
629 * read_ntfs_boot_sector - read the NTFS boot sector of a device
630 * @sb: super block of device to read the boot sector from
631 * @silent: if true, suppress all output
632 *
633 * Reads the boot sector from the device and validates it. If that fails, tries
634 * to read the backup boot sector, first from the end of the device a-la NT4 and
635 * later and then from the middle of the device a-la NT3.51 and before.
636 *
637 * If a valid boot sector is found but it is not the primary boot sector, we
638 * repair the primary boot sector silently (unless the device is read-only or
639 * the primary boot sector is not accessible).
640 *
641 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
642 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
643 * to their respective values.
644 *
645 * Return the unlocked buffer head containing the boot sector or NULL on error.
646 */
647 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
648 const int silent)
649 {
650 const char *read_err_str = "Unable to read %s boot sector.";
651 struct buffer_head *bh_primary, *bh_backup;
652 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
653
654 /* Try to read primary boot sector. */
655 if ((bh_primary = sb_bread(sb, 0))) {
656 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
657 bh_primary->b_data, silent))
658 return bh_primary;
659 if (!silent)
660 ntfs_error(sb, "Primary boot sector is invalid.");
661 } else if (!silent)
662 ntfs_error(sb, read_err_str, "primary");
663 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
664 if (bh_primary)
665 brelse(bh_primary);
666 if (!silent)
667 ntfs_error(sb, "Mount option errors=recover not used. "
668 "Aborting without trying to recover.");
669 return NULL;
670 }
671 /* Try to read NT4+ backup boot sector. */
672 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
673 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
674 bh_backup->b_data, silent))
675 goto hotfix_primary_boot_sector;
676 brelse(bh_backup);
677 } else if (!silent)
678 ntfs_error(sb, read_err_str, "backup");
679 /* Try to read NT3.51- backup boot sector. */
680 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
681 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
682 bh_backup->b_data, silent))
683 goto hotfix_primary_boot_sector;
684 if (!silent)
685 ntfs_error(sb, "Could not find a valid backup boot "
686 "sector.");
687 brelse(bh_backup);
688 } else if (!silent)
689 ntfs_error(sb, read_err_str, "backup");
690 /* We failed. Cleanup and return. */
691 if (bh_primary)
692 brelse(bh_primary);
693 return NULL;
694 hotfix_primary_boot_sector:
695 if (bh_primary) {
696 /*
697 * If we managed to read sector zero and the volume is not
698 * read-only, copy the found, valid backup boot sector to the
699 * primary boot sector. Note we only copy the actual boot
700 * sector structure, not the actual whole device sector as that
701 * may be bigger and would potentially damage the $Boot system
702 * file (FIXME: Would be nice to know if the backup boot sector
703 * on a large sector device contains the whole boot loader or
704 * just the first 512 bytes).
705 */
706 if (!(sb->s_flags & MS_RDONLY)) {
707 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
708 "boot sector from backup copy.");
709 memcpy(bh_primary->b_data, bh_backup->b_data,
710 NTFS_BLOCK_SIZE);
711 mark_buffer_dirty(bh_primary);
712 sync_dirty_buffer(bh_primary);
713 if (buffer_uptodate(bh_primary)) {
714 brelse(bh_backup);
715 return bh_primary;
716 }
717 ntfs_error(sb, "Hot-fix: Device write error while "
718 "recovering primary boot sector.");
719 } else {
720 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
721 "sector failed: Read-only mount.");
722 }
723 brelse(bh_primary);
724 }
725 ntfs_warning(sb, "Using backup boot sector.");
726 return bh_backup;
727 }
728
729 /**
730 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
731 * @vol: volume structure to initialise with data from boot sector
732 * @b: boot sector to parse
733 *
734 * Parse the ntfs boot sector @b and store all imporant information therein in
735 * the ntfs super block @vol. Return TRUE on success and FALSE on error.
736 */
737 static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
738 {
739 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
740 int clusters_per_mft_record, clusters_per_index_record;
741 s64 ll;
742
743 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
744 vol->sector_size_bits = ffs(vol->sector_size) - 1;
745 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
746 vol->sector_size);
747 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
748 vol->sector_size_bits);
749 if (vol->sector_size < vol->sb->s_blocksize) {
750 ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
751 "device block size (%lu). This is not "
752 "supported. Sorry.", vol->sector_size,
753 vol->sb->s_blocksize);
754 return FALSE;
755 }
756 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
757 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
758 ntfs_debug("sectors_per_cluster_bits = 0x%x",
759 sectors_per_cluster_bits);
760 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
761 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
762 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
763 vol->cluster_size_mask = vol->cluster_size - 1;
764 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
765 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
766 vol->cluster_size);
767 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
768 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
769 if (vol->cluster_size < vol->sector_size) {
770 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
771 "sector size (%i). This is not supported. "
772 "Sorry.", vol->cluster_size, vol->sector_size);
773 return FALSE;
774 }
775 clusters_per_mft_record = b->clusters_per_mft_record;
776 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
777 clusters_per_mft_record, clusters_per_mft_record);
778 if (clusters_per_mft_record > 0)
779 vol->mft_record_size = vol->cluster_size <<
780 (ffs(clusters_per_mft_record) - 1);
781 else
782 /*
783 * When mft_record_size < cluster_size, clusters_per_mft_record
784 * = -log2(mft_record_size) bytes. mft_record_size normaly is
785 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
786 */
787 vol->mft_record_size = 1 << -clusters_per_mft_record;
788 vol->mft_record_size_mask = vol->mft_record_size - 1;
789 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
790 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
791 vol->mft_record_size);
792 ntfs_debug("vol->mft_record_size_mask = 0x%x",
793 vol->mft_record_size_mask);
794 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
795 vol->mft_record_size_bits, vol->mft_record_size_bits);
796 /*
797 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
798 * we store $MFT/$DATA, the table of mft records in the page cache.
799 */
800 if (vol->mft_record_size > PAGE_CACHE_SIZE) {
801 ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
802 "PAGE_CACHE_SIZE on your system (%lu). "
803 "This is not supported. Sorry.",
804 vol->mft_record_size, PAGE_CACHE_SIZE);
805 return FALSE;
806 }
807 /* We cannot support mft record sizes below the sector size. */
808 if (vol->mft_record_size < vol->sector_size) {
809 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
810 "sector size (%i). This is not supported. "
811 "Sorry.", vol->mft_record_size,
812 vol->sector_size);
813 return FALSE;
814 }
815 clusters_per_index_record = b->clusters_per_index_record;
816 ntfs_debug("clusters_per_index_record = %i (0x%x)",
817 clusters_per_index_record, clusters_per_index_record);
818 if (clusters_per_index_record > 0)
819 vol->index_record_size = vol->cluster_size <<
820 (ffs(clusters_per_index_record) - 1);
821 else
822 /*
823 * When index_record_size < cluster_size,
824 * clusters_per_index_record = -log2(index_record_size) bytes.
825 * index_record_size normaly equals 4096 bytes, which is
826 * encoded as 0xF4 (-12 in decimal).
827 */
828 vol->index_record_size = 1 << -clusters_per_index_record;
829 vol->index_record_size_mask = vol->index_record_size - 1;
830 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
831 ntfs_debug("vol->index_record_size = %i (0x%x)",
832 vol->index_record_size, vol->index_record_size);
833 ntfs_debug("vol->index_record_size_mask = 0x%x",
834 vol->index_record_size_mask);
835 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
836 vol->index_record_size_bits,
837 vol->index_record_size_bits);
838 /* We cannot support index record sizes below the sector size. */
839 if (vol->index_record_size < vol->sector_size) {
840 ntfs_error(vol->sb, "Index record size (%i) is smaller than "
841 "the sector size (%i). This is not "
842 "supported. Sorry.", vol->index_record_size,
843 vol->sector_size);
844 return FALSE;
845 }
846 /*
847 * Get the size of the volume in clusters and check for 64-bit-ness.
848 * Windows currently only uses 32 bits to save the clusters so we do
849 * the same as it is much faster on 32-bit CPUs.
850 */
851 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
852 if ((u64)ll >= 1ULL << 32) {
853 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
854 return FALSE;
855 }
856 vol->nr_clusters = ll;
857 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
858 /*
859 * On an architecture where unsigned long is 32-bits, we restrict the
860 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
861 * will hopefully optimize the whole check away.
862 */
863 if (sizeof(unsigned long) < 8) {
864 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
865 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
866 "large for this architecture. "
867 "Maximum supported is 2TiB. Sorry.",
868 (unsigned long long)ll >> (40 -
869 vol->cluster_size_bits));
870 return FALSE;
871 }
872 }
873 ll = sle64_to_cpu(b->mft_lcn);
874 if (ll >= vol->nr_clusters) {
875 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
876 "volume. Weird.", (unsigned long long)ll,
877 (unsigned long long)ll);
878 return FALSE;
879 }
880 vol->mft_lcn = ll;
881 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
882 ll = sle64_to_cpu(b->mftmirr_lcn);
883 if (ll >= vol->nr_clusters) {
884 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
885 "of volume. Weird.", (unsigned long long)ll,
886 (unsigned long long)ll);
887 return FALSE;
888 }
889 vol->mftmirr_lcn = ll;
890 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
891 #ifdef NTFS_RW
892 /*
893 * Work out the size of the mft mirror in number of mft records. If the
894 * cluster size is less than or equal to the size taken by four mft
895 * records, the mft mirror stores the first four mft records. If the
896 * cluster size is bigger than the size taken by four mft records, the
897 * mft mirror contains as many mft records as will fit into one
898 * cluster.
899 */
900 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
901 vol->mftmirr_size = 4;
902 else
903 vol->mftmirr_size = vol->cluster_size >>
904 vol->mft_record_size_bits;
905 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
906 #endif /* NTFS_RW */
907 vol->serial_no = le64_to_cpu(b->volume_serial_number);
908 ntfs_debug("vol->serial_no = 0x%llx",
909 (unsigned long long)vol->serial_no);
910 return TRUE;
911 }
912
913 /**
914 * ntfs_setup_allocators - initialize the cluster and mft allocators
915 * @vol: volume structure for which to setup the allocators
916 *
917 * Setup the cluster (lcn) and mft allocators to the starting values.
918 */
919 static void ntfs_setup_allocators(ntfs_volume *vol)
920 {
921 #ifdef NTFS_RW
922 LCN mft_zone_size, mft_lcn;
923 #endif /* NTFS_RW */
924
925 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
926 vol->mft_zone_multiplier);
927 #ifdef NTFS_RW
928 /* Determine the size of the MFT zone. */
929 mft_zone_size = vol->nr_clusters;
930 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
931 case 4:
932 mft_zone_size >>= 1; /* 50% */
933 break;
934 case 3:
935 mft_zone_size = (mft_zone_size +
936 (mft_zone_size >> 1)) >> 2; /* 37.5% */
937 break;
938 case 2:
939 mft_zone_size >>= 2; /* 25% */
940 break;
941 /* case 1: */
942 default:
943 mft_zone_size >>= 3; /* 12.5% */
944 break;
945 }
946 /* Setup the mft zone. */
947 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
948 ntfs_debug("vol->mft_zone_pos = 0x%llx",
949 (unsigned long long)vol->mft_zone_pos);
950 /*
951 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
952 * source) and if the actual mft_lcn is in the expected place or even
953 * further to the front of the volume, extend the mft_zone to cover the
954 * beginning of the volume as well. This is in order to protect the
955 * area reserved for the mft bitmap as well within the mft_zone itself.
956 * On non-standard volumes we do not protect it as the overhead would
957 * be higher than the speed increase we would get by doing it.
958 */
959 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
960 if (mft_lcn * vol->cluster_size < 16 * 1024)
961 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
962 vol->cluster_size;
963 if (vol->mft_zone_start <= mft_lcn)
964 vol->mft_zone_start = 0;
965 ntfs_debug("vol->mft_zone_start = 0x%llx",
966 (unsigned long long)vol->mft_zone_start);
967 /*
968 * Need to cap the mft zone on non-standard volumes so that it does
969 * not point outside the boundaries of the volume. We do this by
970 * halving the zone size until we are inside the volume.
971 */
972 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
973 while (vol->mft_zone_end >= vol->nr_clusters) {
974 mft_zone_size >>= 1;
975 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
976 }
977 ntfs_debug("vol->mft_zone_end = 0x%llx",
978 (unsigned long long)vol->mft_zone_end);
979 /*
980 * Set the current position within each data zone to the start of the
981 * respective zone.
982 */
983 vol->data1_zone_pos = vol->mft_zone_end;
984 ntfs_debug("vol->data1_zone_pos = 0x%llx",
985 (unsigned long long)vol->data1_zone_pos);
986 vol->data2_zone_pos = 0;
987 ntfs_debug("vol->data2_zone_pos = 0x%llx",
988 (unsigned long long)vol->data2_zone_pos);
989
990 /* Set the mft data allocation position to mft record 24. */
991 vol->mft_data_pos = 24;
992 ntfs_debug("vol->mft_data_pos = 0x%llx",
993 (unsigned long long)vol->mft_data_pos);
994 #endif /* NTFS_RW */
995 }
996
997 #ifdef NTFS_RW
998
999 /**
1000 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1001 * @vol: ntfs super block describing device whose mft mirror to load
1002 *
1003 * Return TRUE on success or FALSE on error.
1004 */
1005 static BOOL load_and_init_mft_mirror(ntfs_volume *vol)
1006 {
1007 struct inode *tmp_ino;
1008 ntfs_inode *tmp_ni;
1009
1010 ntfs_debug("Entering.");
1011 /* Get mft mirror inode. */
1012 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1013 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1014 if (!IS_ERR(tmp_ino))
1015 iput(tmp_ino);
1016 /* Caller will display error message. */
1017 return FALSE;
1018 }
1019 /*
1020 * Re-initialize some specifics about $MFTMirr's inode as
1021 * ntfs_read_inode() will have set up the default ones.
1022 */
1023 /* Set uid and gid to root. */
1024 tmp_ino->i_uid = tmp_ino->i_gid = 0;
1025 /* Regular file. No access for anyone. */
1026 tmp_ino->i_mode = S_IFREG;
1027 /* No VFS initiated operations allowed for $MFTMirr. */
1028 tmp_ino->i_op = &ntfs_empty_inode_ops;
1029 tmp_ino->i_fop = &ntfs_empty_file_ops;
1030 /* Put in our special address space operations. */
1031 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1032 tmp_ni = NTFS_I(tmp_ino);
1033 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1034 NInoSetMstProtected(tmp_ni);
1035 NInoSetSparseDisabled(tmp_ni);
1036 /*
1037 * Set up our little cheat allowing us to reuse the async read io
1038 * completion handler for directories.
1039 */
1040 tmp_ni->itype.index.block_size = vol->mft_record_size;
1041 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1042 vol->mftmirr_ino = tmp_ino;
1043 ntfs_debug("Done.");
1044 return TRUE;
1045 }
1046
1047 /**
1048 * check_mft_mirror - compare contents of the mft mirror with the mft
1049 * @vol: ntfs super block describing device whose mft mirror to check
1050 *
1051 * Return TRUE on success or FALSE on error.
1052 *
1053 * Note, this function also results in the mft mirror runlist being completely
1054 * mapped into memory. The mft mirror write code requires this and will BUG()
1055 * should it find an unmapped runlist element.
1056 */
1057 static BOOL check_mft_mirror(ntfs_volume *vol)
1058 {
1059 struct super_block *sb = vol->sb;
1060 ntfs_inode *mirr_ni;
1061 struct page *mft_page, *mirr_page;
1062 u8 *kmft, *kmirr;
1063 runlist_element *rl, rl2[2];
1064 pgoff_t index;
1065 int mrecs_per_page, i;
1066
1067 ntfs_debug("Entering.");
1068 /* Compare contents of $MFT and $MFTMirr. */
1069 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1070 BUG_ON(!mrecs_per_page);
1071 BUG_ON(!vol->mftmirr_size);
1072 mft_page = mirr_page = NULL;
1073 kmft = kmirr = NULL;
1074 index = i = 0;
1075 do {
1076 u32 bytes;
1077
1078 /* Switch pages if necessary. */
1079 if (!(i % mrecs_per_page)) {
1080 if (index) {
1081 ntfs_unmap_page(mft_page);
1082 ntfs_unmap_page(mirr_page);
1083 }
1084 /* Get the $MFT page. */
1085 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1086 index);
1087 if (IS_ERR(mft_page)) {
1088 ntfs_error(sb, "Failed to read $MFT.");
1089 return FALSE;
1090 }
1091 kmft = page_address(mft_page);
1092 /* Get the $MFTMirr page. */
1093 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1094 index);
1095 if (IS_ERR(mirr_page)) {
1096 ntfs_error(sb, "Failed to read $MFTMirr.");
1097 goto mft_unmap_out;
1098 }
1099 kmirr = page_address(mirr_page);
1100 ++index;
1101 }
1102 /* Do not check the record if it is not in use. */
1103 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1104 /* Make sure the record is ok. */
1105 if (ntfs_is_baad_recordp((le32*)kmft)) {
1106 ntfs_error(sb, "Incomplete multi sector "
1107 "transfer detected in mft "
1108 "record %i.", i);
1109 mm_unmap_out:
1110 ntfs_unmap_page(mirr_page);
1111 mft_unmap_out:
1112 ntfs_unmap_page(mft_page);
1113 return FALSE;
1114 }
1115 }
1116 /* Do not check the mirror record if it is not in use. */
1117 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1118 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1119 ntfs_error(sb, "Incomplete multi sector "
1120 "transfer detected in mft "
1121 "mirror record %i.", i);
1122 goto mm_unmap_out;
1123 }
1124 }
1125 /* Get the amount of data in the current record. */
1126 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1127 if (bytes < sizeof(MFT_RECORD_OLD) ||
1128 bytes > vol->mft_record_size ||
1129 ntfs_is_baad_recordp((le32*)kmft)) {
1130 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1131 if (bytes < sizeof(MFT_RECORD_OLD) ||
1132 bytes > vol->mft_record_size ||
1133 ntfs_is_baad_recordp((le32*)kmirr))
1134 bytes = vol->mft_record_size;
1135 }
1136 /* Compare the two records. */
1137 if (memcmp(kmft, kmirr, bytes)) {
1138 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1139 "match. Run ntfsfix or chkdsk.", i);
1140 goto mm_unmap_out;
1141 }
1142 kmft += vol->mft_record_size;
1143 kmirr += vol->mft_record_size;
1144 } while (++i < vol->mftmirr_size);
1145 /* Release the last pages. */
1146 ntfs_unmap_page(mft_page);
1147 ntfs_unmap_page(mirr_page);
1148
1149 /* Construct the mft mirror runlist by hand. */
1150 rl2[0].vcn = 0;
1151 rl2[0].lcn = vol->mftmirr_lcn;
1152 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1153 vol->cluster_size - 1) / vol->cluster_size;
1154 rl2[1].vcn = rl2[0].length;
1155 rl2[1].lcn = LCN_ENOENT;
1156 rl2[1].length = 0;
1157 /*
1158 * Because we have just read all of the mft mirror, we know we have
1159 * mapped the full runlist for it.
1160 */
1161 mirr_ni = NTFS_I(vol->mftmirr_ino);
1162 down_read(&mirr_ni->runlist.lock);
1163 rl = mirr_ni->runlist.rl;
1164 /* Compare the two runlists. They must be identical. */
1165 i = 0;
1166 do {
1167 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1168 rl2[i].length != rl[i].length) {
1169 ntfs_error(sb, "$MFTMirr location mismatch. "
1170 "Run chkdsk.");
1171 up_read(&mirr_ni->runlist.lock);
1172 return FALSE;
1173 }
1174 } while (rl2[i++].length);
1175 up_read(&mirr_ni->runlist.lock);
1176 ntfs_debug("Done.");
1177 return TRUE;
1178 }
1179
1180 /**
1181 * load_and_check_logfile - load and check the logfile inode for a volume
1182 * @vol: ntfs super block describing device whose logfile to load
1183 *
1184 * Return TRUE on success or FALSE on error.
1185 */
1186 static BOOL load_and_check_logfile(ntfs_volume *vol,
1187 RESTART_PAGE_HEADER **rp)
1188 {
1189 struct inode *tmp_ino;
1190
1191 ntfs_debug("Entering.");
1192 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1193 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1194 if (!IS_ERR(tmp_ino))
1195 iput(tmp_ino);
1196 /* Caller will display error message. */
1197 return FALSE;
1198 }
1199 if (!ntfs_check_logfile(tmp_ino, rp)) {
1200 iput(tmp_ino);
1201 /* ntfs_check_logfile() will have displayed error output. */
1202 return FALSE;
1203 }
1204 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1205 vol->logfile_ino = tmp_ino;
1206 ntfs_debug("Done.");
1207 return TRUE;
1208 }
1209
1210 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1211
1212 /**
1213 * check_windows_hibernation_status - check if Windows is suspended on a volume
1214 * @vol: ntfs super block of device to check
1215 *
1216 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1217 * looking for the file hiberfil.sys in the root directory of the volume. If
1218 * the file is not present Windows is definitely not suspended.
1219 *
1220 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1221 * definitely suspended (this volume is not the system volume). Caveat: on a
1222 * system with many volumes it is possible that the < 4kiB check is bogus but
1223 * for now this should do fine.
1224 *
1225 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1226 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1227 * Windows is definitely suspended. If it is completely full of zeroes,
1228 * Windows is definitely not hibernated. Any other case is treated as if
1229 * Windows is suspended. This caters for the above mentioned caveat of a
1230 * system with many volumes where no "hibr" magic would be present and there is
1231 * no zero header.
1232 *
1233 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1234 * hibernated on the volume, and -errno on error.
1235 */
1236 static int check_windows_hibernation_status(ntfs_volume *vol)
1237 {
1238 MFT_REF mref;
1239 struct inode *vi;
1240 ntfs_inode *ni;
1241 struct page *page;
1242 u32 *kaddr, *kend;
1243 ntfs_name *name = NULL;
1244 int ret = 1;
1245 static const ntfschar hiberfil[13] = { const_cpu_to_le16('h'),
1246 const_cpu_to_le16('i'), const_cpu_to_le16('b'),
1247 const_cpu_to_le16('e'), const_cpu_to_le16('r'),
1248 const_cpu_to_le16('f'), const_cpu_to_le16('i'),
1249 const_cpu_to_le16('l'), const_cpu_to_le16('.'),
1250 const_cpu_to_le16('s'), const_cpu_to_le16('y'),
1251 const_cpu_to_le16('s'), 0 };
1252
1253 ntfs_debug("Entering.");
1254 /*
1255 * Find the inode number for the hibernation file by looking up the
1256 * filename hiberfil.sys in the root directory.
1257 */
1258 mutex_lock(&vol->root_ino->i_mutex);
1259 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1260 &name);
1261 mutex_unlock(&vol->root_ino->i_mutex);
1262 if (IS_ERR_MREF(mref)) {
1263 ret = MREF_ERR(mref);
1264 /* If the file does not exist, Windows is not hibernated. */
1265 if (ret == -ENOENT) {
1266 ntfs_debug("hiberfil.sys not present. Windows is not "
1267 "hibernated on the volume.");
1268 return 0;
1269 }
1270 /* A real error occured. */
1271 ntfs_error(vol->sb, "Failed to find inode number for "
1272 "hiberfil.sys.");
1273 return ret;
1274 }
1275 /* We do not care for the type of match that was found. */
1276 kfree(name);
1277 /* Get the inode. */
1278 vi = ntfs_iget(vol->sb, MREF(mref));
1279 if (IS_ERR(vi) || is_bad_inode(vi)) {
1280 if (!IS_ERR(vi))
1281 iput(vi);
1282 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1283 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1284 }
1285 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1286 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1287 "Windows is hibernated on the volume. This "
1288 "is not the system volume.", i_size_read(vi));
1289 goto iput_out;
1290 }
1291 ni = NTFS_I(vi);
1292 page = ntfs_map_page(vi->i_mapping, 0);
1293 if (IS_ERR(page)) {
1294 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1295 ret = PTR_ERR(page);
1296 goto iput_out;
1297 }
1298 kaddr = (u32*)page_address(page);
1299 if (*(le32*)kaddr == const_cpu_to_le32(0x72626968)/*'hibr'*/) {
1300 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1301 "hibernated on the volume. This is the "
1302 "system volume.");
1303 goto unm_iput_out;
1304 }
1305 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1306 do {
1307 if (unlikely(*kaddr)) {
1308 ntfs_debug("hiberfil.sys is larger than 4kiB "
1309 "(0x%llx), does not contain the "
1310 "\"hibr\" magic, and does not have a "
1311 "zero header. Windows is hibernated "
1312 "on the volume. This is not the "
1313 "system volume.", i_size_read(vi));
1314 goto unm_iput_out;
1315 }
1316 } while (++kaddr < kend);
1317 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1318 "hibernated on the volume. This is the system "
1319 "volume.");
1320 ret = 0;
1321 unm_iput_out:
1322 ntfs_unmap_page(page);
1323 iput_out:
1324 iput(vi);
1325 return ret;
1326 }
1327
1328 /**
1329 * load_and_init_quota - load and setup the quota file for a volume if present
1330 * @vol: ntfs super block describing device whose quota file to load
1331 *
1332 * Return TRUE on success or FALSE on error. If $Quota is not present, we
1333 * leave vol->quota_ino as NULL and return success.
1334 */
1335 static BOOL load_and_init_quota(ntfs_volume *vol)
1336 {
1337 MFT_REF mref;
1338 struct inode *tmp_ino;
1339 ntfs_name *name = NULL;
1340 static const ntfschar Quota[7] = { const_cpu_to_le16('$'),
1341 const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1342 const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1343 const_cpu_to_le16('a'), 0 };
1344 static ntfschar Q[3] = { const_cpu_to_le16('$'),
1345 const_cpu_to_le16('Q'), 0 };
1346
1347 ntfs_debug("Entering.");
1348 /*
1349 * Find the inode number for the quota file by looking up the filename
1350 * $Quota in the extended system files directory $Extend.
1351 */
1352 mutex_lock(&vol->extend_ino->i_mutex);
1353 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1354 &name);
1355 mutex_unlock(&vol->extend_ino->i_mutex);
1356 if (IS_ERR_MREF(mref)) {
1357 /*
1358 * If the file does not exist, quotas are disabled and have
1359 * never been enabled on this volume, just return success.
1360 */
1361 if (MREF_ERR(mref) == -ENOENT) {
1362 ntfs_debug("$Quota not present. Volume does not have "
1363 "quotas enabled.");
1364 /*
1365 * No need to try to set quotas out of date if they are
1366 * not enabled.
1367 */
1368 NVolSetQuotaOutOfDate(vol);
1369 return TRUE;
1370 }
1371 /* A real error occured. */
1372 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1373 return FALSE;
1374 }
1375 /* We do not care for the type of match that was found. */
1376 kfree(name);
1377 /* Get the inode. */
1378 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1379 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1380 if (!IS_ERR(tmp_ino))
1381 iput(tmp_ino);
1382 ntfs_error(vol->sb, "Failed to load $Quota.");
1383 return FALSE;
1384 }
1385 vol->quota_ino = tmp_ino;
1386 /* Get the $Q index allocation attribute. */
1387 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1388 if (IS_ERR(tmp_ino)) {
1389 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1390 return FALSE;
1391 }
1392 vol->quota_q_ino = tmp_ino;
1393 ntfs_debug("Done.");
1394 return TRUE;
1395 }
1396
1397 /**
1398 * load_and_init_usnjrnl - load and setup the transaction log if present
1399 * @vol: ntfs super block describing device whose usnjrnl file to load
1400 *
1401 * Return TRUE on success or FALSE on error.
1402 *
1403 * If $UsnJrnl is not present or in the process of being disabled, we set
1404 * NVolUsnJrnlStamped() and return success.
1405 *
1406 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1407 * i.e. transaction logging has only just been enabled or the journal has been
1408 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1409 * and return success.
1410 */
1411 static BOOL load_and_init_usnjrnl(ntfs_volume *vol)
1412 {
1413 MFT_REF mref;
1414 struct inode *tmp_ino;
1415 ntfs_inode *tmp_ni;
1416 struct page *page;
1417 ntfs_name *name = NULL;
1418 USN_HEADER *uh;
1419 static const ntfschar UsnJrnl[9] = { const_cpu_to_le16('$'),
1420 const_cpu_to_le16('U'), const_cpu_to_le16('s'),
1421 const_cpu_to_le16('n'), const_cpu_to_le16('J'),
1422 const_cpu_to_le16('r'), const_cpu_to_le16('n'),
1423 const_cpu_to_le16('l'), 0 };
1424 static ntfschar Max[5] = { const_cpu_to_le16('$'),
1425 const_cpu_to_le16('M'), const_cpu_to_le16('a'),
1426 const_cpu_to_le16('x'), 0 };
1427 static ntfschar J[3] = { const_cpu_to_le16('$'),
1428 const_cpu_to_le16('J'), 0 };
1429
1430 ntfs_debug("Entering.");
1431 /*
1432 * Find the inode number for the transaction log file by looking up the
1433 * filename $UsnJrnl in the extended system files directory $Extend.
1434 */
1435 mutex_lock(&vol->extend_ino->i_mutex);
1436 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1437 &name);
1438 mutex_unlock(&vol->extend_ino->i_mutex);
1439 if (IS_ERR_MREF(mref)) {
1440 /*
1441 * If the file does not exist, transaction logging is disabled,
1442 * just return success.
1443 */
1444 if (MREF_ERR(mref) == -ENOENT) {
1445 ntfs_debug("$UsnJrnl not present. Volume does not "
1446 "have transaction logging enabled.");
1447 not_enabled:
1448 /*
1449 * No need to try to stamp the transaction log if
1450 * transaction logging is not enabled.
1451 */
1452 NVolSetUsnJrnlStamped(vol);
1453 return TRUE;
1454 }
1455 /* A real error occured. */
1456 ntfs_error(vol->sb, "Failed to find inode number for "
1457 "$UsnJrnl.");
1458 return FALSE;
1459 }
1460 /* We do not care for the type of match that was found. */
1461 kfree(name);
1462 /* Get the inode. */
1463 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1464 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1465 if (!IS_ERR(tmp_ino))
1466 iput(tmp_ino);
1467 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1468 return FALSE;
1469 }
1470 vol->usnjrnl_ino = tmp_ino;
1471 /*
1472 * If the transaction log is in the process of being deleted, we can
1473 * ignore it.
1474 */
1475 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1476 ntfs_debug("$UsnJrnl in the process of being disabled. "
1477 "Volume does not have transaction logging "
1478 "enabled.");
1479 goto not_enabled;
1480 }
1481 /* Get the $DATA/$Max attribute. */
1482 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1483 if (IS_ERR(tmp_ino)) {
1484 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1485 "attribute.");
1486 return FALSE;
1487 }
1488 vol->usnjrnl_max_ino = tmp_ino;
1489 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1490 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1491 "attribute (size is 0x%llx but should be at "
1492 "least 0x%zx bytes).", i_size_read(tmp_ino),
1493 sizeof(USN_HEADER));
1494 return FALSE;
1495 }
1496 /* Get the $DATA/$J attribute. */
1497 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1498 if (IS_ERR(tmp_ino)) {
1499 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1500 "attribute.");
1501 return FALSE;
1502 }
1503 vol->usnjrnl_j_ino = tmp_ino;
1504 /* Verify $J is non-resident and sparse. */
1505 tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1506 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1507 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1508 "and/or not sparse.");
1509 return FALSE;
1510 }
1511 /* Read the USN_HEADER from $DATA/$Max. */
1512 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1513 if (IS_ERR(page)) {
1514 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1515 "attribute.");
1516 return FALSE;
1517 }
1518 uh = (USN_HEADER*)page_address(page);
1519 /* Sanity check the $Max. */
1520 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1521 sle64_to_cpu(uh->maximum_size))) {
1522 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1523 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1524 (long long)sle64_to_cpu(uh->allocation_delta),
1525 (long long)sle64_to_cpu(uh->maximum_size));
1526 ntfs_unmap_page(page);
1527 return FALSE;
1528 }
1529 /*
1530 * If the transaction log has been stamped and nothing has been written
1531 * to it since, we do not need to stamp it.
1532 */
1533 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1534 i_size_read(vol->usnjrnl_j_ino))) {
1535 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1536 i_size_read(vol->usnjrnl_j_ino))) {
1537 ntfs_unmap_page(page);
1538 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1539 "logged since it was last stamped. "
1540 "Treating this as if the volume does "
1541 "not have transaction logging "
1542 "enabled.");
1543 goto not_enabled;
1544 }
1545 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1546 "which is out of bounds (0x%llx). $UsnJrnl "
1547 "is corrupt.",
1548 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1549 i_size_read(vol->usnjrnl_j_ino));
1550 ntfs_unmap_page(page);
1551 return FALSE;
1552 }
1553 ntfs_unmap_page(page);
1554 ntfs_debug("Done.");
1555 return TRUE;
1556 }
1557
1558 /**
1559 * load_and_init_attrdef - load the attribute definitions table for a volume
1560 * @vol: ntfs super block describing device whose attrdef to load
1561 *
1562 * Return TRUE on success or FALSE on error.
1563 */
1564 static BOOL load_and_init_attrdef(ntfs_volume *vol)
1565 {
1566 loff_t i_size;
1567 struct super_block *sb = vol->sb;
1568 struct inode *ino;
1569 struct page *page;
1570 pgoff_t index, max_index;
1571 unsigned int size;
1572
1573 ntfs_debug("Entering.");
1574 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1575 ino = ntfs_iget(sb, FILE_AttrDef);
1576 if (IS_ERR(ino) || is_bad_inode(ino)) {
1577 if (!IS_ERR(ino))
1578 iput(ino);
1579 goto failed;
1580 }
1581 NInoSetSparseDisabled(NTFS_I(ino));
1582 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1583 i_size = i_size_read(ino);
1584 if (i_size <= 0 || i_size > 0x7fffffff)
1585 goto iput_failed;
1586 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1587 if (!vol->attrdef)
1588 goto iput_failed;
1589 index = 0;
1590 max_index = i_size >> PAGE_CACHE_SHIFT;
1591 size = PAGE_CACHE_SIZE;
1592 while (index < max_index) {
1593 /* Read the attrdef table and copy it into the linear buffer. */
1594 read_partial_attrdef_page:
1595 page = ntfs_map_page(ino->i_mapping, index);
1596 if (IS_ERR(page))
1597 goto free_iput_failed;
1598 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1599 page_address(page), size);
1600 ntfs_unmap_page(page);
1601 };
1602 if (size == PAGE_CACHE_SIZE) {
1603 size = i_size & ~PAGE_CACHE_MASK;
1604 if (size)
1605 goto read_partial_attrdef_page;
1606 }
1607 vol->attrdef_size = i_size;
1608 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1609 iput(ino);
1610 return TRUE;
1611 free_iput_failed:
1612 ntfs_free(vol->attrdef);
1613 vol->attrdef = NULL;
1614 iput_failed:
1615 iput(ino);
1616 failed:
1617 ntfs_error(sb, "Failed to initialize attribute definition table.");
1618 return FALSE;
1619 }
1620
1621 #endif /* NTFS_RW */
1622
1623 /**
1624 * load_and_init_upcase - load the upcase table for an ntfs volume
1625 * @vol: ntfs super block describing device whose upcase to load
1626 *
1627 * Return TRUE on success or FALSE on error.
1628 */
1629 static BOOL load_and_init_upcase(ntfs_volume *vol)
1630 {
1631 loff_t i_size;
1632 struct super_block *sb = vol->sb;
1633 struct inode *ino;
1634 struct page *page;
1635 pgoff_t index, max_index;
1636 unsigned int size;
1637 int i, max;
1638
1639 ntfs_debug("Entering.");
1640 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1641 ino = ntfs_iget(sb, FILE_UpCase);
1642 if (IS_ERR(ino) || is_bad_inode(ino)) {
1643 if (!IS_ERR(ino))
1644 iput(ino);
1645 goto upcase_failed;
1646 }
1647 /*
1648 * The upcase size must not be above 64k Unicode characters, must not
1649 * be zero and must be a multiple of sizeof(ntfschar).
1650 */
1651 i_size = i_size_read(ino);
1652 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1653 i_size > 64ULL * 1024 * sizeof(ntfschar))
1654 goto iput_upcase_failed;
1655 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1656 if (!vol->upcase)
1657 goto iput_upcase_failed;
1658 index = 0;
1659 max_index = i_size >> PAGE_CACHE_SHIFT;
1660 size = PAGE_CACHE_SIZE;
1661 while (index < max_index) {
1662 /* Read the upcase table and copy it into the linear buffer. */
1663 read_partial_upcase_page:
1664 page = ntfs_map_page(ino->i_mapping, index);
1665 if (IS_ERR(page))
1666 goto iput_upcase_failed;
1667 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1668 page_address(page), size);
1669 ntfs_unmap_page(page);
1670 };
1671 if (size == PAGE_CACHE_SIZE) {
1672 size = i_size & ~PAGE_CACHE_MASK;
1673 if (size)
1674 goto read_partial_upcase_page;
1675 }
1676 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1677 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1678 i_size, 64 * 1024 * sizeof(ntfschar));
1679 iput(ino);
1680 mutex_lock(&ntfs_lock);
1681 if (!default_upcase) {
1682 ntfs_debug("Using volume specified $UpCase since default is "
1683 "not present.");
1684 mutex_unlock(&ntfs_lock);
1685 return TRUE;
1686 }
1687 max = default_upcase_len;
1688 if (max > vol->upcase_len)
1689 max = vol->upcase_len;
1690 for (i = 0; i < max; i++)
1691 if (vol->upcase[i] != default_upcase[i])
1692 break;
1693 if (i == max) {
1694 ntfs_free(vol->upcase);
1695 vol->upcase = default_upcase;
1696 vol->upcase_len = max;
1697 ntfs_nr_upcase_users++;
1698 mutex_unlock(&ntfs_lock);
1699 ntfs_debug("Volume specified $UpCase matches default. Using "
1700 "default.");
1701 return TRUE;
1702 }
1703 mutex_unlock(&ntfs_lock);
1704 ntfs_debug("Using volume specified $UpCase since it does not match "
1705 "the default.");
1706 return TRUE;
1707 iput_upcase_failed:
1708 iput(ino);
1709 ntfs_free(vol->upcase);
1710 vol->upcase = NULL;
1711 upcase_failed:
1712 mutex_lock(&ntfs_lock);
1713 if (default_upcase) {
1714 vol->upcase = default_upcase;
1715 vol->upcase_len = default_upcase_len;
1716 ntfs_nr_upcase_users++;
1717 mutex_unlock(&ntfs_lock);
1718 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1719 "default.");
1720 return TRUE;
1721 }
1722 mutex_unlock(&ntfs_lock);
1723 ntfs_error(sb, "Failed to initialize upcase table.");
1724 return FALSE;
1725 }
1726
1727 /**
1728 * load_system_files - open the system files using normal functions
1729 * @vol: ntfs super block describing device whose system files to load
1730 *
1731 * Open the system files with normal access functions and complete setting up
1732 * the ntfs super block @vol.
1733 *
1734 * Return TRUE on success or FALSE on error.
1735 */
1736 static BOOL load_system_files(ntfs_volume *vol)
1737 {
1738 struct super_block *sb = vol->sb;
1739 MFT_RECORD *m;
1740 VOLUME_INFORMATION *vi;
1741 ntfs_attr_search_ctx *ctx;
1742 #ifdef NTFS_RW
1743 RESTART_PAGE_HEADER *rp;
1744 int err;
1745 #endif /* NTFS_RW */
1746
1747 ntfs_debug("Entering.");
1748 #ifdef NTFS_RW
1749 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1750 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1751 static const char *es1 = "Failed to load $MFTMirr";
1752 static const char *es2 = "$MFTMirr does not match $MFT";
1753 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1754
1755 /* If a read-write mount, convert it to a read-only mount. */
1756 if (!(sb->s_flags & MS_RDONLY)) {
1757 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1758 ON_ERRORS_CONTINUE))) {
1759 ntfs_error(sb, "%s and neither on_errors="
1760 "continue nor on_errors="
1761 "remount-ro was specified%s",
1762 !vol->mftmirr_ino ? es1 : es2,
1763 es3);
1764 goto iput_mirr_err_out;
1765 }
1766 sb->s_flags |= MS_RDONLY;
1767 ntfs_error(sb, "%s. Mounting read-only%s",
1768 !vol->mftmirr_ino ? es1 : es2, es3);
1769 } else
1770 ntfs_warning(sb, "%s. Will not be able to remount "
1771 "read-write%s",
1772 !vol->mftmirr_ino ? es1 : es2, es3);
1773 /* This will prevent a read-write remount. */
1774 NVolSetErrors(vol);
1775 }
1776 #endif /* NTFS_RW */
1777 /* Get mft bitmap attribute inode. */
1778 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1779 if (IS_ERR(vol->mftbmp_ino)) {
1780 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1781 goto iput_mirr_err_out;
1782 }
1783 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1784 if (!load_and_init_upcase(vol))
1785 goto iput_mftbmp_err_out;
1786 #ifdef NTFS_RW
1787 /*
1788 * Read attribute definitions table and setup @vol->attrdef and
1789 * @vol->attrdef_size.
1790 */
1791 if (!load_and_init_attrdef(vol))
1792 goto iput_upcase_err_out;
1793 #endif /* NTFS_RW */
1794 /*
1795 * Get the cluster allocation bitmap inode and verify the size, no
1796 * need for any locking at this stage as we are already running
1797 * exclusively as we are mount in progress task.
1798 */
1799 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1800 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1801 if (!IS_ERR(vol->lcnbmp_ino))
1802 iput(vol->lcnbmp_ino);
1803 goto bitmap_failed;
1804 }
1805 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1806 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1807 iput(vol->lcnbmp_ino);
1808 bitmap_failed:
1809 ntfs_error(sb, "Failed to load $Bitmap.");
1810 goto iput_attrdef_err_out;
1811 }
1812 /*
1813 * Get the volume inode and setup our cache of the volume flags and
1814 * version.
1815 */
1816 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1817 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1818 if (!IS_ERR(vol->vol_ino))
1819 iput(vol->vol_ino);
1820 volume_failed:
1821 ntfs_error(sb, "Failed to load $Volume.");
1822 goto iput_lcnbmp_err_out;
1823 }
1824 m = map_mft_record(NTFS_I(vol->vol_ino));
1825 if (IS_ERR(m)) {
1826 iput_volume_failed:
1827 iput(vol->vol_ino);
1828 goto volume_failed;
1829 }
1830 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1831 ntfs_error(sb, "Failed to get attribute search context.");
1832 goto get_ctx_vol_failed;
1833 }
1834 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1835 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1836 err_put_vol:
1837 ntfs_attr_put_search_ctx(ctx);
1838 get_ctx_vol_failed:
1839 unmap_mft_record(NTFS_I(vol->vol_ino));
1840 goto iput_volume_failed;
1841 }
1842 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1843 le16_to_cpu(ctx->attr->data.resident.value_offset));
1844 /* Some bounds checks. */
1845 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1846 le32_to_cpu(ctx->attr->data.resident.value_length) >
1847 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1848 goto err_put_vol;
1849 /* Copy the volume flags and version to the ntfs_volume structure. */
1850 vol->vol_flags = vi->flags;
1851 vol->major_ver = vi->major_ver;
1852 vol->minor_ver = vi->minor_ver;
1853 ntfs_attr_put_search_ctx(ctx);
1854 unmap_mft_record(NTFS_I(vol->vol_ino));
1855 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1856 vol->minor_ver);
1857 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1858 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1859 "volume version %i.%i (need at least version "
1860 "3.0).", vol->major_ver, vol->minor_ver);
1861 NVolClearSparseEnabled(vol);
1862 }
1863 #ifdef NTFS_RW
1864 /* Make sure that no unsupported volume flags are set. */
1865 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1866 static const char *es1a = "Volume is dirty";
1867 static const char *es1b = "Volume has been modified by chkdsk";
1868 static const char *es1c = "Volume has unsupported flags set";
1869 static const char *es2a = ". Run chkdsk and mount in Windows.";
1870 static const char *es2b = ". Mount in Windows.";
1871 const char *es1, *es2;
1872
1873 es2 = es2a;
1874 if (vol->vol_flags & VOLUME_IS_DIRTY)
1875 es1 = es1a;
1876 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1877 es1 = es1b;
1878 es2 = es2b;
1879 } else {
1880 es1 = es1c;
1881 ntfs_warning(sb, "Unsupported volume flags 0x%x "
1882 "encountered.",
1883 (unsigned)le16_to_cpu(vol->vol_flags));
1884 }
1885 /* If a read-write mount, convert it to a read-only mount. */
1886 if (!(sb->s_flags & MS_RDONLY)) {
1887 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1888 ON_ERRORS_CONTINUE))) {
1889 ntfs_error(sb, "%s and neither on_errors="
1890 "continue nor on_errors="
1891 "remount-ro was specified%s",
1892 es1, es2);
1893 goto iput_vol_err_out;
1894 }
1895 sb->s_flags |= MS_RDONLY;
1896 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1897 } else
1898 ntfs_warning(sb, "%s. Will not be able to remount "
1899 "read-write%s", es1, es2);
1900 /*
1901 * Do not set NVolErrors() because ntfs_remount() re-checks the
1902 * flags which we need to do in case any flags have changed.
1903 */
1904 }
1905 /*
1906 * Get the inode for the logfile, check it and determine if the volume
1907 * was shutdown cleanly.
1908 */
1909 rp = NULL;
1910 if (!load_and_check_logfile(vol, &rp) ||
1911 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1912 static const char *es1a = "Failed to load $LogFile";
1913 static const char *es1b = "$LogFile is not clean";
1914 static const char *es2 = ". Mount in Windows.";
1915 const char *es1;
1916
1917 es1 = !vol->logfile_ino ? es1a : es1b;
1918 /* If a read-write mount, convert it to a read-only mount. */
1919 if (!(sb->s_flags & MS_RDONLY)) {
1920 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1921 ON_ERRORS_CONTINUE))) {
1922 ntfs_error(sb, "%s and neither on_errors="
1923 "continue nor on_errors="
1924 "remount-ro was specified%s",
1925 es1, es2);
1926 if (vol->logfile_ino) {
1927 BUG_ON(!rp);
1928 ntfs_free(rp);
1929 }
1930 goto iput_logfile_err_out;
1931 }
1932 sb->s_flags |= MS_RDONLY;
1933 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1934 } else
1935 ntfs_warning(sb, "%s. Will not be able to remount "
1936 "read-write%s", es1, es2);
1937 /* This will prevent a read-write remount. */
1938 NVolSetErrors(vol);
1939 }
1940 ntfs_free(rp);
1941 #endif /* NTFS_RW */
1942 /* Get the root directory inode so we can do path lookups. */
1943 vol->root_ino = ntfs_iget(sb, FILE_root);
1944 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1945 if (!IS_ERR(vol->root_ino))
1946 iput(vol->root_ino);
1947 ntfs_error(sb, "Failed to load root directory.");
1948 goto iput_logfile_err_out;
1949 }
1950 #ifdef NTFS_RW
1951 /*
1952 * Check if Windows is suspended to disk on the target volume. If it
1953 * is hibernated, we must not write *anything* to the disk so set
1954 * NVolErrors() without setting the dirty volume flag and mount
1955 * read-only. This will prevent read-write remounting and it will also
1956 * prevent all writes.
1957 */
1958 err = check_windows_hibernation_status(vol);
1959 if (unlikely(err)) {
1960 static const char *es1a = "Failed to determine if Windows is "
1961 "hibernated";
1962 static const char *es1b = "Windows is hibernated";
1963 static const char *es2 = ". Run chkdsk.";
1964 const char *es1;
1965
1966 es1 = err < 0 ? es1a : es1b;
1967 /* If a read-write mount, convert it to a read-only mount. */
1968 if (!(sb->s_flags & MS_RDONLY)) {
1969 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1970 ON_ERRORS_CONTINUE))) {
1971 ntfs_error(sb, "%s and neither on_errors="
1972 "continue nor on_errors="
1973 "remount-ro was specified%s",
1974 es1, es2);
1975 goto iput_root_err_out;
1976 }
1977 sb->s_flags |= MS_RDONLY;
1978 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1979 } else
1980 ntfs_warning(sb, "%s. Will not be able to remount "
1981 "read-write%s", es1, es2);
1982 /* This will prevent a read-write remount. */
1983 NVolSetErrors(vol);
1984 }
1985 /* If (still) a read-write mount, mark the volume dirty. */
1986 if (!(sb->s_flags & MS_RDONLY) &&
1987 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
1988 static const char *es1 = "Failed to set dirty bit in volume "
1989 "information flags";
1990 static const char *es2 = ". Run chkdsk.";
1991
1992 /* Convert to a read-only mount. */
1993 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1994 ON_ERRORS_CONTINUE))) {
1995 ntfs_error(sb, "%s and neither on_errors=continue nor "
1996 "on_errors=remount-ro was specified%s",
1997 es1, es2);
1998 goto iput_root_err_out;
1999 }
2000 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2001 sb->s_flags |= MS_RDONLY;
2002 /*
2003 * Do not set NVolErrors() because ntfs_remount() might manage
2004 * to set the dirty flag in which case all would be well.
2005 */
2006 }
2007 #if 0
2008 // TODO: Enable this code once we start modifying anything that is
2009 // different between NTFS 1.2 and 3.x...
2010 /*
2011 * If (still) a read-write mount, set the NT4 compatibility flag on
2012 * newer NTFS version volumes.
2013 */
2014 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2015 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2016 static const char *es1 = "Failed to set NT4 compatibility flag";
2017 static const char *es2 = ". Run chkdsk.";
2018
2019 /* Convert to a read-only mount. */
2020 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2021 ON_ERRORS_CONTINUE))) {
2022 ntfs_error(sb, "%s and neither on_errors=continue nor "
2023 "on_errors=remount-ro was specified%s",
2024 es1, es2);
2025 goto iput_root_err_out;
2026 }
2027 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2028 sb->s_flags |= MS_RDONLY;
2029 NVolSetErrors(vol);
2030 }
2031 #endif
2032 /* If (still) a read-write mount, empty the logfile. */
2033 if (!(sb->s_flags & MS_RDONLY) &&
2034 !ntfs_empty_logfile(vol->logfile_ino)) {
2035 static const char *es1 = "Failed to empty $LogFile";
2036 static const char *es2 = ". Mount in Windows.";
2037
2038 /* Convert to a read-only mount. */
2039 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2040 ON_ERRORS_CONTINUE))) {
2041 ntfs_error(sb, "%s and neither on_errors=continue nor "
2042 "on_errors=remount-ro was specified%s",
2043 es1, es2);
2044 goto iput_root_err_out;
2045 }
2046 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2047 sb->s_flags |= MS_RDONLY;
2048 NVolSetErrors(vol);
2049 }
2050 #endif /* NTFS_RW */
2051 /* If on NTFS versions before 3.0, we are done. */
2052 if (unlikely(vol->major_ver < 3))
2053 return TRUE;
2054 /* NTFS 3.0+ specific initialization. */
2055 /* Get the security descriptors inode. */
2056 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2057 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2058 if (!IS_ERR(vol->secure_ino))
2059 iput(vol->secure_ino);
2060 ntfs_error(sb, "Failed to load $Secure.");
2061 goto iput_root_err_out;
2062 }
2063 // TODO: Initialize security.
2064 /* Get the extended system files' directory inode. */
2065 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2066 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2067 if (!IS_ERR(vol->extend_ino))
2068 iput(vol->extend_ino);
2069 ntfs_error(sb, "Failed to load $Extend.");
2070 goto iput_sec_err_out;
2071 }
2072 #ifdef NTFS_RW
2073 /* Find the quota file, load it if present, and set it up. */
2074 if (!load_and_init_quota(vol)) {
2075 static const char *es1 = "Failed to load $Quota";
2076 static const char *es2 = ". Run chkdsk.";
2077
2078 /* If a read-write mount, convert it to a read-only mount. */
2079 if (!(sb->s_flags & MS_RDONLY)) {
2080 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2081 ON_ERRORS_CONTINUE))) {
2082 ntfs_error(sb, "%s and neither on_errors="
2083 "continue nor on_errors="
2084 "remount-ro was specified%s",
2085 es1, es2);
2086 goto iput_quota_err_out;
2087 }
2088 sb->s_flags |= MS_RDONLY;
2089 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2090 } else
2091 ntfs_warning(sb, "%s. Will not be able to remount "
2092 "read-write%s", es1, es2);
2093 /* This will prevent a read-write remount. */
2094 NVolSetErrors(vol);
2095 }
2096 /* If (still) a read-write mount, mark the quotas out of date. */
2097 if (!(sb->s_flags & MS_RDONLY) &&
2098 !ntfs_mark_quotas_out_of_date(vol)) {
2099 static const char *es1 = "Failed to mark quotas out of date";
2100 static const char *es2 = ". Run chkdsk.";
2101
2102 /* Convert to a read-only mount. */
2103 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2104 ON_ERRORS_CONTINUE))) {
2105 ntfs_error(sb, "%s and neither on_errors=continue nor "
2106 "on_errors=remount-ro was specified%s",
2107 es1, es2);
2108 goto iput_quota_err_out;
2109 }
2110 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2111 sb->s_flags |= MS_RDONLY;
2112 NVolSetErrors(vol);
2113 }
2114 /*
2115 * Find the transaction log file ($UsnJrnl), load it if present, check
2116 * it, and set it up.
2117 */
2118 if (!load_and_init_usnjrnl(vol)) {
2119 static const char *es1 = "Failed to load $UsnJrnl";
2120 static const char *es2 = ". Run chkdsk.";
2121
2122 /* If a read-write mount, convert it to a read-only mount. */
2123 if (!(sb->s_flags & MS_RDONLY)) {
2124 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2125 ON_ERRORS_CONTINUE))) {
2126 ntfs_error(sb, "%s and neither on_errors="
2127 "continue nor on_errors="
2128 "remount-ro was specified%s",
2129 es1, es2);
2130 goto iput_usnjrnl_err_out;
2131 }
2132 sb->s_flags |= MS_RDONLY;
2133 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2134 } else
2135 ntfs_warning(sb, "%s. Will not be able to remount "
2136 "read-write%s", es1, es2);
2137 /* This will prevent a read-write remount. */
2138 NVolSetErrors(vol);
2139 }
2140 /* If (still) a read-write mount, stamp the transaction log. */
2141 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2142 static const char *es1 = "Failed to stamp transaction log "
2143 "($UsnJrnl)";
2144 static const char *es2 = ". Run chkdsk.";
2145
2146 /* Convert to a read-only mount. */
2147 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2148 ON_ERRORS_CONTINUE))) {
2149 ntfs_error(sb, "%s and neither on_errors=continue nor "
2150 "on_errors=remount-ro was specified%s",
2151 es1, es2);
2152 goto iput_usnjrnl_err_out;
2153 }
2154 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2155 sb->s_flags |= MS_RDONLY;
2156 NVolSetErrors(vol);
2157 }
2158 #endif /* NTFS_RW */
2159 return TRUE;
2160 #ifdef NTFS_RW
2161 iput_usnjrnl_err_out:
2162 if (vol->usnjrnl_j_ino)
2163 iput(vol->usnjrnl_j_ino);
2164 if (vol->usnjrnl_max_ino)
2165 iput(vol->usnjrnl_max_ino);
2166 if (vol->usnjrnl_ino)
2167 iput(vol->usnjrnl_ino);
2168 iput_quota_err_out:
2169 if (vol->quota_q_ino)
2170 iput(vol->quota_q_ino);
2171 if (vol->quota_ino)
2172 iput(vol->quota_ino);
2173 iput(vol->extend_ino);
2174 #endif /* NTFS_RW */
2175 iput_sec_err_out:
2176 iput(vol->secure_ino);
2177 iput_root_err_out:
2178 iput(vol->root_ino);
2179 iput_logfile_err_out:
2180 #ifdef NTFS_RW
2181 if (vol->logfile_ino)
2182 iput(vol->logfile_ino);
2183 iput_vol_err_out:
2184 #endif /* NTFS_RW */
2185 iput(vol->vol_ino);
2186 iput_lcnbmp_err_out:
2187 iput(vol->lcnbmp_ino);
2188 iput_attrdef_err_out:
2189 vol->attrdef_size = 0;
2190 if (vol->attrdef) {
2191 ntfs_free(vol->attrdef);
2192 vol->attrdef = NULL;
2193 }
2194 #ifdef NTFS_RW
2195 iput_upcase_err_out:
2196 #endif /* NTFS_RW */
2197 vol->upcase_len = 0;
2198 mutex_lock(&ntfs_lock);
2199 if (vol->upcase == default_upcase) {
2200 ntfs_nr_upcase_users--;
2201 vol->upcase = NULL;
2202 }
2203 mutex_unlock(&ntfs_lock);
2204 if (vol->upcase) {
2205 ntfs_free(vol->upcase);
2206 vol->upcase = NULL;
2207 }
2208 iput_mftbmp_err_out:
2209 iput(vol->mftbmp_ino);
2210 iput_mirr_err_out:
2211 #ifdef NTFS_RW
2212 if (vol->mftmirr_ino)
2213 iput(vol->mftmirr_ino);
2214 #endif /* NTFS_RW */
2215 return FALSE;
2216 }
2217
2218 /**
2219 * ntfs_put_super - called by the vfs to unmount a volume
2220 * @sb: vfs superblock of volume to unmount
2221 *
2222 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2223 * the volume is being unmounted (umount system call has been invoked) and it
2224 * releases all inodes and memory belonging to the NTFS specific part of the
2225 * super block.
2226 */
2227 static void ntfs_put_super(struct super_block *sb)
2228 {
2229 ntfs_volume *vol = NTFS_SB(sb);
2230
2231 ntfs_debug("Entering.");
2232 #ifdef NTFS_RW
2233 /*
2234 * Commit all inodes while they are still open in case some of them
2235 * cause others to be dirtied.
2236 */
2237 ntfs_commit_inode(vol->vol_ino);
2238
2239 /* NTFS 3.0+ specific. */
2240 if (vol->major_ver >= 3) {
2241 if (vol->usnjrnl_j_ino)
2242 ntfs_commit_inode(vol->usnjrnl_j_ino);
2243 if (vol->usnjrnl_max_ino)
2244 ntfs_commit_inode(vol->usnjrnl_max_ino);
2245 if (vol->usnjrnl_ino)
2246 ntfs_commit_inode(vol->usnjrnl_ino);
2247 if (vol->quota_q_ino)
2248 ntfs_commit_inode(vol->quota_q_ino);
2249 if (vol->quota_ino)
2250 ntfs_commit_inode(vol->quota_ino);
2251 if (vol->extend_ino)
2252 ntfs_commit_inode(vol->extend_ino);
2253 if (vol->secure_ino)
2254 ntfs_commit_inode(vol->secure_ino);
2255 }
2256
2257 ntfs_commit_inode(vol->root_ino);
2258
2259 down_write(&vol->lcnbmp_lock);
2260 ntfs_commit_inode(vol->lcnbmp_ino);
2261 up_write(&vol->lcnbmp_lock);
2262
2263 down_write(&vol->mftbmp_lock);
2264 ntfs_commit_inode(vol->mftbmp_ino);
2265 up_write(&vol->mftbmp_lock);
2266
2267 if (vol->logfile_ino)
2268 ntfs_commit_inode(vol->logfile_ino);
2269
2270 if (vol->mftmirr_ino)
2271 ntfs_commit_inode(vol->mftmirr_ino);
2272 ntfs_commit_inode(vol->mft_ino);
2273
2274 /*
2275 * If a read-write mount and no volume errors have occured, mark the
2276 * volume clean. Also, re-commit all affected inodes.
2277 */
2278 if (!(sb->s_flags & MS_RDONLY)) {
2279 if (!NVolErrors(vol)) {
2280 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2281 ntfs_warning(sb, "Failed to clear dirty bit "
2282 "in volume information "
2283 "flags. Run chkdsk.");
2284 ntfs_commit_inode(vol->vol_ino);
2285 ntfs_commit_inode(vol->root_ino);
2286 if (vol->mftmirr_ino)
2287 ntfs_commit_inode(vol->mftmirr_ino);
2288 ntfs_commit_inode(vol->mft_ino);
2289 } else {
2290 ntfs_warning(sb, "Volume has errors. Leaving volume "
2291 "marked dirty. Run chkdsk.");
2292 }
2293 }
2294 #endif /* NTFS_RW */
2295
2296 iput(vol->vol_ino);
2297 vol->vol_ino = NULL;
2298
2299 /* NTFS 3.0+ specific clean up. */
2300 if (vol->major_ver >= 3) {
2301 #ifdef NTFS_RW
2302 if (vol->usnjrnl_j_ino) {
2303 iput(vol->usnjrnl_j_ino);
2304 vol->usnjrnl_j_ino = NULL;
2305 }
2306 if (vol->usnjrnl_max_ino) {
2307 iput(vol->usnjrnl_max_ino);
2308 vol->usnjrnl_max_ino = NULL;
2309 }
2310 if (vol->usnjrnl_ino) {
2311 iput(vol->usnjrnl_ino);
2312 vol->usnjrnl_ino = NULL;
2313 }
2314 if (vol->quota_q_ino) {
2315 iput(vol->quota_q_ino);
2316 vol->quota_q_ino = NULL;
2317 }
2318 if (vol->quota_ino) {
2319 iput(vol->quota_ino);
2320 vol->quota_ino = NULL;
2321 }
2322 #endif /* NTFS_RW */
2323 if (vol->extend_ino) {
2324 iput(vol->extend_ino);
2325 vol->extend_ino = NULL;
2326 }
2327 if (vol->secure_ino) {
2328 iput(vol->secure_ino);
2329 vol->secure_ino = NULL;
2330 }
2331 }
2332
2333 iput(vol->root_ino);
2334 vol->root_ino = NULL;
2335
2336 down_write(&vol->lcnbmp_lock);
2337 iput(vol->lcnbmp_ino);
2338 vol->lcnbmp_ino = NULL;
2339 up_write(&vol->lcnbmp_lock);
2340
2341 down_write(&vol->mftbmp_lock);
2342 iput(vol->mftbmp_ino);
2343 vol->mftbmp_ino = NULL;
2344 up_write(&vol->mftbmp_lock);
2345
2346 #ifdef NTFS_RW
2347 if (vol->logfile_ino) {
2348 iput(vol->logfile_ino);
2349 vol->logfile_ino = NULL;
2350 }
2351 if (vol->mftmirr_ino) {
2352 /* Re-commit the mft mirror and mft just in case. */
2353 ntfs_commit_inode(vol->mftmirr_ino);
2354 ntfs_commit_inode(vol->mft_ino);
2355 iput(vol->mftmirr_ino);
2356 vol->mftmirr_ino = NULL;
2357 }
2358 /*
2359 * If any dirty inodes are left, throw away all mft data page cache
2360 * pages to allow a clean umount. This should never happen any more
2361 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2362 * the underlying mft records are written out and cleaned. If it does,
2363 * happen anyway, we want to know...
2364 */
2365 ntfs_commit_inode(vol->mft_ino);
2366 write_inode_now(vol->mft_ino, 1);
2367 if (!list_empty(&sb->s_dirty)) {
2368 const char *s1, *s2;
2369
2370 mutex_lock(&vol->mft_ino->i_mutex);
2371 truncate_inode_pages(vol->mft_ino->i_mapping, 0);
2372 mutex_unlock(&vol->mft_ino->i_mutex);
2373 write_inode_now(vol->mft_ino, 1);
2374 if (!list_empty(&sb->s_dirty)) {
2375 static const char *_s1 = "inodes";
2376 static const char *_s2 = "";
2377 s1 = _s1;
2378 s2 = _s2;
2379 } else {
2380 static const char *_s1 = "mft pages";
2381 static const char *_s2 = "They have been thrown "
2382 "away. ";
2383 s1 = _s1;
2384 s2 = _s2;
2385 }
2386 ntfs_error(sb, "Dirty %s found at umount time. %sYou should "
2387 "run chkdsk. Please email "
2388 "linux-ntfs-dev@lists.sourceforge.net and say "
2389 "that you saw this message. Thank you.", s1,
2390 s2);
2391 }
2392 #endif /* NTFS_RW */
2393
2394 iput(vol->mft_ino);
2395 vol->mft_ino = NULL;
2396
2397 /* Throw away the table of attribute definitions. */
2398 vol->attrdef_size = 0;
2399 if (vol->attrdef) {
2400 ntfs_free(vol->attrdef);
2401 vol->attrdef = NULL;
2402 }
2403 vol->upcase_len = 0;
2404 /*
2405 * Destroy the global default upcase table if necessary. Also decrease
2406 * the number of upcase users if we are a user.
2407 */
2408 mutex_lock(&ntfs_lock);
2409 if (vol->upcase == default_upcase) {
2410 ntfs_nr_upcase_users--;
2411 vol->upcase = NULL;
2412 }
2413 if (!ntfs_nr_upcase_users && default_upcase) {
2414 ntfs_free(default_upcase);
2415 default_upcase = NULL;
2416 }
2417 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2418 free_compression_buffers();
2419 mutex_unlock(&ntfs_lock);
2420 if (vol->upcase) {
2421 ntfs_free(vol->upcase);
2422 vol->upcase = NULL;
2423 }
2424 if (vol->nls_map) {
2425 unload_nls(vol->nls_map);
2426 vol->nls_map = NULL;
2427 }
2428 sb->s_fs_info = NULL;
2429 kfree(vol);
2430 return;
2431 }
2432
2433 /**
2434 * get_nr_free_clusters - return the number of free clusters on a volume
2435 * @vol: ntfs volume for which to obtain free cluster count
2436 *
2437 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2438 * actually calculate the number of clusters in use instead because this
2439 * allows us to not care about partial pages as these will be just zero filled
2440 * and hence not be counted as allocated clusters.
2441 *
2442 * The only particularity is that clusters beyond the end of the logical ntfs
2443 * volume will be marked as allocated to prevent errors which means we have to
2444 * discount those at the end. This is important as the cluster bitmap always
2445 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2446 * the logical volume and marked in use when they are not as they do not exist.
2447 *
2448 * If any pages cannot be read we assume all clusters in the erroring pages are
2449 * in use. This means we return an underestimate on errors which is better than
2450 * an overestimate.
2451 */
2452 static s64 get_nr_free_clusters(ntfs_volume *vol)
2453 {
2454 s64 nr_free = vol->nr_clusters;
2455 u32 *kaddr;
2456 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2457 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2458 struct page *page;
2459 pgoff_t index, max_index;
2460
2461 ntfs_debug("Entering.");
2462 /* Serialize accesses to the cluster bitmap. */
2463 down_read(&vol->lcnbmp_lock);
2464 /*
2465 * Convert the number of bits into bytes rounded up, then convert into
2466 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2467 * full and one partial page max_index = 2.
2468 */
2469 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2470 PAGE_CACHE_SHIFT;
2471 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2472 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2473 max_index, PAGE_CACHE_SIZE / 4);
2474 for (index = 0; index < max_index; index++) {
2475 unsigned int i;
2476 /*
2477 * Read the page from page cache, getting it from backing store
2478 * if necessary, and increment the use count.
2479 */
2480 page = read_cache_page(mapping, index, (filler_t*)readpage,
2481 NULL);
2482 /* Ignore pages which errored synchronously. */
2483 if (IS_ERR(page)) {
2484 ntfs_debug("Sync read_cache_page() error. Skipping "
2485 "page (index 0x%lx).", index);
2486 nr_free -= PAGE_CACHE_SIZE * 8;
2487 continue;
2488 }
2489 wait_on_page_locked(page);
2490 /* Ignore pages which errored asynchronously. */
2491 if (!PageUptodate(page)) {
2492 ntfs_debug("Async read_cache_page() error. Skipping "
2493 "page (index 0x%lx).", index);
2494 page_cache_release(page);
2495 nr_free -= PAGE_CACHE_SIZE * 8;
2496 continue;
2497 }
2498 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2499 /*
2500 * For each 4 bytes, subtract the number of set bits. If this
2501 * is the last page and it is partial we don't really care as
2502 * it just means we do a little extra work but it won't affect
2503 * the result as all out of range bytes are set to zero by
2504 * ntfs_readpage().
2505 */
2506 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2507 nr_free -= (s64)hweight32(kaddr[i]);
2508 kunmap_atomic(kaddr, KM_USER0);
2509 page_cache_release(page);
2510 }
2511 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2512 /*
2513 * Fixup for eventual bits outside logical ntfs volume (see function
2514 * description above).
2515 */
2516 if (vol->nr_clusters & 63)
2517 nr_free += 64 - (vol->nr_clusters & 63);
2518 up_read(&vol->lcnbmp_lock);
2519 /* If errors occured we may well have gone below zero, fix this. */
2520 if (nr_free < 0)
2521 nr_free = 0;
2522 ntfs_debug("Exiting.");
2523 return nr_free;
2524 }
2525
2526 /**
2527 * __get_nr_free_mft_records - return the number of free inodes on a volume
2528 * @vol: ntfs volume for which to obtain free inode count
2529 * @nr_free: number of mft records in filesystem
2530 * @max_index: maximum number of pages containing set bits
2531 *
2532 * Calculate the number of free mft records (inodes) on the mounted NTFS
2533 * volume @vol. We actually calculate the number of mft records in use instead
2534 * because this allows us to not care about partial pages as these will be just
2535 * zero filled and hence not be counted as allocated mft record.
2536 *
2537 * If any pages cannot be read we assume all mft records in the erroring pages
2538 * are in use. This means we return an underestimate on errors which is better
2539 * than an overestimate.
2540 *
2541 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2542 */
2543 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2544 s64 nr_free, const pgoff_t max_index)
2545 {
2546 u32 *kaddr;
2547 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2548 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2549 struct page *page;
2550 pgoff_t index;
2551
2552 ntfs_debug("Entering.");
2553 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2554 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2555 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2556 for (index = 0; index < max_index; index++) {
2557 unsigned int i;
2558 /*
2559 * Read the page from page cache, getting it from backing store
2560 * if necessary, and increment the use count.
2561 */
2562 page = read_cache_page(mapping, index, (filler_t*)readpage,
2563 NULL);
2564 /* Ignore pages which errored synchronously. */
2565 if (IS_ERR(page)) {
2566 ntfs_debug("Sync read_cache_page() error. Skipping "
2567 "page (index 0x%lx).", index);
2568 nr_free -= PAGE_CACHE_SIZE * 8;
2569 continue;
2570 }
2571 wait_on_page_locked(page);
2572 /* Ignore pages which errored asynchronously. */
2573 if (!PageUptodate(page)) {
2574 ntfs_debug("Async read_cache_page() error. Skipping "
2575 "page (index 0x%lx).", index);
2576 page_cache_release(page);
2577 nr_free -= PAGE_CACHE_SIZE * 8;
2578 continue;
2579 }
2580 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2581 /*
2582 * For each 4 bytes, subtract the number of set bits. If this
2583 * is the last page and it is partial we don't really care as
2584 * it just means we do a little extra work but it won't affect
2585 * the result as all out of range bytes are set to zero by
2586 * ntfs_readpage().
2587 */
2588 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2589 nr_free -= (s64)hweight32(kaddr[i]);
2590 kunmap_atomic(kaddr, KM_USER0);
2591 page_cache_release(page);
2592 }
2593 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2594 index - 1);
2595 /* If errors occured we may well have gone below zero, fix this. */
2596 if (nr_free < 0)
2597 nr_free = 0;
2598 ntfs_debug("Exiting.");
2599 return nr_free;
2600 }
2601
2602 /**
2603 * ntfs_statfs - return information about mounted NTFS volume
2604 * @sb: super block of mounted volume
2605 * @sfs: statfs structure in which to return the information
2606 *
2607 * Return information about the mounted NTFS volume @sb in the statfs structure
2608 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2609 * called). We interpret the values to be correct of the moment in time at
2610 * which we are called. Most values are variable otherwise and this isn't just
2611 * the free values but the totals as well. For example we can increase the
2612 * total number of file nodes if we run out and we can keep doing this until
2613 * there is no more space on the volume left at all.
2614 *
2615 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2616 * ustat system calls.
2617 *
2618 * Return 0 on success or -errno on error.
2619 */
2620 static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs)
2621 {
2622 s64 size;
2623 ntfs_volume *vol = NTFS_SB(sb);
2624 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2625 pgoff_t max_index;
2626 unsigned long flags;
2627
2628 ntfs_debug("Entering.");
2629 /* Type of filesystem. */
2630 sfs->f_type = NTFS_SB_MAGIC;
2631 /* Optimal transfer block size. */
2632 sfs->f_bsize = PAGE_CACHE_SIZE;
2633 /*
2634 * Total data blocks in filesystem in units of f_bsize and since
2635 * inodes are also stored in data blocs ($MFT is a file) this is just
2636 * the total clusters.
2637 */
2638 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2639 PAGE_CACHE_SHIFT;
2640 /* Free data blocks in filesystem in units of f_bsize. */
2641 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2642 PAGE_CACHE_SHIFT;
2643 if (size < 0LL)
2644 size = 0LL;
2645 /* Free blocks avail to non-superuser, same as above on NTFS. */
2646 sfs->f_bavail = sfs->f_bfree = size;
2647 /* Serialize accesses to the inode bitmap. */
2648 down_read(&vol->mftbmp_lock);
2649 read_lock_irqsave(&mft_ni->size_lock, flags);
2650 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2651 /*
2652 * Convert the maximum number of set bits into bytes rounded up, then
2653 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2654 * have one full and one partial page max_index = 2.
2655 */
2656 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2657 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2658 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2659 /* Number of inodes in filesystem (at this point in time). */
2660 sfs->f_files = size;
2661 /* Free inodes in fs (based on current total count). */
2662 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2663 up_read(&vol->mftbmp_lock);
2664 /*
2665 * File system id. This is extremely *nix flavour dependent and even
2666 * within Linux itself all fs do their own thing. I interpret this to
2667 * mean a unique id associated with the mounted fs and not the id
2668 * associated with the filesystem driver, the latter is already given
2669 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2670 * volume serial number splitting it into two 32-bit parts. We enter
2671 * the least significant 32-bits in f_fsid[0] and the most significant
2672 * 32-bits in f_fsid[1].
2673 */
2674 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2675 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2676 /* Maximum length of filenames. */
2677 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2678 return 0;
2679 }
2680
2681 /**
2682 * The complete super operations.
2683 */
2684 static struct super_operations ntfs_sops = {
2685 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2686 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2687 .put_inode = ntfs_put_inode, /* VFS: Called just before
2688 the inode reference count
2689 is decreased. */
2690 #ifdef NTFS_RW
2691 //.dirty_inode = NULL, /* VFS: Called from
2692 // __mark_inode_dirty(). */
2693 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2694 disk. */
2695 //.drop_inode = NULL, /* VFS: Called just after the
2696 // inode reference count has
2697 // been decreased to zero.
2698 // NOTE: The inode lock is
2699 // held. See fs/inode.c::
2700 // generic_drop_inode(). */
2701 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2702 // Called when i_count becomes
2703 // 0 and i_nlink is also 0. */
2704 //.write_super = NULL, /* Flush dirty super block to
2705 // disk. */
2706 //.sync_fs = NULL, /* ? */
2707 //.write_super_lockfs = NULL, /* ? */
2708 //.unlockfs = NULL, /* ? */
2709 #endif /* NTFS_RW */
2710 .put_super = ntfs_put_super, /* Syscall: umount. */
2711 .statfs = ntfs_statfs, /* Syscall: statfs */
2712 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2713 .clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is
2714 removed from memory. */
2715 //.umount_begin = NULL, /* Forced umount. */
2716 .show_options = ntfs_show_options, /* Show mount options in
2717 proc. */
2718 };
2719
2720 /**
2721 * ntfs_fill_super - mount an ntfs filesystem
2722 * @sb: super block of ntfs filesystem to mount
2723 * @opt: string containing the mount options
2724 * @silent: silence error output
2725 *
2726 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2727 * with the mount otions in @data with the NTFS filesystem.
2728 *
2729 * If @silent is true, remain silent even if errors are detected. This is used
2730 * during bootup, when the kernel tries to mount the root filesystem with all
2731 * registered filesystems one after the other until one succeeds. This implies
2732 * that all filesystems except the correct one will quite correctly and
2733 * expectedly return an error, but nobody wants to see error messages when in
2734 * fact this is what is supposed to happen.
2735 *
2736 * NOTE: @sb->s_flags contains the mount options flags.
2737 */
2738 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2739 {
2740 ntfs_volume *vol;
2741 struct buffer_head *bh;
2742 struct inode *tmp_ino;
2743 int blocksize, result;
2744
2745 ntfs_debug("Entering.");
2746 #ifndef NTFS_RW
2747 sb->s_flags |= MS_RDONLY;
2748 #endif /* ! NTFS_RW */
2749 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2750 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2751 vol = NTFS_SB(sb);
2752 if (!vol) {
2753 if (!silent)
2754 ntfs_error(sb, "Allocation of NTFS volume structure "
2755 "failed. Aborting mount...");
2756 return -ENOMEM;
2757 }
2758 /* Initialize ntfs_volume structure. */
2759 *vol = (ntfs_volume) {
2760 .sb = sb,
2761 /*
2762 * Default is group and other don't have any access to files or
2763 * directories while owner has full access. Further, files by
2764 * default are not executable but directories are of course
2765 * browseable.
2766 */
2767 .fmask = 0177,
2768 .dmask = 0077,
2769 };
2770 init_rwsem(&vol->mftbmp_lock);
2771 init_rwsem(&vol->lcnbmp_lock);
2772
2773 unlock_kernel();
2774
2775 /* By default, enable sparse support. */
2776 NVolSetSparseEnabled(vol);
2777
2778 /* Important to get the mount options dealt with now. */
2779 if (!parse_options(vol, (char*)opt))
2780 goto err_out_now;
2781
2782 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2783 if (bdev_hardsect_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2784 if (!silent)
2785 ntfs_error(sb, "Device has unsupported sector size "
2786 "(%i). The maximum supported sector "
2787 "size on this architecture is %lu "
2788 "bytes.",
2789 bdev_hardsect_size(sb->s_bdev),
2790 PAGE_CACHE_SIZE);
2791 goto err_out_now;
2792 }
2793 /*
2794 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2795 * sector size, whichever is bigger.
2796 */
2797 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2798 if (blocksize < NTFS_BLOCK_SIZE) {
2799 if (!silent)
2800 ntfs_error(sb, "Unable to set device block size.");
2801 goto err_out_now;
2802 }
2803 BUG_ON(blocksize != sb->s_blocksize);
2804 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2805 blocksize, sb->s_blocksize_bits);
2806 /* Determine the size of the device in units of block_size bytes. */
2807 if (!i_size_read(sb->s_bdev->bd_inode)) {
2808 if (!silent)
2809 ntfs_error(sb, "Unable to determine device size.");
2810 goto err_out_now;
2811 }
2812 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2813 sb->s_blocksize_bits;
2814 /* Read the boot sector and return unlocked buffer head to it. */
2815 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2816 if (!silent)
2817 ntfs_error(sb, "Not an NTFS volume.");
2818 goto err_out_now;
2819 }
2820 /*
2821 * Extract the data from the boot sector and setup the ntfs volume
2822 * using it.
2823 */
2824 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2825 brelse(bh);
2826 if (!result) {
2827 if (!silent)
2828 ntfs_error(sb, "Unsupported NTFS filesystem.");
2829 goto err_out_now;
2830 }
2831 /*
2832 * If the boot sector indicates a sector size bigger than the current
2833 * device block size, switch the device block size to the sector size.
2834 * TODO: It may be possible to support this case even when the set
2835 * below fails, we would just be breaking up the i/o for each sector
2836 * into multiple blocks for i/o purposes but otherwise it should just
2837 * work. However it is safer to leave disabled until someone hits this
2838 * error message and then we can get them to try it without the setting
2839 * so we know for sure that it works.
2840 */
2841 if (vol->sector_size > blocksize) {
2842 blocksize = sb_set_blocksize(sb, vol->sector_size);
2843 if (blocksize != vol->sector_size) {
2844 if (!silent)
2845 ntfs_error(sb, "Unable to set device block "
2846 "size to sector size (%i).",
2847 vol->sector_size);
2848 goto err_out_now;
2849 }
2850 BUG_ON(blocksize != sb->s_blocksize);
2851 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2852 sb->s_blocksize_bits;
2853 ntfs_debug("Changed device block size to %i bytes (block size "
2854 "bits %i) to match volume sector size.",
2855 blocksize, sb->s_blocksize_bits);
2856 }
2857 /* Initialize the cluster and mft allocators. */
2858 ntfs_setup_allocators(vol);
2859 /* Setup remaining fields in the super block. */
2860 sb->s_magic = NTFS_SB_MAGIC;
2861 /*
2862 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2863 * sb->s_maxbytes = ~0ULL >> 1;
2864 * But the kernel uses a long as the page cache page index which on
2865 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2866 * defined to the maximum the page cache page index can cope with
2867 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2868 */
2869 sb->s_maxbytes = MAX_LFS_FILESIZE;
2870 /* Ntfs measures time in 100ns intervals. */
2871 sb->s_time_gran = 100;
2872 /*
2873 * Now load the metadata required for the page cache and our address
2874 * space operations to function. We do this by setting up a specialised
2875 * read_inode method and then just calling the normal iget() to obtain
2876 * the inode for $MFT which is sufficient to allow our normal inode
2877 * operations and associated address space operations to function.
2878 */
2879 sb->s_op = &ntfs_sops;
2880 tmp_ino = new_inode(sb);
2881 if (!tmp_ino) {
2882 if (!silent)
2883 ntfs_error(sb, "Failed to load essential metadata.");
2884 goto err_out_now;
2885 }
2886 tmp_ino->i_ino = FILE_MFT;
2887 insert_inode_hash(tmp_ino);
2888 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2889 if (!silent)
2890 ntfs_error(sb, "Failed to load essential metadata.");
2891 goto iput_tmp_ino_err_out_now;
2892 }
2893 mutex_lock(&ntfs_lock);
2894 /*
2895 * The current mount is a compression user if the cluster size is
2896 * less than or equal 4kiB.
2897 */
2898 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2899 result = allocate_compression_buffers();
2900 if (result) {
2901 ntfs_error(NULL, "Failed to allocate buffers "
2902 "for compression engine.");
2903 ntfs_nr_compression_users--;
2904 mutex_unlock(&ntfs_lock);
2905 goto iput_tmp_ino_err_out_now;
2906 }
2907 }
2908 /*
2909 * Generate the global default upcase table if necessary. Also
2910 * temporarily increment the number of upcase users to avoid race
2911 * conditions with concurrent (u)mounts.
2912 */
2913 if (!default_upcase)
2914 default_upcase = generate_default_upcase();
2915 ntfs_nr_upcase_users++;
2916 mutex_unlock(&ntfs_lock);
2917 /*
2918 * From now on, ignore @silent parameter. If we fail below this line,
2919 * it will be due to a corrupt fs or a system error, so we report it.
2920 */
2921 /*
2922 * Open the system files with normal access functions and complete
2923 * setting up the ntfs super block.
2924 */
2925 if (!load_system_files(vol)) {
2926 ntfs_error(sb, "Failed to load system files.");
2927 goto unl_upcase_iput_tmp_ino_err_out_now;
2928 }
2929 if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2930 /* We increment i_count simulating an ntfs_iget(). */
2931 atomic_inc(&vol->root_ino->i_count);
2932 ntfs_debug("Exiting, status successful.");
2933 /* Release the default upcase if it has no users. */
2934 mutex_lock(&ntfs_lock);
2935 if (!--ntfs_nr_upcase_users && default_upcase) {
2936 ntfs_free(default_upcase);
2937 default_upcase = NULL;
2938 }
2939 mutex_unlock(&ntfs_lock);
2940 sb->s_export_op = &ntfs_export_ops;
2941 lock_kernel();
2942 return 0;
2943 }
2944 ntfs_error(sb, "Failed to allocate root directory.");
2945 /* Clean up after the successful load_system_files() call from above. */
2946 // TODO: Use ntfs_put_super() instead of repeating all this code...
2947 // FIXME: Should mark the volume clean as the error is most likely
2948 // -ENOMEM.
2949 iput(vol->vol_ino);
2950 vol->vol_ino = NULL;
2951 /* NTFS 3.0+ specific clean up. */
2952 if (vol->major_ver >= 3) {
2953 #ifdef NTFS_RW
2954 if (vol->usnjrnl_j_ino) {
2955 iput(vol->usnjrnl_j_ino);
2956 vol->usnjrnl_j_ino = NULL;
2957 }
2958 if (vol->usnjrnl_max_ino) {
2959 iput(vol->usnjrnl_max_ino);
2960 vol->usnjrnl_max_ino = NULL;
2961 }
2962 if (vol->usnjrnl_ino) {
2963 iput(vol->usnjrnl_ino);
2964 vol->usnjrnl_ino = NULL;
2965 }
2966 if (vol->quota_q_ino) {
2967 iput(vol->quota_q_ino);
2968 vol->quota_q_ino = NULL;
2969 }
2970 if (vol->quota_ino) {
2971 iput(vol->quota_ino);
2972 vol->quota_ino = NULL;
2973 }
2974 #endif /* NTFS_RW */
2975 if (vol->extend_ino) {
2976 iput(vol->extend_ino);
2977 vol->extend_ino = NULL;
2978 }
2979 if (vol->secure_ino) {
2980 iput(vol->secure_ino);
2981 vol->secure_ino = NULL;
2982 }
2983 }
2984 iput(vol->root_ino);
2985 vol->root_ino = NULL;
2986 iput(vol->lcnbmp_ino);
2987 vol->lcnbmp_ino = NULL;
2988 iput(vol->mftbmp_ino);
2989 vol->mftbmp_ino = NULL;
2990 #ifdef NTFS_RW
2991 if (vol->logfile_ino) {
2992 iput(vol->logfile_ino);
2993 vol->logfile_ino = NULL;
2994 }
2995 if (vol->mftmirr_ino) {
2996 iput(vol->mftmirr_ino);
2997 vol->mftmirr_ino = NULL;
2998 }
2999 #endif /* NTFS_RW */
3000 /* Throw away the table of attribute definitions. */
3001 vol->attrdef_size = 0;
3002 if (vol->attrdef) {
3003 ntfs_free(vol->attrdef);
3004 vol->attrdef = NULL;
3005 }
3006 vol->upcase_len = 0;
3007 mutex_lock(&ntfs_lock);
3008 if (vol->upcase == default_upcase) {
3009 ntfs_nr_upcase_users--;
3010 vol->upcase = NULL;
3011 }
3012 mutex_unlock(&ntfs_lock);
3013 if (vol->upcase) {
3014 ntfs_free(vol->upcase);
3015 vol->upcase = NULL;
3016 }
3017 if (vol->nls_map) {
3018 unload_nls(vol->nls_map);
3019 vol->nls_map = NULL;
3020 }
3021 /* Error exit code path. */
3022 unl_upcase_iput_tmp_ino_err_out_now:
3023 /*
3024 * Decrease the number of upcase users and destroy the global default
3025 * upcase table if necessary.
3026 */
3027 mutex_lock(&ntfs_lock);
3028 if (!--ntfs_nr_upcase_users && default_upcase) {
3029 ntfs_free(default_upcase);
3030 default_upcase = NULL;
3031 }
3032 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3033 free_compression_buffers();
3034 mutex_unlock(&ntfs_lock);
3035 iput_tmp_ino_err_out_now:
3036 iput(tmp_ino);
3037 if (vol->mft_ino && vol->mft_ino != tmp_ino)
3038 iput(vol->mft_ino);
3039 vol->mft_ino = NULL;
3040 /*
3041 * This is needed to get ntfs_clear_extent_inode() called for each
3042 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3043 * leak resources and B) a subsequent mount fails automatically due to
3044 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3045 * method again... FIXME: Do we need to do this twice now because of
3046 * attribute inodes? I think not, so leave as is for now... (AIA)
3047 */
3048 if (invalidate_inodes(sb)) {
3049 ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
3050 "driver bug.");
3051 /* Copied from fs/super.c. I just love this message. (-; */
3052 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3053 "seconds. Have a nice day...\n");
3054 }
3055 /* Errors at this stage are irrelevant. */
3056 err_out_now:
3057 lock_kernel();
3058 sb->s_fs_info = NULL;
3059 kfree(vol);
3060 ntfs_debug("Failed, returning -EINVAL.");
3061 return -EINVAL;
3062 }
3063
3064 /*
3065 * This is a slab cache to optimize allocations and deallocations of Unicode
3066 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3067 * (255) Unicode characters + a terminating NULL Unicode character.
3068 */
3069 struct kmem_cache *ntfs_name_cache;
3070
3071 /* Slab caches for efficient allocation/deallocation of inodes. */
3072 struct kmem_cache *ntfs_inode_cache;
3073 struct kmem_cache *ntfs_big_inode_cache;
3074
3075 /* Init once constructor for the inode slab cache. */
3076 static void ntfs_big_inode_init_once(void *foo, struct kmem_cache *cachep,
3077 unsigned long flags)
3078 {
3079 ntfs_inode *ni = (ntfs_inode *)foo;
3080
3081 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3082 SLAB_CTOR_CONSTRUCTOR)
3083 inode_init_once(VFS_I(ni));
3084 }
3085
3086 /*
3087 * Slab caches to optimize allocations and deallocations of attribute search
3088 * contexts and index contexts, respectively.
3089 */
3090 struct kmem_cache *ntfs_attr_ctx_cache;
3091 struct kmem_cache *ntfs_index_ctx_cache;
3092
3093 /* Driver wide mutex. */
3094 DEFINE_MUTEX(ntfs_lock);
3095
3096 static struct super_block *ntfs_get_sb(struct file_system_type *fs_type,
3097 int flags, const char *dev_name, void *data)
3098 {
3099 return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3100 }
3101
3102 static struct file_system_type ntfs_fs_type = {
3103 .owner = THIS_MODULE,
3104 .name = "ntfs",
3105 .get_sb = ntfs_get_sb,
3106 .kill_sb = kill_block_super,
3107 .fs_flags = FS_REQUIRES_DEV,
3108 };
3109
3110 /* Stable names for the slab caches. */
3111 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3112 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3113 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3114 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3115 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3116
3117 static int __init init_ntfs_fs(void)
3118 {
3119 int err = 0;
3120
3121 /* This may be ugly but it results in pretty output so who cares. (-8 */
3122 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3123 #ifdef NTFS_RW
3124 "W"
3125 #else
3126 "O"
3127 #endif
3128 #ifdef DEBUG
3129 " DEBUG"
3130 #endif
3131 #ifdef MODULE
3132 " MODULE"
3133 #endif
3134 "].\n");
3135
3136 ntfs_debug("Debug messages are enabled.");
3137
3138 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3139 sizeof(ntfs_index_context), 0 /* offset */,
3140 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3141 if (!ntfs_index_ctx_cache) {
3142 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3143 ntfs_index_ctx_cache_name);
3144 goto ictx_err_out;
3145 }
3146 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3147 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3148 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3149 if (!ntfs_attr_ctx_cache) {
3150 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3151 ntfs_attr_ctx_cache_name);
3152 goto actx_err_out;
3153 }
3154
3155 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3156 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3157 SLAB_HWCACHE_ALIGN, NULL, NULL);
3158 if (!ntfs_name_cache) {
3159 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3160 ntfs_name_cache_name);
3161 goto name_err_out;
3162 }
3163
3164 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3165 sizeof(ntfs_inode), 0,
3166 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL, NULL);
3167 if (!ntfs_inode_cache) {
3168 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3169 ntfs_inode_cache_name);
3170 goto inode_err_out;
3171 }
3172
3173 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3174 sizeof(big_ntfs_inode), 0,
3175 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3176 ntfs_big_inode_init_once, NULL);
3177 if (!ntfs_big_inode_cache) {
3178 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3179 ntfs_big_inode_cache_name);
3180 goto big_inode_err_out;
3181 }
3182
3183 /* Register the ntfs sysctls. */
3184 err = ntfs_sysctl(1);
3185 if (err) {
3186 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3187 goto sysctl_err_out;
3188 }
3189
3190 err = register_filesystem(&ntfs_fs_type);
3191 if (!err) {
3192 ntfs_debug("NTFS driver registered successfully.");
3193 return 0; /* Success! */
3194 }
3195 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3196
3197 sysctl_err_out:
3198 kmem_cache_destroy(ntfs_big_inode_cache);
3199 big_inode_err_out:
3200 kmem_cache_destroy(ntfs_inode_cache);
3201 inode_err_out:
3202 kmem_cache_destroy(ntfs_name_cache);
3203 name_err_out:
3204 kmem_cache_destroy(ntfs_attr_ctx_cache);
3205 actx_err_out:
3206 kmem_cache_destroy(ntfs_index_ctx_cache);
3207 ictx_err_out:
3208 if (!err) {
3209 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3210 "registration...\n");
3211 err = -ENOMEM;
3212 }
3213 return err;
3214 }
3215
3216 static void __exit exit_ntfs_fs(void)
3217 {
3218 int err = 0;
3219
3220 ntfs_debug("Unregistering NTFS driver.");
3221
3222 unregister_filesystem(&ntfs_fs_type);
3223
3224 if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1))
3225 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3226 ntfs_big_inode_cache_name);
3227 if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1))
3228 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3229 ntfs_inode_cache_name);
3230 if (kmem_cache_destroy(ntfs_name_cache) && (err = 1))
3231 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3232 ntfs_name_cache_name);
3233 if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1))
3234 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3235 ntfs_attr_ctx_cache_name);
3236 if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1))
3237 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3238 ntfs_index_ctx_cache_name);
3239 if (err)
3240 printk(KERN_CRIT "NTFS: This causes memory to leak! There is "
3241 "probably a BUG in the driver! Please report "
3242 "you saw this message to "
3243 "linux-ntfs-dev@lists.sourceforge.net\n");
3244 /* Unregister the ntfs sysctls. */
3245 ntfs_sysctl(0);
3246 }
3247
3248 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3249 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2006 Anton Altaparmakov");
3250 MODULE_VERSION(NTFS_VERSION);
3251 MODULE_LICENSE("GPL");
3252 #ifdef DEBUG
3253 module_param(debug_msgs, bool, 0);
3254 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3255 #endif
3256
3257 module_init(init_ntfs_fs)
3258 module_exit(exit_ntfs_fs)
This page took 0.099042 seconds and 6 git commands to generate.