IB/srp: Avoid duplicate connections
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55
56 DEFINE_SPINLOCK(trans_inc_lock);
57
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
78
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 return __ocfs2_wait_on_mount(osb, 0);
82 }
83
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 1);
87 }
88
89 /*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98 };
99
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104 };
105
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116 }
117
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149 }
150
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167 }
168
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178 }
179
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202 }
203
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 mb();
210 return osb->recovery_thread_task != NULL;
211 }
212
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237 }
238
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241 {
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253 }
254
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258 {
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275 }
276
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279 {
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298 }
299
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 int status = 0;
303 unsigned int flushed;
304 struct ocfs2_journal *journal = NULL;
305
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
311 flushed = atomic_read(&journal->j_num_trans);
312 trace_ocfs2_commit_cache_begin(flushed);
313 if (flushed == 0) {
314 up_write(&journal->j_trans_barrier);
315 goto finally;
316 }
317
318 jbd2_journal_lock_updates(journal->j_journal);
319 status = jbd2_journal_flush(journal->j_journal);
320 jbd2_journal_unlock_updates(journal->j_journal);
321 if (status < 0) {
322 up_write(&journal->j_trans_barrier);
323 mlog_errno(status);
324 goto finally;
325 }
326
327 ocfs2_inc_trans_id(journal);
328
329 flushed = atomic_read(&journal->j_num_trans);
330 atomic_set(&journal->j_num_trans, 0);
331 up_write(&journal->j_trans_barrier);
332
333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335 ocfs2_wake_downconvert_thread(osb);
336 wake_up(&journal->j_checkpointed);
337 finally:
338 return status;
339 }
340
341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343 journal_t *journal = osb->journal->j_journal;
344 handle_t *handle;
345
346 BUG_ON(!osb || !osb->journal->j_journal);
347
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
357
358 sb_start_intwrite(osb->sb);
359
360 down_read(&osb->journal->j_trans_barrier);
361
362 handle = jbd2_journal_start(journal, max_buffs);
363 if (IS_ERR(handle)) {
364 up_read(&osb->journal->j_trans_barrier);
365 sb_end_intwrite(osb->sb);
366
367 mlog_errno(PTR_ERR(handle));
368
369 if (is_journal_aborted(journal)) {
370 ocfs2_abort(osb->sb, "Detected aborted journal");
371 handle = ERR_PTR(-EROFS);
372 }
373 } else {
374 if (!ocfs2_mount_local(osb))
375 atomic_inc(&(osb->journal->j_num_trans));
376 }
377
378 return handle;
379 }
380
381 int ocfs2_commit_trans(struct ocfs2_super *osb,
382 handle_t *handle)
383 {
384 int ret, nested;
385 struct ocfs2_journal *journal = osb->journal;
386
387 BUG_ON(!handle);
388
389 nested = handle->h_ref > 1;
390 ret = jbd2_journal_stop(handle);
391 if (ret < 0)
392 mlog_errno(ret);
393
394 if (!nested) {
395 up_read(&journal->j_trans_barrier);
396 sb_end_intwrite(osb->sb);
397 }
398
399 return ret;
400 }
401
402 /*
403 * 'nblocks' is what you want to add to the current transaction.
404 *
405 * This might call jbd2_journal_restart() which will commit dirty buffers
406 * and then restart the transaction. Before calling
407 * ocfs2_extend_trans(), any changed blocks should have been
408 * dirtied. After calling it, all blocks which need to be changed must
409 * go through another set of journal_access/journal_dirty calls.
410 *
411 * WARNING: This will not release any semaphores or disk locks taken
412 * during the transaction, so make sure they were taken *before*
413 * start_trans or we'll have ordering deadlocks.
414 *
415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
416 * good because transaction ids haven't yet been recorded on the
417 * cluster locks associated with this handle.
418 */
419 int ocfs2_extend_trans(handle_t *handle, int nblocks)
420 {
421 int status, old_nblocks;
422
423 BUG_ON(!handle);
424 BUG_ON(nblocks < 0);
425
426 if (!nblocks)
427 return 0;
428
429 old_nblocks = handle->h_buffer_credits;
430
431 trace_ocfs2_extend_trans(old_nblocks, nblocks);
432
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 status = 1;
435 #else
436 status = jbd2_journal_extend(handle, nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
440 }
441 #endif
442
443 if (status > 0) {
444 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
445 status = jbd2_journal_restart(handle,
446 old_nblocks + nblocks);
447 if (status < 0) {
448 mlog_errno(status);
449 goto bail;
450 }
451 }
452
453 status = 0;
454 bail:
455 return status;
456 }
457
458 /*
459 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
460 * If that fails, restart the transaction & regain write access for the
461 * buffer head which is used for metadata modifications.
462 * Taken from Ext4: extend_or_restart_transaction()
463 */
464 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
465 {
466 int status, old_nblks;
467
468 BUG_ON(!handle);
469
470 old_nblks = handle->h_buffer_credits;
471 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
472
473 if (old_nblks < thresh)
474 return 0;
475
476 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
477 if (status < 0) {
478 mlog_errno(status);
479 goto bail;
480 }
481
482 if (status > 0) {
483 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0)
485 mlog_errno(status);
486 }
487
488 bail:
489 return status;
490 }
491
492
493 struct ocfs2_triggers {
494 struct jbd2_buffer_trigger_type ot_triggers;
495 int ot_offset;
496 };
497
498 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
499 {
500 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
501 }
502
503 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
504 struct buffer_head *bh,
505 void *data, size_t size)
506 {
507 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
508
509 /*
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
514 */
515 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
516 }
517
518 /*
519 * Quota blocks have their own trigger because the struct ocfs2_block_check
520 * offset depends on the blocksize.
521 */
522 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
523 struct buffer_head *bh,
524 void *data, size_t size)
525 {
526 struct ocfs2_disk_dqtrailer *dqt =
527 ocfs2_block_dqtrailer(size, data);
528
529 /*
530 * We aren't guaranteed to have the superblock here, so we
531 * must unconditionally compute the ecc data.
532 * __ocfs2_journal_access() will only set the triggers if
533 * metaecc is enabled.
534 */
535 ocfs2_block_check_compute(data, size, &dqt->dq_check);
536 }
537
538 /*
539 * Directory blocks also have their own trigger because the
540 * struct ocfs2_block_check offset depends on the blocksize.
541 */
542 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
543 struct buffer_head *bh,
544 void *data, size_t size)
545 {
546 struct ocfs2_dir_block_trailer *trailer =
547 ocfs2_dir_trailer_from_size(size, data);
548
549 /*
550 * We aren't guaranteed to have the superblock here, so we
551 * must unconditionally compute the ecc data.
552 * __ocfs2_journal_access() will only set the triggers if
553 * metaecc is enabled.
554 */
555 ocfs2_block_check_compute(data, size, &trailer->db_check);
556 }
557
558 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
559 struct buffer_head *bh)
560 {
561 mlog(ML_ERROR,
562 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
563 "bh->b_blocknr = %llu\n",
564 (unsigned long)bh,
565 (unsigned long long)bh->b_blocknr);
566
567 /* We aren't guaranteed to have the superblock here - but if we
568 * don't, it'll just crash. */
569 ocfs2_error(bh->b_assoc_map->host->i_sb,
570 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
571 }
572
573 static struct ocfs2_triggers di_triggers = {
574 .ot_triggers = {
575 .t_frozen = ocfs2_frozen_trigger,
576 .t_abort = ocfs2_abort_trigger,
577 },
578 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
579 };
580
581 static struct ocfs2_triggers eb_triggers = {
582 .ot_triggers = {
583 .t_frozen = ocfs2_frozen_trigger,
584 .t_abort = ocfs2_abort_trigger,
585 },
586 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
587 };
588
589 static struct ocfs2_triggers rb_triggers = {
590 .ot_triggers = {
591 .t_frozen = ocfs2_frozen_trigger,
592 .t_abort = ocfs2_abort_trigger,
593 },
594 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
595 };
596
597 static struct ocfs2_triggers gd_triggers = {
598 .ot_triggers = {
599 .t_frozen = ocfs2_frozen_trigger,
600 .t_abort = ocfs2_abort_trigger,
601 },
602 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
603 };
604
605 static struct ocfs2_triggers db_triggers = {
606 .ot_triggers = {
607 .t_frozen = ocfs2_db_frozen_trigger,
608 .t_abort = ocfs2_abort_trigger,
609 },
610 };
611
612 static struct ocfs2_triggers xb_triggers = {
613 .ot_triggers = {
614 .t_frozen = ocfs2_frozen_trigger,
615 .t_abort = ocfs2_abort_trigger,
616 },
617 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
618 };
619
620 static struct ocfs2_triggers dq_triggers = {
621 .ot_triggers = {
622 .t_frozen = ocfs2_dq_frozen_trigger,
623 .t_abort = ocfs2_abort_trigger,
624 },
625 };
626
627 static struct ocfs2_triggers dr_triggers = {
628 .ot_triggers = {
629 .t_frozen = ocfs2_frozen_trigger,
630 .t_abort = ocfs2_abort_trigger,
631 },
632 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
633 };
634
635 static struct ocfs2_triggers dl_triggers = {
636 .ot_triggers = {
637 .t_frozen = ocfs2_frozen_trigger,
638 .t_abort = ocfs2_abort_trigger,
639 },
640 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
641 };
642
643 static int __ocfs2_journal_access(handle_t *handle,
644 struct ocfs2_caching_info *ci,
645 struct buffer_head *bh,
646 struct ocfs2_triggers *triggers,
647 int type)
648 {
649 int status;
650 struct ocfs2_super *osb =
651 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
652
653 BUG_ON(!ci || !ci->ci_ops);
654 BUG_ON(!handle);
655 BUG_ON(!bh);
656
657 trace_ocfs2_journal_access(
658 (unsigned long long)ocfs2_metadata_cache_owner(ci),
659 (unsigned long long)bh->b_blocknr, type, bh->b_size);
660
661 /* we can safely remove this assertion after testing. */
662 if (!buffer_uptodate(bh)) {
663 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
664 mlog(ML_ERROR, "b_blocknr=%llu\n",
665 (unsigned long long)bh->b_blocknr);
666 BUG();
667 }
668
669 /* Set the current transaction information on the ci so
670 * that the locking code knows whether it can drop it's locks
671 * on this ci or not. We're protected from the commit
672 * thread updating the current transaction id until
673 * ocfs2_commit_trans() because ocfs2_start_trans() took
674 * j_trans_barrier for us. */
675 ocfs2_set_ci_lock_trans(osb->journal, ci);
676
677 ocfs2_metadata_cache_io_lock(ci);
678 switch (type) {
679 case OCFS2_JOURNAL_ACCESS_CREATE:
680 case OCFS2_JOURNAL_ACCESS_WRITE:
681 status = jbd2_journal_get_write_access(handle, bh);
682 break;
683
684 case OCFS2_JOURNAL_ACCESS_UNDO:
685 status = jbd2_journal_get_undo_access(handle, bh);
686 break;
687
688 default:
689 status = -EINVAL;
690 mlog(ML_ERROR, "Unknown access type!\n");
691 }
692 if (!status && ocfs2_meta_ecc(osb) && triggers)
693 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
694 ocfs2_metadata_cache_io_unlock(ci);
695
696 if (status < 0)
697 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
698 status, type);
699
700 return status;
701 }
702
703 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
704 struct buffer_head *bh, int type)
705 {
706 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
707 }
708
709 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
710 struct buffer_head *bh, int type)
711 {
712 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
713 }
714
715 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
716 struct buffer_head *bh, int type)
717 {
718 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
719 type);
720 }
721
722 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
723 struct buffer_head *bh, int type)
724 {
725 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
726 }
727
728 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
729 struct buffer_head *bh, int type)
730 {
731 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
732 }
733
734 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
735 struct buffer_head *bh, int type)
736 {
737 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
738 }
739
740 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
741 struct buffer_head *bh, int type)
742 {
743 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
744 }
745
746 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
747 struct buffer_head *bh, int type)
748 {
749 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
750 }
751
752 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
753 struct buffer_head *bh, int type)
754 {
755 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
756 }
757
758 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
759 struct buffer_head *bh, int type)
760 {
761 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
762 }
763
764 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
765 {
766 int status;
767
768 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
769
770 status = jbd2_journal_dirty_metadata(handle, bh);
771 BUG_ON(status);
772 }
773
774 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
775
776 void ocfs2_set_journal_params(struct ocfs2_super *osb)
777 {
778 journal_t *journal = osb->journal->j_journal;
779 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
780
781 if (osb->osb_commit_interval)
782 commit_interval = osb->osb_commit_interval;
783
784 write_lock(&journal->j_state_lock);
785 journal->j_commit_interval = commit_interval;
786 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
787 journal->j_flags |= JBD2_BARRIER;
788 else
789 journal->j_flags &= ~JBD2_BARRIER;
790 write_unlock(&journal->j_state_lock);
791 }
792
793 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
794 {
795 int status = -1;
796 struct inode *inode = NULL; /* the journal inode */
797 journal_t *j_journal = NULL;
798 struct ocfs2_dinode *di = NULL;
799 struct buffer_head *bh = NULL;
800 struct ocfs2_super *osb;
801 int inode_lock = 0;
802
803 BUG_ON(!journal);
804
805 osb = journal->j_osb;
806
807 /* already have the inode for our journal */
808 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
809 osb->slot_num);
810 if (inode == NULL) {
811 status = -EACCES;
812 mlog_errno(status);
813 goto done;
814 }
815 if (is_bad_inode(inode)) {
816 mlog(ML_ERROR, "access error (bad inode)\n");
817 iput(inode);
818 inode = NULL;
819 status = -EACCES;
820 goto done;
821 }
822
823 SET_INODE_JOURNAL(inode);
824 OCFS2_I(inode)->ip_open_count++;
825
826 /* Skip recovery waits here - journal inode metadata never
827 * changes in a live cluster so it can be considered an
828 * exception to the rule. */
829 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
830 if (status < 0) {
831 if (status != -ERESTARTSYS)
832 mlog(ML_ERROR, "Could not get lock on journal!\n");
833 goto done;
834 }
835
836 inode_lock = 1;
837 di = (struct ocfs2_dinode *)bh->b_data;
838
839 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
840 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
841 i_size_read(inode));
842 status = -EINVAL;
843 goto done;
844 }
845
846 trace_ocfs2_journal_init(i_size_read(inode),
847 (unsigned long long)inode->i_blocks,
848 OCFS2_I(inode)->ip_clusters);
849
850 /* call the kernels journal init function now */
851 j_journal = jbd2_journal_init_inode(inode);
852 if (j_journal == NULL) {
853 mlog(ML_ERROR, "Linux journal layer error\n");
854 status = -EINVAL;
855 goto done;
856 }
857
858 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
859
860 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
861 OCFS2_JOURNAL_DIRTY_FL);
862
863 journal->j_journal = j_journal;
864 journal->j_inode = inode;
865 journal->j_bh = bh;
866
867 ocfs2_set_journal_params(osb);
868
869 journal->j_state = OCFS2_JOURNAL_LOADED;
870
871 status = 0;
872 done:
873 if (status < 0) {
874 if (inode_lock)
875 ocfs2_inode_unlock(inode, 1);
876 brelse(bh);
877 if (inode) {
878 OCFS2_I(inode)->ip_open_count--;
879 iput(inode);
880 }
881 }
882
883 return status;
884 }
885
886 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
887 {
888 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
889 }
890
891 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
892 {
893 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
894 }
895
896 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
897 int dirty, int replayed)
898 {
899 int status;
900 unsigned int flags;
901 struct ocfs2_journal *journal = osb->journal;
902 struct buffer_head *bh = journal->j_bh;
903 struct ocfs2_dinode *fe;
904
905 fe = (struct ocfs2_dinode *)bh->b_data;
906
907 /* The journal bh on the osb always comes from ocfs2_journal_init()
908 * and was validated there inside ocfs2_inode_lock_full(). It's a
909 * code bug if we mess it up. */
910 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
911
912 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
913 if (dirty)
914 flags |= OCFS2_JOURNAL_DIRTY_FL;
915 else
916 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
917 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
918
919 if (replayed)
920 ocfs2_bump_recovery_generation(fe);
921
922 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
923 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
924 if (status < 0)
925 mlog_errno(status);
926
927 return status;
928 }
929
930 /*
931 * If the journal has been kmalloc'd it needs to be freed after this
932 * call.
933 */
934 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
935 {
936 struct ocfs2_journal *journal = NULL;
937 int status = 0;
938 struct inode *inode = NULL;
939 int num_running_trans = 0;
940
941 BUG_ON(!osb);
942
943 journal = osb->journal;
944 if (!journal)
945 goto done;
946
947 inode = journal->j_inode;
948
949 if (journal->j_state != OCFS2_JOURNAL_LOADED)
950 goto done;
951
952 /* need to inc inode use count - jbd2_journal_destroy will iput. */
953 if (!igrab(inode))
954 BUG();
955
956 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
957 trace_ocfs2_journal_shutdown(num_running_trans);
958
959 /* Do a commit_cache here. It will flush our journal, *and*
960 * release any locks that are still held.
961 * set the SHUTDOWN flag and release the trans lock.
962 * the commit thread will take the trans lock for us below. */
963 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
964
965 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
966 * drop the trans_lock (which we want to hold until we
967 * completely destroy the journal. */
968 if (osb->commit_task) {
969 /* Wait for the commit thread */
970 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
971 kthread_stop(osb->commit_task);
972 osb->commit_task = NULL;
973 }
974
975 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
976
977 if (ocfs2_mount_local(osb)) {
978 jbd2_journal_lock_updates(journal->j_journal);
979 status = jbd2_journal_flush(journal->j_journal);
980 jbd2_journal_unlock_updates(journal->j_journal);
981 if (status < 0)
982 mlog_errno(status);
983 }
984
985 if (status == 0) {
986 /*
987 * Do not toggle if flush was unsuccessful otherwise
988 * will leave dirty metadata in a "clean" journal
989 */
990 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
991 if (status < 0)
992 mlog_errno(status);
993 }
994
995 /* Shutdown the kernel journal system */
996 jbd2_journal_destroy(journal->j_journal);
997 journal->j_journal = NULL;
998
999 OCFS2_I(inode)->ip_open_count--;
1000
1001 /* unlock our journal */
1002 ocfs2_inode_unlock(inode, 1);
1003
1004 brelse(journal->j_bh);
1005 journal->j_bh = NULL;
1006
1007 journal->j_state = OCFS2_JOURNAL_FREE;
1008
1009 // up_write(&journal->j_trans_barrier);
1010 done:
1011 if (inode)
1012 iput(inode);
1013 }
1014
1015 static void ocfs2_clear_journal_error(struct super_block *sb,
1016 journal_t *journal,
1017 int slot)
1018 {
1019 int olderr;
1020
1021 olderr = jbd2_journal_errno(journal);
1022 if (olderr) {
1023 mlog(ML_ERROR, "File system error %d recorded in "
1024 "journal %u.\n", olderr, slot);
1025 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1026 sb->s_id);
1027
1028 jbd2_journal_ack_err(journal);
1029 jbd2_journal_clear_err(journal);
1030 }
1031 }
1032
1033 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1034 {
1035 int status = 0;
1036 struct ocfs2_super *osb;
1037
1038 BUG_ON(!journal);
1039
1040 osb = journal->j_osb;
1041
1042 status = jbd2_journal_load(journal->j_journal);
1043 if (status < 0) {
1044 mlog(ML_ERROR, "Failed to load journal!\n");
1045 goto done;
1046 }
1047
1048 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1049
1050 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1051 if (status < 0) {
1052 mlog_errno(status);
1053 goto done;
1054 }
1055
1056 /* Launch the commit thread */
1057 if (!local) {
1058 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1059 "ocfs2cmt");
1060 if (IS_ERR(osb->commit_task)) {
1061 status = PTR_ERR(osb->commit_task);
1062 osb->commit_task = NULL;
1063 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1064 "error=%d", status);
1065 goto done;
1066 }
1067 } else
1068 osb->commit_task = NULL;
1069
1070 done:
1071 return status;
1072 }
1073
1074
1075 /* 'full' flag tells us whether we clear out all blocks or if we just
1076 * mark the journal clean */
1077 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1078 {
1079 int status;
1080
1081 BUG_ON(!journal);
1082
1083 status = jbd2_journal_wipe(journal->j_journal, full);
1084 if (status < 0) {
1085 mlog_errno(status);
1086 goto bail;
1087 }
1088
1089 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1090 if (status < 0)
1091 mlog_errno(status);
1092
1093 bail:
1094 return status;
1095 }
1096
1097 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1098 {
1099 int empty;
1100 struct ocfs2_recovery_map *rm = osb->recovery_map;
1101
1102 spin_lock(&osb->osb_lock);
1103 empty = (rm->rm_used == 0);
1104 spin_unlock(&osb->osb_lock);
1105
1106 return empty;
1107 }
1108
1109 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1110 {
1111 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1112 }
1113
1114 /*
1115 * JBD Might read a cached version of another nodes journal file. We
1116 * don't want this as this file changes often and we get no
1117 * notification on those changes. The only way to be sure that we've
1118 * got the most up to date version of those blocks then is to force
1119 * read them off disk. Just searching through the buffer cache won't
1120 * work as there may be pages backing this file which are still marked
1121 * up to date. We know things can't change on this file underneath us
1122 * as we have the lock by now :)
1123 */
1124 static int ocfs2_force_read_journal(struct inode *inode)
1125 {
1126 int status = 0;
1127 int i;
1128 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1129 #define CONCURRENT_JOURNAL_FILL 32ULL
1130 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1131
1132 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1133
1134 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1135 v_blkno = 0;
1136 while (v_blkno < num_blocks) {
1137 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1138 &p_blkno, &p_blocks, NULL);
1139 if (status < 0) {
1140 mlog_errno(status);
1141 goto bail;
1142 }
1143
1144 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1145 p_blocks = CONCURRENT_JOURNAL_FILL;
1146
1147 /* We are reading journal data which should not
1148 * be put in the uptodate cache */
1149 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1150 p_blkno, p_blocks, bhs);
1151 if (status < 0) {
1152 mlog_errno(status);
1153 goto bail;
1154 }
1155
1156 for(i = 0; i < p_blocks; i++) {
1157 brelse(bhs[i]);
1158 bhs[i] = NULL;
1159 }
1160
1161 v_blkno += p_blocks;
1162 }
1163
1164 bail:
1165 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1166 brelse(bhs[i]);
1167 return status;
1168 }
1169
1170 struct ocfs2_la_recovery_item {
1171 struct list_head lri_list;
1172 int lri_slot;
1173 struct ocfs2_dinode *lri_la_dinode;
1174 struct ocfs2_dinode *lri_tl_dinode;
1175 struct ocfs2_quota_recovery *lri_qrec;
1176 };
1177
1178 /* Does the second half of the recovery process. By this point, the
1179 * node is marked clean and can actually be considered recovered,
1180 * hence it's no longer in the recovery map, but there's still some
1181 * cleanup we can do which shouldn't happen within the recovery thread
1182 * as locking in that context becomes very difficult if we are to take
1183 * recovering nodes into account.
1184 *
1185 * NOTE: This function can and will sleep on recovery of other nodes
1186 * during cluster locking, just like any other ocfs2 process.
1187 */
1188 void ocfs2_complete_recovery(struct work_struct *work)
1189 {
1190 int ret = 0;
1191 struct ocfs2_journal *journal =
1192 container_of(work, struct ocfs2_journal, j_recovery_work);
1193 struct ocfs2_super *osb = journal->j_osb;
1194 struct ocfs2_dinode *la_dinode, *tl_dinode;
1195 struct ocfs2_la_recovery_item *item, *n;
1196 struct ocfs2_quota_recovery *qrec;
1197 LIST_HEAD(tmp_la_list);
1198
1199 trace_ocfs2_complete_recovery(
1200 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1201
1202 spin_lock(&journal->j_lock);
1203 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1204 spin_unlock(&journal->j_lock);
1205
1206 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1207 list_del_init(&item->lri_list);
1208
1209 ocfs2_wait_on_quotas(osb);
1210
1211 la_dinode = item->lri_la_dinode;
1212 tl_dinode = item->lri_tl_dinode;
1213 qrec = item->lri_qrec;
1214
1215 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1216 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1217 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1218 qrec);
1219
1220 if (la_dinode) {
1221 ret = ocfs2_complete_local_alloc_recovery(osb,
1222 la_dinode);
1223 if (ret < 0)
1224 mlog_errno(ret);
1225
1226 kfree(la_dinode);
1227 }
1228
1229 if (tl_dinode) {
1230 ret = ocfs2_complete_truncate_log_recovery(osb,
1231 tl_dinode);
1232 if (ret < 0)
1233 mlog_errno(ret);
1234
1235 kfree(tl_dinode);
1236 }
1237
1238 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1239 if (ret < 0)
1240 mlog_errno(ret);
1241
1242 if (qrec) {
1243 ret = ocfs2_finish_quota_recovery(osb, qrec,
1244 item->lri_slot);
1245 if (ret < 0)
1246 mlog_errno(ret);
1247 /* Recovery info is already freed now */
1248 }
1249
1250 kfree(item);
1251 }
1252
1253 trace_ocfs2_complete_recovery_end(ret);
1254 }
1255
1256 /* NOTE: This function always eats your references to la_dinode and
1257 * tl_dinode, either manually on error, or by passing them to
1258 * ocfs2_complete_recovery */
1259 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1260 int slot_num,
1261 struct ocfs2_dinode *la_dinode,
1262 struct ocfs2_dinode *tl_dinode,
1263 struct ocfs2_quota_recovery *qrec)
1264 {
1265 struct ocfs2_la_recovery_item *item;
1266
1267 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1268 if (!item) {
1269 /* Though we wish to avoid it, we are in fact safe in
1270 * skipping local alloc cleanup as fsck.ocfs2 is more
1271 * than capable of reclaiming unused space. */
1272 kfree(la_dinode);
1273 kfree(tl_dinode);
1274
1275 if (qrec)
1276 ocfs2_free_quota_recovery(qrec);
1277
1278 mlog_errno(-ENOMEM);
1279 return;
1280 }
1281
1282 INIT_LIST_HEAD(&item->lri_list);
1283 item->lri_la_dinode = la_dinode;
1284 item->lri_slot = slot_num;
1285 item->lri_tl_dinode = tl_dinode;
1286 item->lri_qrec = qrec;
1287
1288 spin_lock(&journal->j_lock);
1289 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1290 queue_work(ocfs2_wq, &journal->j_recovery_work);
1291 spin_unlock(&journal->j_lock);
1292 }
1293
1294 /* Called by the mount code to queue recovery the last part of
1295 * recovery for it's own and offline slot(s). */
1296 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1297 {
1298 struct ocfs2_journal *journal = osb->journal;
1299
1300 if (ocfs2_is_hard_readonly(osb))
1301 return;
1302
1303 /* No need to queue up our truncate_log as regular cleanup will catch
1304 * that */
1305 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1306 osb->local_alloc_copy, NULL, NULL);
1307 ocfs2_schedule_truncate_log_flush(osb, 0);
1308
1309 osb->local_alloc_copy = NULL;
1310 osb->dirty = 0;
1311
1312 /* queue to recover orphan slots for all offline slots */
1313 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1314 ocfs2_queue_replay_slots(osb);
1315 ocfs2_free_replay_slots(osb);
1316 }
1317
1318 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1319 {
1320 if (osb->quota_rec) {
1321 ocfs2_queue_recovery_completion(osb->journal,
1322 osb->slot_num,
1323 NULL,
1324 NULL,
1325 osb->quota_rec);
1326 osb->quota_rec = NULL;
1327 }
1328 }
1329
1330 static int __ocfs2_recovery_thread(void *arg)
1331 {
1332 int status, node_num, slot_num;
1333 struct ocfs2_super *osb = arg;
1334 struct ocfs2_recovery_map *rm = osb->recovery_map;
1335 int *rm_quota = NULL;
1336 int rm_quota_used = 0, i;
1337 struct ocfs2_quota_recovery *qrec;
1338
1339 status = ocfs2_wait_on_mount(osb);
1340 if (status < 0) {
1341 goto bail;
1342 }
1343
1344 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1345 if (!rm_quota) {
1346 status = -ENOMEM;
1347 goto bail;
1348 }
1349 restart:
1350 status = ocfs2_super_lock(osb, 1);
1351 if (status < 0) {
1352 mlog_errno(status);
1353 goto bail;
1354 }
1355
1356 status = ocfs2_compute_replay_slots(osb);
1357 if (status < 0)
1358 mlog_errno(status);
1359
1360 /* queue recovery for our own slot */
1361 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1362 NULL, NULL);
1363
1364 spin_lock(&osb->osb_lock);
1365 while (rm->rm_used) {
1366 /* It's always safe to remove entry zero, as we won't
1367 * clear it until ocfs2_recover_node() has succeeded. */
1368 node_num = rm->rm_entries[0];
1369 spin_unlock(&osb->osb_lock);
1370 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1371 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1372 if (slot_num == -ENOENT) {
1373 status = 0;
1374 goto skip_recovery;
1375 }
1376
1377 /* It is a bit subtle with quota recovery. We cannot do it
1378 * immediately because we have to obtain cluster locks from
1379 * quota files and we also don't want to just skip it because
1380 * then quota usage would be out of sync until some node takes
1381 * the slot. So we remember which nodes need quota recovery
1382 * and when everything else is done, we recover quotas. */
1383 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1384 if (i == rm_quota_used)
1385 rm_quota[rm_quota_used++] = slot_num;
1386
1387 status = ocfs2_recover_node(osb, node_num, slot_num);
1388 skip_recovery:
1389 if (!status) {
1390 ocfs2_recovery_map_clear(osb, node_num);
1391 } else {
1392 mlog(ML_ERROR,
1393 "Error %d recovering node %d on device (%u,%u)!\n",
1394 status, node_num,
1395 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1396 mlog(ML_ERROR, "Volume requires unmount.\n");
1397 }
1398
1399 spin_lock(&osb->osb_lock);
1400 }
1401 spin_unlock(&osb->osb_lock);
1402 trace_ocfs2_recovery_thread_end(status);
1403
1404 /* Refresh all journal recovery generations from disk */
1405 status = ocfs2_check_journals_nolocks(osb);
1406 status = (status == -EROFS) ? 0 : status;
1407 if (status < 0)
1408 mlog_errno(status);
1409
1410 /* Now it is right time to recover quotas... We have to do this under
1411 * superblock lock so that no one can start using the slot (and crash)
1412 * before we recover it */
1413 for (i = 0; i < rm_quota_used; i++) {
1414 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1415 if (IS_ERR(qrec)) {
1416 status = PTR_ERR(qrec);
1417 mlog_errno(status);
1418 continue;
1419 }
1420 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1421 NULL, NULL, qrec);
1422 }
1423
1424 ocfs2_super_unlock(osb, 1);
1425
1426 /* queue recovery for offline slots */
1427 ocfs2_queue_replay_slots(osb);
1428
1429 bail:
1430 mutex_lock(&osb->recovery_lock);
1431 if (!status && !ocfs2_recovery_completed(osb)) {
1432 mutex_unlock(&osb->recovery_lock);
1433 goto restart;
1434 }
1435
1436 ocfs2_free_replay_slots(osb);
1437 osb->recovery_thread_task = NULL;
1438 mb(); /* sync with ocfs2_recovery_thread_running */
1439 wake_up(&osb->recovery_event);
1440
1441 mutex_unlock(&osb->recovery_lock);
1442
1443 kfree(rm_quota);
1444
1445 /* no one is callint kthread_stop() for us so the kthread() api
1446 * requires that we call do_exit(). And it isn't exported, but
1447 * complete_and_exit() seems to be a minimal wrapper around it. */
1448 complete_and_exit(NULL, status);
1449 return status;
1450 }
1451
1452 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1453 {
1454 mutex_lock(&osb->recovery_lock);
1455
1456 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1457 osb->disable_recovery, osb->recovery_thread_task,
1458 osb->disable_recovery ?
1459 -1 : ocfs2_recovery_map_set(osb, node_num));
1460
1461 if (osb->disable_recovery)
1462 goto out;
1463
1464 if (osb->recovery_thread_task)
1465 goto out;
1466
1467 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1468 "ocfs2rec");
1469 if (IS_ERR(osb->recovery_thread_task)) {
1470 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1471 osb->recovery_thread_task = NULL;
1472 }
1473
1474 out:
1475 mutex_unlock(&osb->recovery_lock);
1476 wake_up(&osb->recovery_event);
1477 }
1478
1479 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1480 int slot_num,
1481 struct buffer_head **bh,
1482 struct inode **ret_inode)
1483 {
1484 int status = -EACCES;
1485 struct inode *inode = NULL;
1486
1487 BUG_ON(slot_num >= osb->max_slots);
1488
1489 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1490 slot_num);
1491 if (!inode || is_bad_inode(inode)) {
1492 mlog_errno(status);
1493 goto bail;
1494 }
1495 SET_INODE_JOURNAL(inode);
1496
1497 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1498 if (status < 0) {
1499 mlog_errno(status);
1500 goto bail;
1501 }
1502
1503 status = 0;
1504
1505 bail:
1506 if (inode) {
1507 if (status || !ret_inode)
1508 iput(inode);
1509 else
1510 *ret_inode = inode;
1511 }
1512 return status;
1513 }
1514
1515 /* Does the actual journal replay and marks the journal inode as
1516 * clean. Will only replay if the journal inode is marked dirty. */
1517 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1518 int node_num,
1519 int slot_num)
1520 {
1521 int status;
1522 int got_lock = 0;
1523 unsigned int flags;
1524 struct inode *inode = NULL;
1525 struct ocfs2_dinode *fe;
1526 journal_t *journal = NULL;
1527 struct buffer_head *bh = NULL;
1528 u32 slot_reco_gen;
1529
1530 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1531 if (status) {
1532 mlog_errno(status);
1533 goto done;
1534 }
1535
1536 fe = (struct ocfs2_dinode *)bh->b_data;
1537 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1538 brelse(bh);
1539 bh = NULL;
1540
1541 /*
1542 * As the fs recovery is asynchronous, there is a small chance that
1543 * another node mounted (and recovered) the slot before the recovery
1544 * thread could get the lock. To handle that, we dirty read the journal
1545 * inode for that slot to get the recovery generation. If it is
1546 * different than what we expected, the slot has been recovered.
1547 * If not, it needs recovery.
1548 */
1549 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1550 trace_ocfs2_replay_journal_recovered(slot_num,
1551 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1552 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1553 status = -EBUSY;
1554 goto done;
1555 }
1556
1557 /* Continue with recovery as the journal has not yet been recovered */
1558
1559 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1560 if (status < 0) {
1561 trace_ocfs2_replay_journal_lock_err(status);
1562 if (status != -ERESTARTSYS)
1563 mlog(ML_ERROR, "Could not lock journal!\n");
1564 goto done;
1565 }
1566 got_lock = 1;
1567
1568 fe = (struct ocfs2_dinode *) bh->b_data;
1569
1570 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1571 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1572
1573 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1574 trace_ocfs2_replay_journal_skip(node_num);
1575 /* Refresh recovery generation for the slot */
1576 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1577 goto done;
1578 }
1579
1580 /* we need to run complete recovery for offline orphan slots */
1581 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1582
1583 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1584 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1585 MINOR(osb->sb->s_dev));
1586
1587 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1588
1589 status = ocfs2_force_read_journal(inode);
1590 if (status < 0) {
1591 mlog_errno(status);
1592 goto done;
1593 }
1594
1595 journal = jbd2_journal_init_inode(inode);
1596 if (journal == NULL) {
1597 mlog(ML_ERROR, "Linux journal layer error\n");
1598 status = -EIO;
1599 goto done;
1600 }
1601
1602 status = jbd2_journal_load(journal);
1603 if (status < 0) {
1604 mlog_errno(status);
1605 if (!igrab(inode))
1606 BUG();
1607 jbd2_journal_destroy(journal);
1608 goto done;
1609 }
1610
1611 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1612
1613 /* wipe the journal */
1614 jbd2_journal_lock_updates(journal);
1615 status = jbd2_journal_flush(journal);
1616 jbd2_journal_unlock_updates(journal);
1617 if (status < 0)
1618 mlog_errno(status);
1619
1620 /* This will mark the node clean */
1621 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1622 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1623 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1624
1625 /* Increment recovery generation to indicate successful recovery */
1626 ocfs2_bump_recovery_generation(fe);
1627 osb->slot_recovery_generations[slot_num] =
1628 ocfs2_get_recovery_generation(fe);
1629
1630 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1631 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1632 if (status < 0)
1633 mlog_errno(status);
1634
1635 if (!igrab(inode))
1636 BUG();
1637
1638 jbd2_journal_destroy(journal);
1639
1640 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1641 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1642 MINOR(osb->sb->s_dev));
1643 done:
1644 /* drop the lock on this nodes journal */
1645 if (got_lock)
1646 ocfs2_inode_unlock(inode, 1);
1647
1648 if (inode)
1649 iput(inode);
1650
1651 brelse(bh);
1652
1653 return status;
1654 }
1655
1656 /*
1657 * Do the most important parts of node recovery:
1658 * - Replay it's journal
1659 * - Stamp a clean local allocator file
1660 * - Stamp a clean truncate log
1661 * - Mark the node clean
1662 *
1663 * If this function completes without error, a node in OCFS2 can be
1664 * said to have been safely recovered. As a result, failure during the
1665 * second part of a nodes recovery process (local alloc recovery) is
1666 * far less concerning.
1667 */
1668 static int ocfs2_recover_node(struct ocfs2_super *osb,
1669 int node_num, int slot_num)
1670 {
1671 int status = 0;
1672 struct ocfs2_dinode *la_copy = NULL;
1673 struct ocfs2_dinode *tl_copy = NULL;
1674
1675 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1676
1677 /* Should not ever be called to recover ourselves -- in that
1678 * case we should've called ocfs2_journal_load instead. */
1679 BUG_ON(osb->node_num == node_num);
1680
1681 status = ocfs2_replay_journal(osb, node_num, slot_num);
1682 if (status < 0) {
1683 if (status == -EBUSY) {
1684 trace_ocfs2_recover_node_skip(slot_num, node_num);
1685 status = 0;
1686 goto done;
1687 }
1688 mlog_errno(status);
1689 goto done;
1690 }
1691
1692 /* Stamp a clean local alloc file AFTER recovering the journal... */
1693 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1694 if (status < 0) {
1695 mlog_errno(status);
1696 goto done;
1697 }
1698
1699 /* An error from begin_truncate_log_recovery is not
1700 * serious enough to warrant halting the rest of
1701 * recovery. */
1702 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1703 if (status < 0)
1704 mlog_errno(status);
1705
1706 /* Likewise, this would be a strange but ultimately not so
1707 * harmful place to get an error... */
1708 status = ocfs2_clear_slot(osb, slot_num);
1709 if (status < 0)
1710 mlog_errno(status);
1711
1712 /* This will kfree the memory pointed to by la_copy and tl_copy */
1713 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1714 tl_copy, NULL);
1715
1716 status = 0;
1717 done:
1718
1719 return status;
1720 }
1721
1722 /* Test node liveness by trylocking his journal. If we get the lock,
1723 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1724 * still alive (we couldn't get the lock) and < 0 on error. */
1725 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1726 int slot_num)
1727 {
1728 int status, flags;
1729 struct inode *inode = NULL;
1730
1731 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1732 slot_num);
1733 if (inode == NULL) {
1734 mlog(ML_ERROR, "access error\n");
1735 status = -EACCES;
1736 goto bail;
1737 }
1738 if (is_bad_inode(inode)) {
1739 mlog(ML_ERROR, "access error (bad inode)\n");
1740 iput(inode);
1741 inode = NULL;
1742 status = -EACCES;
1743 goto bail;
1744 }
1745 SET_INODE_JOURNAL(inode);
1746
1747 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1748 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1749 if (status < 0) {
1750 if (status != -EAGAIN)
1751 mlog_errno(status);
1752 goto bail;
1753 }
1754
1755 ocfs2_inode_unlock(inode, 1);
1756 bail:
1757 if (inode)
1758 iput(inode);
1759
1760 return status;
1761 }
1762
1763 /* Call this underneath ocfs2_super_lock. It also assumes that the
1764 * slot info struct has been updated from disk. */
1765 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1766 {
1767 unsigned int node_num;
1768 int status, i;
1769 u32 gen;
1770 struct buffer_head *bh = NULL;
1771 struct ocfs2_dinode *di;
1772
1773 /* This is called with the super block cluster lock, so we
1774 * know that the slot map can't change underneath us. */
1775
1776 for (i = 0; i < osb->max_slots; i++) {
1777 /* Read journal inode to get the recovery generation */
1778 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1779 if (status) {
1780 mlog_errno(status);
1781 goto bail;
1782 }
1783 di = (struct ocfs2_dinode *)bh->b_data;
1784 gen = ocfs2_get_recovery_generation(di);
1785 brelse(bh);
1786 bh = NULL;
1787
1788 spin_lock(&osb->osb_lock);
1789 osb->slot_recovery_generations[i] = gen;
1790
1791 trace_ocfs2_mark_dead_nodes(i,
1792 osb->slot_recovery_generations[i]);
1793
1794 if (i == osb->slot_num) {
1795 spin_unlock(&osb->osb_lock);
1796 continue;
1797 }
1798
1799 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1800 if (status == -ENOENT) {
1801 spin_unlock(&osb->osb_lock);
1802 continue;
1803 }
1804
1805 if (__ocfs2_recovery_map_test(osb, node_num)) {
1806 spin_unlock(&osb->osb_lock);
1807 continue;
1808 }
1809 spin_unlock(&osb->osb_lock);
1810
1811 /* Ok, we have a slot occupied by another node which
1812 * is not in the recovery map. We trylock his journal
1813 * file here to test if he's alive. */
1814 status = ocfs2_trylock_journal(osb, i);
1815 if (!status) {
1816 /* Since we're called from mount, we know that
1817 * the recovery thread can't race us on
1818 * setting / checking the recovery bits. */
1819 ocfs2_recovery_thread(osb, node_num);
1820 } else if ((status < 0) && (status != -EAGAIN)) {
1821 mlog_errno(status);
1822 goto bail;
1823 }
1824 }
1825
1826 status = 0;
1827 bail:
1828 return status;
1829 }
1830
1831 /*
1832 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1833 * randomness to the timeout to minimize multple nodes firing the timer at the
1834 * same time.
1835 */
1836 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1837 {
1838 unsigned long time;
1839
1840 get_random_bytes(&time, sizeof(time));
1841 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1842 return msecs_to_jiffies(time);
1843 }
1844
1845 /*
1846 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1847 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1848 * is done to catch any orphans that are left over in orphan directories.
1849 *
1850 * It scans all slots, even ones that are in use. It does so to handle the
1851 * case described below:
1852 *
1853 * Node 1 has an inode it was using. The dentry went away due to memory
1854 * pressure. Node 1 closes the inode, but it's on the free list. The node
1855 * has the open lock.
1856 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1857 * but node 1 has no dentry and doesn't get the message. It trylocks the
1858 * open lock, sees that another node has a PR, and does nothing.
1859 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1860 * open lock, sees the PR still, and does nothing.
1861 * Basically, we have to trigger an orphan iput on node 1. The only way
1862 * for this to happen is if node 1 runs node 2's orphan dir.
1863 *
1864 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1865 * seconds. It gets an EX lock on os_lockres and checks sequence number
1866 * stored in LVB. If the sequence number has changed, it means some other
1867 * node has done the scan. This node skips the scan and tracks the
1868 * sequence number. If the sequence number didn't change, it means a scan
1869 * hasn't happened. The node queues a scan and increments the
1870 * sequence number in the LVB.
1871 */
1872 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1873 {
1874 struct ocfs2_orphan_scan *os;
1875 int status, i;
1876 u32 seqno = 0;
1877
1878 os = &osb->osb_orphan_scan;
1879
1880 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1881 goto out;
1882
1883 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1884 atomic_read(&os->os_state));
1885
1886 status = ocfs2_orphan_scan_lock(osb, &seqno);
1887 if (status < 0) {
1888 if (status != -EAGAIN)
1889 mlog_errno(status);
1890 goto out;
1891 }
1892
1893 /* Do no queue the tasks if the volume is being umounted */
1894 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1895 goto unlock;
1896
1897 if (os->os_seqno != seqno) {
1898 os->os_seqno = seqno;
1899 goto unlock;
1900 }
1901
1902 for (i = 0; i < osb->max_slots; i++)
1903 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1904 NULL);
1905 /*
1906 * We queued a recovery on orphan slots, increment the sequence
1907 * number and update LVB so other node will skip the scan for a while
1908 */
1909 seqno++;
1910 os->os_count++;
1911 os->os_scantime = CURRENT_TIME;
1912 unlock:
1913 ocfs2_orphan_scan_unlock(osb, seqno);
1914 out:
1915 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1916 atomic_read(&os->os_state));
1917 return;
1918 }
1919
1920 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1921 void ocfs2_orphan_scan_work(struct work_struct *work)
1922 {
1923 struct ocfs2_orphan_scan *os;
1924 struct ocfs2_super *osb;
1925
1926 os = container_of(work, struct ocfs2_orphan_scan,
1927 os_orphan_scan_work.work);
1928 osb = os->os_osb;
1929
1930 mutex_lock(&os->os_lock);
1931 ocfs2_queue_orphan_scan(osb);
1932 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1933 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1934 ocfs2_orphan_scan_timeout());
1935 mutex_unlock(&os->os_lock);
1936 }
1937
1938 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1939 {
1940 struct ocfs2_orphan_scan *os;
1941
1942 os = &osb->osb_orphan_scan;
1943 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1944 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1945 mutex_lock(&os->os_lock);
1946 cancel_delayed_work(&os->os_orphan_scan_work);
1947 mutex_unlock(&os->os_lock);
1948 }
1949 }
1950
1951 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1952 {
1953 struct ocfs2_orphan_scan *os;
1954
1955 os = &osb->osb_orphan_scan;
1956 os->os_osb = osb;
1957 os->os_count = 0;
1958 os->os_seqno = 0;
1959 mutex_init(&os->os_lock);
1960 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1961 }
1962
1963 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1964 {
1965 struct ocfs2_orphan_scan *os;
1966
1967 os = &osb->osb_orphan_scan;
1968 os->os_scantime = CURRENT_TIME;
1969 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1970 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1971 else {
1972 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1973 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1974 ocfs2_orphan_scan_timeout());
1975 }
1976 }
1977
1978 struct ocfs2_orphan_filldir_priv {
1979 struct dir_context ctx;
1980 struct inode *head;
1981 struct ocfs2_super *osb;
1982 };
1983
1984 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1985 loff_t pos, u64 ino, unsigned type)
1986 {
1987 struct ocfs2_orphan_filldir_priv *p = priv;
1988 struct inode *iter;
1989
1990 if (name_len == 1 && !strncmp(".", name, 1))
1991 return 0;
1992 if (name_len == 2 && !strncmp("..", name, 2))
1993 return 0;
1994
1995 /* Skip bad inodes so that recovery can continue */
1996 iter = ocfs2_iget(p->osb, ino,
1997 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1998 if (IS_ERR(iter))
1999 return 0;
2000
2001 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2002 /* No locking is required for the next_orphan queue as there
2003 * is only ever a single process doing orphan recovery. */
2004 OCFS2_I(iter)->ip_next_orphan = p->head;
2005 p->head = iter;
2006
2007 return 0;
2008 }
2009
2010 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2011 int slot,
2012 struct inode **head)
2013 {
2014 int status;
2015 struct inode *orphan_dir_inode = NULL;
2016 struct ocfs2_orphan_filldir_priv priv = {
2017 .ctx.actor = ocfs2_orphan_filldir,
2018 .osb = osb,
2019 .head = *head
2020 };
2021
2022 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2023 ORPHAN_DIR_SYSTEM_INODE,
2024 slot);
2025 if (!orphan_dir_inode) {
2026 status = -ENOENT;
2027 mlog_errno(status);
2028 return status;
2029 }
2030
2031 mutex_lock(&orphan_dir_inode->i_mutex);
2032 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2033 if (status < 0) {
2034 mlog_errno(status);
2035 goto out;
2036 }
2037
2038 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2039 if (status) {
2040 mlog_errno(status);
2041 goto out_cluster;
2042 }
2043
2044 *head = priv.head;
2045
2046 out_cluster:
2047 ocfs2_inode_unlock(orphan_dir_inode, 0);
2048 out:
2049 mutex_unlock(&orphan_dir_inode->i_mutex);
2050 iput(orphan_dir_inode);
2051 return status;
2052 }
2053
2054 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2055 int slot)
2056 {
2057 int ret;
2058
2059 spin_lock(&osb->osb_lock);
2060 ret = !osb->osb_orphan_wipes[slot];
2061 spin_unlock(&osb->osb_lock);
2062 return ret;
2063 }
2064
2065 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2066 int slot)
2067 {
2068 spin_lock(&osb->osb_lock);
2069 /* Mark ourselves such that new processes in delete_inode()
2070 * know to quit early. */
2071 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2072 while (osb->osb_orphan_wipes[slot]) {
2073 /* If any processes are already in the middle of an
2074 * orphan wipe on this dir, then we need to wait for
2075 * them. */
2076 spin_unlock(&osb->osb_lock);
2077 wait_event_interruptible(osb->osb_wipe_event,
2078 ocfs2_orphan_recovery_can_continue(osb, slot));
2079 spin_lock(&osb->osb_lock);
2080 }
2081 spin_unlock(&osb->osb_lock);
2082 }
2083
2084 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2085 int slot)
2086 {
2087 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2088 }
2089
2090 /*
2091 * Orphan recovery. Each mounted node has it's own orphan dir which we
2092 * must run during recovery. Our strategy here is to build a list of
2093 * the inodes in the orphan dir and iget/iput them. The VFS does
2094 * (most) of the rest of the work.
2095 *
2096 * Orphan recovery can happen at any time, not just mount so we have a
2097 * couple of extra considerations.
2098 *
2099 * - We grab as many inodes as we can under the orphan dir lock -
2100 * doing iget() outside the orphan dir risks getting a reference on
2101 * an invalid inode.
2102 * - We must be sure not to deadlock with other processes on the
2103 * system wanting to run delete_inode(). This can happen when they go
2104 * to lock the orphan dir and the orphan recovery process attempts to
2105 * iget() inside the orphan dir lock. This can be avoided by
2106 * advertising our state to ocfs2_delete_inode().
2107 */
2108 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2109 int slot)
2110 {
2111 int ret = 0;
2112 struct inode *inode = NULL;
2113 struct inode *iter;
2114 struct ocfs2_inode_info *oi;
2115
2116 trace_ocfs2_recover_orphans(slot);
2117
2118 ocfs2_mark_recovering_orphan_dir(osb, slot);
2119 ret = ocfs2_queue_orphans(osb, slot, &inode);
2120 ocfs2_clear_recovering_orphan_dir(osb, slot);
2121
2122 /* Error here should be noted, but we want to continue with as
2123 * many queued inodes as we've got. */
2124 if (ret)
2125 mlog_errno(ret);
2126
2127 while (inode) {
2128 oi = OCFS2_I(inode);
2129 trace_ocfs2_recover_orphans_iput(
2130 (unsigned long long)oi->ip_blkno);
2131
2132 iter = oi->ip_next_orphan;
2133
2134 spin_lock(&oi->ip_lock);
2135 /* The remote delete code may have set these on the
2136 * assumption that the other node would wipe them
2137 * successfully. If they are still in the node's
2138 * orphan dir, we need to reset that state. */
2139 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2140
2141 /* Set the proper information to get us going into
2142 * ocfs2_delete_inode. */
2143 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2144 spin_unlock(&oi->ip_lock);
2145
2146 iput(inode);
2147
2148 inode = iter;
2149 }
2150
2151 return ret;
2152 }
2153
2154 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2155 {
2156 /* This check is good because ocfs2 will wait on our recovery
2157 * thread before changing it to something other than MOUNTED
2158 * or DISABLED. */
2159 wait_event(osb->osb_mount_event,
2160 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2161 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2162 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2163
2164 /* If there's an error on mount, then we may never get to the
2165 * MOUNTED flag, but this is set right before
2166 * dismount_volume() so we can trust it. */
2167 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2168 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2169 mlog(0, "mount error, exiting!\n");
2170 return -EBUSY;
2171 }
2172
2173 return 0;
2174 }
2175
2176 static int ocfs2_commit_thread(void *arg)
2177 {
2178 int status;
2179 struct ocfs2_super *osb = arg;
2180 struct ocfs2_journal *journal = osb->journal;
2181
2182 /* we can trust j_num_trans here because _should_stop() is only set in
2183 * shutdown and nobody other than ourselves should be able to start
2184 * transactions. committing on shutdown might take a few iterations
2185 * as final transactions put deleted inodes on the list */
2186 while (!(kthread_should_stop() &&
2187 atomic_read(&journal->j_num_trans) == 0)) {
2188
2189 wait_event_interruptible(osb->checkpoint_event,
2190 atomic_read(&journal->j_num_trans)
2191 || kthread_should_stop());
2192
2193 status = ocfs2_commit_cache(osb);
2194 if (status < 0)
2195 mlog_errno(status);
2196
2197 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2198 mlog(ML_KTHREAD,
2199 "commit_thread: %u transactions pending on "
2200 "shutdown\n",
2201 atomic_read(&journal->j_num_trans));
2202 }
2203 }
2204
2205 return 0;
2206 }
2207
2208 /* Reads all the journal inodes without taking any cluster locks. Used
2209 * for hard readonly access to determine whether any journal requires
2210 * recovery. Also used to refresh the recovery generation numbers after
2211 * a journal has been recovered by another node.
2212 */
2213 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2214 {
2215 int ret = 0;
2216 unsigned int slot;
2217 struct buffer_head *di_bh = NULL;
2218 struct ocfs2_dinode *di;
2219 int journal_dirty = 0;
2220
2221 for(slot = 0; slot < osb->max_slots; slot++) {
2222 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2223 if (ret) {
2224 mlog_errno(ret);
2225 goto out;
2226 }
2227
2228 di = (struct ocfs2_dinode *) di_bh->b_data;
2229
2230 osb->slot_recovery_generations[slot] =
2231 ocfs2_get_recovery_generation(di);
2232
2233 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2234 OCFS2_JOURNAL_DIRTY_FL)
2235 journal_dirty = 1;
2236
2237 brelse(di_bh);
2238 di_bh = NULL;
2239 }
2240
2241 out:
2242 if (journal_dirty)
2243 ret = -EROFS;
2244 return ret;
2245 }
This page took 0.076551 seconds and 5 git commands to generate.