Merge branch 'for-linus' of git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
32
33 #include "ocfs2.h"
34
35 #include "alloc.h"
36 #include "aops.h"
37 #include "dlmglue.h"
38 #include "extent_map.h"
39 #include "file.h"
40 #include "inode.h"
41 #include "journal.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "symlink.h"
45
46 #include "buffer_head_io.h"
47
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50 {
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)fe->i_blkno, 7, fe->i_signature);
82 goto bail;
83 }
84
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 mlog(ML_ERROR, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock);
89 goto bail;
90 }
91
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96 iblock;
97 buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 if (!buffer_cache_bh) {
99 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100 goto bail;
101 }
102
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh)
108 && ocfs2_inode_is_new(inode)) {
109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110 if (!kaddr) {
111 mlog(ML_ERROR, "couldn't kmap!\n");
112 goto bail;
113 }
114 memcpy(kaddr + (bh_result->b_size * iblock),
115 buffer_cache_bh->b_data,
116 bh_result->b_size);
117 kunmap_atomic(kaddr, KM_USER0);
118 set_buffer_uptodate(bh_result);
119 }
120 brelse(buffer_cache_bh);
121 }
122
123 map_bh(bh_result, inode->i_sb,
124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125
126 err = 0;
127
128 bail:
129 if (bh)
130 brelse(bh);
131
132 mlog_exit(err);
133 return err;
134 }
135
136 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
138 {
139 int err = 0;
140 unsigned int ext_flags;
141 u64 p_blkno, past_eof;
142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
143
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145 (unsigned long long)iblock, bh_result, create);
146
147 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149 inode, inode->i_ino);
150
151 if (S_ISLNK(inode->i_mode)) {
152 /* this always does I/O for some reason. */
153 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
154 goto bail;
155 }
156
157 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
158 &ext_flags);
159 if (err) {
160 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
161 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162 (unsigned long long)p_blkno);
163 goto bail;
164 }
165
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows block_prepare_write() to zero.
171 */
172 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
173 "ino %lu, iblock %llu\n", inode->i_ino,
174 (unsigned long long)iblock);
175
176 /* Treat the unwritten extent as a hole for zeroing purposes. */
177 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
178 map_bh(bh_result, inode->i_sb, p_blkno);
179
180 if (!ocfs2_sparse_alloc(osb)) {
181 if (p_blkno == 0) {
182 err = -EIO;
183 mlog(ML_ERROR,
184 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
185 (unsigned long long)iblock,
186 (unsigned long long)p_blkno,
187 (unsigned long long)OCFS2_I(inode)->ip_blkno);
188 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
189 dump_stack();
190 }
191
192 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
193 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
194 (unsigned long long)past_eof);
195
196 if (create && (iblock >= past_eof))
197 set_buffer_new(bh_result);
198 }
199
200 bail:
201 if (err < 0)
202 err = -EIO;
203
204 mlog_exit(err);
205 return err;
206 }
207
208 static int ocfs2_readpage(struct file *file, struct page *page)
209 {
210 struct inode *inode = page->mapping->host;
211 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
212 int ret, unlock = 1;
213
214 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
215
216 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
217 if (ret != 0) {
218 if (ret == AOP_TRUNCATED_PAGE)
219 unlock = 0;
220 mlog_errno(ret);
221 goto out;
222 }
223
224 down_read(&OCFS2_I(inode)->ip_alloc_sem);
225
226 /*
227 * i_size might have just been updated as we grabed the meta lock. We
228 * might now be discovering a truncate that hit on another node.
229 * block_read_full_page->get_block freaks out if it is asked to read
230 * beyond the end of a file, so we check here. Callers
231 * (generic_file_read, fault->nopage) are clever enough to check i_size
232 * and notice that the page they just read isn't needed.
233 *
234 * XXX sys_readahead() seems to get that wrong?
235 */
236 if (start >= i_size_read(inode)) {
237 char *addr = kmap(page);
238 memset(addr, 0, PAGE_SIZE);
239 flush_dcache_page(page);
240 kunmap(page);
241 SetPageUptodate(page);
242 ret = 0;
243 goto out_alloc;
244 }
245
246 ret = ocfs2_data_lock_with_page(inode, 0, page);
247 if (ret != 0) {
248 if (ret == AOP_TRUNCATED_PAGE)
249 unlock = 0;
250 mlog_errno(ret);
251 goto out_alloc;
252 }
253
254 ret = block_read_full_page(page, ocfs2_get_block);
255 unlock = 0;
256
257 ocfs2_data_unlock(inode, 0);
258 out_alloc:
259 up_read(&OCFS2_I(inode)->ip_alloc_sem);
260 ocfs2_meta_unlock(inode, 0);
261 out:
262 if (unlock)
263 unlock_page(page);
264 mlog_exit(ret);
265 return ret;
266 }
267
268 /* Note: Because we don't support holes, our allocation has
269 * already happened (allocation writes zeros to the file data)
270 * so we don't have to worry about ordered writes in
271 * ocfs2_writepage.
272 *
273 * ->writepage is called during the process of invalidating the page cache
274 * during blocked lock processing. It can't block on any cluster locks
275 * to during block mapping. It's relying on the fact that the block
276 * mapping can't have disappeared under the dirty pages that it is
277 * being asked to write back.
278 */
279 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
280 {
281 int ret;
282
283 mlog_entry("(0x%p)\n", page);
284
285 ret = block_write_full_page(page, ocfs2_get_block, wbc);
286
287 mlog_exit(ret);
288
289 return ret;
290 }
291
292 /*
293 * This is called from ocfs2_write_zero_page() which has handled it's
294 * own cluster locking and has ensured allocation exists for those
295 * blocks to be written.
296 */
297 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
298 unsigned from, unsigned to)
299 {
300 int ret;
301
302 down_read(&OCFS2_I(inode)->ip_alloc_sem);
303
304 ret = block_prepare_write(page, from, to, ocfs2_get_block);
305
306 up_read(&OCFS2_I(inode)->ip_alloc_sem);
307
308 return ret;
309 }
310
311 /* Taken from ext3. We don't necessarily need the full blown
312 * functionality yet, but IMHO it's better to cut and paste the whole
313 * thing so we can avoid introducing our own bugs (and easily pick up
314 * their fixes when they happen) --Mark */
315 int walk_page_buffers( handle_t *handle,
316 struct buffer_head *head,
317 unsigned from,
318 unsigned to,
319 int *partial,
320 int (*fn)( handle_t *handle,
321 struct buffer_head *bh))
322 {
323 struct buffer_head *bh;
324 unsigned block_start, block_end;
325 unsigned blocksize = head->b_size;
326 int err, ret = 0;
327 struct buffer_head *next;
328
329 for ( bh = head, block_start = 0;
330 ret == 0 && (bh != head || !block_start);
331 block_start = block_end, bh = next)
332 {
333 next = bh->b_this_page;
334 block_end = block_start + blocksize;
335 if (block_end <= from || block_start >= to) {
336 if (partial && !buffer_uptodate(bh))
337 *partial = 1;
338 continue;
339 }
340 err = (*fn)(handle, bh);
341 if (!ret)
342 ret = err;
343 }
344 return ret;
345 }
346
347 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
348 struct page *page,
349 unsigned from,
350 unsigned to)
351 {
352 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
353 handle_t *handle = NULL;
354 int ret = 0;
355
356 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
357 if (!handle) {
358 ret = -ENOMEM;
359 mlog_errno(ret);
360 goto out;
361 }
362
363 if (ocfs2_should_order_data(inode)) {
364 ret = walk_page_buffers(handle,
365 page_buffers(page),
366 from, to, NULL,
367 ocfs2_journal_dirty_data);
368 if (ret < 0)
369 mlog_errno(ret);
370 }
371 out:
372 if (ret) {
373 if (handle)
374 ocfs2_commit_trans(osb, handle);
375 handle = ERR_PTR(ret);
376 }
377 return handle;
378 }
379
380 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
381 {
382 sector_t status;
383 u64 p_blkno = 0;
384 int err = 0;
385 struct inode *inode = mapping->host;
386
387 mlog_entry("(block = %llu)\n", (unsigned long long)block);
388
389 /* We don't need to lock journal system files, since they aren't
390 * accessed concurrently from multiple nodes.
391 */
392 if (!INODE_JOURNAL(inode)) {
393 err = ocfs2_meta_lock(inode, NULL, 0);
394 if (err) {
395 if (err != -ENOENT)
396 mlog_errno(err);
397 goto bail;
398 }
399 down_read(&OCFS2_I(inode)->ip_alloc_sem);
400 }
401
402 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
403
404 if (!INODE_JOURNAL(inode)) {
405 up_read(&OCFS2_I(inode)->ip_alloc_sem);
406 ocfs2_meta_unlock(inode, 0);
407 }
408
409 if (err) {
410 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
411 (unsigned long long)block);
412 mlog_errno(err);
413 goto bail;
414 }
415
416
417 bail:
418 status = err ? 0 : p_blkno;
419
420 mlog_exit((int)status);
421
422 return status;
423 }
424
425 /*
426 * TODO: Make this into a generic get_blocks function.
427 *
428 * From do_direct_io in direct-io.c:
429 * "So what we do is to permit the ->get_blocks function to populate
430 * bh.b_size with the size of IO which is permitted at this offset and
431 * this i_blkbits."
432 *
433 * This function is called directly from get_more_blocks in direct-io.c.
434 *
435 * called like this: dio->get_blocks(dio->inode, fs_startblk,
436 * fs_count, map_bh, dio->rw == WRITE);
437 */
438 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
439 struct buffer_head *bh_result, int create)
440 {
441 int ret;
442 u64 p_blkno, inode_blocks, contig_blocks;
443 unsigned int ext_flags;
444 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
445 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
446
447 /* This function won't even be called if the request isn't all
448 * nicely aligned and of the right size, so there's no need
449 * for us to check any of that. */
450
451 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
452
453 /*
454 * Any write past EOF is not allowed because we'd be extending.
455 */
456 if (create && (iblock + max_blocks) > inode_blocks) {
457 ret = -EIO;
458 goto bail;
459 }
460
461 /* This figures out the size of the next contiguous block, and
462 * our logical offset */
463 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
464 &contig_blocks, &ext_flags);
465 if (ret) {
466 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
467 (unsigned long long)iblock);
468 ret = -EIO;
469 goto bail;
470 }
471
472 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
473 ocfs2_error(inode->i_sb,
474 "Inode %llu has a hole at block %llu\n",
475 (unsigned long long)OCFS2_I(inode)->ip_blkno,
476 (unsigned long long)iblock);
477 ret = -EROFS;
478 goto bail;
479 }
480
481 /*
482 * get_more_blocks() expects us to describe a hole by clearing
483 * the mapped bit on bh_result().
484 *
485 * Consider an unwritten extent as a hole.
486 */
487 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
488 map_bh(bh_result, inode->i_sb, p_blkno);
489 else {
490 /*
491 * ocfs2_prepare_inode_for_write() should have caught
492 * the case where we'd be filling a hole and triggered
493 * a buffered write instead.
494 */
495 if (create) {
496 ret = -EIO;
497 mlog_errno(ret);
498 goto bail;
499 }
500
501 clear_buffer_mapped(bh_result);
502 }
503
504 /* make sure we don't map more than max_blocks blocks here as
505 that's all the kernel will handle at this point. */
506 if (max_blocks < contig_blocks)
507 contig_blocks = max_blocks;
508 bh_result->b_size = contig_blocks << blocksize_bits;
509 bail:
510 return ret;
511 }
512
513 /*
514 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
515 * particularly interested in the aio/dio case. Like the core uses
516 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
517 * truncation on another.
518 */
519 static void ocfs2_dio_end_io(struct kiocb *iocb,
520 loff_t offset,
521 ssize_t bytes,
522 void *private)
523 {
524 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
525 int level;
526
527 /* this io's submitter should not have unlocked this before we could */
528 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
529
530 ocfs2_iocb_clear_rw_locked(iocb);
531
532 level = ocfs2_iocb_rw_locked_level(iocb);
533 if (!level)
534 up_read(&inode->i_alloc_sem);
535 ocfs2_rw_unlock(inode, level);
536 }
537
538 /*
539 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
540 * from ext3. PageChecked() bits have been removed as OCFS2 does not
541 * do journalled data.
542 */
543 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
544 {
545 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
546
547 journal_invalidatepage(journal, page, offset);
548 }
549
550 static int ocfs2_releasepage(struct page *page, gfp_t wait)
551 {
552 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
553
554 if (!page_has_buffers(page))
555 return 0;
556 return journal_try_to_free_buffers(journal, page, wait);
557 }
558
559 static ssize_t ocfs2_direct_IO(int rw,
560 struct kiocb *iocb,
561 const struct iovec *iov,
562 loff_t offset,
563 unsigned long nr_segs)
564 {
565 struct file *file = iocb->ki_filp;
566 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
567 int ret;
568
569 mlog_entry_void();
570
571 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
572 /*
573 * We get PR data locks even for O_DIRECT. This
574 * allows concurrent O_DIRECT I/O but doesn't let
575 * O_DIRECT with extending and buffered zeroing writes
576 * race. If they did race then the buffered zeroing
577 * could be written back after the O_DIRECT I/O. It's
578 * one thing to tell people not to mix buffered and
579 * O_DIRECT writes, but expecting them to understand
580 * that file extension is also an implicit buffered
581 * write is too much. By getting the PR we force
582 * writeback of the buffered zeroing before
583 * proceeding.
584 */
585 ret = ocfs2_data_lock(inode, 0);
586 if (ret < 0) {
587 mlog_errno(ret);
588 goto out;
589 }
590 ocfs2_data_unlock(inode, 0);
591 }
592
593 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
594 inode->i_sb->s_bdev, iov, offset,
595 nr_segs,
596 ocfs2_direct_IO_get_blocks,
597 ocfs2_dio_end_io);
598 out:
599 mlog_exit(ret);
600 return ret;
601 }
602
603 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
604 u32 cpos,
605 unsigned int *start,
606 unsigned int *end)
607 {
608 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
609
610 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
611 unsigned int cpp;
612
613 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
614
615 cluster_start = cpos % cpp;
616 cluster_start = cluster_start << osb->s_clustersize_bits;
617
618 cluster_end = cluster_start + osb->s_clustersize;
619 }
620
621 BUG_ON(cluster_start > PAGE_SIZE);
622 BUG_ON(cluster_end > PAGE_SIZE);
623
624 if (start)
625 *start = cluster_start;
626 if (end)
627 *end = cluster_end;
628 }
629
630 /*
631 * 'from' and 'to' are the region in the page to avoid zeroing.
632 *
633 * If pagesize > clustersize, this function will avoid zeroing outside
634 * of the cluster boundary.
635 *
636 * from == to == 0 is code for "zero the entire cluster region"
637 */
638 static void ocfs2_clear_page_regions(struct page *page,
639 struct ocfs2_super *osb, u32 cpos,
640 unsigned from, unsigned to)
641 {
642 void *kaddr;
643 unsigned int cluster_start, cluster_end;
644
645 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
646
647 kaddr = kmap_atomic(page, KM_USER0);
648
649 if (from || to) {
650 if (from > cluster_start)
651 memset(kaddr + cluster_start, 0, from - cluster_start);
652 if (to < cluster_end)
653 memset(kaddr + to, 0, cluster_end - to);
654 } else {
655 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
656 }
657
658 kunmap_atomic(kaddr, KM_USER0);
659 }
660
661 /*
662 * Some of this taken from block_prepare_write(). We already have our
663 * mapping by now though, and the entire write will be allocating or
664 * it won't, so not much need to use BH_New.
665 *
666 * This will also skip zeroing, which is handled externally.
667 */
668 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
669 struct inode *inode, unsigned int from,
670 unsigned int to, int new)
671 {
672 int ret = 0;
673 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
674 unsigned int block_end, block_start;
675 unsigned int bsize = 1 << inode->i_blkbits;
676
677 if (!page_has_buffers(page))
678 create_empty_buffers(page, bsize, 0);
679
680 head = page_buffers(page);
681 for (bh = head, block_start = 0; bh != head || !block_start;
682 bh = bh->b_this_page, block_start += bsize) {
683 block_end = block_start + bsize;
684
685 /*
686 * Ignore blocks outside of our i/o range -
687 * they may belong to unallocated clusters.
688 */
689 if (block_start >= to || block_end <= from) {
690 if (PageUptodate(page))
691 set_buffer_uptodate(bh);
692 continue;
693 }
694
695 /*
696 * For an allocating write with cluster size >= page
697 * size, we always write the entire page.
698 */
699
700 if (buffer_new(bh))
701 clear_buffer_new(bh);
702
703 if (!buffer_mapped(bh)) {
704 map_bh(bh, inode->i_sb, *p_blkno);
705 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
706 }
707
708 if (PageUptodate(page)) {
709 if (!buffer_uptodate(bh))
710 set_buffer_uptodate(bh);
711 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
712 (block_start < from || block_end > to)) {
713 ll_rw_block(READ, 1, &bh);
714 *wait_bh++=bh;
715 }
716
717 *p_blkno = *p_blkno + 1;
718 }
719
720 /*
721 * If we issued read requests - let them complete.
722 */
723 while(wait_bh > wait) {
724 wait_on_buffer(*--wait_bh);
725 if (!buffer_uptodate(*wait_bh))
726 ret = -EIO;
727 }
728
729 if (ret == 0 || !new)
730 return ret;
731
732 /*
733 * If we get -EIO above, zero out any newly allocated blocks
734 * to avoid exposing stale data.
735 */
736 bh = head;
737 block_start = 0;
738 do {
739 void *kaddr;
740
741 block_end = block_start + bsize;
742 if (block_end <= from)
743 goto next_bh;
744 if (block_start >= to)
745 break;
746
747 kaddr = kmap_atomic(page, KM_USER0);
748 memset(kaddr+block_start, 0, bh->b_size);
749 flush_dcache_page(page);
750 kunmap_atomic(kaddr, KM_USER0);
751 set_buffer_uptodate(bh);
752 mark_buffer_dirty(bh);
753
754 next_bh:
755 block_start = block_end;
756 bh = bh->b_this_page;
757 } while (bh != head);
758
759 return ret;
760 }
761
762 /*
763 * This will copy user data from the buffer page in the splice
764 * context.
765 *
766 * For now, we ignore SPLICE_F_MOVE as that would require some extra
767 * communication out all the way to ocfs2_write().
768 */
769 int ocfs2_map_and_write_splice_data(struct inode *inode,
770 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
771 unsigned int *ret_from, unsigned int *ret_to)
772 {
773 int ret;
774 unsigned int to, from, cluster_start, cluster_end;
775 char *src, *dst;
776 struct ocfs2_splice_write_priv *sp = wc->w_private;
777 struct pipe_buffer *buf = sp->s_buf;
778 unsigned long bytes, src_from;
779 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
780
781 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
782 &cluster_end);
783
784 from = sp->s_offset;
785 src_from = sp->s_buf_offset;
786 bytes = wc->w_count;
787
788 if (wc->w_large_pages) {
789 /*
790 * For cluster size < page size, we have to
791 * calculate pos within the cluster and obey
792 * the rightmost boundary.
793 */
794 bytes = min(bytes, (unsigned long)(osb->s_clustersize
795 - (wc->w_pos & (osb->s_clustersize - 1))));
796 }
797 to = from + bytes;
798
799 if (wc->w_this_page_new)
800 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
801 cluster_start, cluster_end, 1);
802 else
803 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
804 from, to, 0);
805 if (ret) {
806 mlog_errno(ret);
807 goto out;
808 }
809
810 BUG_ON(from > PAGE_CACHE_SIZE);
811 BUG_ON(to > PAGE_CACHE_SIZE);
812 BUG_ON(from > osb->s_clustersize);
813 BUG_ON(to > osb->s_clustersize);
814
815 src = buf->ops->map(sp->s_pipe, buf, 1);
816 dst = kmap_atomic(wc->w_this_page, KM_USER1);
817 memcpy(dst + from, src + src_from, bytes);
818 kunmap_atomic(wc->w_this_page, KM_USER1);
819 buf->ops->unmap(sp->s_pipe, buf, src);
820
821 wc->w_finished_copy = 1;
822
823 *ret_from = from;
824 *ret_to = to;
825 out:
826
827 return bytes ? (unsigned int)bytes : ret;
828 }
829
830 /*
831 * This will copy user data from the iovec in the buffered write
832 * context.
833 */
834 int ocfs2_map_and_write_user_data(struct inode *inode,
835 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
836 unsigned int *ret_from, unsigned int *ret_to)
837 {
838 int ret;
839 unsigned int to, from, cluster_start, cluster_end;
840 unsigned long bytes, src_from;
841 char *dst;
842 struct ocfs2_buffered_write_priv *bp = wc->w_private;
843 const struct iovec *cur_iov = bp->b_cur_iov;
844 char __user *buf;
845 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
846
847 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
848 &cluster_end);
849
850 buf = cur_iov->iov_base + bp->b_cur_off;
851 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
852
853 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
854
855 /*
856 * This is a lot of comparisons, but it reads quite
857 * easily, which is important here.
858 */
859 /* Stay within the src page */
860 bytes = PAGE_SIZE - src_from;
861 /* Stay within the vector */
862 bytes = min(bytes,
863 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
864 /* Stay within count */
865 bytes = min(bytes, (unsigned long)wc->w_count);
866 /*
867 * For clustersize > page size, just stay within
868 * target page, otherwise we have to calculate pos
869 * within the cluster and obey the rightmost
870 * boundary.
871 */
872 if (wc->w_large_pages) {
873 /*
874 * For cluster size < page size, we have to
875 * calculate pos within the cluster and obey
876 * the rightmost boundary.
877 */
878 bytes = min(bytes, (unsigned long)(osb->s_clustersize
879 - (wc->w_pos & (osb->s_clustersize - 1))));
880 } else {
881 /*
882 * cluster size > page size is the most common
883 * case - we just stay within the target page
884 * boundary.
885 */
886 bytes = min(bytes, PAGE_CACHE_SIZE - from);
887 }
888
889 to = from + bytes;
890
891 if (wc->w_this_page_new)
892 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
893 cluster_start, cluster_end, 1);
894 else
895 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
896 from, to, 0);
897 if (ret) {
898 mlog_errno(ret);
899 goto out;
900 }
901
902 BUG_ON(from > PAGE_CACHE_SIZE);
903 BUG_ON(to > PAGE_CACHE_SIZE);
904 BUG_ON(from > osb->s_clustersize);
905 BUG_ON(to > osb->s_clustersize);
906
907 dst = kmap(wc->w_this_page);
908 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
909 kunmap(wc->w_this_page);
910
911 /*
912 * XXX: This is slow, but simple. The caller of
913 * ocfs2_buffered_write_cluster() is responsible for
914 * passing through the iovecs, so it's difficult to
915 * predict what our next step is in here after our
916 * initial write. A future version should be pushing
917 * that iovec manipulation further down.
918 *
919 * By setting this, we indicate that a copy from user
920 * data was done, and subsequent calls for this
921 * cluster will skip copying more data.
922 */
923 wc->w_finished_copy = 1;
924
925 *ret_from = from;
926 *ret_to = to;
927 out:
928
929 return bytes ? (unsigned int)bytes : ret;
930 }
931
932 /*
933 * Map, fill and write a page to disk.
934 *
935 * The work of copying data is done via callback. Newly allocated
936 * pages which don't take user data will be zero'd (set 'new' to
937 * indicate an allocating write)
938 *
939 * Returns a negative error code or the number of bytes copied into
940 * the page.
941 */
942 int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
943 u64 *p_blkno, struct page *page,
944 struct ocfs2_write_ctxt *wc, int new)
945 {
946 int ret, copied = 0;
947 unsigned int from = 0, to = 0;
948 unsigned int cluster_start, cluster_end;
949 unsigned int zero_from = 0, zero_to = 0;
950
951 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
952 &cluster_start, &cluster_end);
953
954 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
955 && !wc->w_finished_copy) {
956
957 wc->w_this_page = page;
958 wc->w_this_page_new = new;
959 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
960 if (ret < 0) {
961 mlog_errno(ret);
962 goto out;
963 }
964
965 copied = ret;
966
967 zero_from = from;
968 zero_to = to;
969 if (new) {
970 from = cluster_start;
971 to = cluster_end;
972 }
973 } else {
974 /*
975 * If we haven't allocated the new page yet, we
976 * shouldn't be writing it out without copying user
977 * data. This is likely a math error from the caller.
978 */
979 BUG_ON(!new);
980
981 from = cluster_start;
982 to = cluster_end;
983
984 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
985 cluster_start, cluster_end, 1);
986 if (ret) {
987 mlog_errno(ret);
988 goto out;
989 }
990 }
991
992 /*
993 * Parts of newly allocated pages need to be zero'd.
994 *
995 * Above, we have also rewritten 'to' and 'from' - as far as
996 * the rest of the function is concerned, the entire cluster
997 * range inside of a page needs to be written.
998 *
999 * We can skip this if the page is up to date - it's already
1000 * been zero'd from being read in as a hole.
1001 */
1002 if (new && !PageUptodate(page))
1003 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1004 wc->w_cpos, zero_from, zero_to);
1005
1006 flush_dcache_page(page);
1007
1008 if (ocfs2_should_order_data(inode)) {
1009 ret = walk_page_buffers(handle,
1010 page_buffers(page),
1011 from, to, NULL,
1012 ocfs2_journal_dirty_data);
1013 if (ret < 0)
1014 mlog_errno(ret);
1015 }
1016
1017 /*
1018 * We don't use generic_commit_write() because we need to
1019 * handle our own i_size update.
1020 */
1021 ret = block_commit_write(page, from, to);
1022 if (ret)
1023 mlog_errno(ret);
1024 out:
1025
1026 return copied ? copied : ret;
1027 }
1028
1029 /*
1030 * Do the actual write of some data into an inode. Optionally allocate
1031 * in order to fulfill the write.
1032 *
1033 * cpos is the logical cluster offset within the file to write at
1034 *
1035 * 'phys' is the physical mapping of that offset. a 'phys' value of
1036 * zero indicates that allocation is required. In this case, data_ac
1037 * and meta_ac should be valid (meta_ac can be null if metadata
1038 * allocation isn't required).
1039 */
1040 static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1041 struct buffer_head *di_bh,
1042 struct ocfs2_alloc_context *data_ac,
1043 struct ocfs2_alloc_context *meta_ac,
1044 struct ocfs2_write_ctxt *wc)
1045 {
1046 int ret, i, numpages = 1, new;
1047 unsigned int copied = 0;
1048 u32 tmp_pos;
1049 u64 v_blkno, p_blkno;
1050 struct address_space *mapping = file->f_mapping;
1051 struct inode *inode = mapping->host;
1052 unsigned long index, start;
1053 struct page **cpages;
1054
1055 new = phys == 0 ? 1 : 0;
1056
1057 /*
1058 * Figure out how many pages we'll be manipulating here. For
1059 * non allocating write, we just change the one
1060 * page. Otherwise, we'll need a whole clusters worth.
1061 */
1062 if (new)
1063 numpages = ocfs2_pages_per_cluster(inode->i_sb);
1064
1065 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1066 if (!cpages) {
1067 ret = -ENOMEM;
1068 mlog_errno(ret);
1069 return ret;
1070 }
1071
1072 /*
1073 * Fill our page array first. That way we've grabbed enough so
1074 * that we can zero and flush if we error after adding the
1075 * extent.
1076 */
1077 if (new) {
1078 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1079 wc->w_cpos);
1080 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1081 } else {
1082 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1083 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1084 }
1085
1086 for(i = 0; i < numpages; i++) {
1087 index = start + i;
1088
1089 cpages[i] = grab_cache_page(mapping, index);
1090 if (!cpages[i]) {
1091 ret = -ENOMEM;
1092 mlog_errno(ret);
1093 goto out;
1094 }
1095 }
1096
1097 if (new) {
1098 /*
1099 * This is safe to call with the page locks - it won't take
1100 * any additional semaphores or cluster locks.
1101 */
1102 tmp_pos = wc->w_cpos;
1103 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1104 &tmp_pos, 1, di_bh, handle,
1105 data_ac, meta_ac, NULL);
1106 /*
1107 * This shouldn't happen because we must have already
1108 * calculated the correct meta data allocation required. The
1109 * internal tree allocation code should know how to increase
1110 * transaction credits itself.
1111 *
1112 * If need be, we could handle -EAGAIN for a
1113 * RESTART_TRANS here.
1114 */
1115 mlog_bug_on_msg(ret == -EAGAIN,
1116 "Inode %llu: EAGAIN return during allocation.\n",
1117 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1118 if (ret < 0) {
1119 mlog_errno(ret);
1120 goto out;
1121 }
1122 }
1123
1124 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1125 NULL);
1126 if (ret < 0) {
1127
1128 /*
1129 * XXX: Should we go readonly here?
1130 */
1131
1132 mlog_errno(ret);
1133 goto out;
1134 }
1135
1136 BUG_ON(p_blkno == 0);
1137
1138 for(i = 0; i < numpages; i++) {
1139 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1140 wc, new);
1141 if (ret < 0) {
1142 mlog_errno(ret);
1143 goto out;
1144 }
1145
1146 copied += ret;
1147 }
1148
1149 out:
1150 for(i = 0; i < numpages; i++) {
1151 unlock_page(cpages[i]);
1152 mark_page_accessed(cpages[i]);
1153 page_cache_release(cpages[i]);
1154 }
1155 kfree(cpages);
1156
1157 return copied ? copied : ret;
1158 }
1159
1160 static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1161 struct ocfs2_super *osb, loff_t pos,
1162 size_t count, ocfs2_page_writer *cb,
1163 void *cb_priv)
1164 {
1165 wc->w_count = count;
1166 wc->w_pos = pos;
1167 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1168 wc->w_finished_copy = 0;
1169
1170 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1171 wc->w_large_pages = 1;
1172 else
1173 wc->w_large_pages = 0;
1174
1175 wc->w_write_data_page = cb;
1176 wc->w_private = cb_priv;
1177 }
1178
1179 /*
1180 * Write a cluster to an inode. The cluster may not be allocated yet,
1181 * in which case it will be. This only exists for buffered writes -
1182 * O_DIRECT takes a more "traditional" path through the kernel.
1183 *
1184 * The caller is responsible for incrementing pos, written counts, etc
1185 *
1186 * For file systems that don't support sparse files, pre-allocation
1187 * and page zeroing up until cpos should be done prior to this
1188 * function call.
1189 *
1190 * Callers should be holding i_sem, and the rw cluster lock.
1191 *
1192 * Returns the number of user bytes written, or less than zero for
1193 * error.
1194 */
1195 ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1196 size_t count, ocfs2_page_writer *actor,
1197 void *priv)
1198 {
1199 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1200 ssize_t written = 0;
1201 u32 phys;
1202 struct inode *inode = file->f_mapping->host;
1203 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1204 struct buffer_head *di_bh = NULL;
1205 struct ocfs2_dinode *di;
1206 struct ocfs2_alloc_context *data_ac = NULL;
1207 struct ocfs2_alloc_context *meta_ac = NULL;
1208 handle_t *handle;
1209 struct ocfs2_write_ctxt wc;
1210
1211 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1212
1213 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1214 if (ret) {
1215 mlog_errno(ret);
1216 goto out;
1217 }
1218 di = (struct ocfs2_dinode *)di_bh->b_data;
1219
1220 /*
1221 * Take alloc sem here to prevent concurrent lookups. That way
1222 * the mapping, zeroing and tree manipulation within
1223 * ocfs2_write() will be safe against ->readpage(). This
1224 * should also serve to lock out allocation from a shared
1225 * writeable region.
1226 */
1227 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1228
1229 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
1230 if (ret) {
1231 mlog_errno(ret);
1232 goto out_meta;
1233 }
1234
1235 /* phys == 0 means that allocation is required. */
1236 if (phys == 0) {
1237 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1238 if (ret) {
1239 mlog_errno(ret);
1240 goto out_meta;
1241 }
1242
1243 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1244 }
1245
1246 ret = ocfs2_data_lock(inode, 1);
1247 if (ret) {
1248 mlog_errno(ret);
1249 goto out_meta;
1250 }
1251
1252 handle = ocfs2_start_trans(osb, credits);
1253 if (IS_ERR(handle)) {
1254 ret = PTR_ERR(handle);
1255 mlog_errno(ret);
1256 goto out_data;
1257 }
1258
1259 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1260 meta_ac, &wc);
1261 if (written < 0) {
1262 ret = written;
1263 mlog_errno(ret);
1264 goto out_commit;
1265 }
1266
1267 ret = ocfs2_journal_access(handle, inode, di_bh,
1268 OCFS2_JOURNAL_ACCESS_WRITE);
1269 if (ret) {
1270 mlog_errno(ret);
1271 goto out_commit;
1272 }
1273
1274 pos += written;
1275 if (pos > inode->i_size) {
1276 i_size_write(inode, pos);
1277 mark_inode_dirty(inode);
1278 }
1279 inode->i_blocks = ocfs2_inode_sector_count(inode);
1280 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1281 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1282 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1283 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1284
1285 ret = ocfs2_journal_dirty(handle, di_bh);
1286 if (ret)
1287 mlog_errno(ret);
1288
1289 out_commit:
1290 ocfs2_commit_trans(osb, handle);
1291
1292 out_data:
1293 ocfs2_data_unlock(inode, 1);
1294
1295 out_meta:
1296 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1297 ocfs2_meta_unlock(inode, 1);
1298
1299 out:
1300 brelse(di_bh);
1301 if (data_ac)
1302 ocfs2_free_alloc_context(data_ac);
1303 if (meta_ac)
1304 ocfs2_free_alloc_context(meta_ac);
1305
1306 return written ? written : ret;
1307 }
1308
1309 const struct address_space_operations ocfs2_aops = {
1310 .readpage = ocfs2_readpage,
1311 .writepage = ocfs2_writepage,
1312 .bmap = ocfs2_bmap,
1313 .sync_page = block_sync_page,
1314 .direct_IO = ocfs2_direct_IO,
1315 .invalidatepage = ocfs2_invalidatepage,
1316 .releasepage = ocfs2_releasepage,
1317 .migratepage = buffer_migrate_page,
1318 };
This page took 0.058728 seconds and 5 git commands to generate.