Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139 leave:
140 return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 ocfs2_free_file_private(inode, file);
171 return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 int datasync)
176 {
177 int err = 0;
178 journal_t *journal;
179 struct inode *inode = file->f_mapping->host;
180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 OCFS2_I(inode)->ip_blkno,
184 file->f_path.dentry->d_name.len,
185 file->f_path.dentry->d_name.name,
186 (unsigned long long)datasync);
187
188 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
189 return -EROFS;
190
191 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
192 if (err)
193 return err;
194
195 /*
196 * Probably don't need the i_mutex at all in here, just putting it here
197 * to be consistent with how fsync used to be called, someone more
198 * familiar with the fs could possibly remove it.
199 */
200 mutex_lock(&inode->i_mutex);
201 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
202 /*
203 * We still have to flush drive's caches to get data to the
204 * platter
205 */
206 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
207 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
208 goto bail;
209 }
210
211 journal = osb->journal->j_journal;
212 err = jbd2_journal_force_commit(journal);
213
214 bail:
215 if (err)
216 mlog_errno(err);
217 mutex_unlock(&inode->i_mutex);
218
219 return (err < 0) ? -EIO : 0;
220 }
221
222 int ocfs2_should_update_atime(struct inode *inode,
223 struct vfsmount *vfsmnt)
224 {
225 struct timespec now;
226 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
227
228 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 return 0;
230
231 if ((inode->i_flags & S_NOATIME) ||
232 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 return 0;
234
235 /*
236 * We can be called with no vfsmnt structure - NFSD will
237 * sometimes do this.
238 *
239 * Note that our action here is different than touch_atime() -
240 * if we can't tell whether this is a noatime mount, then we
241 * don't know whether to trust the value of s_atime_quantum.
242 */
243 if (vfsmnt == NULL)
244 return 0;
245
246 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
247 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 return 0;
249
250 if (vfsmnt->mnt_flags & MNT_RELATIME) {
251 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
252 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
253 return 1;
254
255 return 0;
256 }
257
258 now = CURRENT_TIME;
259 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
260 return 0;
261 else
262 return 1;
263 }
264
265 int ocfs2_update_inode_atime(struct inode *inode,
266 struct buffer_head *bh)
267 {
268 int ret;
269 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
270 handle_t *handle;
271 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
272
273 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
274 if (IS_ERR(handle)) {
275 ret = PTR_ERR(handle);
276 mlog_errno(ret);
277 goto out;
278 }
279
280 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
281 OCFS2_JOURNAL_ACCESS_WRITE);
282 if (ret) {
283 mlog_errno(ret);
284 goto out_commit;
285 }
286
287 /*
288 * Don't use ocfs2_mark_inode_dirty() here as we don't always
289 * have i_mutex to guard against concurrent changes to other
290 * inode fields.
291 */
292 inode->i_atime = CURRENT_TIME;
293 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
294 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
295 ocfs2_journal_dirty(handle, bh);
296
297 out_commit:
298 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
299 out:
300 return ret;
301 }
302
303 static int ocfs2_set_inode_size(handle_t *handle,
304 struct inode *inode,
305 struct buffer_head *fe_bh,
306 u64 new_i_size)
307 {
308 int status;
309
310 i_size_write(inode, new_i_size);
311 inode->i_blocks = ocfs2_inode_sector_count(inode);
312 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
313
314 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
315 if (status < 0) {
316 mlog_errno(status);
317 goto bail;
318 }
319
320 bail:
321 return status;
322 }
323
324 int ocfs2_simple_size_update(struct inode *inode,
325 struct buffer_head *di_bh,
326 u64 new_i_size)
327 {
328 int ret;
329 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
330 handle_t *handle = NULL;
331
332 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
333 if (IS_ERR(handle)) {
334 ret = PTR_ERR(handle);
335 mlog_errno(ret);
336 goto out;
337 }
338
339 ret = ocfs2_set_inode_size(handle, inode, di_bh,
340 new_i_size);
341 if (ret < 0)
342 mlog_errno(ret);
343
344 ocfs2_commit_trans(osb, handle);
345 out:
346 return ret;
347 }
348
349 static int ocfs2_cow_file_pos(struct inode *inode,
350 struct buffer_head *fe_bh,
351 u64 offset)
352 {
353 int status;
354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 unsigned int num_clusters = 0;
356 unsigned int ext_flags = 0;
357
358 /*
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 * CoW either.
362 */
363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 return 0;
365
366 status = ocfs2_get_clusters(inode, cpos, &phys,
367 &num_clusters, &ext_flags);
368 if (status) {
369 mlog_errno(status);
370 goto out;
371 }
372
373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 goto out;
375
376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377
378 out:
379 return status;
380 }
381
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 struct inode *inode,
384 struct buffer_head *fe_bh,
385 u64 new_i_size)
386 {
387 int status;
388 handle_t *handle;
389 struct ocfs2_dinode *di;
390 u64 cluster_bytes;
391
392 /*
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
396 */
397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 if (status) {
399 mlog_errno(status);
400 return status;
401 }
402
403 /* TODO: This needs to actually orphan the inode in this
404 * transaction. */
405
406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 if (IS_ERR(handle)) {
408 status = PTR_ERR(handle);
409 mlog_errno(status);
410 goto out;
411 }
412
413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 OCFS2_JOURNAL_ACCESS_WRITE);
415 if (status < 0) {
416 mlog_errno(status);
417 goto out_commit;
418 }
419
420 /*
421 * Do this before setting i_size.
422 */
423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 cluster_bytes);
426 if (status) {
427 mlog_errno(status);
428 goto out_commit;
429 }
430
431 i_size_write(inode, new_i_size);
432 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
433
434 di = (struct ocfs2_dinode *) fe_bh->b_data;
435 di->i_size = cpu_to_le64(new_i_size);
436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438
439 ocfs2_journal_dirty(handle, fe_bh);
440
441 out_commit:
442 ocfs2_commit_trans(osb, handle);
443 out:
444 return status;
445 }
446
447 static int ocfs2_truncate_file(struct inode *inode,
448 struct buffer_head *di_bh,
449 u64 new_i_size)
450 {
451 int status = 0;
452 struct ocfs2_dinode *fe = NULL;
453 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
454
455 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
456 * already validated it */
457 fe = (struct ocfs2_dinode *) di_bh->b_data;
458
459 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)le64_to_cpu(fe->i_size),
461 (unsigned long long)new_i_size);
462
463 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
464 "Inode %llu, inode i_size = %lld != di "
465 "i_size = %llu, i_flags = 0x%x\n",
466 (unsigned long long)OCFS2_I(inode)->ip_blkno,
467 i_size_read(inode),
468 (unsigned long long)le64_to_cpu(fe->i_size),
469 le32_to_cpu(fe->i_flags));
470
471 if (new_i_size > le64_to_cpu(fe->i_size)) {
472 trace_ocfs2_truncate_file_error(
473 (unsigned long long)le64_to_cpu(fe->i_size),
474 (unsigned long long)new_i_size);
475 status = -EINVAL;
476 mlog_errno(status);
477 goto bail;
478 }
479
480 down_write(&OCFS2_I(inode)->ip_alloc_sem);
481
482 ocfs2_resv_discard(&osb->osb_la_resmap,
483 &OCFS2_I(inode)->ip_la_data_resv);
484
485 /*
486 * The inode lock forced other nodes to sync and drop their
487 * pages, which (correctly) happens even if we have a truncate
488 * without allocation change - ocfs2 cluster sizes can be much
489 * greater than page size, so we have to truncate them
490 * anyway.
491 */
492 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
493 truncate_inode_pages(inode->i_mapping, new_i_size);
494
495 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
496 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
497 i_size_read(inode), 1);
498 if (status)
499 mlog_errno(status);
500
501 goto bail_unlock_sem;
502 }
503
504 /* alright, we're going to need to do a full blown alloc size
505 * change. Orphan the inode so that recovery can complete the
506 * truncate if necessary. This does the task of marking
507 * i_size. */
508 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
509 if (status < 0) {
510 mlog_errno(status);
511 goto bail_unlock_sem;
512 }
513
514 status = ocfs2_commit_truncate(osb, inode, di_bh);
515 if (status < 0) {
516 mlog_errno(status);
517 goto bail_unlock_sem;
518 }
519
520 /* TODO: orphan dir cleanup here. */
521 bail_unlock_sem:
522 up_write(&OCFS2_I(inode)->ip_alloc_sem);
523
524 bail:
525 if (!status && OCFS2_I(inode)->ip_clusters == 0)
526 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
527
528 return status;
529 }
530
531 /*
532 * extend file allocation only here.
533 * we'll update all the disk stuff, and oip->alloc_size
534 *
535 * expect stuff to be locked, a transaction started and enough data /
536 * metadata reservations in the contexts.
537 *
538 * Will return -EAGAIN, and a reason if a restart is needed.
539 * If passed in, *reason will always be set, even in error.
540 */
541 int ocfs2_add_inode_data(struct ocfs2_super *osb,
542 struct inode *inode,
543 u32 *logical_offset,
544 u32 clusters_to_add,
545 int mark_unwritten,
546 struct buffer_head *fe_bh,
547 handle_t *handle,
548 struct ocfs2_alloc_context *data_ac,
549 struct ocfs2_alloc_context *meta_ac,
550 enum ocfs2_alloc_restarted *reason_ret)
551 {
552 int ret;
553 struct ocfs2_extent_tree et;
554
555 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
556 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
557 clusters_to_add, mark_unwritten,
558 data_ac, meta_ac, reason_ret);
559
560 return ret;
561 }
562
563 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
564 u32 clusters_to_add, int mark_unwritten)
565 {
566 int status = 0;
567 int restart_func = 0;
568 int credits;
569 u32 prev_clusters;
570 struct buffer_head *bh = NULL;
571 struct ocfs2_dinode *fe = NULL;
572 handle_t *handle = NULL;
573 struct ocfs2_alloc_context *data_ac = NULL;
574 struct ocfs2_alloc_context *meta_ac = NULL;
575 enum ocfs2_alloc_restarted why;
576 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
577 struct ocfs2_extent_tree et;
578 int did_quota = 0;
579
580 /*
581 * Unwritten extent only exists for file systems which
582 * support holes.
583 */
584 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
585
586 status = ocfs2_read_inode_block(inode, &bh);
587 if (status < 0) {
588 mlog_errno(status);
589 goto leave;
590 }
591 fe = (struct ocfs2_dinode *) bh->b_data;
592
593 restart_all:
594 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
595
596 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
597 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
598 &data_ac, &meta_ac);
599 if (status) {
600 mlog_errno(status);
601 goto leave;
602 }
603
604 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
605 handle = ocfs2_start_trans(osb, credits);
606 if (IS_ERR(handle)) {
607 status = PTR_ERR(handle);
608 handle = NULL;
609 mlog_errno(status);
610 goto leave;
611 }
612
613 restarted_transaction:
614 trace_ocfs2_extend_allocation(
615 (unsigned long long)OCFS2_I(inode)->ip_blkno,
616 (unsigned long long)i_size_read(inode),
617 le32_to_cpu(fe->i_clusters), clusters_to_add,
618 why, restart_func);
619
620 status = dquot_alloc_space_nodirty(inode,
621 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
622 if (status)
623 goto leave;
624 did_quota = 1;
625
626 /* reserve a write to the file entry early on - that we if we
627 * run out of credits in the allocation path, we can still
628 * update i_size. */
629 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
630 OCFS2_JOURNAL_ACCESS_WRITE);
631 if (status < 0) {
632 mlog_errno(status);
633 goto leave;
634 }
635
636 prev_clusters = OCFS2_I(inode)->ip_clusters;
637
638 status = ocfs2_add_inode_data(osb,
639 inode,
640 &logical_start,
641 clusters_to_add,
642 mark_unwritten,
643 bh,
644 handle,
645 data_ac,
646 meta_ac,
647 &why);
648 if ((status < 0) && (status != -EAGAIN)) {
649 if (status != -ENOSPC)
650 mlog_errno(status);
651 goto leave;
652 }
653
654 ocfs2_journal_dirty(handle, bh);
655
656 spin_lock(&OCFS2_I(inode)->ip_lock);
657 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
658 spin_unlock(&OCFS2_I(inode)->ip_lock);
659 /* Release unused quota reservation */
660 dquot_free_space(inode,
661 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
662 did_quota = 0;
663
664 if (why != RESTART_NONE && clusters_to_add) {
665 if (why == RESTART_META) {
666 restart_func = 1;
667 status = 0;
668 } else {
669 BUG_ON(why != RESTART_TRANS);
670
671 status = ocfs2_allocate_extend_trans(handle, 1);
672 if (status < 0) {
673 /* handle still has to be committed at
674 * this point. */
675 status = -ENOMEM;
676 mlog_errno(status);
677 goto leave;
678 }
679 goto restarted_transaction;
680 }
681 }
682
683 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
684 le32_to_cpu(fe->i_clusters),
685 (unsigned long long)le64_to_cpu(fe->i_size),
686 OCFS2_I(inode)->ip_clusters,
687 (unsigned long long)i_size_read(inode));
688
689 leave:
690 if (status < 0 && did_quota)
691 dquot_free_space(inode,
692 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
693 if (handle) {
694 ocfs2_commit_trans(osb, handle);
695 handle = NULL;
696 }
697 if (data_ac) {
698 ocfs2_free_alloc_context(data_ac);
699 data_ac = NULL;
700 }
701 if (meta_ac) {
702 ocfs2_free_alloc_context(meta_ac);
703 meta_ac = NULL;
704 }
705 if ((!status) && restart_func) {
706 restart_func = 0;
707 goto restart_all;
708 }
709 brelse(bh);
710 bh = NULL;
711
712 return status;
713 }
714
715 /*
716 * While a write will already be ordering the data, a truncate will not.
717 * Thus, we need to explicitly order the zeroed pages.
718 */
719 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
720 struct buffer_head *di_bh)
721 {
722 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
723 handle_t *handle = NULL;
724 int ret = 0;
725
726 if (!ocfs2_should_order_data(inode))
727 goto out;
728
729 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
730 if (IS_ERR(handle)) {
731 ret = -ENOMEM;
732 mlog_errno(ret);
733 goto out;
734 }
735
736 ret = ocfs2_jbd2_file_inode(handle, inode);
737 if (ret < 0) {
738 mlog_errno(ret);
739 goto out;
740 }
741
742 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
743 OCFS2_JOURNAL_ACCESS_WRITE);
744 if (ret)
745 mlog_errno(ret);
746
747 out:
748 if (ret) {
749 if (!IS_ERR(handle))
750 ocfs2_commit_trans(osb, handle);
751 handle = ERR_PTR(ret);
752 }
753 return handle;
754 }
755
756 /* Some parts of this taken from generic_cont_expand, which turned out
757 * to be too fragile to do exactly what we need without us having to
758 * worry about recursive locking in ->write_begin() and ->write_end(). */
759 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
760 u64 abs_to, struct buffer_head *di_bh)
761 {
762 struct address_space *mapping = inode->i_mapping;
763 struct page *page;
764 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
765 handle_t *handle = NULL;
766 int ret = 0;
767 unsigned zero_from, zero_to, block_start, block_end;
768 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
769
770 BUG_ON(abs_from >= abs_to);
771 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
772 BUG_ON(abs_from & (inode->i_blkbits - 1));
773
774 page = find_or_create_page(mapping, index, GFP_NOFS);
775 if (!page) {
776 ret = -ENOMEM;
777 mlog_errno(ret);
778 goto out;
779 }
780
781 /* Get the offsets within the page that we want to zero */
782 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
783 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
784 if (!zero_to)
785 zero_to = PAGE_CACHE_SIZE;
786
787 trace_ocfs2_write_zero_page(
788 (unsigned long long)OCFS2_I(inode)->ip_blkno,
789 (unsigned long long)abs_from,
790 (unsigned long long)abs_to,
791 index, zero_from, zero_to);
792
793 /* We know that zero_from is block aligned */
794 for (block_start = zero_from; block_start < zero_to;
795 block_start = block_end) {
796 block_end = block_start + (1 << inode->i_blkbits);
797
798 /*
799 * block_start is block-aligned. Bump it by one to force
800 * __block_write_begin and block_commit_write to zero the
801 * whole block.
802 */
803 ret = __block_write_begin(page, block_start + 1, 0,
804 ocfs2_get_block);
805 if (ret < 0) {
806 mlog_errno(ret);
807 goto out_unlock;
808 }
809
810 if (!handle) {
811 handle = ocfs2_zero_start_ordered_transaction(inode,
812 di_bh);
813 if (IS_ERR(handle)) {
814 ret = PTR_ERR(handle);
815 handle = NULL;
816 break;
817 }
818 }
819
820 /* must not update i_size! */
821 ret = block_commit_write(page, block_start + 1,
822 block_start + 1);
823 if (ret < 0)
824 mlog_errno(ret);
825 else
826 ret = 0;
827 }
828
829 if (handle) {
830 /*
831 * fs-writeback will release the dirty pages without page lock
832 * whose offset are over inode size, the release happens at
833 * block_write_full_page_endio().
834 */
835 i_size_write(inode, abs_to);
836 inode->i_blocks = ocfs2_inode_sector_count(inode);
837 di->i_size = cpu_to_le64((u64)i_size_read(inode));
838 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
839 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
840 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
841 di->i_mtime_nsec = di->i_ctime_nsec;
842 ocfs2_journal_dirty(handle, di_bh);
843 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
844 }
845
846 out_unlock:
847 unlock_page(page);
848 page_cache_release(page);
849 out:
850 return ret;
851 }
852
853 /*
854 * Find the next range to zero. We do this in terms of bytes because
855 * that's what ocfs2_zero_extend() wants, and it is dealing with the
856 * pagecache. We may return multiple extents.
857 *
858 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
859 * needs to be zeroed. range_start and range_end return the next zeroing
860 * range. A subsequent call should pass the previous range_end as its
861 * zero_start. If range_end is 0, there's nothing to do.
862 *
863 * Unwritten extents are skipped over. Refcounted extents are CoWd.
864 */
865 static int ocfs2_zero_extend_get_range(struct inode *inode,
866 struct buffer_head *di_bh,
867 u64 zero_start, u64 zero_end,
868 u64 *range_start, u64 *range_end)
869 {
870 int rc = 0, needs_cow = 0;
871 u32 p_cpos, zero_clusters = 0;
872 u32 zero_cpos =
873 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
874 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
875 unsigned int num_clusters = 0;
876 unsigned int ext_flags = 0;
877
878 while (zero_cpos < last_cpos) {
879 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
880 &num_clusters, &ext_flags);
881 if (rc) {
882 mlog_errno(rc);
883 goto out;
884 }
885
886 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
887 zero_clusters = num_clusters;
888 if (ext_flags & OCFS2_EXT_REFCOUNTED)
889 needs_cow = 1;
890 break;
891 }
892
893 zero_cpos += num_clusters;
894 }
895 if (!zero_clusters) {
896 *range_end = 0;
897 goto out;
898 }
899
900 while ((zero_cpos + zero_clusters) < last_cpos) {
901 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
902 &p_cpos, &num_clusters,
903 &ext_flags);
904 if (rc) {
905 mlog_errno(rc);
906 goto out;
907 }
908
909 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
910 break;
911 if (ext_flags & OCFS2_EXT_REFCOUNTED)
912 needs_cow = 1;
913 zero_clusters += num_clusters;
914 }
915 if ((zero_cpos + zero_clusters) > last_cpos)
916 zero_clusters = last_cpos - zero_cpos;
917
918 if (needs_cow) {
919 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
920 zero_clusters, UINT_MAX);
921 if (rc) {
922 mlog_errno(rc);
923 goto out;
924 }
925 }
926
927 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
928 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
929 zero_cpos + zero_clusters);
930
931 out:
932 return rc;
933 }
934
935 /*
936 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
937 * has made sure that the entire range needs zeroing.
938 */
939 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
940 u64 range_end, struct buffer_head *di_bh)
941 {
942 int rc = 0;
943 u64 next_pos;
944 u64 zero_pos = range_start;
945
946 trace_ocfs2_zero_extend_range(
947 (unsigned long long)OCFS2_I(inode)->ip_blkno,
948 (unsigned long long)range_start,
949 (unsigned long long)range_end);
950 BUG_ON(range_start >= range_end);
951
952 while (zero_pos < range_end) {
953 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
954 if (next_pos > range_end)
955 next_pos = range_end;
956 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
957 if (rc < 0) {
958 mlog_errno(rc);
959 break;
960 }
961 zero_pos = next_pos;
962
963 /*
964 * Very large extends have the potential to lock up
965 * the cpu for extended periods of time.
966 */
967 cond_resched();
968 }
969
970 return rc;
971 }
972
973 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
974 loff_t zero_to_size)
975 {
976 int ret = 0;
977 u64 zero_start, range_start = 0, range_end = 0;
978 struct super_block *sb = inode->i_sb;
979
980 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
981 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
982 (unsigned long long)zero_start,
983 (unsigned long long)i_size_read(inode));
984 while (zero_start < zero_to_size) {
985 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
986 zero_to_size,
987 &range_start,
988 &range_end);
989 if (ret) {
990 mlog_errno(ret);
991 break;
992 }
993 if (!range_end)
994 break;
995 /* Trim the ends */
996 if (range_start < zero_start)
997 range_start = zero_start;
998 if (range_end > zero_to_size)
999 range_end = zero_to_size;
1000
1001 ret = ocfs2_zero_extend_range(inode, range_start,
1002 range_end, di_bh);
1003 if (ret) {
1004 mlog_errno(ret);
1005 break;
1006 }
1007 zero_start = range_end;
1008 }
1009
1010 return ret;
1011 }
1012
1013 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1014 u64 new_i_size, u64 zero_to)
1015 {
1016 int ret;
1017 u32 clusters_to_add;
1018 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1019
1020 /*
1021 * Only quota files call this without a bh, and they can't be
1022 * refcounted.
1023 */
1024 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1025 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1026
1027 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1028 if (clusters_to_add < oi->ip_clusters)
1029 clusters_to_add = 0;
1030 else
1031 clusters_to_add -= oi->ip_clusters;
1032
1033 if (clusters_to_add) {
1034 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1035 clusters_to_add, 0);
1036 if (ret) {
1037 mlog_errno(ret);
1038 goto out;
1039 }
1040 }
1041
1042 /*
1043 * Call this even if we don't add any clusters to the tree. We
1044 * still need to zero the area between the old i_size and the
1045 * new i_size.
1046 */
1047 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1048 if (ret < 0)
1049 mlog_errno(ret);
1050
1051 out:
1052 return ret;
1053 }
1054
1055 static int ocfs2_extend_file(struct inode *inode,
1056 struct buffer_head *di_bh,
1057 u64 new_i_size)
1058 {
1059 int ret = 0;
1060 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1061
1062 BUG_ON(!di_bh);
1063
1064 /* setattr sometimes calls us like this. */
1065 if (new_i_size == 0)
1066 goto out;
1067
1068 if (i_size_read(inode) == new_i_size)
1069 goto out;
1070 BUG_ON(new_i_size < i_size_read(inode));
1071
1072 /*
1073 * The alloc sem blocks people in read/write from reading our
1074 * allocation until we're done changing it. We depend on
1075 * i_mutex to block other extend/truncate calls while we're
1076 * here. We even have to hold it for sparse files because there
1077 * might be some tail zeroing.
1078 */
1079 down_write(&oi->ip_alloc_sem);
1080
1081 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1082 /*
1083 * We can optimize small extends by keeping the inodes
1084 * inline data.
1085 */
1086 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1087 up_write(&oi->ip_alloc_sem);
1088 goto out_update_size;
1089 }
1090
1091 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1092 if (ret) {
1093 up_write(&oi->ip_alloc_sem);
1094 mlog_errno(ret);
1095 goto out;
1096 }
1097 }
1098
1099 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1100 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1101 else
1102 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1103 new_i_size);
1104
1105 up_write(&oi->ip_alloc_sem);
1106
1107 if (ret < 0) {
1108 mlog_errno(ret);
1109 goto out;
1110 }
1111
1112 out_update_size:
1113 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1114 if (ret < 0)
1115 mlog_errno(ret);
1116
1117 out:
1118 return ret;
1119 }
1120
1121 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1122 {
1123 int status = 0, size_change;
1124 struct inode *inode = dentry->d_inode;
1125 struct super_block *sb = inode->i_sb;
1126 struct ocfs2_super *osb = OCFS2_SB(sb);
1127 struct buffer_head *bh = NULL;
1128 handle_t *handle = NULL;
1129 struct dquot *transfer_to[MAXQUOTAS] = { };
1130 int qtype;
1131
1132 trace_ocfs2_setattr(inode, dentry,
1133 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1134 dentry->d_name.len, dentry->d_name.name,
1135 attr->ia_valid, attr->ia_mode,
1136 from_kuid(&init_user_ns, attr->ia_uid),
1137 from_kgid(&init_user_ns, attr->ia_gid));
1138
1139 /* ensuring we don't even attempt to truncate a symlink */
1140 if (S_ISLNK(inode->i_mode))
1141 attr->ia_valid &= ~ATTR_SIZE;
1142
1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1144 | ATTR_GID | ATTR_UID | ATTR_MODE)
1145 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1146 return 0;
1147
1148 status = inode_change_ok(inode, attr);
1149 if (status)
1150 return status;
1151
1152 if (is_quota_modification(inode, attr))
1153 dquot_initialize(inode);
1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 if (size_change) {
1156 status = ocfs2_rw_lock(inode, 1);
1157 if (status < 0) {
1158 mlog_errno(status);
1159 goto bail;
1160 }
1161 }
1162
1163 status = ocfs2_inode_lock(inode, &bh, 1);
1164 if (status < 0) {
1165 if (status != -ENOENT)
1166 mlog_errno(status);
1167 goto bail_unlock_rw;
1168 }
1169
1170 if (size_change) {
1171 status = inode_newsize_ok(inode, attr->ia_size);
1172 if (status)
1173 goto bail_unlock;
1174
1175 inode_dio_wait(inode);
1176
1177 if (i_size_read(inode) >= attr->ia_size) {
1178 if (ocfs2_should_order_data(inode)) {
1179 status = ocfs2_begin_ordered_truncate(inode,
1180 attr->ia_size);
1181 if (status)
1182 goto bail_unlock;
1183 }
1184 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1185 } else
1186 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1187 if (status < 0) {
1188 if (status != -ENOSPC)
1189 mlog_errno(status);
1190 status = -ENOSPC;
1191 goto bail_unlock;
1192 }
1193 }
1194
1195 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1196 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1197 /*
1198 * Gather pointers to quota structures so that allocation /
1199 * freeing of quota structures happens here and not inside
1200 * dquot_transfer() where we have problems with lock ordering
1201 */
1202 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1203 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1204 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1205 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1206 if (!transfer_to[USRQUOTA]) {
1207 status = -ESRCH;
1208 goto bail_unlock;
1209 }
1210 }
1211 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1212 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1213 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1214 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1215 if (!transfer_to[GRPQUOTA]) {
1216 status = -ESRCH;
1217 goto bail_unlock;
1218 }
1219 }
1220 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1221 2 * ocfs2_quota_trans_credits(sb));
1222 if (IS_ERR(handle)) {
1223 status = PTR_ERR(handle);
1224 mlog_errno(status);
1225 goto bail_unlock;
1226 }
1227 status = __dquot_transfer(inode, transfer_to);
1228 if (status < 0)
1229 goto bail_commit;
1230 } else {
1231 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1232 if (IS_ERR(handle)) {
1233 status = PTR_ERR(handle);
1234 mlog_errno(status);
1235 goto bail_unlock;
1236 }
1237 }
1238
1239 setattr_copy(inode, attr);
1240 mark_inode_dirty(inode);
1241
1242 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1243 if (status < 0)
1244 mlog_errno(status);
1245
1246 bail_commit:
1247 ocfs2_commit_trans(osb, handle);
1248 bail_unlock:
1249 ocfs2_inode_unlock(inode, 1);
1250 bail_unlock_rw:
1251 if (size_change)
1252 ocfs2_rw_unlock(inode, 1);
1253 bail:
1254 brelse(bh);
1255
1256 /* Release quota pointers in case we acquired them */
1257 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1258 dqput(transfer_to[qtype]);
1259
1260 if (!status && attr->ia_valid & ATTR_MODE) {
1261 status = posix_acl_chmod(inode, inode->i_mode);
1262 if (status < 0)
1263 mlog_errno(status);
1264 }
1265
1266 return status;
1267 }
1268
1269 int ocfs2_getattr(struct vfsmount *mnt,
1270 struct dentry *dentry,
1271 struct kstat *stat)
1272 {
1273 struct inode *inode = dentry->d_inode;
1274 struct super_block *sb = dentry->d_inode->i_sb;
1275 struct ocfs2_super *osb = sb->s_fs_info;
1276 int err;
1277
1278 err = ocfs2_inode_revalidate(dentry);
1279 if (err) {
1280 if (err != -ENOENT)
1281 mlog_errno(err);
1282 goto bail;
1283 }
1284
1285 generic_fillattr(inode, stat);
1286
1287 /* We set the blksize from the cluster size for performance */
1288 stat->blksize = osb->s_clustersize;
1289
1290 bail:
1291 return err;
1292 }
1293
1294 int ocfs2_permission(struct inode *inode, int mask)
1295 {
1296 int ret;
1297
1298 if (mask & MAY_NOT_BLOCK)
1299 return -ECHILD;
1300
1301 ret = ocfs2_inode_lock(inode, NULL, 0);
1302 if (ret) {
1303 if (ret != -ENOENT)
1304 mlog_errno(ret);
1305 goto out;
1306 }
1307
1308 ret = generic_permission(inode, mask);
1309
1310 ocfs2_inode_unlock(inode, 0);
1311 out:
1312 return ret;
1313 }
1314
1315 static int __ocfs2_write_remove_suid(struct inode *inode,
1316 struct buffer_head *bh)
1317 {
1318 int ret;
1319 handle_t *handle;
1320 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1321 struct ocfs2_dinode *di;
1322
1323 trace_ocfs2_write_remove_suid(
1324 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1325 inode->i_mode);
1326
1327 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1328 if (IS_ERR(handle)) {
1329 ret = PTR_ERR(handle);
1330 mlog_errno(ret);
1331 goto out;
1332 }
1333
1334 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1335 OCFS2_JOURNAL_ACCESS_WRITE);
1336 if (ret < 0) {
1337 mlog_errno(ret);
1338 goto out_trans;
1339 }
1340
1341 inode->i_mode &= ~S_ISUID;
1342 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1343 inode->i_mode &= ~S_ISGID;
1344
1345 di = (struct ocfs2_dinode *) bh->b_data;
1346 di->i_mode = cpu_to_le16(inode->i_mode);
1347
1348 ocfs2_journal_dirty(handle, bh);
1349
1350 out_trans:
1351 ocfs2_commit_trans(osb, handle);
1352 out:
1353 return ret;
1354 }
1355
1356 /*
1357 * Will look for holes and unwritten extents in the range starting at
1358 * pos for count bytes (inclusive).
1359 */
1360 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1361 size_t count)
1362 {
1363 int ret = 0;
1364 unsigned int extent_flags;
1365 u32 cpos, clusters, extent_len, phys_cpos;
1366 struct super_block *sb = inode->i_sb;
1367
1368 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1369 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1370
1371 while (clusters) {
1372 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1373 &extent_flags);
1374 if (ret < 0) {
1375 mlog_errno(ret);
1376 goto out;
1377 }
1378
1379 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1380 ret = 1;
1381 break;
1382 }
1383
1384 if (extent_len > clusters)
1385 extent_len = clusters;
1386
1387 clusters -= extent_len;
1388 cpos += extent_len;
1389 }
1390 out:
1391 return ret;
1392 }
1393
1394 static int ocfs2_write_remove_suid(struct inode *inode)
1395 {
1396 int ret;
1397 struct buffer_head *bh = NULL;
1398
1399 ret = ocfs2_read_inode_block(inode, &bh);
1400 if (ret < 0) {
1401 mlog_errno(ret);
1402 goto out;
1403 }
1404
1405 ret = __ocfs2_write_remove_suid(inode, bh);
1406 out:
1407 brelse(bh);
1408 return ret;
1409 }
1410
1411 /*
1412 * Allocate enough extents to cover the region starting at byte offset
1413 * start for len bytes. Existing extents are skipped, any extents
1414 * added are marked as "unwritten".
1415 */
1416 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1417 u64 start, u64 len)
1418 {
1419 int ret;
1420 u32 cpos, phys_cpos, clusters, alloc_size;
1421 u64 end = start + len;
1422 struct buffer_head *di_bh = NULL;
1423
1424 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1425 ret = ocfs2_read_inode_block(inode, &di_bh);
1426 if (ret) {
1427 mlog_errno(ret);
1428 goto out;
1429 }
1430
1431 /*
1432 * Nothing to do if the requested reservation range
1433 * fits within the inode.
1434 */
1435 if (ocfs2_size_fits_inline_data(di_bh, end))
1436 goto out;
1437
1438 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1439 if (ret) {
1440 mlog_errno(ret);
1441 goto out;
1442 }
1443 }
1444
1445 /*
1446 * We consider both start and len to be inclusive.
1447 */
1448 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1449 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1450 clusters -= cpos;
1451
1452 while (clusters) {
1453 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1454 &alloc_size, NULL);
1455 if (ret) {
1456 mlog_errno(ret);
1457 goto out;
1458 }
1459
1460 /*
1461 * Hole or existing extent len can be arbitrary, so
1462 * cap it to our own allocation request.
1463 */
1464 if (alloc_size > clusters)
1465 alloc_size = clusters;
1466
1467 if (phys_cpos) {
1468 /*
1469 * We already have an allocation at this
1470 * region so we can safely skip it.
1471 */
1472 goto next;
1473 }
1474
1475 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1476 if (ret) {
1477 if (ret != -ENOSPC)
1478 mlog_errno(ret);
1479 goto out;
1480 }
1481
1482 next:
1483 cpos += alloc_size;
1484 clusters -= alloc_size;
1485 }
1486
1487 ret = 0;
1488 out:
1489
1490 brelse(di_bh);
1491 return ret;
1492 }
1493
1494 /*
1495 * Truncate a byte range, avoiding pages within partial clusters. This
1496 * preserves those pages for the zeroing code to write to.
1497 */
1498 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1499 u64 byte_len)
1500 {
1501 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1502 loff_t start, end;
1503 struct address_space *mapping = inode->i_mapping;
1504
1505 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1506 end = byte_start + byte_len;
1507 end = end & ~(osb->s_clustersize - 1);
1508
1509 if (start < end) {
1510 unmap_mapping_range(mapping, start, end - start, 0);
1511 truncate_inode_pages_range(mapping, start, end - 1);
1512 }
1513 }
1514
1515 static int ocfs2_zero_partial_clusters(struct inode *inode,
1516 u64 start, u64 len)
1517 {
1518 int ret = 0;
1519 u64 tmpend, end = start + len;
1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1521 unsigned int csize = osb->s_clustersize;
1522 handle_t *handle;
1523
1524 /*
1525 * The "start" and "end" values are NOT necessarily part of
1526 * the range whose allocation is being deleted. Rather, this
1527 * is what the user passed in with the request. We must zero
1528 * partial clusters here. There's no need to worry about
1529 * physical allocation - the zeroing code knows to skip holes.
1530 */
1531 trace_ocfs2_zero_partial_clusters(
1532 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1533 (unsigned long long)start, (unsigned long long)end);
1534
1535 /*
1536 * If both edges are on a cluster boundary then there's no
1537 * zeroing required as the region is part of the allocation to
1538 * be truncated.
1539 */
1540 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1541 goto out;
1542
1543 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1544 if (IS_ERR(handle)) {
1545 ret = PTR_ERR(handle);
1546 mlog_errno(ret);
1547 goto out;
1548 }
1549
1550 /*
1551 * We want to get the byte offset of the end of the 1st cluster.
1552 */
1553 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1554 if (tmpend > end)
1555 tmpend = end;
1556
1557 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1558 (unsigned long long)tmpend);
1559
1560 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1561 if (ret)
1562 mlog_errno(ret);
1563
1564 if (tmpend < end) {
1565 /*
1566 * This may make start and end equal, but the zeroing
1567 * code will skip any work in that case so there's no
1568 * need to catch it up here.
1569 */
1570 start = end & ~(osb->s_clustersize - 1);
1571
1572 trace_ocfs2_zero_partial_clusters_range2(
1573 (unsigned long long)start, (unsigned long long)end);
1574
1575 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1576 if (ret)
1577 mlog_errno(ret);
1578 }
1579
1580 ocfs2_commit_trans(osb, handle);
1581 out:
1582 return ret;
1583 }
1584
1585 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1586 {
1587 int i;
1588 struct ocfs2_extent_rec *rec = NULL;
1589
1590 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1591
1592 rec = &el->l_recs[i];
1593
1594 if (le32_to_cpu(rec->e_cpos) < pos)
1595 break;
1596 }
1597
1598 return i;
1599 }
1600
1601 /*
1602 * Helper to calculate the punching pos and length in one run, we handle the
1603 * following three cases in order:
1604 *
1605 * - remove the entire record
1606 * - remove a partial record
1607 * - no record needs to be removed (hole-punching completed)
1608 */
1609 static void ocfs2_calc_trunc_pos(struct inode *inode,
1610 struct ocfs2_extent_list *el,
1611 struct ocfs2_extent_rec *rec,
1612 u32 trunc_start, u32 *trunc_cpos,
1613 u32 *trunc_len, u32 *trunc_end,
1614 u64 *blkno, int *done)
1615 {
1616 int ret = 0;
1617 u32 coff, range;
1618
1619 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1620
1621 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1622 /*
1623 * remove an entire extent record.
1624 */
1625 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1626 /*
1627 * Skip holes if any.
1628 */
1629 if (range < *trunc_end)
1630 *trunc_end = range;
1631 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1632 *blkno = le64_to_cpu(rec->e_blkno);
1633 *trunc_end = le32_to_cpu(rec->e_cpos);
1634 } else if (range > trunc_start) {
1635 /*
1636 * remove a partial extent record, which means we're
1637 * removing the last extent record.
1638 */
1639 *trunc_cpos = trunc_start;
1640 /*
1641 * skip hole if any.
1642 */
1643 if (range < *trunc_end)
1644 *trunc_end = range;
1645 *trunc_len = *trunc_end - trunc_start;
1646 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1647 *blkno = le64_to_cpu(rec->e_blkno) +
1648 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1649 *trunc_end = trunc_start;
1650 } else {
1651 /*
1652 * It may have two following possibilities:
1653 *
1654 * - last record has been removed
1655 * - trunc_start was within a hole
1656 *
1657 * both two cases mean the completion of hole punching.
1658 */
1659 ret = 1;
1660 }
1661
1662 *done = ret;
1663 }
1664
1665 static int ocfs2_remove_inode_range(struct inode *inode,
1666 struct buffer_head *di_bh, u64 byte_start,
1667 u64 byte_len)
1668 {
1669 int ret = 0, flags = 0, done = 0, i;
1670 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1671 u32 cluster_in_el;
1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 struct ocfs2_cached_dealloc_ctxt dealloc;
1674 struct address_space *mapping = inode->i_mapping;
1675 struct ocfs2_extent_tree et;
1676 struct ocfs2_path *path = NULL;
1677 struct ocfs2_extent_list *el = NULL;
1678 struct ocfs2_extent_rec *rec = NULL;
1679 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1680 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1681
1682 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1683 ocfs2_init_dealloc_ctxt(&dealloc);
1684
1685 trace_ocfs2_remove_inode_range(
1686 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1687 (unsigned long long)byte_start,
1688 (unsigned long long)byte_len);
1689
1690 if (byte_len == 0)
1691 return 0;
1692
1693 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1694 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1695 byte_start + byte_len, 0);
1696 if (ret) {
1697 mlog_errno(ret);
1698 goto out;
1699 }
1700 /*
1701 * There's no need to get fancy with the page cache
1702 * truncate of an inline-data inode. We're talking
1703 * about less than a page here, which will be cached
1704 * in the dinode buffer anyway.
1705 */
1706 unmap_mapping_range(mapping, 0, 0, 0);
1707 truncate_inode_pages(mapping, 0);
1708 goto out;
1709 }
1710
1711 /*
1712 * For reflinks, we may need to CoW 2 clusters which might be
1713 * partially zero'd later, if hole's start and end offset were
1714 * within one cluster(means is not exactly aligned to clustersize).
1715 */
1716
1717 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1718
1719 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1720 if (ret) {
1721 mlog_errno(ret);
1722 goto out;
1723 }
1724
1725 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730 }
1731
1732 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1733 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1734 cluster_in_el = trunc_end;
1735
1736 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1737 if (ret) {
1738 mlog_errno(ret);
1739 goto out;
1740 }
1741
1742 path = ocfs2_new_path_from_et(&et);
1743 if (!path) {
1744 ret = -ENOMEM;
1745 mlog_errno(ret);
1746 goto out;
1747 }
1748
1749 while (trunc_end > trunc_start) {
1750
1751 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1752 cluster_in_el);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757
1758 el = path_leaf_el(path);
1759
1760 i = ocfs2_find_rec(el, trunc_end);
1761 /*
1762 * Need to go to previous extent block.
1763 */
1764 if (i < 0) {
1765 if (path->p_tree_depth == 0)
1766 break;
1767
1768 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1769 path,
1770 &cluster_in_el);
1771 if (ret) {
1772 mlog_errno(ret);
1773 goto out;
1774 }
1775
1776 /*
1777 * We've reached the leftmost extent block,
1778 * it's safe to leave.
1779 */
1780 if (cluster_in_el == 0)
1781 break;
1782
1783 /*
1784 * The 'pos' searched for previous extent block is
1785 * always one cluster less than actual trunc_end.
1786 */
1787 trunc_end = cluster_in_el + 1;
1788
1789 ocfs2_reinit_path(path, 1);
1790
1791 continue;
1792
1793 } else
1794 rec = &el->l_recs[i];
1795
1796 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1797 &trunc_len, &trunc_end, &blkno, &done);
1798 if (done)
1799 break;
1800
1801 flags = rec->e_flags;
1802 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1803
1804 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1805 phys_cpos, trunc_len, flags,
1806 &dealloc, refcount_loc);
1807 if (ret < 0) {
1808 mlog_errno(ret);
1809 goto out;
1810 }
1811
1812 cluster_in_el = trunc_end;
1813
1814 ocfs2_reinit_path(path, 1);
1815 }
1816
1817 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1818
1819 out:
1820 ocfs2_free_path(path);
1821 ocfs2_schedule_truncate_log_flush(osb, 1);
1822 ocfs2_run_deallocs(osb, &dealloc);
1823
1824 return ret;
1825 }
1826
1827 /*
1828 * Parts of this function taken from xfs_change_file_space()
1829 */
1830 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1831 loff_t f_pos, unsigned int cmd,
1832 struct ocfs2_space_resv *sr,
1833 int change_size)
1834 {
1835 int ret;
1836 s64 llen;
1837 loff_t size;
1838 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1839 struct buffer_head *di_bh = NULL;
1840 handle_t *handle;
1841 unsigned long long max_off = inode->i_sb->s_maxbytes;
1842
1843 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1844 return -EROFS;
1845
1846 mutex_lock(&inode->i_mutex);
1847
1848 /*
1849 * This prevents concurrent writes on other nodes
1850 */
1851 ret = ocfs2_rw_lock(inode, 1);
1852 if (ret) {
1853 mlog_errno(ret);
1854 goto out;
1855 }
1856
1857 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1858 if (ret) {
1859 mlog_errno(ret);
1860 goto out_rw_unlock;
1861 }
1862
1863 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1864 ret = -EPERM;
1865 goto out_inode_unlock;
1866 }
1867
1868 switch (sr->l_whence) {
1869 case 0: /*SEEK_SET*/
1870 break;
1871 case 1: /*SEEK_CUR*/
1872 sr->l_start += f_pos;
1873 break;
1874 case 2: /*SEEK_END*/
1875 sr->l_start += i_size_read(inode);
1876 break;
1877 default:
1878 ret = -EINVAL;
1879 goto out_inode_unlock;
1880 }
1881 sr->l_whence = 0;
1882
1883 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1884
1885 if (sr->l_start < 0
1886 || sr->l_start > max_off
1887 || (sr->l_start + llen) < 0
1888 || (sr->l_start + llen) > max_off) {
1889 ret = -EINVAL;
1890 goto out_inode_unlock;
1891 }
1892 size = sr->l_start + sr->l_len;
1893
1894 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1895 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1896 if (sr->l_len <= 0) {
1897 ret = -EINVAL;
1898 goto out_inode_unlock;
1899 }
1900 }
1901
1902 if (file && should_remove_suid(file->f_path.dentry)) {
1903 ret = __ocfs2_write_remove_suid(inode, di_bh);
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out_inode_unlock;
1907 }
1908 }
1909
1910 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911 switch (cmd) {
1912 case OCFS2_IOC_RESVSP:
1913 case OCFS2_IOC_RESVSP64:
1914 /*
1915 * This takes unsigned offsets, but the signed ones we
1916 * pass have been checked against overflow above.
1917 */
1918 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919 sr->l_len);
1920 break;
1921 case OCFS2_IOC_UNRESVSP:
1922 case OCFS2_IOC_UNRESVSP64:
1923 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924 sr->l_len);
1925 break;
1926 default:
1927 ret = -EINVAL;
1928 }
1929 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930 if (ret) {
1931 mlog_errno(ret);
1932 goto out_inode_unlock;
1933 }
1934
1935 /*
1936 * We update c/mtime for these changes
1937 */
1938 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939 if (IS_ERR(handle)) {
1940 ret = PTR_ERR(handle);
1941 mlog_errno(ret);
1942 goto out_inode_unlock;
1943 }
1944
1945 if (change_size && i_size_read(inode) < size)
1946 i_size_write(inode, size);
1947
1948 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950 if (ret < 0)
1951 mlog_errno(ret);
1952
1953 if (file && (file->f_flags & O_SYNC))
1954 handle->h_sync = 1;
1955
1956 ocfs2_commit_trans(osb, handle);
1957
1958 out_inode_unlock:
1959 brelse(di_bh);
1960 ocfs2_inode_unlock(inode, 1);
1961 out_rw_unlock:
1962 ocfs2_rw_unlock(inode, 1);
1963
1964 out:
1965 mutex_unlock(&inode->i_mutex);
1966 return ret;
1967 }
1968
1969 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1970 struct ocfs2_space_resv *sr)
1971 {
1972 struct inode *inode = file_inode(file);
1973 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1974 int ret;
1975
1976 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977 !ocfs2_writes_unwritten_extents(osb))
1978 return -ENOTTY;
1979 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980 !ocfs2_sparse_alloc(osb))
1981 return -ENOTTY;
1982
1983 if (!S_ISREG(inode->i_mode))
1984 return -EINVAL;
1985
1986 if (!(file->f_mode & FMODE_WRITE))
1987 return -EBADF;
1988
1989 ret = mnt_want_write_file(file);
1990 if (ret)
1991 return ret;
1992 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1993 mnt_drop_write_file(file);
1994 return ret;
1995 }
1996
1997 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1998 loff_t len)
1999 {
2000 struct inode *inode = file_inode(file);
2001 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2002 struct ocfs2_space_resv sr;
2003 int change_size = 1;
2004 int cmd = OCFS2_IOC_RESVSP64;
2005
2006 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2007 return -EOPNOTSUPP;
2008 if (!ocfs2_writes_unwritten_extents(osb))
2009 return -EOPNOTSUPP;
2010
2011 if (mode & FALLOC_FL_KEEP_SIZE)
2012 change_size = 0;
2013
2014 if (mode & FALLOC_FL_PUNCH_HOLE)
2015 cmd = OCFS2_IOC_UNRESVSP64;
2016
2017 sr.l_whence = 0;
2018 sr.l_start = (s64)offset;
2019 sr.l_len = (s64)len;
2020
2021 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2022 change_size);
2023 }
2024
2025 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2026 size_t count)
2027 {
2028 int ret = 0;
2029 unsigned int extent_flags;
2030 u32 cpos, clusters, extent_len, phys_cpos;
2031 struct super_block *sb = inode->i_sb;
2032
2033 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2034 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2035 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2036 return 0;
2037
2038 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2039 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2040
2041 while (clusters) {
2042 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2043 &extent_flags);
2044 if (ret < 0) {
2045 mlog_errno(ret);
2046 goto out;
2047 }
2048
2049 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2050 ret = 1;
2051 break;
2052 }
2053
2054 if (extent_len > clusters)
2055 extent_len = clusters;
2056
2057 clusters -= extent_len;
2058 cpos += extent_len;
2059 }
2060 out:
2061 return ret;
2062 }
2063
2064 static void ocfs2_aiodio_wait(struct inode *inode)
2065 {
2066 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2067
2068 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2069 }
2070
2071 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2072 {
2073 int blockmask = inode->i_sb->s_blocksize - 1;
2074 loff_t final_size = pos + count;
2075
2076 if ((pos & blockmask) || (final_size & blockmask))
2077 return 1;
2078 return 0;
2079 }
2080
2081 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2082 struct file *file,
2083 loff_t pos, size_t count,
2084 int *meta_level)
2085 {
2086 int ret;
2087 struct buffer_head *di_bh = NULL;
2088 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2089 u32 clusters =
2090 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2091
2092 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2093 if (ret) {
2094 mlog_errno(ret);
2095 goto out;
2096 }
2097
2098 *meta_level = 1;
2099
2100 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2101 if (ret)
2102 mlog_errno(ret);
2103 out:
2104 brelse(di_bh);
2105 return ret;
2106 }
2107
2108 static int ocfs2_prepare_inode_for_write(struct file *file,
2109 loff_t *ppos,
2110 size_t count,
2111 int appending,
2112 int *direct_io,
2113 int *has_refcount)
2114 {
2115 int ret = 0, meta_level = 0;
2116 struct dentry *dentry = file->f_path.dentry;
2117 struct inode *inode = dentry->d_inode;
2118 loff_t saved_pos = 0, end;
2119
2120 /*
2121 * We start with a read level meta lock and only jump to an ex
2122 * if we need to make modifications here.
2123 */
2124 for(;;) {
2125 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2126 if (ret < 0) {
2127 meta_level = -1;
2128 mlog_errno(ret);
2129 goto out;
2130 }
2131
2132 /* Clear suid / sgid if necessary. We do this here
2133 * instead of later in the write path because
2134 * remove_suid() calls ->setattr without any hint that
2135 * we may have already done our cluster locking. Since
2136 * ocfs2_setattr() *must* take cluster locks to
2137 * proceed, this will lead us to recursively lock the
2138 * inode. There's also the dinode i_size state which
2139 * can be lost via setattr during extending writes (we
2140 * set inode->i_size at the end of a write. */
2141 if (should_remove_suid(dentry)) {
2142 if (meta_level == 0) {
2143 ocfs2_inode_unlock(inode, meta_level);
2144 meta_level = 1;
2145 continue;
2146 }
2147
2148 ret = ocfs2_write_remove_suid(inode);
2149 if (ret < 0) {
2150 mlog_errno(ret);
2151 goto out_unlock;
2152 }
2153 }
2154
2155 /* work on a copy of ppos until we're sure that we won't have
2156 * to recalculate it due to relocking. */
2157 if (appending)
2158 saved_pos = i_size_read(inode);
2159 else
2160 saved_pos = *ppos;
2161
2162 end = saved_pos + count;
2163
2164 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2165 if (ret == 1) {
2166 ocfs2_inode_unlock(inode, meta_level);
2167 meta_level = -1;
2168
2169 ret = ocfs2_prepare_inode_for_refcount(inode,
2170 file,
2171 saved_pos,
2172 count,
2173 &meta_level);
2174 if (has_refcount)
2175 *has_refcount = 1;
2176 if (direct_io)
2177 *direct_io = 0;
2178 }
2179
2180 if (ret < 0) {
2181 mlog_errno(ret);
2182 goto out_unlock;
2183 }
2184
2185 /*
2186 * Skip the O_DIRECT checks if we don't need
2187 * them.
2188 */
2189 if (!direct_io || !(*direct_io))
2190 break;
2191
2192 /*
2193 * There's no sane way to do direct writes to an inode
2194 * with inline data.
2195 */
2196 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2197 *direct_io = 0;
2198 break;
2199 }
2200
2201 /*
2202 * Allowing concurrent direct writes means
2203 * i_size changes wouldn't be synchronized, so
2204 * one node could wind up truncating another
2205 * nodes writes.
2206 */
2207 if (end > i_size_read(inode)) {
2208 *direct_io = 0;
2209 break;
2210 }
2211
2212 /*
2213 * We don't fill holes during direct io, so
2214 * check for them here. If any are found, the
2215 * caller will have to retake some cluster
2216 * locks and initiate the io as buffered.
2217 */
2218 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2219 if (ret == 1) {
2220 *direct_io = 0;
2221 ret = 0;
2222 } else if (ret < 0)
2223 mlog_errno(ret);
2224 break;
2225 }
2226
2227 if (appending)
2228 *ppos = saved_pos;
2229
2230 out_unlock:
2231 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2232 saved_pos, appending, count,
2233 direct_io, has_refcount);
2234
2235 if (meta_level >= 0)
2236 ocfs2_inode_unlock(inode, meta_level);
2237
2238 out:
2239 return ret;
2240 }
2241
2242 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2243 const struct iovec *iov,
2244 unsigned long nr_segs,
2245 loff_t pos)
2246 {
2247 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2248 int can_do_direct, has_refcount = 0;
2249 ssize_t written = 0;
2250 size_t ocount; /* original count */
2251 size_t count; /* after file limit checks */
2252 loff_t old_size, *ppos = &iocb->ki_pos;
2253 u32 old_clusters;
2254 struct file *file = iocb->ki_filp;
2255 struct inode *inode = file_inode(file);
2256 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2257 int full_coherency = !(osb->s_mount_opt &
2258 OCFS2_MOUNT_COHERENCY_BUFFERED);
2259 int unaligned_dio = 0;
2260
2261 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2262 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2263 file->f_path.dentry->d_name.len,
2264 file->f_path.dentry->d_name.name,
2265 (unsigned int)nr_segs);
2266
2267 if (iocb->ki_nbytes == 0)
2268 return 0;
2269
2270 appending = file->f_flags & O_APPEND ? 1 : 0;
2271 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2272
2273 mutex_lock(&inode->i_mutex);
2274
2275 ocfs2_iocb_clear_sem_locked(iocb);
2276
2277 relock:
2278 /* to match setattr's i_mutex -> rw_lock ordering */
2279 if (direct_io) {
2280 have_alloc_sem = 1;
2281 /* communicate with ocfs2_dio_end_io */
2282 ocfs2_iocb_set_sem_locked(iocb);
2283 }
2284
2285 /*
2286 * Concurrent O_DIRECT writes are allowed with
2287 * mount_option "coherency=buffered".
2288 */
2289 rw_level = (!direct_io || full_coherency);
2290
2291 ret = ocfs2_rw_lock(inode, rw_level);
2292 if (ret < 0) {
2293 mlog_errno(ret);
2294 goto out_sems;
2295 }
2296
2297 /*
2298 * O_DIRECT writes with "coherency=full" need to take EX cluster
2299 * inode_lock to guarantee coherency.
2300 */
2301 if (direct_io && full_coherency) {
2302 /*
2303 * We need to take and drop the inode lock to force
2304 * other nodes to drop their caches. Buffered I/O
2305 * already does this in write_begin().
2306 */
2307 ret = ocfs2_inode_lock(inode, NULL, 1);
2308 if (ret < 0) {
2309 mlog_errno(ret);
2310 goto out;
2311 }
2312
2313 ocfs2_inode_unlock(inode, 1);
2314 }
2315
2316 can_do_direct = direct_io;
2317 ret = ocfs2_prepare_inode_for_write(file, ppos,
2318 iocb->ki_nbytes, appending,
2319 &can_do_direct, &has_refcount);
2320 if (ret < 0) {
2321 mlog_errno(ret);
2322 goto out;
2323 }
2324
2325 if (direct_io && !is_sync_kiocb(iocb))
2326 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2327 *ppos);
2328
2329 /*
2330 * We can't complete the direct I/O as requested, fall back to
2331 * buffered I/O.
2332 */
2333 if (direct_io && !can_do_direct) {
2334 ocfs2_rw_unlock(inode, rw_level);
2335
2336 have_alloc_sem = 0;
2337 rw_level = -1;
2338
2339 direct_io = 0;
2340 goto relock;
2341 }
2342
2343 if (unaligned_dio) {
2344 /*
2345 * Wait on previous unaligned aio to complete before
2346 * proceeding.
2347 */
2348 ocfs2_aiodio_wait(inode);
2349
2350 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2351 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2352 ocfs2_iocb_set_unaligned_aio(iocb);
2353 }
2354
2355 /*
2356 * To later detect whether a journal commit for sync writes is
2357 * necessary, we sample i_size, and cluster count here.
2358 */
2359 old_size = i_size_read(inode);
2360 old_clusters = OCFS2_I(inode)->ip_clusters;
2361
2362 /* communicate with ocfs2_dio_end_io */
2363 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2364
2365 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2366 VERIFY_READ);
2367 if (ret)
2368 goto out_dio;
2369
2370 count = ocount;
2371 ret = generic_write_checks(file, ppos, &count,
2372 S_ISBLK(inode->i_mode));
2373 if (ret)
2374 goto out_dio;
2375
2376 if (direct_io) {
2377 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2378 ppos, count, ocount);
2379 if (written < 0) {
2380 ret = written;
2381 goto out_dio;
2382 }
2383 } else {
2384 current->backing_dev_info = file->f_mapping->backing_dev_info;
2385 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2386 ppos, count, 0);
2387 current->backing_dev_info = NULL;
2388 }
2389
2390 out_dio:
2391 /* buffered aio wouldn't have proper lock coverage today */
2392 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2393
2394 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2395 ((file->f_flags & O_DIRECT) && !direct_io)) {
2396 ret = filemap_fdatawrite_range(file->f_mapping, *ppos,
2397 *ppos + count - 1);
2398 if (ret < 0)
2399 written = ret;
2400
2401 if (!ret && ((old_size != i_size_read(inode)) ||
2402 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2403 has_refcount)) {
2404 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2405 if (ret < 0)
2406 written = ret;
2407 }
2408
2409 if (!ret)
2410 ret = filemap_fdatawait_range(file->f_mapping, *ppos,
2411 *ppos + count - 1);
2412 }
2413
2414 /*
2415 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2416 * function pointer which is called when o_direct io completes so that
2417 * it can unlock our rw lock.
2418 * Unfortunately there are error cases which call end_io and others
2419 * that don't. so we don't have to unlock the rw_lock if either an
2420 * async dio is going to do it in the future or an end_io after an
2421 * error has already done it.
2422 */
2423 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2424 rw_level = -1;
2425 have_alloc_sem = 0;
2426 unaligned_dio = 0;
2427 }
2428
2429 if (unaligned_dio) {
2430 ocfs2_iocb_clear_unaligned_aio(iocb);
2431 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2432 }
2433
2434 out:
2435 if (rw_level != -1)
2436 ocfs2_rw_unlock(inode, rw_level);
2437
2438 out_sems:
2439 if (have_alloc_sem)
2440 ocfs2_iocb_clear_sem_locked(iocb);
2441
2442 mutex_unlock(&inode->i_mutex);
2443
2444 if (written)
2445 ret = written;
2446 return ret;
2447 }
2448
2449 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2450 struct file *out,
2451 struct splice_desc *sd)
2452 {
2453 int ret;
2454
2455 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2456 sd->total_len, 0, NULL, NULL);
2457 if (ret < 0) {
2458 mlog_errno(ret);
2459 return ret;
2460 }
2461
2462 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2463 }
2464
2465 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2466 struct file *out,
2467 loff_t *ppos,
2468 size_t len,
2469 unsigned int flags)
2470 {
2471 int ret;
2472 struct address_space *mapping = out->f_mapping;
2473 struct inode *inode = mapping->host;
2474 struct splice_desc sd = {
2475 .total_len = len,
2476 .flags = flags,
2477 .pos = *ppos,
2478 .u.file = out,
2479 };
2480
2481
2482 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2483 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2484 out->f_path.dentry->d_name.len,
2485 out->f_path.dentry->d_name.name, len);
2486
2487 pipe_lock(pipe);
2488
2489 splice_from_pipe_begin(&sd);
2490 do {
2491 ret = splice_from_pipe_next(pipe, &sd);
2492 if (ret <= 0)
2493 break;
2494
2495 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2496 ret = ocfs2_rw_lock(inode, 1);
2497 if (ret < 0)
2498 mlog_errno(ret);
2499 else {
2500 ret = ocfs2_splice_to_file(pipe, out, &sd);
2501 ocfs2_rw_unlock(inode, 1);
2502 }
2503 mutex_unlock(&inode->i_mutex);
2504 } while (ret > 0);
2505 splice_from_pipe_end(pipe, &sd);
2506
2507 pipe_unlock(pipe);
2508
2509 if (sd.num_spliced)
2510 ret = sd.num_spliced;
2511
2512 if (ret > 0) {
2513 int err;
2514
2515 err = generic_write_sync(out, *ppos, ret);
2516 if (err)
2517 ret = err;
2518 else
2519 *ppos += ret;
2520
2521 balance_dirty_pages_ratelimited(mapping);
2522 }
2523
2524 return ret;
2525 }
2526
2527 static ssize_t ocfs2_file_splice_read(struct file *in,
2528 loff_t *ppos,
2529 struct pipe_inode_info *pipe,
2530 size_t len,
2531 unsigned int flags)
2532 {
2533 int ret = 0, lock_level = 0;
2534 struct inode *inode = file_inode(in);
2535
2536 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2537 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2538 in->f_path.dentry->d_name.len,
2539 in->f_path.dentry->d_name.name, len);
2540
2541 /*
2542 * See the comment in ocfs2_file_aio_read()
2543 */
2544 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2545 if (ret < 0) {
2546 mlog_errno(ret);
2547 goto bail;
2548 }
2549 ocfs2_inode_unlock(inode, lock_level);
2550
2551 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2552
2553 bail:
2554 return ret;
2555 }
2556
2557 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2558 const struct iovec *iov,
2559 unsigned long nr_segs,
2560 loff_t pos)
2561 {
2562 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2563 struct file *filp = iocb->ki_filp;
2564 struct inode *inode = file_inode(filp);
2565
2566 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2567 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2568 filp->f_path.dentry->d_name.len,
2569 filp->f_path.dentry->d_name.name, nr_segs);
2570
2571
2572 if (!inode) {
2573 ret = -EINVAL;
2574 mlog_errno(ret);
2575 goto bail;
2576 }
2577
2578 ocfs2_iocb_clear_sem_locked(iocb);
2579
2580 /*
2581 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2582 * need locks to protect pending reads from racing with truncate.
2583 */
2584 if (filp->f_flags & O_DIRECT) {
2585 have_alloc_sem = 1;
2586 ocfs2_iocb_set_sem_locked(iocb);
2587
2588 ret = ocfs2_rw_lock(inode, 0);
2589 if (ret < 0) {
2590 mlog_errno(ret);
2591 goto bail;
2592 }
2593 rw_level = 0;
2594 /* communicate with ocfs2_dio_end_io */
2595 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2596 }
2597
2598 /*
2599 * We're fine letting folks race truncates and extending
2600 * writes with read across the cluster, just like they can
2601 * locally. Hence no rw_lock during read.
2602 *
2603 * Take and drop the meta data lock to update inode fields
2604 * like i_size. This allows the checks down below
2605 * generic_file_aio_read() a chance of actually working.
2606 */
2607 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2608 if (ret < 0) {
2609 mlog_errno(ret);
2610 goto bail;
2611 }
2612 ocfs2_inode_unlock(inode, lock_level);
2613
2614 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2615 trace_generic_file_aio_read_ret(ret);
2616
2617 /* buffered aio wouldn't have proper lock coverage today */
2618 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2619
2620 /* see ocfs2_file_aio_write */
2621 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2622 rw_level = -1;
2623 have_alloc_sem = 0;
2624 }
2625
2626 bail:
2627 if (have_alloc_sem)
2628 ocfs2_iocb_clear_sem_locked(iocb);
2629
2630 if (rw_level != -1)
2631 ocfs2_rw_unlock(inode, rw_level);
2632
2633 return ret;
2634 }
2635
2636 /* Refer generic_file_llseek_unlocked() */
2637 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2638 {
2639 struct inode *inode = file->f_mapping->host;
2640 int ret = 0;
2641
2642 mutex_lock(&inode->i_mutex);
2643
2644 switch (whence) {
2645 case SEEK_SET:
2646 break;
2647 case SEEK_END:
2648 offset += inode->i_size;
2649 break;
2650 case SEEK_CUR:
2651 if (offset == 0) {
2652 offset = file->f_pos;
2653 goto out;
2654 }
2655 offset += file->f_pos;
2656 break;
2657 case SEEK_DATA:
2658 case SEEK_HOLE:
2659 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2660 if (ret)
2661 goto out;
2662 break;
2663 default:
2664 ret = -EINVAL;
2665 goto out;
2666 }
2667
2668 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2669
2670 out:
2671 mutex_unlock(&inode->i_mutex);
2672 if (ret)
2673 return ret;
2674 return offset;
2675 }
2676
2677 const struct inode_operations ocfs2_file_iops = {
2678 .setattr = ocfs2_setattr,
2679 .getattr = ocfs2_getattr,
2680 .permission = ocfs2_permission,
2681 .setxattr = generic_setxattr,
2682 .getxattr = generic_getxattr,
2683 .listxattr = ocfs2_listxattr,
2684 .removexattr = generic_removexattr,
2685 .fiemap = ocfs2_fiemap,
2686 .get_acl = ocfs2_iop_get_acl,
2687 .set_acl = ocfs2_iop_set_acl,
2688 };
2689
2690 const struct inode_operations ocfs2_special_file_iops = {
2691 .setattr = ocfs2_setattr,
2692 .getattr = ocfs2_getattr,
2693 .permission = ocfs2_permission,
2694 .get_acl = ocfs2_iop_get_acl,
2695 .set_acl = ocfs2_iop_set_acl,
2696 };
2697
2698 /*
2699 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2700 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2701 */
2702 const struct file_operations ocfs2_fops = {
2703 .llseek = ocfs2_file_llseek,
2704 .read = do_sync_read,
2705 .write = do_sync_write,
2706 .mmap = ocfs2_mmap,
2707 .fsync = ocfs2_sync_file,
2708 .release = ocfs2_file_release,
2709 .open = ocfs2_file_open,
2710 .aio_read = ocfs2_file_aio_read,
2711 .aio_write = ocfs2_file_aio_write,
2712 .unlocked_ioctl = ocfs2_ioctl,
2713 #ifdef CONFIG_COMPAT
2714 .compat_ioctl = ocfs2_compat_ioctl,
2715 #endif
2716 .lock = ocfs2_lock,
2717 .flock = ocfs2_flock,
2718 .splice_read = ocfs2_file_splice_read,
2719 .splice_write = ocfs2_file_splice_write,
2720 .fallocate = ocfs2_fallocate,
2721 };
2722
2723 const struct file_operations ocfs2_dops = {
2724 .llseek = generic_file_llseek,
2725 .read = generic_read_dir,
2726 .iterate = ocfs2_readdir,
2727 .fsync = ocfs2_sync_file,
2728 .release = ocfs2_dir_release,
2729 .open = ocfs2_dir_open,
2730 .unlocked_ioctl = ocfs2_ioctl,
2731 #ifdef CONFIG_COMPAT
2732 .compat_ioctl = ocfs2_compat_ioctl,
2733 #endif
2734 .lock = ocfs2_lock,
2735 .flock = ocfs2_flock,
2736 };
2737
2738 /*
2739 * POSIX-lockless variants of our file_operations.
2740 *
2741 * These will be used if the underlying cluster stack does not support
2742 * posix file locking, if the user passes the "localflocks" mount
2743 * option, or if we have a local-only fs.
2744 *
2745 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2746 * so we still want it in the case of no stack support for
2747 * plocks. Internally, it will do the right thing when asked to ignore
2748 * the cluster.
2749 */
2750 const struct file_operations ocfs2_fops_no_plocks = {
2751 .llseek = ocfs2_file_llseek,
2752 .read = do_sync_read,
2753 .write = do_sync_write,
2754 .mmap = ocfs2_mmap,
2755 .fsync = ocfs2_sync_file,
2756 .release = ocfs2_file_release,
2757 .open = ocfs2_file_open,
2758 .aio_read = ocfs2_file_aio_read,
2759 .aio_write = ocfs2_file_aio_write,
2760 .unlocked_ioctl = ocfs2_ioctl,
2761 #ifdef CONFIG_COMPAT
2762 .compat_ioctl = ocfs2_compat_ioctl,
2763 #endif
2764 .flock = ocfs2_flock,
2765 .splice_read = ocfs2_file_splice_read,
2766 .splice_write = ocfs2_file_splice_write,
2767 .fallocate = ocfs2_fallocate,
2768 };
2769
2770 const struct file_operations ocfs2_dops_no_plocks = {
2771 .llseek = generic_file_llseek,
2772 .read = generic_read_dir,
2773 .iterate = ocfs2_readdir,
2774 .fsync = ocfs2_sync_file,
2775 .release = ocfs2_dir_release,
2776 .open = ocfs2_dir_open,
2777 .unlocked_ioctl = ocfs2_ioctl,
2778 #ifdef CONFIG_COMPAT
2779 .compat_ioctl = ocfs2_compat_ioctl,
2780 #endif
2781 .flock = ocfs2_flock,
2782 };
This page took 0.127561 seconds and 5 git commands to generate.