/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / fs / ntfs / super.c
1 /*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2005 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/string.h>
26 #include <linux/spinlock.h>
27 #include <linux/blkdev.h> /* For bdev_hardsect_size(). */
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/vfs.h>
31 #include <linux/moduleparam.h>
32 #include <linux/smp_lock.h>
33
34 #include "sysctl.h"
35 #include "logfile.h"
36 #include "quota.h"
37 #include "usnjrnl.h"
38 #include "dir.h"
39 #include "debug.h"
40 #include "index.h"
41 #include "aops.h"
42 #include "layout.h"
43 #include "malloc.h"
44 #include "ntfs.h"
45
46 /* Number of mounted filesystems which have compression enabled. */
47 static unsigned long ntfs_nr_compression_users;
48
49 /* A global default upcase table and a corresponding reference count. */
50 static ntfschar *default_upcase = NULL;
51 static unsigned long ntfs_nr_upcase_users = 0;
52
53 /* Error constants/strings used in inode.c::ntfs_show_options(). */
54 typedef enum {
55 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
56 ON_ERRORS_PANIC = 0x01,
57 ON_ERRORS_REMOUNT_RO = 0x02,
58 ON_ERRORS_CONTINUE = 0x04,
59 /* Optional, can be combined with any of the above. */
60 ON_ERRORS_RECOVER = 0x10,
61 } ON_ERRORS_ACTIONS;
62
63 const option_t on_errors_arr[] = {
64 { ON_ERRORS_PANIC, "panic" },
65 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
66 { ON_ERRORS_CONTINUE, "continue", },
67 { ON_ERRORS_RECOVER, "recover" },
68 { 0, NULL }
69 };
70
71 /**
72 * simple_getbool -
73 *
74 * Copied from old ntfs driver (which copied from vfat driver).
75 */
76 static int simple_getbool(char *s, BOOL *setval)
77 {
78 if (s) {
79 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
80 *setval = TRUE;
81 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
82 !strcmp(s, "false"))
83 *setval = FALSE;
84 else
85 return 0;
86 } else
87 *setval = TRUE;
88 return 1;
89 }
90
91 /**
92 * parse_options - parse the (re)mount options
93 * @vol: ntfs volume
94 * @opt: string containing the (re)mount options
95 *
96 * Parse the recognized options in @opt for the ntfs volume described by @vol.
97 */
98 static BOOL parse_options(ntfs_volume *vol, char *opt)
99 {
100 char *p, *v, *ov;
101 static char *utf8 = "utf8";
102 int errors = 0, sloppy = 0;
103 uid_t uid = (uid_t)-1;
104 gid_t gid = (gid_t)-1;
105 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
106 int mft_zone_multiplier = -1, on_errors = -1;
107 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
108 struct nls_table *nls_map = NULL, *old_nls;
109
110 /* I am lazy... (-8 */
111 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
112 if (!strcmp(p, option)) { \
113 if (!v || !*v) \
114 variable = default_value; \
115 else { \
116 variable = simple_strtoul(ov = v, &v, 0); \
117 if (*v) \
118 goto needs_val; \
119 } \
120 }
121 #define NTFS_GETOPT(option, variable) \
122 if (!strcmp(p, option)) { \
123 if (!v || !*v) \
124 goto needs_arg; \
125 variable = simple_strtoul(ov = v, &v, 0); \
126 if (*v) \
127 goto needs_val; \
128 }
129 #define NTFS_GETOPT_BOOL(option, variable) \
130 if (!strcmp(p, option)) { \
131 BOOL val; \
132 if (!simple_getbool(v, &val)) \
133 goto needs_bool; \
134 variable = val; \
135 }
136 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
137 if (!strcmp(p, option)) { \
138 int _i; \
139 if (!v || !*v) \
140 goto needs_arg; \
141 ov = v; \
142 if (variable == -1) \
143 variable = 0; \
144 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
145 if (!strcmp(opt_array[_i].str, v)) { \
146 variable |= opt_array[_i].val; \
147 break; \
148 } \
149 if (!opt_array[_i].str || !*opt_array[_i].str) \
150 goto needs_val; \
151 }
152 if (!opt || !*opt)
153 goto no_mount_options;
154 ntfs_debug("Entering with mount options string: %s", opt);
155 while ((p = strsep(&opt, ","))) {
156 if ((v = strchr(p, '=')))
157 *v++ = 0;
158 NTFS_GETOPT("uid", uid)
159 else NTFS_GETOPT("gid", gid)
160 else NTFS_GETOPT("umask", fmask = dmask)
161 else NTFS_GETOPT("fmask", fmask)
162 else NTFS_GETOPT("dmask", dmask)
163 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
164 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE)
165 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
166 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
167 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
168 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
169 on_errors_arr)
170 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
171 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
172 p);
173 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
174 if (!strcmp(p, "iocharset"))
175 ntfs_warning(vol->sb, "Option iocharset is "
176 "deprecated. Please use "
177 "option nls=<charsetname> in "
178 "the future.");
179 if (!v || !*v)
180 goto needs_arg;
181 use_utf8:
182 old_nls = nls_map;
183 nls_map = load_nls(v);
184 if (!nls_map) {
185 if (!old_nls) {
186 ntfs_error(vol->sb, "NLS character set "
187 "%s not found.", v);
188 return FALSE;
189 }
190 ntfs_error(vol->sb, "NLS character set %s not "
191 "found. Using previous one %s.",
192 v, old_nls->charset);
193 nls_map = old_nls;
194 } else /* nls_map */ {
195 if (old_nls)
196 unload_nls(old_nls);
197 }
198 } else if (!strcmp(p, "utf8")) {
199 BOOL val = FALSE;
200 ntfs_warning(vol->sb, "Option utf8 is no longer "
201 "supported, using option nls=utf8. Please "
202 "use option nls=utf8 in the future and "
203 "make sure utf8 is compiled either as a "
204 "module or into the kernel.");
205 if (!v || !*v)
206 val = TRUE;
207 else if (!simple_getbool(v, &val))
208 goto needs_bool;
209 if (val) {
210 v = utf8;
211 goto use_utf8;
212 }
213 } else {
214 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
215 if (errors < INT_MAX)
216 errors++;
217 }
218 #undef NTFS_GETOPT_OPTIONS_ARRAY
219 #undef NTFS_GETOPT_BOOL
220 #undef NTFS_GETOPT
221 #undef NTFS_GETOPT_WITH_DEFAULT
222 }
223 no_mount_options:
224 if (errors && !sloppy)
225 return FALSE;
226 if (sloppy)
227 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
228 "unrecognized mount option(s) and continuing.");
229 /* Keep this first! */
230 if (on_errors != -1) {
231 if (!on_errors) {
232 ntfs_error(vol->sb, "Invalid errors option argument "
233 "or bug in options parser.");
234 return FALSE;
235 }
236 }
237 if (nls_map) {
238 if (vol->nls_map && vol->nls_map != nls_map) {
239 ntfs_error(vol->sb, "Cannot change NLS character set "
240 "on remount.");
241 return FALSE;
242 } /* else (!vol->nls_map) */
243 ntfs_debug("Using NLS character set %s.", nls_map->charset);
244 vol->nls_map = nls_map;
245 } else /* (!nls_map) */ {
246 if (!vol->nls_map) {
247 vol->nls_map = load_nls_default();
248 if (!vol->nls_map) {
249 ntfs_error(vol->sb, "Failed to load default "
250 "NLS character set.");
251 return FALSE;
252 }
253 ntfs_debug("Using default NLS character set (%s).",
254 vol->nls_map->charset);
255 }
256 }
257 if (mft_zone_multiplier != -1) {
258 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
259 mft_zone_multiplier) {
260 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
261 "on remount.");
262 return FALSE;
263 }
264 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
265 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
266 "Using default value, i.e. 1.");
267 mft_zone_multiplier = 1;
268 }
269 vol->mft_zone_multiplier = mft_zone_multiplier;
270 }
271 if (!vol->mft_zone_multiplier)
272 vol->mft_zone_multiplier = 1;
273 if (on_errors != -1)
274 vol->on_errors = on_errors;
275 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
276 vol->on_errors |= ON_ERRORS_CONTINUE;
277 if (uid != (uid_t)-1)
278 vol->uid = uid;
279 if (gid != (gid_t)-1)
280 vol->gid = gid;
281 if (fmask != (mode_t)-1)
282 vol->fmask = fmask;
283 if (dmask != (mode_t)-1)
284 vol->dmask = dmask;
285 if (show_sys_files != -1) {
286 if (show_sys_files)
287 NVolSetShowSystemFiles(vol);
288 else
289 NVolClearShowSystemFiles(vol);
290 }
291 if (case_sensitive != -1) {
292 if (case_sensitive)
293 NVolSetCaseSensitive(vol);
294 else
295 NVolClearCaseSensitive(vol);
296 }
297 if (disable_sparse != -1) {
298 if (disable_sparse)
299 NVolClearSparseEnabled(vol);
300 else {
301 if (!NVolSparseEnabled(vol) &&
302 vol->major_ver && vol->major_ver < 3)
303 ntfs_warning(vol->sb, "Not enabling sparse "
304 "support due to NTFS volume "
305 "version %i.%i (need at least "
306 "version 3.0).", vol->major_ver,
307 vol->minor_ver);
308 else
309 NVolSetSparseEnabled(vol);
310 }
311 }
312 return TRUE;
313 needs_arg:
314 ntfs_error(vol->sb, "The %s option requires an argument.", p);
315 return FALSE;
316 needs_bool:
317 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
318 return FALSE;
319 needs_val:
320 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
321 return FALSE;
322 }
323
324 #ifdef NTFS_RW
325
326 /**
327 * ntfs_write_volume_flags - write new flags to the volume information flags
328 * @vol: ntfs volume on which to modify the flags
329 * @flags: new flags value for the volume information flags
330 *
331 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
332 * instead (see below).
333 *
334 * Replace the volume information flags on the volume @vol with the value
335 * supplied in @flags. Note, this overwrites the volume information flags, so
336 * make sure to combine the flags you want to modify with the old flags and use
337 * the result when calling ntfs_write_volume_flags().
338 *
339 * Return 0 on success and -errno on error.
340 */
341 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
342 {
343 ntfs_inode *ni = NTFS_I(vol->vol_ino);
344 MFT_RECORD *m;
345 VOLUME_INFORMATION *vi;
346 ntfs_attr_search_ctx *ctx;
347 int err;
348
349 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
350 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
351 if (vol->vol_flags == flags)
352 goto done;
353 BUG_ON(!ni);
354 m = map_mft_record(ni);
355 if (IS_ERR(m)) {
356 err = PTR_ERR(m);
357 goto err_out;
358 }
359 ctx = ntfs_attr_get_search_ctx(ni, m);
360 if (!ctx) {
361 err = -ENOMEM;
362 goto put_unm_err_out;
363 }
364 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
365 ctx);
366 if (err)
367 goto put_unm_err_out;
368 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
369 le16_to_cpu(ctx->attr->data.resident.value_offset));
370 vol->vol_flags = vi->flags = flags;
371 flush_dcache_mft_record_page(ctx->ntfs_ino);
372 mark_mft_record_dirty(ctx->ntfs_ino);
373 ntfs_attr_put_search_ctx(ctx);
374 unmap_mft_record(ni);
375 done:
376 ntfs_debug("Done.");
377 return 0;
378 put_unm_err_out:
379 if (ctx)
380 ntfs_attr_put_search_ctx(ctx);
381 unmap_mft_record(ni);
382 err_out:
383 ntfs_error(vol->sb, "Failed with error code %i.", -err);
384 return err;
385 }
386
387 /**
388 * ntfs_set_volume_flags - set bits in the volume information flags
389 * @vol: ntfs volume on which to modify the flags
390 * @flags: flags to set on the volume
391 *
392 * Set the bits in @flags in the volume information flags on the volume @vol.
393 *
394 * Return 0 on success and -errno on error.
395 */
396 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
397 {
398 flags &= VOLUME_FLAGS_MASK;
399 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
400 }
401
402 /**
403 * ntfs_clear_volume_flags - clear bits in the volume information flags
404 * @vol: ntfs volume on which to modify the flags
405 * @flags: flags to clear on the volume
406 *
407 * Clear the bits in @flags in the volume information flags on the volume @vol.
408 *
409 * Return 0 on success and -errno on error.
410 */
411 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
412 {
413 flags &= VOLUME_FLAGS_MASK;
414 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
415 return ntfs_write_volume_flags(vol, flags);
416 }
417
418 #endif /* NTFS_RW */
419
420 /**
421 * ntfs_remount - change the mount options of a mounted ntfs filesystem
422 * @sb: superblock of mounted ntfs filesystem
423 * @flags: remount flags
424 * @opt: remount options string
425 *
426 * Change the mount options of an already mounted ntfs filesystem.
427 *
428 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
429 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
430 * @sb->s_flags are not changed.
431 */
432 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
433 {
434 ntfs_volume *vol = NTFS_SB(sb);
435
436 ntfs_debug("Entering with remount options string: %s", opt);
437 #ifndef NTFS_RW
438 /* For read-only compiled driver, enforce all read-only flags. */
439 *flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
440 #else /* NTFS_RW */
441 /*
442 * For the read-write compiled driver, if we are remounting read-write,
443 * make sure there are no volume errors and that no unsupported volume
444 * flags are set. Also, empty the logfile journal as it would become
445 * stale as soon as something is written to the volume and mark the
446 * volume dirty so that chkdsk is run if the volume is not umounted
447 * cleanly. Finally, mark the quotas out of date so Windows rescans
448 * the volume on boot and updates them.
449 *
450 * When remounting read-only, mark the volume clean if no volume errors
451 * have occured.
452 */
453 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
454 static const char *es = ". Cannot remount read-write.";
455
456 /* Remounting read-write. */
457 if (NVolErrors(vol)) {
458 ntfs_error(sb, "Volume has errors and is read-only%s",
459 es);
460 return -EROFS;
461 }
462 if (vol->vol_flags & VOLUME_IS_DIRTY) {
463 ntfs_error(sb, "Volume is dirty and read-only%s", es);
464 return -EROFS;
465 }
466 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
467 ntfs_error(sb, "Volume has unsupported flags set and "
468 "is read-only%s", es);
469 return -EROFS;
470 }
471 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
472 ntfs_error(sb, "Failed to set dirty bit in volume "
473 "information flags%s", es);
474 return -EROFS;
475 }
476 #if 0
477 // TODO: Enable this code once we start modifying anything that
478 // is different between NTFS 1.2 and 3.x...
479 /* Set NT4 compatibility flag on newer NTFS version volumes. */
480 if ((vol->major_ver > 1)) {
481 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
482 ntfs_error(sb, "Failed to set NT4 "
483 "compatibility flag%s", es);
484 NVolSetErrors(vol);
485 return -EROFS;
486 }
487 }
488 #endif
489 if (!ntfs_empty_logfile(vol->logfile_ino)) {
490 ntfs_error(sb, "Failed to empty journal $LogFile%s",
491 es);
492 NVolSetErrors(vol);
493 return -EROFS;
494 }
495 if (!ntfs_mark_quotas_out_of_date(vol)) {
496 ntfs_error(sb, "Failed to mark quotas out of date%s",
497 es);
498 NVolSetErrors(vol);
499 return -EROFS;
500 }
501 if (!ntfs_stamp_usnjrnl(vol)) {
502 ntfs_error(sb, "Failed to stamp transation log "
503 "($UsnJrnl)%s", es);
504 NVolSetErrors(vol);
505 return -EROFS;
506 }
507 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
508 /* Remounting read-only. */
509 if (!NVolErrors(vol)) {
510 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
511 ntfs_warning(sb, "Failed to clear dirty bit "
512 "in volume information "
513 "flags. Run chkdsk.");
514 }
515 }
516 #endif /* NTFS_RW */
517
518 // TODO: Deal with *flags.
519
520 if (!parse_options(vol, opt))
521 return -EINVAL;
522 ntfs_debug("Done.");
523 return 0;
524 }
525
526 /**
527 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
528 * @sb: Super block of the device to which @b belongs.
529 * @b: Boot sector of device @sb to check.
530 * @silent: If TRUE, all output will be silenced.
531 *
532 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
533 * sector. Returns TRUE if it is valid and FALSE if not.
534 *
535 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
536 * is TRUE.
537 */
538 static BOOL is_boot_sector_ntfs(const struct super_block *sb,
539 const NTFS_BOOT_SECTOR *b, const BOOL silent)
540 {
541 /*
542 * Check that checksum == sum of u32 values from b to the checksum
543 * field. If checksum is zero, no checking is done. We will work when
544 * the checksum test fails, since some utilities update the boot sector
545 * ignoring the checksum which leaves the checksum out-of-date. We
546 * report a warning if this is the case.
547 */
548 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
549 le32 *u;
550 u32 i;
551
552 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
553 i += le32_to_cpup(u);
554 if (le32_to_cpu(b->checksum) != i)
555 ntfs_warning(sb, "Invalid boot sector checksum.");
556 }
557 /* Check OEMidentifier is "NTFS " */
558 if (b->oem_id != magicNTFS)
559 goto not_ntfs;
560 /* Check bytes per sector value is between 256 and 4096. */
561 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
562 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
563 goto not_ntfs;
564 /* Check sectors per cluster value is valid. */
565 switch (b->bpb.sectors_per_cluster) {
566 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
567 break;
568 default:
569 goto not_ntfs;
570 }
571 /* Check the cluster size is not above the maximum (64kiB). */
572 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
573 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
574 goto not_ntfs;
575 /* Check reserved/unused fields are really zero. */
576 if (le16_to_cpu(b->bpb.reserved_sectors) ||
577 le16_to_cpu(b->bpb.root_entries) ||
578 le16_to_cpu(b->bpb.sectors) ||
579 le16_to_cpu(b->bpb.sectors_per_fat) ||
580 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
581 goto not_ntfs;
582 /* Check clusters per file mft record value is valid. */
583 if ((u8)b->clusters_per_mft_record < 0xe1 ||
584 (u8)b->clusters_per_mft_record > 0xf7)
585 switch (b->clusters_per_mft_record) {
586 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
587 break;
588 default:
589 goto not_ntfs;
590 }
591 /* Check clusters per index block value is valid. */
592 if ((u8)b->clusters_per_index_record < 0xe1 ||
593 (u8)b->clusters_per_index_record > 0xf7)
594 switch (b->clusters_per_index_record) {
595 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
596 break;
597 default:
598 goto not_ntfs;
599 }
600 /*
601 * Check for valid end of sector marker. We will work without it, but
602 * many BIOSes will refuse to boot from a bootsector if the magic is
603 * incorrect, so we emit a warning.
604 */
605 if (!silent && b->end_of_sector_marker != const_cpu_to_le16(0xaa55))
606 ntfs_warning(sb, "Invalid end of sector marker.");
607 return TRUE;
608 not_ntfs:
609 return FALSE;
610 }
611
612 /**
613 * read_ntfs_boot_sector - read the NTFS boot sector of a device
614 * @sb: super block of device to read the boot sector from
615 * @silent: if true, suppress all output
616 *
617 * Reads the boot sector from the device and validates it. If that fails, tries
618 * to read the backup boot sector, first from the end of the device a-la NT4 and
619 * later and then from the middle of the device a-la NT3.51 and before.
620 *
621 * If a valid boot sector is found but it is not the primary boot sector, we
622 * repair the primary boot sector silently (unless the device is read-only or
623 * the primary boot sector is not accessible).
624 *
625 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
626 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
627 * to their respective values.
628 *
629 * Return the unlocked buffer head containing the boot sector or NULL on error.
630 */
631 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
632 const int silent)
633 {
634 const char *read_err_str = "Unable to read %s boot sector.";
635 struct buffer_head *bh_primary, *bh_backup;
636 long nr_blocks = NTFS_SB(sb)->nr_blocks;
637
638 /* Try to read primary boot sector. */
639 if ((bh_primary = sb_bread(sb, 0))) {
640 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
641 bh_primary->b_data, silent))
642 return bh_primary;
643 if (!silent)
644 ntfs_error(sb, "Primary boot sector is invalid.");
645 } else if (!silent)
646 ntfs_error(sb, read_err_str, "primary");
647 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
648 if (bh_primary)
649 brelse(bh_primary);
650 if (!silent)
651 ntfs_error(sb, "Mount option errors=recover not used. "
652 "Aborting without trying to recover.");
653 return NULL;
654 }
655 /* Try to read NT4+ backup boot sector. */
656 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
657 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
658 bh_backup->b_data, silent))
659 goto hotfix_primary_boot_sector;
660 brelse(bh_backup);
661 } else if (!silent)
662 ntfs_error(sb, read_err_str, "backup");
663 /* Try to read NT3.51- backup boot sector. */
664 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
665 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
666 bh_backup->b_data, silent))
667 goto hotfix_primary_boot_sector;
668 if (!silent)
669 ntfs_error(sb, "Could not find a valid backup boot "
670 "sector.");
671 brelse(bh_backup);
672 } else if (!silent)
673 ntfs_error(sb, read_err_str, "backup");
674 /* We failed. Cleanup and return. */
675 if (bh_primary)
676 brelse(bh_primary);
677 return NULL;
678 hotfix_primary_boot_sector:
679 if (bh_primary) {
680 /*
681 * If we managed to read sector zero and the volume is not
682 * read-only, copy the found, valid backup boot sector to the
683 * primary boot sector.
684 */
685 if (!(sb->s_flags & MS_RDONLY)) {
686 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
687 "boot sector from backup copy.");
688 memcpy(bh_primary->b_data, bh_backup->b_data,
689 sb->s_blocksize);
690 mark_buffer_dirty(bh_primary);
691 sync_dirty_buffer(bh_primary);
692 if (buffer_uptodate(bh_primary)) {
693 brelse(bh_backup);
694 return bh_primary;
695 }
696 ntfs_error(sb, "Hot-fix: Device write error while "
697 "recovering primary boot sector.");
698 } else {
699 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
700 "sector failed: Read-only mount.");
701 }
702 brelse(bh_primary);
703 }
704 ntfs_warning(sb, "Using backup boot sector.");
705 return bh_backup;
706 }
707
708 /**
709 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
710 * @vol: volume structure to initialise with data from boot sector
711 * @b: boot sector to parse
712 *
713 * Parse the ntfs boot sector @b and store all imporant information therein in
714 * the ntfs super block @vol. Return TRUE on success and FALSE on error.
715 */
716 static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
717 {
718 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
719 int clusters_per_mft_record, clusters_per_index_record;
720 s64 ll;
721
722 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
723 vol->sector_size_bits = ffs(vol->sector_size) - 1;
724 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
725 vol->sector_size);
726 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
727 vol->sector_size_bits);
728 if (vol->sector_size != vol->sb->s_blocksize)
729 ntfs_warning(vol->sb, "The boot sector indicates a sector size "
730 "different from the device sector size.");
731 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
732 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
733 ntfs_debug("sectors_per_cluster_bits = 0x%x",
734 sectors_per_cluster_bits);
735 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
736 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
737 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
738 vol->cluster_size_mask = vol->cluster_size - 1;
739 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
740 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
741 vol->cluster_size);
742 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
743 ntfs_debug("vol->cluster_size_bits = %i (0x%x)",
744 vol->cluster_size_bits, vol->cluster_size_bits);
745 if (vol->sector_size > vol->cluster_size) {
746 ntfs_error(vol->sb, "Sector sizes above the cluster size are "
747 "not supported. Sorry.");
748 return FALSE;
749 }
750 if (vol->sb->s_blocksize > vol->cluster_size) {
751 ntfs_error(vol->sb, "Cluster sizes smaller than the device "
752 "sector size are not supported. Sorry.");
753 return FALSE;
754 }
755 clusters_per_mft_record = b->clusters_per_mft_record;
756 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
757 clusters_per_mft_record, clusters_per_mft_record);
758 if (clusters_per_mft_record > 0)
759 vol->mft_record_size = vol->cluster_size <<
760 (ffs(clusters_per_mft_record) - 1);
761 else
762 /*
763 * When mft_record_size < cluster_size, clusters_per_mft_record
764 * = -log2(mft_record_size) bytes. mft_record_size normaly is
765 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
766 */
767 vol->mft_record_size = 1 << -clusters_per_mft_record;
768 vol->mft_record_size_mask = vol->mft_record_size - 1;
769 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
770 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
771 vol->mft_record_size);
772 ntfs_debug("vol->mft_record_size_mask = 0x%x",
773 vol->mft_record_size_mask);
774 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
775 vol->mft_record_size_bits, vol->mft_record_size_bits);
776 /*
777 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
778 * we store $MFT/$DATA, the table of mft records in the page cache.
779 */
780 if (vol->mft_record_size > PAGE_CACHE_SIZE) {
781 ntfs_error(vol->sb, "Mft record size %i (0x%x) exceeds the "
782 "page cache size on your system %lu (0x%lx). "
783 "This is not supported. Sorry.",
784 vol->mft_record_size, vol->mft_record_size,
785 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE);
786 return FALSE;
787 }
788 clusters_per_index_record = b->clusters_per_index_record;
789 ntfs_debug("clusters_per_index_record = %i (0x%x)",
790 clusters_per_index_record, clusters_per_index_record);
791 if (clusters_per_index_record > 0)
792 vol->index_record_size = vol->cluster_size <<
793 (ffs(clusters_per_index_record) - 1);
794 else
795 /*
796 * When index_record_size < cluster_size,
797 * clusters_per_index_record = -log2(index_record_size) bytes.
798 * index_record_size normaly equals 4096 bytes, which is
799 * encoded as 0xF4 (-12 in decimal).
800 */
801 vol->index_record_size = 1 << -clusters_per_index_record;
802 vol->index_record_size_mask = vol->index_record_size - 1;
803 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
804 ntfs_debug("vol->index_record_size = %i (0x%x)",
805 vol->index_record_size, vol->index_record_size);
806 ntfs_debug("vol->index_record_size_mask = 0x%x",
807 vol->index_record_size_mask);
808 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
809 vol->index_record_size_bits,
810 vol->index_record_size_bits);
811 /*
812 * Get the size of the volume in clusters and check for 64-bit-ness.
813 * Windows currently only uses 32 bits to save the clusters so we do
814 * the same as it is much faster on 32-bit CPUs.
815 */
816 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
817 if ((u64)ll >= 1ULL << 32) {
818 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
819 return FALSE;
820 }
821 vol->nr_clusters = ll;
822 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
823 /*
824 * On an architecture where unsigned long is 32-bits, we restrict the
825 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
826 * will hopefully optimize the whole check away.
827 */
828 if (sizeof(unsigned long) < 8) {
829 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
830 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
831 "large for this architecture. "
832 "Maximum supported is 2TiB. Sorry.",
833 (unsigned long long)ll >> (40 -
834 vol->cluster_size_bits));
835 return FALSE;
836 }
837 }
838 ll = sle64_to_cpu(b->mft_lcn);
839 if (ll >= vol->nr_clusters) {
840 ntfs_error(vol->sb, "MFT LCN is beyond end of volume. Weird.");
841 return FALSE;
842 }
843 vol->mft_lcn = ll;
844 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
845 ll = sle64_to_cpu(b->mftmirr_lcn);
846 if (ll >= vol->nr_clusters) {
847 ntfs_error(vol->sb, "MFTMirr LCN is beyond end of volume. "
848 "Weird.");
849 return FALSE;
850 }
851 vol->mftmirr_lcn = ll;
852 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
853 #ifdef NTFS_RW
854 /*
855 * Work out the size of the mft mirror in number of mft records. If the
856 * cluster size is less than or equal to the size taken by four mft
857 * records, the mft mirror stores the first four mft records. If the
858 * cluster size is bigger than the size taken by four mft records, the
859 * mft mirror contains as many mft records as will fit into one
860 * cluster.
861 */
862 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
863 vol->mftmirr_size = 4;
864 else
865 vol->mftmirr_size = vol->cluster_size >>
866 vol->mft_record_size_bits;
867 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
868 #endif /* NTFS_RW */
869 vol->serial_no = le64_to_cpu(b->volume_serial_number);
870 ntfs_debug("vol->serial_no = 0x%llx",
871 (unsigned long long)vol->serial_no);
872 return TRUE;
873 }
874
875 /**
876 * ntfs_setup_allocators - initialize the cluster and mft allocators
877 * @vol: volume structure for which to setup the allocators
878 *
879 * Setup the cluster (lcn) and mft allocators to the starting values.
880 */
881 static void ntfs_setup_allocators(ntfs_volume *vol)
882 {
883 #ifdef NTFS_RW
884 LCN mft_zone_size, mft_lcn;
885 #endif /* NTFS_RW */
886
887 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
888 vol->mft_zone_multiplier);
889 #ifdef NTFS_RW
890 /* Determine the size of the MFT zone. */
891 mft_zone_size = vol->nr_clusters;
892 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
893 case 4:
894 mft_zone_size >>= 1; /* 50% */
895 break;
896 case 3:
897 mft_zone_size = (mft_zone_size +
898 (mft_zone_size >> 1)) >> 2; /* 37.5% */
899 break;
900 case 2:
901 mft_zone_size >>= 2; /* 25% */
902 break;
903 /* case 1: */
904 default:
905 mft_zone_size >>= 3; /* 12.5% */
906 break;
907 }
908 /* Setup the mft zone. */
909 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
910 ntfs_debug("vol->mft_zone_pos = 0x%llx",
911 (unsigned long long)vol->mft_zone_pos);
912 /*
913 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
914 * source) and if the actual mft_lcn is in the expected place or even
915 * further to the front of the volume, extend the mft_zone to cover the
916 * beginning of the volume as well. This is in order to protect the
917 * area reserved for the mft bitmap as well within the mft_zone itself.
918 * On non-standard volumes we do not protect it as the overhead would
919 * be higher than the speed increase we would get by doing it.
920 */
921 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
922 if (mft_lcn * vol->cluster_size < 16 * 1024)
923 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
924 vol->cluster_size;
925 if (vol->mft_zone_start <= mft_lcn)
926 vol->mft_zone_start = 0;
927 ntfs_debug("vol->mft_zone_start = 0x%llx",
928 (unsigned long long)vol->mft_zone_start);
929 /*
930 * Need to cap the mft zone on non-standard volumes so that it does
931 * not point outside the boundaries of the volume. We do this by
932 * halving the zone size until we are inside the volume.
933 */
934 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
935 while (vol->mft_zone_end >= vol->nr_clusters) {
936 mft_zone_size >>= 1;
937 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
938 }
939 ntfs_debug("vol->mft_zone_end = 0x%llx",
940 (unsigned long long)vol->mft_zone_end);
941 /*
942 * Set the current position within each data zone to the start of the
943 * respective zone.
944 */
945 vol->data1_zone_pos = vol->mft_zone_end;
946 ntfs_debug("vol->data1_zone_pos = 0x%llx",
947 (unsigned long long)vol->data1_zone_pos);
948 vol->data2_zone_pos = 0;
949 ntfs_debug("vol->data2_zone_pos = 0x%llx",
950 (unsigned long long)vol->data2_zone_pos);
951
952 /* Set the mft data allocation position to mft record 24. */
953 vol->mft_data_pos = 24;
954 ntfs_debug("vol->mft_data_pos = 0x%llx",
955 (unsigned long long)vol->mft_data_pos);
956 #endif /* NTFS_RW */
957 }
958
959 #ifdef NTFS_RW
960
961 /**
962 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
963 * @vol: ntfs super block describing device whose mft mirror to load
964 *
965 * Return TRUE on success or FALSE on error.
966 */
967 static BOOL load_and_init_mft_mirror(ntfs_volume *vol)
968 {
969 struct inode *tmp_ino;
970 ntfs_inode *tmp_ni;
971
972 ntfs_debug("Entering.");
973 /* Get mft mirror inode. */
974 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
975 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
976 if (!IS_ERR(tmp_ino))
977 iput(tmp_ino);
978 /* Caller will display error message. */
979 return FALSE;
980 }
981 /*
982 * Re-initialize some specifics about $MFTMirr's inode as
983 * ntfs_read_inode() will have set up the default ones.
984 */
985 /* Set uid and gid to root. */
986 tmp_ino->i_uid = tmp_ino->i_gid = 0;
987 /* Regular file. No access for anyone. */
988 tmp_ino->i_mode = S_IFREG;
989 /* No VFS initiated operations allowed for $MFTMirr. */
990 tmp_ino->i_op = &ntfs_empty_inode_ops;
991 tmp_ino->i_fop = &ntfs_empty_file_ops;
992 /* Put in our special address space operations. */
993 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
994 tmp_ni = NTFS_I(tmp_ino);
995 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
996 NInoSetMstProtected(tmp_ni);
997 NInoSetSparseDisabled(tmp_ni);
998 /*
999 * Set up our little cheat allowing us to reuse the async read io
1000 * completion handler for directories.
1001 */
1002 tmp_ni->itype.index.block_size = vol->mft_record_size;
1003 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1004 vol->mftmirr_ino = tmp_ino;
1005 ntfs_debug("Done.");
1006 return TRUE;
1007 }
1008
1009 /**
1010 * check_mft_mirror - compare contents of the mft mirror with the mft
1011 * @vol: ntfs super block describing device whose mft mirror to check
1012 *
1013 * Return TRUE on success or FALSE on error.
1014 *
1015 * Note, this function also results in the mft mirror runlist being completely
1016 * mapped into memory. The mft mirror write code requires this and will BUG()
1017 * should it find an unmapped runlist element.
1018 */
1019 static BOOL check_mft_mirror(ntfs_volume *vol)
1020 {
1021 struct super_block *sb = vol->sb;
1022 ntfs_inode *mirr_ni;
1023 struct page *mft_page, *mirr_page;
1024 u8 *kmft, *kmirr;
1025 runlist_element *rl, rl2[2];
1026 pgoff_t index;
1027 int mrecs_per_page, i;
1028
1029 ntfs_debug("Entering.");
1030 /* Compare contents of $MFT and $MFTMirr. */
1031 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1032 BUG_ON(!mrecs_per_page);
1033 BUG_ON(!vol->mftmirr_size);
1034 mft_page = mirr_page = NULL;
1035 kmft = kmirr = NULL;
1036 index = i = 0;
1037 do {
1038 u32 bytes;
1039
1040 /* Switch pages if necessary. */
1041 if (!(i % mrecs_per_page)) {
1042 if (index) {
1043 ntfs_unmap_page(mft_page);
1044 ntfs_unmap_page(mirr_page);
1045 }
1046 /* Get the $MFT page. */
1047 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1048 index);
1049 if (IS_ERR(mft_page)) {
1050 ntfs_error(sb, "Failed to read $MFT.");
1051 return FALSE;
1052 }
1053 kmft = page_address(mft_page);
1054 /* Get the $MFTMirr page. */
1055 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1056 index);
1057 if (IS_ERR(mirr_page)) {
1058 ntfs_error(sb, "Failed to read $MFTMirr.");
1059 goto mft_unmap_out;
1060 }
1061 kmirr = page_address(mirr_page);
1062 ++index;
1063 }
1064 /* Make sure the record is ok. */
1065 if (ntfs_is_baad_recordp((le32*)kmft)) {
1066 ntfs_error(sb, "Incomplete multi sector transfer "
1067 "detected in mft record %i.", i);
1068 mm_unmap_out:
1069 ntfs_unmap_page(mirr_page);
1070 mft_unmap_out:
1071 ntfs_unmap_page(mft_page);
1072 return FALSE;
1073 }
1074 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1075 ntfs_error(sb, "Incomplete multi sector transfer "
1076 "detected in mft mirror record %i.", i);
1077 goto mm_unmap_out;
1078 }
1079 /* Get the amount of data in the current record. */
1080 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1081 if (!bytes || bytes > vol->mft_record_size) {
1082 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1083 if (!bytes || bytes > vol->mft_record_size)
1084 bytes = vol->mft_record_size;
1085 }
1086 /* Compare the two records. */
1087 if (memcmp(kmft, kmirr, bytes)) {
1088 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1089 "match. Run ntfsfix or chkdsk.", i);
1090 goto mm_unmap_out;
1091 }
1092 kmft += vol->mft_record_size;
1093 kmirr += vol->mft_record_size;
1094 } while (++i < vol->mftmirr_size);
1095 /* Release the last pages. */
1096 ntfs_unmap_page(mft_page);
1097 ntfs_unmap_page(mirr_page);
1098
1099 /* Construct the mft mirror runlist by hand. */
1100 rl2[0].vcn = 0;
1101 rl2[0].lcn = vol->mftmirr_lcn;
1102 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1103 vol->cluster_size - 1) / vol->cluster_size;
1104 rl2[1].vcn = rl2[0].length;
1105 rl2[1].lcn = LCN_ENOENT;
1106 rl2[1].length = 0;
1107 /*
1108 * Because we have just read all of the mft mirror, we know we have
1109 * mapped the full runlist for it.
1110 */
1111 mirr_ni = NTFS_I(vol->mftmirr_ino);
1112 down_read(&mirr_ni->runlist.lock);
1113 rl = mirr_ni->runlist.rl;
1114 /* Compare the two runlists. They must be identical. */
1115 i = 0;
1116 do {
1117 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1118 rl2[i].length != rl[i].length) {
1119 ntfs_error(sb, "$MFTMirr location mismatch. "
1120 "Run chkdsk.");
1121 up_read(&mirr_ni->runlist.lock);
1122 return FALSE;
1123 }
1124 } while (rl2[i++].length);
1125 up_read(&mirr_ni->runlist.lock);
1126 ntfs_debug("Done.");
1127 return TRUE;
1128 }
1129
1130 /**
1131 * load_and_check_logfile - load and check the logfile inode for a volume
1132 * @vol: ntfs super block describing device whose logfile to load
1133 *
1134 * Return TRUE on success or FALSE on error.
1135 */
1136 static BOOL load_and_check_logfile(ntfs_volume *vol)
1137 {
1138 struct inode *tmp_ino;
1139
1140 ntfs_debug("Entering.");
1141 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1142 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1143 if (!IS_ERR(tmp_ino))
1144 iput(tmp_ino);
1145 /* Caller will display error message. */
1146 return FALSE;
1147 }
1148 if (!ntfs_check_logfile(tmp_ino)) {
1149 iput(tmp_ino);
1150 /* ntfs_check_logfile() will have displayed error output. */
1151 return FALSE;
1152 }
1153 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1154 vol->logfile_ino = tmp_ino;
1155 ntfs_debug("Done.");
1156 return TRUE;
1157 }
1158
1159 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1160
1161 /**
1162 * check_windows_hibernation_status - check if Windows is suspended on a volume
1163 * @vol: ntfs super block of device to check
1164 *
1165 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1166 * looking for the file hiberfil.sys in the root directory of the volume. If
1167 * the file is not present Windows is definitely not suspended.
1168 *
1169 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1170 * definitely suspended (this volume is not the system volume). Caveat: on a
1171 * system with many volumes it is possible that the < 4kiB check is bogus but
1172 * for now this should do fine.
1173 *
1174 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1175 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1176 * Windows is definitely suspended. If it is completely full of zeroes,
1177 * Windows is definitely not hibernated. Any other case is treated as if
1178 * Windows is suspended. This caters for the above mentioned caveat of a
1179 * system with many volumes where no "hibr" magic would be present and there is
1180 * no zero header.
1181 *
1182 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1183 * hibernated on the volume, and -errno on error.
1184 */
1185 static int check_windows_hibernation_status(ntfs_volume *vol)
1186 {
1187 MFT_REF mref;
1188 struct inode *vi;
1189 ntfs_inode *ni;
1190 struct page *page;
1191 u32 *kaddr, *kend;
1192 ntfs_name *name = NULL;
1193 int ret = 1;
1194 static const ntfschar hiberfil[13] = { const_cpu_to_le16('h'),
1195 const_cpu_to_le16('i'), const_cpu_to_le16('b'),
1196 const_cpu_to_le16('e'), const_cpu_to_le16('r'),
1197 const_cpu_to_le16('f'), const_cpu_to_le16('i'),
1198 const_cpu_to_le16('l'), const_cpu_to_le16('.'),
1199 const_cpu_to_le16('s'), const_cpu_to_le16('y'),
1200 const_cpu_to_le16('s'), 0 };
1201
1202 ntfs_debug("Entering.");
1203 /*
1204 * Find the inode number for the hibernation file by looking up the
1205 * filename hiberfil.sys in the root directory.
1206 */
1207 down(&vol->root_ino->i_sem);
1208 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1209 &name);
1210 up(&vol->root_ino->i_sem);
1211 if (IS_ERR_MREF(mref)) {
1212 ret = MREF_ERR(mref);
1213 /* If the file does not exist, Windows is not hibernated. */
1214 if (ret == -ENOENT) {
1215 ntfs_debug("hiberfil.sys not present. Windows is not "
1216 "hibernated on the volume.");
1217 return 0;
1218 }
1219 /* A real error occured. */
1220 ntfs_error(vol->sb, "Failed to find inode number for "
1221 "hiberfil.sys.");
1222 return ret;
1223 }
1224 /* We do not care for the type of match that was found. */
1225 kfree(name);
1226 /* Get the inode. */
1227 vi = ntfs_iget(vol->sb, MREF(mref));
1228 if (IS_ERR(vi) || is_bad_inode(vi)) {
1229 if (!IS_ERR(vi))
1230 iput(vi);
1231 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1232 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1233 }
1234 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1235 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1236 "Windows is hibernated on the volume. This "
1237 "is not the system volume.", i_size_read(vi));
1238 goto iput_out;
1239 }
1240 ni = NTFS_I(vi);
1241 page = ntfs_map_page(vi->i_mapping, 0);
1242 if (IS_ERR(page)) {
1243 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1244 ret = PTR_ERR(page);
1245 goto iput_out;
1246 }
1247 kaddr = (u32*)page_address(page);
1248 if (*(le32*)kaddr == const_cpu_to_le32(0x72626968)/*'hibr'*/) {
1249 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1250 "hibernated on the volume. This is the "
1251 "system volume.");
1252 goto unm_iput_out;
1253 }
1254 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1255 do {
1256 if (unlikely(*kaddr)) {
1257 ntfs_debug("hiberfil.sys is larger than 4kiB "
1258 "(0x%llx), does not contain the "
1259 "\"hibr\" magic, and does not have a "
1260 "zero header. Windows is hibernated "
1261 "on the volume. This is not the "
1262 "system volume.", i_size_read(vi));
1263 goto unm_iput_out;
1264 }
1265 } while (++kaddr < kend);
1266 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1267 "hibernated on the volume. This is the system "
1268 "volume.");
1269 ret = 0;
1270 unm_iput_out:
1271 ntfs_unmap_page(page);
1272 iput_out:
1273 iput(vi);
1274 return ret;
1275 }
1276
1277 /**
1278 * load_and_init_quota - load and setup the quota file for a volume if present
1279 * @vol: ntfs super block describing device whose quota file to load
1280 *
1281 * Return TRUE on success or FALSE on error. If $Quota is not present, we
1282 * leave vol->quota_ino as NULL and return success.
1283 */
1284 static BOOL load_and_init_quota(ntfs_volume *vol)
1285 {
1286 MFT_REF mref;
1287 struct inode *tmp_ino;
1288 ntfs_name *name = NULL;
1289 static const ntfschar Quota[7] = { const_cpu_to_le16('$'),
1290 const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1291 const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1292 const_cpu_to_le16('a'), 0 };
1293 static ntfschar Q[3] = { const_cpu_to_le16('$'),
1294 const_cpu_to_le16('Q'), 0 };
1295
1296 ntfs_debug("Entering.");
1297 /*
1298 * Find the inode number for the quota file by looking up the filename
1299 * $Quota in the extended system files directory $Extend.
1300 */
1301 down(&vol->extend_ino->i_sem);
1302 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1303 &name);
1304 up(&vol->extend_ino->i_sem);
1305 if (IS_ERR_MREF(mref)) {
1306 /*
1307 * If the file does not exist, quotas are disabled and have
1308 * never been enabled on this volume, just return success.
1309 */
1310 if (MREF_ERR(mref) == -ENOENT) {
1311 ntfs_debug("$Quota not present. Volume does not have "
1312 "quotas enabled.");
1313 /*
1314 * No need to try to set quotas out of date if they are
1315 * not enabled.
1316 */
1317 NVolSetQuotaOutOfDate(vol);
1318 return TRUE;
1319 }
1320 /* A real error occured. */
1321 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1322 return FALSE;
1323 }
1324 /* We do not care for the type of match that was found. */
1325 kfree(name);
1326 /* Get the inode. */
1327 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1328 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1329 if (!IS_ERR(tmp_ino))
1330 iput(tmp_ino);
1331 ntfs_error(vol->sb, "Failed to load $Quota.");
1332 return FALSE;
1333 }
1334 vol->quota_ino = tmp_ino;
1335 /* Get the $Q index allocation attribute. */
1336 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1337 if (IS_ERR(tmp_ino)) {
1338 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1339 return FALSE;
1340 }
1341 vol->quota_q_ino = tmp_ino;
1342 ntfs_debug("Done.");
1343 return TRUE;
1344 }
1345
1346 /**
1347 * load_and_init_usnjrnl - load and setup the transaction log if present
1348 * @vol: ntfs super block describing device whose usnjrnl file to load
1349 *
1350 * Return TRUE on success or FALSE on error.
1351 *
1352 * If $UsnJrnl is not present or in the process of being disabled, we set
1353 * NVolUsnJrnlStamped() and return success.
1354 *
1355 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1356 * i.e. transaction logging has only just been enabled or the journal has been
1357 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1358 * and return success.
1359 */
1360 static BOOL load_and_init_usnjrnl(ntfs_volume *vol)
1361 {
1362 MFT_REF mref;
1363 struct inode *tmp_ino;
1364 ntfs_inode *tmp_ni;
1365 struct page *page;
1366 ntfs_name *name = NULL;
1367 USN_HEADER *uh;
1368 static const ntfschar UsnJrnl[9] = { const_cpu_to_le16('$'),
1369 const_cpu_to_le16('U'), const_cpu_to_le16('s'),
1370 const_cpu_to_le16('n'), const_cpu_to_le16('J'),
1371 const_cpu_to_le16('r'), const_cpu_to_le16('n'),
1372 const_cpu_to_le16('l'), 0 };
1373 static ntfschar Max[5] = { const_cpu_to_le16('$'),
1374 const_cpu_to_le16('M'), const_cpu_to_le16('a'),
1375 const_cpu_to_le16('x'), 0 };
1376 static ntfschar J[3] = { const_cpu_to_le16('$'),
1377 const_cpu_to_le16('J'), 0 };
1378
1379 ntfs_debug("Entering.");
1380 /*
1381 * Find the inode number for the transaction log file by looking up the
1382 * filename $UsnJrnl in the extended system files directory $Extend.
1383 */
1384 down(&vol->extend_ino->i_sem);
1385 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1386 &name);
1387 up(&vol->extend_ino->i_sem);
1388 if (IS_ERR_MREF(mref)) {
1389 /*
1390 * If the file does not exist, transaction logging is disabled,
1391 * just return success.
1392 */
1393 if (MREF_ERR(mref) == -ENOENT) {
1394 ntfs_debug("$UsnJrnl not present. Volume does not "
1395 "have transaction logging enabled.");
1396 not_enabled:
1397 /*
1398 * No need to try to stamp the transaction log if
1399 * transaction logging is not enabled.
1400 */
1401 NVolSetUsnJrnlStamped(vol);
1402 return TRUE;
1403 }
1404 /* A real error occured. */
1405 ntfs_error(vol->sb, "Failed to find inode number for "
1406 "$UsnJrnl.");
1407 return FALSE;
1408 }
1409 /* We do not care for the type of match that was found. */
1410 kfree(name);
1411 /* Get the inode. */
1412 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1413 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1414 if (!IS_ERR(tmp_ino))
1415 iput(tmp_ino);
1416 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1417 return FALSE;
1418 }
1419 vol->usnjrnl_ino = tmp_ino;
1420 /*
1421 * If the transaction log is in the process of being deleted, we can
1422 * ignore it.
1423 */
1424 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1425 ntfs_debug("$UsnJrnl in the process of being disabled. "
1426 "Volume does not have transaction logging "
1427 "enabled.");
1428 goto not_enabled;
1429 }
1430 /* Get the $DATA/$Max attribute. */
1431 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1432 if (IS_ERR(tmp_ino)) {
1433 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1434 "attribute.");
1435 return FALSE;
1436 }
1437 vol->usnjrnl_max_ino = tmp_ino;
1438 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1439 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1440 "attribute (size is 0x%llx but should be at "
1441 "least 0x%x bytes).", i_size_read(tmp_ino),
1442 sizeof(USN_HEADER));
1443 return FALSE;
1444 }
1445 /* Get the $DATA/$J attribute. */
1446 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1447 if (IS_ERR(tmp_ino)) {
1448 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1449 "attribute.");
1450 return FALSE;
1451 }
1452 vol->usnjrnl_j_ino = tmp_ino;
1453 /* Verify $J is non-resident and sparse. */
1454 tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1455 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1456 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1457 "and/or not sparse.");
1458 return FALSE;
1459 }
1460 /* Read the USN_HEADER from $DATA/$Max. */
1461 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1462 if (IS_ERR(page)) {
1463 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1464 "attribute.");
1465 return FALSE;
1466 }
1467 uh = (USN_HEADER*)page_address(page);
1468 /* Sanity check the $Max. */
1469 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1470 sle64_to_cpu(uh->maximum_size))) {
1471 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1472 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1473 (long long)sle64_to_cpu(uh->allocation_delta),
1474 (long long)sle64_to_cpu(uh->maximum_size));
1475 ntfs_unmap_page(page);
1476 return FALSE;
1477 }
1478 /*
1479 * If the transaction log has been stamped and nothing has been written
1480 * to it since, we do not need to stamp it.
1481 */
1482 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1483 i_size_read(vol->usnjrnl_j_ino))) {
1484 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1485 i_size_read(vol->usnjrnl_j_ino))) {
1486 ntfs_unmap_page(page);
1487 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1488 "logged since it was last stamped. "
1489 "Treating this as if the volume does "
1490 "not have transaction logging "
1491 "enabled.");
1492 goto not_enabled;
1493 }
1494 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1495 "which is out of bounds (0x%llx). $UsnJrnl "
1496 "is corrupt.",
1497 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1498 i_size_read(vol->usnjrnl_j_ino));
1499 ntfs_unmap_page(page);
1500 return FALSE;
1501 }
1502 ntfs_unmap_page(page);
1503 ntfs_debug("Done.");
1504 return TRUE;
1505 }
1506
1507 /**
1508 * load_and_init_attrdef - load the attribute definitions table for a volume
1509 * @vol: ntfs super block describing device whose attrdef to load
1510 *
1511 * Return TRUE on success or FALSE on error.
1512 */
1513 static BOOL load_and_init_attrdef(ntfs_volume *vol)
1514 {
1515 loff_t i_size;
1516 struct super_block *sb = vol->sb;
1517 struct inode *ino;
1518 struct page *page;
1519 pgoff_t index, max_index;
1520 unsigned int size;
1521
1522 ntfs_debug("Entering.");
1523 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1524 ino = ntfs_iget(sb, FILE_AttrDef);
1525 if (IS_ERR(ino) || is_bad_inode(ino)) {
1526 if (!IS_ERR(ino))
1527 iput(ino);
1528 goto failed;
1529 }
1530 NInoSetSparseDisabled(NTFS_I(ino));
1531 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1532 i_size = i_size_read(ino);
1533 if (i_size <= 0 || i_size > 0x7fffffff)
1534 goto iput_failed;
1535 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1536 if (!vol->attrdef)
1537 goto iput_failed;
1538 index = 0;
1539 max_index = i_size >> PAGE_CACHE_SHIFT;
1540 size = PAGE_CACHE_SIZE;
1541 while (index < max_index) {
1542 /* Read the attrdef table and copy it into the linear buffer. */
1543 read_partial_attrdef_page:
1544 page = ntfs_map_page(ino->i_mapping, index);
1545 if (IS_ERR(page))
1546 goto free_iput_failed;
1547 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1548 page_address(page), size);
1549 ntfs_unmap_page(page);
1550 };
1551 if (size == PAGE_CACHE_SIZE) {
1552 size = i_size & ~PAGE_CACHE_MASK;
1553 if (size)
1554 goto read_partial_attrdef_page;
1555 }
1556 vol->attrdef_size = i_size;
1557 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1558 iput(ino);
1559 return TRUE;
1560 free_iput_failed:
1561 ntfs_free(vol->attrdef);
1562 vol->attrdef = NULL;
1563 iput_failed:
1564 iput(ino);
1565 failed:
1566 ntfs_error(sb, "Failed to initialize attribute definition table.");
1567 return FALSE;
1568 }
1569
1570 #endif /* NTFS_RW */
1571
1572 /**
1573 * load_and_init_upcase - load the upcase table for an ntfs volume
1574 * @vol: ntfs super block describing device whose upcase to load
1575 *
1576 * Return TRUE on success or FALSE on error.
1577 */
1578 static BOOL load_and_init_upcase(ntfs_volume *vol)
1579 {
1580 loff_t i_size;
1581 struct super_block *sb = vol->sb;
1582 struct inode *ino;
1583 struct page *page;
1584 pgoff_t index, max_index;
1585 unsigned int size;
1586 int i, max;
1587
1588 ntfs_debug("Entering.");
1589 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1590 ino = ntfs_iget(sb, FILE_UpCase);
1591 if (IS_ERR(ino) || is_bad_inode(ino)) {
1592 if (!IS_ERR(ino))
1593 iput(ino);
1594 goto upcase_failed;
1595 }
1596 /*
1597 * The upcase size must not be above 64k Unicode characters, must not
1598 * be zero and must be a multiple of sizeof(ntfschar).
1599 */
1600 i_size = i_size_read(ino);
1601 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1602 i_size > 64ULL * 1024 * sizeof(ntfschar))
1603 goto iput_upcase_failed;
1604 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1605 if (!vol->upcase)
1606 goto iput_upcase_failed;
1607 index = 0;
1608 max_index = i_size >> PAGE_CACHE_SHIFT;
1609 size = PAGE_CACHE_SIZE;
1610 while (index < max_index) {
1611 /* Read the upcase table and copy it into the linear buffer. */
1612 read_partial_upcase_page:
1613 page = ntfs_map_page(ino->i_mapping, index);
1614 if (IS_ERR(page))
1615 goto iput_upcase_failed;
1616 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1617 page_address(page), size);
1618 ntfs_unmap_page(page);
1619 };
1620 if (size == PAGE_CACHE_SIZE) {
1621 size = i_size & ~PAGE_CACHE_MASK;
1622 if (size)
1623 goto read_partial_upcase_page;
1624 }
1625 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1626 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1627 i_size, 64 * 1024 * sizeof(ntfschar));
1628 iput(ino);
1629 down(&ntfs_lock);
1630 if (!default_upcase) {
1631 ntfs_debug("Using volume specified $UpCase since default is "
1632 "not present.");
1633 up(&ntfs_lock);
1634 return TRUE;
1635 }
1636 max = default_upcase_len;
1637 if (max > vol->upcase_len)
1638 max = vol->upcase_len;
1639 for (i = 0; i < max; i++)
1640 if (vol->upcase[i] != default_upcase[i])
1641 break;
1642 if (i == max) {
1643 ntfs_free(vol->upcase);
1644 vol->upcase = default_upcase;
1645 vol->upcase_len = max;
1646 ntfs_nr_upcase_users++;
1647 up(&ntfs_lock);
1648 ntfs_debug("Volume specified $UpCase matches default. Using "
1649 "default.");
1650 return TRUE;
1651 }
1652 up(&ntfs_lock);
1653 ntfs_debug("Using volume specified $UpCase since it does not match "
1654 "the default.");
1655 return TRUE;
1656 iput_upcase_failed:
1657 iput(ino);
1658 ntfs_free(vol->upcase);
1659 vol->upcase = NULL;
1660 upcase_failed:
1661 down(&ntfs_lock);
1662 if (default_upcase) {
1663 vol->upcase = default_upcase;
1664 vol->upcase_len = default_upcase_len;
1665 ntfs_nr_upcase_users++;
1666 up(&ntfs_lock);
1667 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1668 "default.");
1669 return TRUE;
1670 }
1671 up(&ntfs_lock);
1672 ntfs_error(sb, "Failed to initialize upcase table.");
1673 return FALSE;
1674 }
1675
1676 /**
1677 * load_system_files - open the system files using normal functions
1678 * @vol: ntfs super block describing device whose system files to load
1679 *
1680 * Open the system files with normal access functions and complete setting up
1681 * the ntfs super block @vol.
1682 *
1683 * Return TRUE on success or FALSE on error.
1684 */
1685 static BOOL load_system_files(ntfs_volume *vol)
1686 {
1687 struct super_block *sb = vol->sb;
1688 MFT_RECORD *m;
1689 VOLUME_INFORMATION *vi;
1690 ntfs_attr_search_ctx *ctx;
1691 #ifdef NTFS_RW
1692 int err;
1693 #endif /* NTFS_RW */
1694
1695 ntfs_debug("Entering.");
1696 #ifdef NTFS_RW
1697 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1698 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1699 static const char *es1 = "Failed to load $MFTMirr";
1700 static const char *es2 = "$MFTMirr does not match $MFT";
1701 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1702
1703 /* If a read-write mount, convert it to a read-only mount. */
1704 if (!(sb->s_flags & MS_RDONLY)) {
1705 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1706 ON_ERRORS_CONTINUE))) {
1707 ntfs_error(sb, "%s and neither on_errors="
1708 "continue nor on_errors="
1709 "remount-ro was specified%s",
1710 !vol->mftmirr_ino ? es1 : es2,
1711 es3);
1712 goto iput_mirr_err_out;
1713 }
1714 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1715 ntfs_error(sb, "%s. Mounting read-only%s",
1716 !vol->mftmirr_ino ? es1 : es2, es3);
1717 } else
1718 ntfs_warning(sb, "%s. Will not be able to remount "
1719 "read-write%s",
1720 !vol->mftmirr_ino ? es1 : es2, es3);
1721 /* This will prevent a read-write remount. */
1722 NVolSetErrors(vol);
1723 }
1724 #endif /* NTFS_RW */
1725 /* Get mft bitmap attribute inode. */
1726 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1727 if (IS_ERR(vol->mftbmp_ino)) {
1728 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1729 goto iput_mirr_err_out;
1730 }
1731 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1732 if (!load_and_init_upcase(vol))
1733 goto iput_mftbmp_err_out;
1734 #ifdef NTFS_RW
1735 /*
1736 * Read attribute definitions table and setup @vol->attrdef and
1737 * @vol->attrdef_size.
1738 */
1739 if (!load_and_init_attrdef(vol))
1740 goto iput_upcase_err_out;
1741 #endif /* NTFS_RW */
1742 /*
1743 * Get the cluster allocation bitmap inode and verify the size, no
1744 * need for any locking at this stage as we are already running
1745 * exclusively as we are mount in progress task.
1746 */
1747 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1748 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1749 if (!IS_ERR(vol->lcnbmp_ino))
1750 iput(vol->lcnbmp_ino);
1751 goto bitmap_failed;
1752 }
1753 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1754 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1755 iput(vol->lcnbmp_ino);
1756 bitmap_failed:
1757 ntfs_error(sb, "Failed to load $Bitmap.");
1758 goto iput_attrdef_err_out;
1759 }
1760 /*
1761 * Get the volume inode and setup our cache of the volume flags and
1762 * version.
1763 */
1764 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1765 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1766 if (!IS_ERR(vol->vol_ino))
1767 iput(vol->vol_ino);
1768 volume_failed:
1769 ntfs_error(sb, "Failed to load $Volume.");
1770 goto iput_lcnbmp_err_out;
1771 }
1772 m = map_mft_record(NTFS_I(vol->vol_ino));
1773 if (IS_ERR(m)) {
1774 iput_volume_failed:
1775 iput(vol->vol_ino);
1776 goto volume_failed;
1777 }
1778 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1779 ntfs_error(sb, "Failed to get attribute search context.");
1780 goto get_ctx_vol_failed;
1781 }
1782 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1783 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1784 err_put_vol:
1785 ntfs_attr_put_search_ctx(ctx);
1786 get_ctx_vol_failed:
1787 unmap_mft_record(NTFS_I(vol->vol_ino));
1788 goto iput_volume_failed;
1789 }
1790 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1791 le16_to_cpu(ctx->attr->data.resident.value_offset));
1792 /* Some bounds checks. */
1793 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1794 le32_to_cpu(ctx->attr->data.resident.value_length) >
1795 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1796 goto err_put_vol;
1797 /* Copy the volume flags and version to the ntfs_volume structure. */
1798 vol->vol_flags = vi->flags;
1799 vol->major_ver = vi->major_ver;
1800 vol->minor_ver = vi->minor_ver;
1801 ntfs_attr_put_search_ctx(ctx);
1802 unmap_mft_record(NTFS_I(vol->vol_ino));
1803 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1804 vol->minor_ver);
1805 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1806 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1807 "volume version %i.%i (need at least version "
1808 "3.0).", vol->major_ver, vol->minor_ver);
1809 NVolClearSparseEnabled(vol);
1810 }
1811 #ifdef NTFS_RW
1812 /* Make sure that no unsupported volume flags are set. */
1813 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1814 static const char *es1a = "Volume is dirty";
1815 static const char *es1b = "Volume has unsupported flags set";
1816 static const char *es2 = ". Run chkdsk and mount in Windows.";
1817 const char *es1;
1818
1819 es1 = vol->vol_flags & VOLUME_IS_DIRTY ? es1a : es1b;
1820 /* If a read-write mount, convert it to a read-only mount. */
1821 if (!(sb->s_flags & MS_RDONLY)) {
1822 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1823 ON_ERRORS_CONTINUE))) {
1824 ntfs_error(sb, "%s and neither on_errors="
1825 "continue nor on_errors="
1826 "remount-ro was specified%s",
1827 es1, es2);
1828 goto iput_vol_err_out;
1829 }
1830 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1831 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1832 } else
1833 ntfs_warning(sb, "%s. Will not be able to remount "
1834 "read-write%s", es1, es2);
1835 /*
1836 * Do not set NVolErrors() because ntfs_remount() re-checks the
1837 * flags which we need to do in case any flags have changed.
1838 */
1839 }
1840 /*
1841 * Get the inode for the logfile, check it and determine if the volume
1842 * was shutdown cleanly.
1843 */
1844 if (!load_and_check_logfile(vol) ||
1845 !ntfs_is_logfile_clean(vol->logfile_ino)) {
1846 static const char *es1a = "Failed to load $LogFile";
1847 static const char *es1b = "$LogFile is not clean";
1848 static const char *es2 = ". Mount in Windows.";
1849 const char *es1;
1850
1851 es1 = !vol->logfile_ino ? es1a : es1b;
1852 /* If a read-write mount, convert it to a read-only mount. */
1853 if (!(sb->s_flags & MS_RDONLY)) {
1854 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1855 ON_ERRORS_CONTINUE))) {
1856 ntfs_error(sb, "%s and neither on_errors="
1857 "continue nor on_errors="
1858 "remount-ro was specified%s",
1859 es1, es2);
1860 goto iput_logfile_err_out;
1861 }
1862 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1863 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1864 } else
1865 ntfs_warning(sb, "%s. Will not be able to remount "
1866 "read-write%s", es1, es2);
1867 /* This will prevent a read-write remount. */
1868 NVolSetErrors(vol);
1869 }
1870 #endif /* NTFS_RW */
1871 /* Get the root directory inode so we can do path lookups. */
1872 vol->root_ino = ntfs_iget(sb, FILE_root);
1873 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1874 if (!IS_ERR(vol->root_ino))
1875 iput(vol->root_ino);
1876 ntfs_error(sb, "Failed to load root directory.");
1877 goto iput_logfile_err_out;
1878 }
1879 #ifdef NTFS_RW
1880 /*
1881 * Check if Windows is suspended to disk on the target volume. If it
1882 * is hibernated, we must not write *anything* to the disk so set
1883 * NVolErrors() without setting the dirty volume flag and mount
1884 * read-only. This will prevent read-write remounting and it will also
1885 * prevent all writes.
1886 */
1887 err = check_windows_hibernation_status(vol);
1888 if (unlikely(err)) {
1889 static const char *es1a = "Failed to determine if Windows is "
1890 "hibernated";
1891 static const char *es1b = "Windows is hibernated";
1892 static const char *es2 = ". Run chkdsk.";
1893 const char *es1;
1894
1895 es1 = err < 0 ? es1a : es1b;
1896 /* If a read-write mount, convert it to a read-only mount. */
1897 if (!(sb->s_flags & MS_RDONLY)) {
1898 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1899 ON_ERRORS_CONTINUE))) {
1900 ntfs_error(sb, "%s and neither on_errors="
1901 "continue nor on_errors="
1902 "remount-ro was specified%s",
1903 es1, es2);
1904 goto iput_root_err_out;
1905 }
1906 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1907 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1908 } else
1909 ntfs_warning(sb, "%s. Will not be able to remount "
1910 "read-write%s", es1, es2);
1911 /* This will prevent a read-write remount. */
1912 NVolSetErrors(vol);
1913 }
1914 /* If (still) a read-write mount, mark the volume dirty. */
1915 if (!(sb->s_flags & MS_RDONLY) &&
1916 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
1917 static const char *es1 = "Failed to set dirty bit in volume "
1918 "information flags";
1919 static const char *es2 = ". Run chkdsk.";
1920
1921 /* Convert to a read-only mount. */
1922 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1923 ON_ERRORS_CONTINUE))) {
1924 ntfs_error(sb, "%s and neither on_errors=continue nor "
1925 "on_errors=remount-ro was specified%s",
1926 es1, es2);
1927 goto iput_root_err_out;
1928 }
1929 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1930 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1931 /*
1932 * Do not set NVolErrors() because ntfs_remount() might manage
1933 * to set the dirty flag in which case all would be well.
1934 */
1935 }
1936 #if 0
1937 // TODO: Enable this code once we start modifying anything that is
1938 // different between NTFS 1.2 and 3.x...
1939 /*
1940 * If (still) a read-write mount, set the NT4 compatibility flag on
1941 * newer NTFS version volumes.
1942 */
1943 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
1944 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
1945 static const char *es1 = "Failed to set NT4 compatibility flag";
1946 static const char *es2 = ". Run chkdsk.";
1947
1948 /* Convert to a read-only mount. */
1949 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1950 ON_ERRORS_CONTINUE))) {
1951 ntfs_error(sb, "%s and neither on_errors=continue nor "
1952 "on_errors=remount-ro was specified%s",
1953 es1, es2);
1954 goto iput_root_err_out;
1955 }
1956 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1957 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1958 NVolSetErrors(vol);
1959 }
1960 #endif
1961 /* If (still) a read-write mount, empty the logfile. */
1962 if (!(sb->s_flags & MS_RDONLY) &&
1963 !ntfs_empty_logfile(vol->logfile_ino)) {
1964 static const char *es1 = "Failed to empty $LogFile";
1965 static const char *es2 = ". Mount in Windows.";
1966
1967 /* Convert to a read-only mount. */
1968 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1969 ON_ERRORS_CONTINUE))) {
1970 ntfs_error(sb, "%s and neither on_errors=continue nor "
1971 "on_errors=remount-ro was specified%s",
1972 es1, es2);
1973 goto iput_root_err_out;
1974 }
1975 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1976 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1977 NVolSetErrors(vol);
1978 }
1979 #endif /* NTFS_RW */
1980 /* If on NTFS versions before 3.0, we are done. */
1981 if (unlikely(vol->major_ver < 3))
1982 return TRUE;
1983 /* NTFS 3.0+ specific initialization. */
1984 /* Get the security descriptors inode. */
1985 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
1986 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
1987 if (!IS_ERR(vol->secure_ino))
1988 iput(vol->secure_ino);
1989 ntfs_error(sb, "Failed to load $Secure.");
1990 goto iput_root_err_out;
1991 }
1992 // TODO: Initialize security.
1993 /* Get the extended system files' directory inode. */
1994 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
1995 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
1996 if (!IS_ERR(vol->extend_ino))
1997 iput(vol->extend_ino);
1998 ntfs_error(sb, "Failed to load $Extend.");
1999 goto iput_sec_err_out;
2000 }
2001 #ifdef NTFS_RW
2002 /* Find the quota file, load it if present, and set it up. */
2003 if (!load_and_init_quota(vol)) {
2004 static const char *es1 = "Failed to load $Quota";
2005 static const char *es2 = ". Run chkdsk.";
2006
2007 /* If a read-write mount, convert it to a read-only mount. */
2008 if (!(sb->s_flags & MS_RDONLY)) {
2009 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2010 ON_ERRORS_CONTINUE))) {
2011 ntfs_error(sb, "%s and neither on_errors="
2012 "continue nor on_errors="
2013 "remount-ro was specified%s",
2014 es1, es2);
2015 goto iput_quota_err_out;
2016 }
2017 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2018 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2019 } else
2020 ntfs_warning(sb, "%s. Will not be able to remount "
2021 "read-write%s", es1, es2);
2022 /* This will prevent a read-write remount. */
2023 NVolSetErrors(vol);
2024 }
2025 /* If (still) a read-write mount, mark the quotas out of date. */
2026 if (!(sb->s_flags & MS_RDONLY) &&
2027 !ntfs_mark_quotas_out_of_date(vol)) {
2028 static const char *es1 = "Failed to mark quotas out of date";
2029 static const char *es2 = ". Run chkdsk.";
2030
2031 /* Convert to a read-only mount. */
2032 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2033 ON_ERRORS_CONTINUE))) {
2034 ntfs_error(sb, "%s and neither on_errors=continue nor "
2035 "on_errors=remount-ro was specified%s",
2036 es1, es2);
2037 goto iput_quota_err_out;
2038 }
2039 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2040 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2041 NVolSetErrors(vol);
2042 }
2043 /*
2044 * Find the transaction log file ($UsnJrnl), load it if present, check
2045 * it, and set it up.
2046 */
2047 if (!load_and_init_usnjrnl(vol)) {
2048 static const char *es1 = "Failed to load $UsnJrnl";
2049 static const char *es2 = ". Run chkdsk.";
2050
2051 /* If a read-write mount, convert it to a read-only mount. */
2052 if (!(sb->s_flags & MS_RDONLY)) {
2053 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2054 ON_ERRORS_CONTINUE))) {
2055 ntfs_error(sb, "%s and neither on_errors="
2056 "continue nor on_errors="
2057 "remount-ro was specified%s",
2058 es1, es2);
2059 goto iput_usnjrnl_err_out;
2060 }
2061 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2062 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2063 } else
2064 ntfs_warning(sb, "%s. Will not be able to remount "
2065 "read-write%s", es1, es2);
2066 /* This will prevent a read-write remount. */
2067 NVolSetErrors(vol);
2068 }
2069 /* If (still) a read-write mount, stamp the transaction log. */
2070 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2071 static const char *es1 = "Failed to stamp transaction log "
2072 "($UsnJrnl)";
2073 static const char *es2 = ". Run chkdsk.";
2074
2075 /* Convert to a read-only mount. */
2076 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2077 ON_ERRORS_CONTINUE))) {
2078 ntfs_error(sb, "%s and neither on_errors=continue nor "
2079 "on_errors=remount-ro was specified%s",
2080 es1, es2);
2081 goto iput_usnjrnl_err_out;
2082 }
2083 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2084 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2085 NVolSetErrors(vol);
2086 }
2087 #endif /* NTFS_RW */
2088 return TRUE;
2089 #ifdef NTFS_RW
2090 iput_usnjrnl_err_out:
2091 if (vol->usnjrnl_j_ino)
2092 iput(vol->usnjrnl_j_ino);
2093 if (vol->usnjrnl_max_ino)
2094 iput(vol->usnjrnl_max_ino);
2095 if (vol->usnjrnl_ino)
2096 iput(vol->usnjrnl_ino);
2097 iput_quota_err_out:
2098 if (vol->quota_q_ino)
2099 iput(vol->quota_q_ino);
2100 if (vol->quota_ino)
2101 iput(vol->quota_ino);
2102 iput(vol->extend_ino);
2103 #endif /* NTFS_RW */
2104 iput_sec_err_out:
2105 iput(vol->secure_ino);
2106 iput_root_err_out:
2107 iput(vol->root_ino);
2108 iput_logfile_err_out:
2109 #ifdef NTFS_RW
2110 if (vol->logfile_ino)
2111 iput(vol->logfile_ino);
2112 iput_vol_err_out:
2113 #endif /* NTFS_RW */
2114 iput(vol->vol_ino);
2115 iput_lcnbmp_err_out:
2116 iput(vol->lcnbmp_ino);
2117 iput_attrdef_err_out:
2118 vol->attrdef_size = 0;
2119 if (vol->attrdef) {
2120 ntfs_free(vol->attrdef);
2121 vol->attrdef = NULL;
2122 }
2123 #ifdef NTFS_RW
2124 iput_upcase_err_out:
2125 #endif /* NTFS_RW */
2126 vol->upcase_len = 0;
2127 down(&ntfs_lock);
2128 if (vol->upcase == default_upcase) {
2129 ntfs_nr_upcase_users--;
2130 vol->upcase = NULL;
2131 }
2132 up(&ntfs_lock);
2133 if (vol->upcase) {
2134 ntfs_free(vol->upcase);
2135 vol->upcase = NULL;
2136 }
2137 iput_mftbmp_err_out:
2138 iput(vol->mftbmp_ino);
2139 iput_mirr_err_out:
2140 #ifdef NTFS_RW
2141 if (vol->mftmirr_ino)
2142 iput(vol->mftmirr_ino);
2143 #endif /* NTFS_RW */
2144 return FALSE;
2145 }
2146
2147 /**
2148 * ntfs_put_super - called by the vfs to unmount a volume
2149 * @sb: vfs superblock of volume to unmount
2150 *
2151 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2152 * the volume is being unmounted (umount system call has been invoked) and it
2153 * releases all inodes and memory belonging to the NTFS specific part of the
2154 * super block.
2155 */
2156 static void ntfs_put_super(struct super_block *sb)
2157 {
2158 ntfs_volume *vol = NTFS_SB(sb);
2159
2160 ntfs_debug("Entering.");
2161 #ifdef NTFS_RW
2162 /*
2163 * Commit all inodes while they are still open in case some of them
2164 * cause others to be dirtied.
2165 */
2166 ntfs_commit_inode(vol->vol_ino);
2167
2168 /* NTFS 3.0+ specific. */
2169 if (vol->major_ver >= 3) {
2170 if (vol->usnjrnl_j_ino)
2171 ntfs_commit_inode(vol->usnjrnl_j_ino);
2172 if (vol->usnjrnl_max_ino)
2173 ntfs_commit_inode(vol->usnjrnl_max_ino);
2174 if (vol->usnjrnl_ino)
2175 ntfs_commit_inode(vol->usnjrnl_ino);
2176 if (vol->quota_q_ino)
2177 ntfs_commit_inode(vol->quota_q_ino);
2178 if (vol->quota_ino)
2179 ntfs_commit_inode(vol->quota_ino);
2180 if (vol->extend_ino)
2181 ntfs_commit_inode(vol->extend_ino);
2182 if (vol->secure_ino)
2183 ntfs_commit_inode(vol->secure_ino);
2184 }
2185
2186 ntfs_commit_inode(vol->root_ino);
2187
2188 down_write(&vol->lcnbmp_lock);
2189 ntfs_commit_inode(vol->lcnbmp_ino);
2190 up_write(&vol->lcnbmp_lock);
2191
2192 down_write(&vol->mftbmp_lock);
2193 ntfs_commit_inode(vol->mftbmp_ino);
2194 up_write(&vol->mftbmp_lock);
2195
2196 if (vol->logfile_ino)
2197 ntfs_commit_inode(vol->logfile_ino);
2198
2199 if (vol->mftmirr_ino)
2200 ntfs_commit_inode(vol->mftmirr_ino);
2201 ntfs_commit_inode(vol->mft_ino);
2202
2203 /*
2204 * If a read-write mount and no volume errors have occured, mark the
2205 * volume clean. Also, re-commit all affected inodes.
2206 */
2207 if (!(sb->s_flags & MS_RDONLY)) {
2208 if (!NVolErrors(vol)) {
2209 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2210 ntfs_warning(sb, "Failed to clear dirty bit "
2211 "in volume information "
2212 "flags. Run chkdsk.");
2213 ntfs_commit_inode(vol->vol_ino);
2214 ntfs_commit_inode(vol->root_ino);
2215 if (vol->mftmirr_ino)
2216 ntfs_commit_inode(vol->mftmirr_ino);
2217 ntfs_commit_inode(vol->mft_ino);
2218 } else {
2219 ntfs_warning(sb, "Volume has errors. Leaving volume "
2220 "marked dirty. Run chkdsk.");
2221 }
2222 }
2223 #endif /* NTFS_RW */
2224
2225 iput(vol->vol_ino);
2226 vol->vol_ino = NULL;
2227
2228 /* NTFS 3.0+ specific clean up. */
2229 if (vol->major_ver >= 3) {
2230 #ifdef NTFS_RW
2231 if (vol->usnjrnl_j_ino) {
2232 iput(vol->usnjrnl_j_ino);
2233 vol->usnjrnl_j_ino = NULL;
2234 }
2235 if (vol->usnjrnl_max_ino) {
2236 iput(vol->usnjrnl_max_ino);
2237 vol->usnjrnl_max_ino = NULL;
2238 }
2239 if (vol->usnjrnl_ino) {
2240 iput(vol->usnjrnl_ino);
2241 vol->usnjrnl_ino = NULL;
2242 }
2243 if (vol->quota_q_ino) {
2244 iput(vol->quota_q_ino);
2245 vol->quota_q_ino = NULL;
2246 }
2247 if (vol->quota_ino) {
2248 iput(vol->quota_ino);
2249 vol->quota_ino = NULL;
2250 }
2251 #endif /* NTFS_RW */
2252 if (vol->extend_ino) {
2253 iput(vol->extend_ino);
2254 vol->extend_ino = NULL;
2255 }
2256 if (vol->secure_ino) {
2257 iput(vol->secure_ino);
2258 vol->secure_ino = NULL;
2259 }
2260 }
2261
2262 iput(vol->root_ino);
2263 vol->root_ino = NULL;
2264
2265 down_write(&vol->lcnbmp_lock);
2266 iput(vol->lcnbmp_ino);
2267 vol->lcnbmp_ino = NULL;
2268 up_write(&vol->lcnbmp_lock);
2269
2270 down_write(&vol->mftbmp_lock);
2271 iput(vol->mftbmp_ino);
2272 vol->mftbmp_ino = NULL;
2273 up_write(&vol->mftbmp_lock);
2274
2275 #ifdef NTFS_RW
2276 if (vol->logfile_ino) {
2277 iput(vol->logfile_ino);
2278 vol->logfile_ino = NULL;
2279 }
2280 if (vol->mftmirr_ino) {
2281 /* Re-commit the mft mirror and mft just in case. */
2282 ntfs_commit_inode(vol->mftmirr_ino);
2283 ntfs_commit_inode(vol->mft_ino);
2284 iput(vol->mftmirr_ino);
2285 vol->mftmirr_ino = NULL;
2286 }
2287 /*
2288 * If any dirty inodes are left, throw away all mft data page cache
2289 * pages to allow a clean umount. This should never happen any more
2290 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2291 * the underlying mft records are written out and cleaned. If it does,
2292 * happen anyway, we want to know...
2293 */
2294 ntfs_commit_inode(vol->mft_ino);
2295 write_inode_now(vol->mft_ino, 1);
2296 if (!list_empty(&sb->s_dirty)) {
2297 const char *s1, *s2;
2298
2299 down(&vol->mft_ino->i_sem);
2300 truncate_inode_pages(vol->mft_ino->i_mapping, 0);
2301 up(&vol->mft_ino->i_sem);
2302 write_inode_now(vol->mft_ino, 1);
2303 if (!list_empty(&sb->s_dirty)) {
2304 static const char *_s1 = "inodes";
2305 static const char *_s2 = "";
2306 s1 = _s1;
2307 s2 = _s2;
2308 } else {
2309 static const char *_s1 = "mft pages";
2310 static const char *_s2 = "They have been thrown "
2311 "away. ";
2312 s1 = _s1;
2313 s2 = _s2;
2314 }
2315 ntfs_error(sb, "Dirty %s found at umount time. %sYou should "
2316 "run chkdsk. Please email "
2317 "linux-ntfs-dev@lists.sourceforge.net and say "
2318 "that you saw this message. Thank you.", s1,
2319 s2);
2320 }
2321 #endif /* NTFS_RW */
2322
2323 iput(vol->mft_ino);
2324 vol->mft_ino = NULL;
2325
2326 /* Throw away the table of attribute definitions. */
2327 vol->attrdef_size = 0;
2328 if (vol->attrdef) {
2329 ntfs_free(vol->attrdef);
2330 vol->attrdef = NULL;
2331 }
2332 vol->upcase_len = 0;
2333 /*
2334 * Destroy the global default upcase table if necessary. Also decrease
2335 * the number of upcase users if we are a user.
2336 */
2337 down(&ntfs_lock);
2338 if (vol->upcase == default_upcase) {
2339 ntfs_nr_upcase_users--;
2340 vol->upcase = NULL;
2341 }
2342 if (!ntfs_nr_upcase_users && default_upcase) {
2343 ntfs_free(default_upcase);
2344 default_upcase = NULL;
2345 }
2346 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2347 free_compression_buffers();
2348 up(&ntfs_lock);
2349 if (vol->upcase) {
2350 ntfs_free(vol->upcase);
2351 vol->upcase = NULL;
2352 }
2353 if (vol->nls_map) {
2354 unload_nls(vol->nls_map);
2355 vol->nls_map = NULL;
2356 }
2357 sb->s_fs_info = NULL;
2358 kfree(vol);
2359 return;
2360 }
2361
2362 /**
2363 * get_nr_free_clusters - return the number of free clusters on a volume
2364 * @vol: ntfs volume for which to obtain free cluster count
2365 *
2366 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2367 * actually calculate the number of clusters in use instead because this
2368 * allows us to not care about partial pages as these will be just zero filled
2369 * and hence not be counted as allocated clusters.
2370 *
2371 * The only particularity is that clusters beyond the end of the logical ntfs
2372 * volume will be marked as allocated to prevent errors which means we have to
2373 * discount those at the end. This is important as the cluster bitmap always
2374 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2375 * the logical volume and marked in use when they are not as they do not exist.
2376 *
2377 * If any pages cannot be read we assume all clusters in the erroring pages are
2378 * in use. This means we return an underestimate on errors which is better than
2379 * an overestimate.
2380 */
2381 static s64 get_nr_free_clusters(ntfs_volume *vol)
2382 {
2383 s64 nr_free = vol->nr_clusters;
2384 u32 *kaddr;
2385 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2386 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2387 struct page *page;
2388 pgoff_t index, max_index;
2389
2390 ntfs_debug("Entering.");
2391 /* Serialize accesses to the cluster bitmap. */
2392 down_read(&vol->lcnbmp_lock);
2393 /*
2394 * Convert the number of bits into bytes rounded up, then convert into
2395 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2396 * full and one partial page max_index = 2.
2397 */
2398 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2399 PAGE_CACHE_SHIFT;
2400 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2401 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2402 max_index, PAGE_CACHE_SIZE / 4);
2403 for (index = 0; index < max_index; index++) {
2404 unsigned int i;
2405 /*
2406 * Read the page from page cache, getting it from backing store
2407 * if necessary, and increment the use count.
2408 */
2409 page = read_cache_page(mapping, index, (filler_t*)readpage,
2410 NULL);
2411 /* Ignore pages which errored synchronously. */
2412 if (IS_ERR(page)) {
2413 ntfs_debug("Sync read_cache_page() error. Skipping "
2414 "page (index 0x%lx).", index);
2415 nr_free -= PAGE_CACHE_SIZE * 8;
2416 continue;
2417 }
2418 wait_on_page_locked(page);
2419 /* Ignore pages which errored asynchronously. */
2420 if (!PageUptodate(page)) {
2421 ntfs_debug("Async read_cache_page() error. Skipping "
2422 "page (index 0x%lx).", index);
2423 page_cache_release(page);
2424 nr_free -= PAGE_CACHE_SIZE * 8;
2425 continue;
2426 }
2427 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2428 /*
2429 * For each 4 bytes, subtract the number of set bits. If this
2430 * is the last page and it is partial we don't really care as
2431 * it just means we do a little extra work but it won't affect
2432 * the result as all out of range bytes are set to zero by
2433 * ntfs_readpage().
2434 */
2435 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2436 nr_free -= (s64)hweight32(kaddr[i]);
2437 kunmap_atomic(kaddr, KM_USER0);
2438 page_cache_release(page);
2439 }
2440 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2441 /*
2442 * Fixup for eventual bits outside logical ntfs volume (see function
2443 * description above).
2444 */
2445 if (vol->nr_clusters & 63)
2446 nr_free += 64 - (vol->nr_clusters & 63);
2447 up_read(&vol->lcnbmp_lock);
2448 /* If errors occured we may well have gone below zero, fix this. */
2449 if (nr_free < 0)
2450 nr_free = 0;
2451 ntfs_debug("Exiting.");
2452 return nr_free;
2453 }
2454
2455 /**
2456 * __get_nr_free_mft_records - return the number of free inodes on a volume
2457 * @vol: ntfs volume for which to obtain free inode count
2458 * @nr_free: number of mft records in filesystem
2459 * @max_index: maximum number of pages containing set bits
2460 *
2461 * Calculate the number of free mft records (inodes) on the mounted NTFS
2462 * volume @vol. We actually calculate the number of mft records in use instead
2463 * because this allows us to not care about partial pages as these will be just
2464 * zero filled and hence not be counted as allocated mft record.
2465 *
2466 * If any pages cannot be read we assume all mft records in the erroring pages
2467 * are in use. This means we return an underestimate on errors which is better
2468 * than an overestimate.
2469 *
2470 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2471 */
2472 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2473 s64 nr_free, const pgoff_t max_index)
2474 {
2475 u32 *kaddr;
2476 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2477 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2478 struct page *page;
2479 pgoff_t index;
2480
2481 ntfs_debug("Entering.");
2482 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2483 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2484 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2485 for (index = 0; index < max_index; index++) {
2486 unsigned int i;
2487 /*
2488 * Read the page from page cache, getting it from backing store
2489 * if necessary, and increment the use count.
2490 */
2491 page = read_cache_page(mapping, index, (filler_t*)readpage,
2492 NULL);
2493 /* Ignore pages which errored synchronously. */
2494 if (IS_ERR(page)) {
2495 ntfs_debug("Sync read_cache_page() error. Skipping "
2496 "page (index 0x%lx).", index);
2497 nr_free -= PAGE_CACHE_SIZE * 8;
2498 continue;
2499 }
2500 wait_on_page_locked(page);
2501 /* Ignore pages which errored asynchronously. */
2502 if (!PageUptodate(page)) {
2503 ntfs_debug("Async read_cache_page() error. Skipping "
2504 "page (index 0x%lx).", index);
2505 page_cache_release(page);
2506 nr_free -= PAGE_CACHE_SIZE * 8;
2507 continue;
2508 }
2509 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2510 /*
2511 * For each 4 bytes, subtract the number of set bits. If this
2512 * is the last page and it is partial we don't really care as
2513 * it just means we do a little extra work but it won't affect
2514 * the result as all out of range bytes are set to zero by
2515 * ntfs_readpage().
2516 */
2517 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
2518 nr_free -= (s64)hweight32(kaddr[i]);
2519 kunmap_atomic(kaddr, KM_USER0);
2520 page_cache_release(page);
2521 }
2522 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2523 index - 1);
2524 /* If errors occured we may well have gone below zero, fix this. */
2525 if (nr_free < 0)
2526 nr_free = 0;
2527 ntfs_debug("Exiting.");
2528 return nr_free;
2529 }
2530
2531 /**
2532 * ntfs_statfs - return information about mounted NTFS volume
2533 * @sb: super block of mounted volume
2534 * @sfs: statfs structure in which to return the information
2535 *
2536 * Return information about the mounted NTFS volume @sb in the statfs structure
2537 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2538 * called). We interpret the values to be correct of the moment in time at
2539 * which we are called. Most values are variable otherwise and this isn't just
2540 * the free values but the totals as well. For example we can increase the
2541 * total number of file nodes if we run out and we can keep doing this until
2542 * there is no more space on the volume left at all.
2543 *
2544 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2545 * ustat system calls.
2546 *
2547 * Return 0 on success or -errno on error.
2548 */
2549 static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs)
2550 {
2551 s64 size;
2552 ntfs_volume *vol = NTFS_SB(sb);
2553 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2554 pgoff_t max_index;
2555 unsigned long flags;
2556
2557 ntfs_debug("Entering.");
2558 /* Type of filesystem. */
2559 sfs->f_type = NTFS_SB_MAGIC;
2560 /* Optimal transfer block size. */
2561 sfs->f_bsize = PAGE_CACHE_SIZE;
2562 /*
2563 * Total data blocks in filesystem in units of f_bsize and since
2564 * inodes are also stored in data blocs ($MFT is a file) this is just
2565 * the total clusters.
2566 */
2567 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2568 PAGE_CACHE_SHIFT;
2569 /* Free data blocks in filesystem in units of f_bsize. */
2570 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2571 PAGE_CACHE_SHIFT;
2572 if (size < 0LL)
2573 size = 0LL;
2574 /* Free blocks avail to non-superuser, same as above on NTFS. */
2575 sfs->f_bavail = sfs->f_bfree = size;
2576 /* Serialize accesses to the inode bitmap. */
2577 down_read(&vol->mftbmp_lock);
2578 read_lock_irqsave(&mft_ni->size_lock, flags);
2579 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2580 /*
2581 * Convert the maximum number of set bits into bytes rounded up, then
2582 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2583 * have one full and one partial page max_index = 2.
2584 */
2585 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2586 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2587 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2588 /* Number of inodes in filesystem (at this point in time). */
2589 sfs->f_files = size;
2590 /* Free inodes in fs (based on current total count). */
2591 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2592 up_read(&vol->mftbmp_lock);
2593 /*
2594 * File system id. This is extremely *nix flavour dependent and even
2595 * within Linux itself all fs do their own thing. I interpret this to
2596 * mean a unique id associated with the mounted fs and not the id
2597 * associated with the filesystem driver, the latter is already given
2598 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2599 * volume serial number splitting it into two 32-bit parts. We enter
2600 * the least significant 32-bits in f_fsid[0] and the most significant
2601 * 32-bits in f_fsid[1].
2602 */
2603 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2604 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2605 /* Maximum length of filenames. */
2606 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2607 return 0;
2608 }
2609
2610 /**
2611 * The complete super operations.
2612 */
2613 static struct super_operations ntfs_sops = {
2614 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2615 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2616 .put_inode = ntfs_put_inode, /* VFS: Called just before
2617 the inode reference count
2618 is decreased. */
2619 #ifdef NTFS_RW
2620 //.dirty_inode = NULL, /* VFS: Called from
2621 // __mark_inode_dirty(). */
2622 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2623 disk. */
2624 //.drop_inode = NULL, /* VFS: Called just after the
2625 // inode reference count has
2626 // been decreased to zero.
2627 // NOTE: The inode lock is
2628 // held. See fs/inode.c::
2629 // generic_drop_inode(). */
2630 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2631 // Called when i_count becomes
2632 // 0 and i_nlink is also 0. */
2633 //.write_super = NULL, /* Flush dirty super block to
2634 // disk. */
2635 //.sync_fs = NULL, /* ? */
2636 //.write_super_lockfs = NULL, /* ? */
2637 //.unlockfs = NULL, /* ? */
2638 #endif /* NTFS_RW */
2639 .put_super = ntfs_put_super, /* Syscall: umount. */
2640 .statfs = ntfs_statfs, /* Syscall: statfs */
2641 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2642 .clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is
2643 removed from memory. */
2644 //.umount_begin = NULL, /* Forced umount. */
2645 .show_options = ntfs_show_options, /* Show mount options in
2646 proc. */
2647 };
2648
2649 /**
2650 * ntfs_fill_super - mount an ntfs filesystem
2651 * @sb: super block of ntfs filesystem to mount
2652 * @opt: string containing the mount options
2653 * @silent: silence error output
2654 *
2655 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2656 * with the mount otions in @data with the NTFS filesystem.
2657 *
2658 * If @silent is true, remain silent even if errors are detected. This is used
2659 * during bootup, when the kernel tries to mount the root filesystem with all
2660 * registered filesystems one after the other until one succeeds. This implies
2661 * that all filesystems except the correct one will quite correctly and
2662 * expectedly return an error, but nobody wants to see error messages when in
2663 * fact this is what is supposed to happen.
2664 *
2665 * NOTE: @sb->s_flags contains the mount options flags.
2666 */
2667 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2668 {
2669 ntfs_volume *vol;
2670 struct buffer_head *bh;
2671 struct inode *tmp_ino;
2672 int result;
2673
2674 ntfs_debug("Entering.");
2675 #ifndef NTFS_RW
2676 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2677 #endif /* ! NTFS_RW */
2678 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2679 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2680 vol = NTFS_SB(sb);
2681 if (!vol) {
2682 if (!silent)
2683 ntfs_error(sb, "Allocation of NTFS volume structure "
2684 "failed. Aborting mount...");
2685 return -ENOMEM;
2686 }
2687 /* Initialize ntfs_volume structure. */
2688 *vol = (ntfs_volume) {
2689 .sb = sb,
2690 /*
2691 * Default is group and other don't have any access to files or
2692 * directories while owner has full access. Further, files by
2693 * default are not executable but directories are of course
2694 * browseable.
2695 */
2696 .fmask = 0177,
2697 .dmask = 0077,
2698 };
2699 init_rwsem(&vol->mftbmp_lock);
2700 init_rwsem(&vol->lcnbmp_lock);
2701
2702 unlock_kernel();
2703
2704 /* By default, enable sparse support. */
2705 NVolSetSparseEnabled(vol);
2706
2707 /* Important to get the mount options dealt with now. */
2708 if (!parse_options(vol, (char*)opt))
2709 goto err_out_now;
2710
2711 /*
2712 * TODO: Fail safety check. In the future we should really be able to
2713 * cope with this being the case, but for now just bail out.
2714 */
2715 if (bdev_hardsect_size(sb->s_bdev) > NTFS_BLOCK_SIZE) {
2716 if (!silent)
2717 ntfs_error(sb, "Device has unsupported hardsect_size.");
2718 goto err_out_now;
2719 }
2720
2721 /* Setup the device access block size to NTFS_BLOCK_SIZE. */
2722 if (sb_set_blocksize(sb, NTFS_BLOCK_SIZE) != NTFS_BLOCK_SIZE) {
2723 if (!silent)
2724 ntfs_error(sb, "Unable to set block size.");
2725 goto err_out_now;
2726 }
2727
2728 /* Get the size of the device in units of NTFS_BLOCK_SIZE bytes. */
2729 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2730 NTFS_BLOCK_SIZE_BITS;
2731
2732 /* Read the boot sector and return unlocked buffer head to it. */
2733 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2734 if (!silent)
2735 ntfs_error(sb, "Not an NTFS volume.");
2736 goto err_out_now;
2737 }
2738
2739 /*
2740 * Extract the data from the boot sector and setup the ntfs super block
2741 * using it.
2742 */
2743 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2744
2745 /* Initialize the cluster and mft allocators. */
2746 ntfs_setup_allocators(vol);
2747
2748 brelse(bh);
2749
2750 if (!result) {
2751 if (!silent)
2752 ntfs_error(sb, "Unsupported NTFS filesystem.");
2753 goto err_out_now;
2754 }
2755
2756 /*
2757 * TODO: When we start coping with sector sizes different from
2758 * NTFS_BLOCK_SIZE, we now probably need to set the blocksize of the
2759 * device (probably to NTFS_BLOCK_SIZE).
2760 */
2761
2762 /* Setup remaining fields in the super block. */
2763 sb->s_magic = NTFS_SB_MAGIC;
2764
2765 /*
2766 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2767 * sb->s_maxbytes = ~0ULL >> 1;
2768 * But the kernel uses a long as the page cache page index which on
2769 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2770 * defined to the maximum the page cache page index can cope with
2771 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2772 */
2773 sb->s_maxbytes = MAX_LFS_FILESIZE;
2774
2775 sb->s_time_gran = 100;
2776
2777 /*
2778 * Now load the metadata required for the page cache and our address
2779 * space operations to function. We do this by setting up a specialised
2780 * read_inode method and then just calling the normal iget() to obtain
2781 * the inode for $MFT which is sufficient to allow our normal inode
2782 * operations and associated address space operations to function.
2783 */
2784 sb->s_op = &ntfs_sops;
2785 tmp_ino = new_inode(sb);
2786 if (!tmp_ino) {
2787 if (!silent)
2788 ntfs_error(sb, "Failed to load essential metadata.");
2789 goto err_out_now;
2790 }
2791 tmp_ino->i_ino = FILE_MFT;
2792 insert_inode_hash(tmp_ino);
2793 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2794 if (!silent)
2795 ntfs_error(sb, "Failed to load essential metadata.");
2796 goto iput_tmp_ino_err_out_now;
2797 }
2798 down(&ntfs_lock);
2799 /*
2800 * The current mount is a compression user if the cluster size is
2801 * less than or equal 4kiB.
2802 */
2803 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2804 result = allocate_compression_buffers();
2805 if (result) {
2806 ntfs_error(NULL, "Failed to allocate buffers "
2807 "for compression engine.");
2808 ntfs_nr_compression_users--;
2809 up(&ntfs_lock);
2810 goto iput_tmp_ino_err_out_now;
2811 }
2812 }
2813 /*
2814 * Generate the global default upcase table if necessary. Also
2815 * temporarily increment the number of upcase users to avoid race
2816 * conditions with concurrent (u)mounts.
2817 */
2818 if (!default_upcase)
2819 default_upcase = generate_default_upcase();
2820 ntfs_nr_upcase_users++;
2821 up(&ntfs_lock);
2822 /*
2823 * From now on, ignore @silent parameter. If we fail below this line,
2824 * it will be due to a corrupt fs or a system error, so we report it.
2825 */
2826 /*
2827 * Open the system files with normal access functions and complete
2828 * setting up the ntfs super block.
2829 */
2830 if (!load_system_files(vol)) {
2831 ntfs_error(sb, "Failed to load system files.");
2832 goto unl_upcase_iput_tmp_ino_err_out_now;
2833 }
2834 if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2835 /* We increment i_count simulating an ntfs_iget(). */
2836 atomic_inc(&vol->root_ino->i_count);
2837 ntfs_debug("Exiting, status successful.");
2838 /* Release the default upcase if it has no users. */
2839 down(&ntfs_lock);
2840 if (!--ntfs_nr_upcase_users && default_upcase) {
2841 ntfs_free(default_upcase);
2842 default_upcase = NULL;
2843 }
2844 up(&ntfs_lock);
2845 sb->s_export_op = &ntfs_export_ops;
2846 lock_kernel();
2847 return 0;
2848 }
2849 ntfs_error(sb, "Failed to allocate root directory.");
2850 /* Clean up after the successful load_system_files() call from above. */
2851 // TODO: Use ntfs_put_super() instead of repeating all this code...
2852 // FIXME: Should mark the volume clean as the error is most likely
2853 // -ENOMEM.
2854 iput(vol->vol_ino);
2855 vol->vol_ino = NULL;
2856 /* NTFS 3.0+ specific clean up. */
2857 if (vol->major_ver >= 3) {
2858 #ifdef NTFS_RW
2859 if (vol->usnjrnl_j_ino) {
2860 iput(vol->usnjrnl_j_ino);
2861 vol->usnjrnl_j_ino = NULL;
2862 }
2863 if (vol->usnjrnl_max_ino) {
2864 iput(vol->usnjrnl_max_ino);
2865 vol->usnjrnl_max_ino = NULL;
2866 }
2867 if (vol->usnjrnl_ino) {
2868 iput(vol->usnjrnl_ino);
2869 vol->usnjrnl_ino = NULL;
2870 }
2871 if (vol->quota_q_ino) {
2872 iput(vol->quota_q_ino);
2873 vol->quota_q_ino = NULL;
2874 }
2875 if (vol->quota_ino) {
2876 iput(vol->quota_ino);
2877 vol->quota_ino = NULL;
2878 }
2879 #endif /* NTFS_RW */
2880 if (vol->extend_ino) {
2881 iput(vol->extend_ino);
2882 vol->extend_ino = NULL;
2883 }
2884 if (vol->secure_ino) {
2885 iput(vol->secure_ino);
2886 vol->secure_ino = NULL;
2887 }
2888 }
2889 iput(vol->root_ino);
2890 vol->root_ino = NULL;
2891 iput(vol->lcnbmp_ino);
2892 vol->lcnbmp_ino = NULL;
2893 iput(vol->mftbmp_ino);
2894 vol->mftbmp_ino = NULL;
2895 #ifdef NTFS_RW
2896 if (vol->logfile_ino) {
2897 iput(vol->logfile_ino);
2898 vol->logfile_ino = NULL;
2899 }
2900 if (vol->mftmirr_ino) {
2901 iput(vol->mftmirr_ino);
2902 vol->mftmirr_ino = NULL;
2903 }
2904 #endif /* NTFS_RW */
2905 /* Throw away the table of attribute definitions. */
2906 vol->attrdef_size = 0;
2907 if (vol->attrdef) {
2908 ntfs_free(vol->attrdef);
2909 vol->attrdef = NULL;
2910 }
2911 vol->upcase_len = 0;
2912 down(&ntfs_lock);
2913 if (vol->upcase == default_upcase) {
2914 ntfs_nr_upcase_users--;
2915 vol->upcase = NULL;
2916 }
2917 up(&ntfs_lock);
2918 if (vol->upcase) {
2919 ntfs_free(vol->upcase);
2920 vol->upcase = NULL;
2921 }
2922 if (vol->nls_map) {
2923 unload_nls(vol->nls_map);
2924 vol->nls_map = NULL;
2925 }
2926 /* Error exit code path. */
2927 unl_upcase_iput_tmp_ino_err_out_now:
2928 /*
2929 * Decrease the number of upcase users and destroy the global default
2930 * upcase table if necessary.
2931 */
2932 down(&ntfs_lock);
2933 if (!--ntfs_nr_upcase_users && default_upcase) {
2934 ntfs_free(default_upcase);
2935 default_upcase = NULL;
2936 }
2937 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2938 free_compression_buffers();
2939 up(&ntfs_lock);
2940 iput_tmp_ino_err_out_now:
2941 iput(tmp_ino);
2942 if (vol->mft_ino && vol->mft_ino != tmp_ino)
2943 iput(vol->mft_ino);
2944 vol->mft_ino = NULL;
2945 /*
2946 * This is needed to get ntfs_clear_extent_inode() called for each
2947 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
2948 * leak resources and B) a subsequent mount fails automatically due to
2949 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
2950 * method again... FIXME: Do we need to do this twice now because of
2951 * attribute inodes? I think not, so leave as is for now... (AIA)
2952 */
2953 if (invalidate_inodes(sb)) {
2954 ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
2955 "driver bug.");
2956 /* Copied from fs/super.c. I just love this message. (-; */
2957 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
2958 "seconds. Have a nice day...\n");
2959 }
2960 /* Errors at this stage are irrelevant. */
2961 err_out_now:
2962 lock_kernel();
2963 sb->s_fs_info = NULL;
2964 kfree(vol);
2965 ntfs_debug("Failed, returning -EINVAL.");
2966 return -EINVAL;
2967 }
2968
2969 /*
2970 * This is a slab cache to optimize allocations and deallocations of Unicode
2971 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
2972 * (255) Unicode characters + a terminating NULL Unicode character.
2973 */
2974 kmem_cache_t *ntfs_name_cache;
2975
2976 /* Slab caches for efficient allocation/deallocation of inodes. */
2977 kmem_cache_t *ntfs_inode_cache;
2978 kmem_cache_t *ntfs_big_inode_cache;
2979
2980 /* Init once constructor for the inode slab cache. */
2981 static void ntfs_big_inode_init_once(void *foo, kmem_cache_t *cachep,
2982 unsigned long flags)
2983 {
2984 ntfs_inode *ni = (ntfs_inode *)foo;
2985
2986 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2987 SLAB_CTOR_CONSTRUCTOR)
2988 inode_init_once(VFS_I(ni));
2989 }
2990
2991 /*
2992 * Slab caches to optimize allocations and deallocations of attribute search
2993 * contexts and index contexts, respectively.
2994 */
2995 kmem_cache_t *ntfs_attr_ctx_cache;
2996 kmem_cache_t *ntfs_index_ctx_cache;
2997
2998 /* Driver wide semaphore. */
2999 DECLARE_MUTEX(ntfs_lock);
3000
3001 static struct super_block *ntfs_get_sb(struct file_system_type *fs_type,
3002 int flags, const char *dev_name, void *data)
3003 {
3004 return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3005 }
3006
3007 static struct file_system_type ntfs_fs_type = {
3008 .owner = THIS_MODULE,
3009 .name = "ntfs",
3010 .get_sb = ntfs_get_sb,
3011 .kill_sb = kill_block_super,
3012 .fs_flags = FS_REQUIRES_DEV,
3013 };
3014
3015 /* Stable names for the slab caches. */
3016 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3017 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3018 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3019 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3020 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3021
3022 static int __init init_ntfs_fs(void)
3023 {
3024 int err = 0;
3025
3026 /* This may be ugly but it results in pretty output so who cares. (-8 */
3027 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3028 #ifdef NTFS_RW
3029 "W"
3030 #else
3031 "O"
3032 #endif
3033 #ifdef DEBUG
3034 " DEBUG"
3035 #endif
3036 #ifdef MODULE
3037 " MODULE"
3038 #endif
3039 "].\n");
3040
3041 ntfs_debug("Debug messages are enabled.");
3042
3043 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3044 sizeof(ntfs_index_context), 0 /* offset */,
3045 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3046 if (!ntfs_index_ctx_cache) {
3047 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3048 ntfs_index_ctx_cache_name);
3049 goto ictx_err_out;
3050 }
3051 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3052 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3053 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
3054 if (!ntfs_attr_ctx_cache) {
3055 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3056 ntfs_attr_ctx_cache_name);
3057 goto actx_err_out;
3058 }
3059
3060 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3061 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3062 SLAB_HWCACHE_ALIGN, NULL, NULL);
3063 if (!ntfs_name_cache) {
3064 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3065 ntfs_name_cache_name);
3066 goto name_err_out;
3067 }
3068
3069 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3070 sizeof(ntfs_inode), 0,
3071 SLAB_RECLAIM_ACCOUNT, NULL, NULL);
3072 if (!ntfs_inode_cache) {
3073 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3074 ntfs_inode_cache_name);
3075 goto inode_err_out;
3076 }
3077
3078 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3079 sizeof(big_ntfs_inode), 0,
3080 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
3081 ntfs_big_inode_init_once, NULL);
3082 if (!ntfs_big_inode_cache) {
3083 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3084 ntfs_big_inode_cache_name);
3085 goto big_inode_err_out;
3086 }
3087
3088 /* Register the ntfs sysctls. */
3089 err = ntfs_sysctl(1);
3090 if (err) {
3091 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3092 goto sysctl_err_out;
3093 }
3094
3095 err = register_filesystem(&ntfs_fs_type);
3096 if (!err) {
3097 ntfs_debug("NTFS driver registered successfully.");
3098 return 0; /* Success! */
3099 }
3100 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3101
3102 sysctl_err_out:
3103 kmem_cache_destroy(ntfs_big_inode_cache);
3104 big_inode_err_out:
3105 kmem_cache_destroy(ntfs_inode_cache);
3106 inode_err_out:
3107 kmem_cache_destroy(ntfs_name_cache);
3108 name_err_out:
3109 kmem_cache_destroy(ntfs_attr_ctx_cache);
3110 actx_err_out:
3111 kmem_cache_destroy(ntfs_index_ctx_cache);
3112 ictx_err_out:
3113 if (!err) {
3114 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3115 "registration...\n");
3116 err = -ENOMEM;
3117 }
3118 return err;
3119 }
3120
3121 static void __exit exit_ntfs_fs(void)
3122 {
3123 int err = 0;
3124
3125 ntfs_debug("Unregistering NTFS driver.");
3126
3127 unregister_filesystem(&ntfs_fs_type);
3128
3129 if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1))
3130 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3131 ntfs_big_inode_cache_name);
3132 if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1))
3133 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3134 ntfs_inode_cache_name);
3135 if (kmem_cache_destroy(ntfs_name_cache) && (err = 1))
3136 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3137 ntfs_name_cache_name);
3138 if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1))
3139 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3140 ntfs_attr_ctx_cache_name);
3141 if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1))
3142 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
3143 ntfs_index_ctx_cache_name);
3144 if (err)
3145 printk(KERN_CRIT "NTFS: This causes memory to leak! There is "
3146 "probably a BUG in the driver! Please report "
3147 "you saw this message to "
3148 "linux-ntfs-dev@lists.sourceforge.net\n");
3149 /* Unregister the ntfs sysctls. */
3150 ntfs_sysctl(0);
3151 }
3152
3153 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3154 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2005 Anton Altaparmakov");
3155 MODULE_VERSION(NTFS_VERSION);
3156 MODULE_LICENSE("GPL");
3157 #ifdef DEBUG
3158 module_param(debug_msgs, bool, 0);
3159 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3160 #endif
3161
3162 module_init(init_ntfs_fs)
3163 module_exit(exit_ntfs_fs)
This page took 0.157838 seconds and 6 git commands to generate.