ocfs2: Rename ocfs2_meta_[un]lock
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "sysfile.h"
48
49 #include "buffer_head_io.h"
50
51 DEFINE_SPINLOCK(trans_inc_lock);
52
53 static int ocfs2_force_read_journal(struct inode *inode);
54 static int ocfs2_recover_node(struct ocfs2_super *osb,
55 int node_num);
56 static int __ocfs2_recovery_thread(void *arg);
57 static int ocfs2_commit_cache(struct ocfs2_super *osb);
58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
60 int dirty);
61 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
62 int slot_num);
63 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
64 int slot);
65 static int ocfs2_commit_thread(void *arg);
66
67 static int ocfs2_commit_cache(struct ocfs2_super *osb)
68 {
69 int status = 0;
70 unsigned int flushed;
71 unsigned long old_id;
72 struct ocfs2_journal *journal = NULL;
73
74 mlog_entry_void();
75
76 journal = osb->journal;
77
78 /* Flush all pending commits and checkpoint the journal. */
79 down_write(&journal->j_trans_barrier);
80
81 if (atomic_read(&journal->j_num_trans) == 0) {
82 up_write(&journal->j_trans_barrier);
83 mlog(0, "No transactions for me to flush!\n");
84 goto finally;
85 }
86
87 journal_lock_updates(journal->j_journal);
88 status = journal_flush(journal->j_journal);
89 journal_unlock_updates(journal->j_journal);
90 if (status < 0) {
91 up_write(&journal->j_trans_barrier);
92 mlog_errno(status);
93 goto finally;
94 }
95
96 old_id = ocfs2_inc_trans_id(journal);
97
98 flushed = atomic_read(&journal->j_num_trans);
99 atomic_set(&journal->j_num_trans, 0);
100 up_write(&journal->j_trans_barrier);
101
102 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
103 journal->j_trans_id, flushed);
104
105 ocfs2_wake_downconvert_thread(osb);
106 wake_up(&journal->j_checkpointed);
107 finally:
108 mlog_exit(status);
109 return status;
110 }
111
112 /* pass it NULL and it will allocate a new handle object for you. If
113 * you pass it a handle however, it may still return error, in which
114 * case it has free'd the passed handle for you. */
115 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
116 {
117 journal_t *journal = osb->journal->j_journal;
118 handle_t *handle;
119
120 BUG_ON(!osb || !osb->journal->j_journal);
121
122 if (ocfs2_is_hard_readonly(osb))
123 return ERR_PTR(-EROFS);
124
125 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
126 BUG_ON(max_buffs <= 0);
127
128 /* JBD might support this, but our journalling code doesn't yet. */
129 if (journal_current_handle()) {
130 mlog(ML_ERROR, "Recursive transaction attempted!\n");
131 BUG();
132 }
133
134 down_read(&osb->journal->j_trans_barrier);
135
136 handle = journal_start(journal, max_buffs);
137 if (IS_ERR(handle)) {
138 up_read(&osb->journal->j_trans_barrier);
139
140 mlog_errno(PTR_ERR(handle));
141
142 if (is_journal_aborted(journal)) {
143 ocfs2_abort(osb->sb, "Detected aborted journal");
144 handle = ERR_PTR(-EROFS);
145 }
146 } else {
147 if (!ocfs2_mount_local(osb))
148 atomic_inc(&(osb->journal->j_num_trans));
149 }
150
151 return handle;
152 }
153
154 int ocfs2_commit_trans(struct ocfs2_super *osb,
155 handle_t *handle)
156 {
157 int ret;
158 struct ocfs2_journal *journal = osb->journal;
159
160 BUG_ON(!handle);
161
162 ret = journal_stop(handle);
163 if (ret < 0)
164 mlog_errno(ret);
165
166 up_read(&journal->j_trans_barrier);
167
168 return ret;
169 }
170
171 /*
172 * 'nblocks' is what you want to add to the current
173 * transaction. extend_trans will either extend the current handle by
174 * nblocks, or commit it and start a new one with nblocks credits.
175 *
176 * This might call journal_restart() which will commit dirty buffers
177 * and then restart the transaction. Before calling
178 * ocfs2_extend_trans(), any changed blocks should have been
179 * dirtied. After calling it, all blocks which need to be changed must
180 * go through another set of journal_access/journal_dirty calls.
181 *
182 * WARNING: This will not release any semaphores or disk locks taken
183 * during the transaction, so make sure they were taken *before*
184 * start_trans or we'll have ordering deadlocks.
185 *
186 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
187 * good because transaction ids haven't yet been recorded on the
188 * cluster locks associated with this handle.
189 */
190 int ocfs2_extend_trans(handle_t *handle, int nblocks)
191 {
192 int status;
193
194 BUG_ON(!handle);
195 BUG_ON(!nblocks);
196
197 mlog_entry_void();
198
199 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
200
201 #ifdef OCFS2_DEBUG_FS
202 status = 1;
203 #else
204 status = journal_extend(handle, nblocks);
205 if (status < 0) {
206 mlog_errno(status);
207 goto bail;
208 }
209 #endif
210
211 if (status > 0) {
212 mlog(0, "journal_extend failed, trying journal_restart\n");
213 status = journal_restart(handle, nblocks);
214 if (status < 0) {
215 mlog_errno(status);
216 goto bail;
217 }
218 }
219
220 status = 0;
221 bail:
222
223 mlog_exit(status);
224 return status;
225 }
226
227 int ocfs2_journal_access(handle_t *handle,
228 struct inode *inode,
229 struct buffer_head *bh,
230 int type)
231 {
232 int status;
233
234 BUG_ON(!inode);
235 BUG_ON(!handle);
236 BUG_ON(!bh);
237
238 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
239 (unsigned long long)bh->b_blocknr, type,
240 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
241 "OCFS2_JOURNAL_ACCESS_CREATE" :
242 "OCFS2_JOURNAL_ACCESS_WRITE",
243 bh->b_size);
244
245 /* we can safely remove this assertion after testing. */
246 if (!buffer_uptodate(bh)) {
247 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
248 mlog(ML_ERROR, "b_blocknr=%llu\n",
249 (unsigned long long)bh->b_blocknr);
250 BUG();
251 }
252
253 /* Set the current transaction information on the inode so
254 * that the locking code knows whether it can drop it's locks
255 * on this inode or not. We're protected from the commit
256 * thread updating the current transaction id until
257 * ocfs2_commit_trans() because ocfs2_start_trans() took
258 * j_trans_barrier for us. */
259 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
260
261 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
262 switch (type) {
263 case OCFS2_JOURNAL_ACCESS_CREATE:
264 case OCFS2_JOURNAL_ACCESS_WRITE:
265 status = journal_get_write_access(handle, bh);
266 break;
267
268 case OCFS2_JOURNAL_ACCESS_UNDO:
269 status = journal_get_undo_access(handle, bh);
270 break;
271
272 default:
273 status = -EINVAL;
274 mlog(ML_ERROR, "Uknown access type!\n");
275 }
276 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
277
278 if (status < 0)
279 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
280 status, type);
281
282 mlog_exit(status);
283 return status;
284 }
285
286 int ocfs2_journal_dirty(handle_t *handle,
287 struct buffer_head *bh)
288 {
289 int status;
290
291 mlog_entry("(bh->b_blocknr=%llu)\n",
292 (unsigned long long)bh->b_blocknr);
293
294 status = journal_dirty_metadata(handle, bh);
295 if (status < 0)
296 mlog(ML_ERROR, "Could not dirty metadata buffer. "
297 "(bh->b_blocknr=%llu)\n",
298 (unsigned long long)bh->b_blocknr);
299
300 mlog_exit(status);
301 return status;
302 }
303
304 int ocfs2_journal_dirty_data(handle_t *handle,
305 struct buffer_head *bh)
306 {
307 int err = journal_dirty_data(handle, bh);
308 if (err)
309 mlog_errno(err);
310 /* TODO: When we can handle it, abort the handle and go RO on
311 * error here. */
312
313 return err;
314 }
315
316 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
317
318 void ocfs2_set_journal_params(struct ocfs2_super *osb)
319 {
320 journal_t *journal = osb->journal->j_journal;
321
322 spin_lock(&journal->j_state_lock);
323 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
324 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
325 journal->j_flags |= JFS_BARRIER;
326 else
327 journal->j_flags &= ~JFS_BARRIER;
328 spin_unlock(&journal->j_state_lock);
329 }
330
331 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
332 {
333 int status = -1;
334 struct inode *inode = NULL; /* the journal inode */
335 journal_t *j_journal = NULL;
336 struct ocfs2_dinode *di = NULL;
337 struct buffer_head *bh = NULL;
338 struct ocfs2_super *osb;
339 int inode_lock = 0;
340
341 mlog_entry_void();
342
343 BUG_ON(!journal);
344
345 osb = journal->j_osb;
346
347 /* already have the inode for our journal */
348 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
349 osb->slot_num);
350 if (inode == NULL) {
351 status = -EACCES;
352 mlog_errno(status);
353 goto done;
354 }
355 if (is_bad_inode(inode)) {
356 mlog(ML_ERROR, "access error (bad inode)\n");
357 iput(inode);
358 inode = NULL;
359 status = -EACCES;
360 goto done;
361 }
362
363 SET_INODE_JOURNAL(inode);
364 OCFS2_I(inode)->ip_open_count++;
365
366 /* Skip recovery waits here - journal inode metadata never
367 * changes in a live cluster so it can be considered an
368 * exception to the rule. */
369 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
370 if (status < 0) {
371 if (status != -ERESTARTSYS)
372 mlog(ML_ERROR, "Could not get lock on journal!\n");
373 goto done;
374 }
375
376 inode_lock = 1;
377 di = (struct ocfs2_dinode *)bh->b_data;
378
379 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
380 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
381 inode->i_size);
382 status = -EINVAL;
383 goto done;
384 }
385
386 mlog(0, "inode->i_size = %lld\n", inode->i_size);
387 mlog(0, "inode->i_blocks = %llu\n",
388 (unsigned long long)inode->i_blocks);
389 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
390
391 /* call the kernels journal init function now */
392 j_journal = journal_init_inode(inode);
393 if (j_journal == NULL) {
394 mlog(ML_ERROR, "Linux journal layer error\n");
395 status = -EINVAL;
396 goto done;
397 }
398
399 mlog(0, "Returned from journal_init_inode\n");
400 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
401
402 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
403 OCFS2_JOURNAL_DIRTY_FL);
404
405 journal->j_journal = j_journal;
406 journal->j_inode = inode;
407 journal->j_bh = bh;
408
409 ocfs2_set_journal_params(osb);
410
411 journal->j_state = OCFS2_JOURNAL_LOADED;
412
413 status = 0;
414 done:
415 if (status < 0) {
416 if (inode_lock)
417 ocfs2_inode_unlock(inode, 1);
418 if (bh != NULL)
419 brelse(bh);
420 if (inode) {
421 OCFS2_I(inode)->ip_open_count--;
422 iput(inode);
423 }
424 }
425
426 mlog_exit(status);
427 return status;
428 }
429
430 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
431 int dirty)
432 {
433 int status;
434 unsigned int flags;
435 struct ocfs2_journal *journal = osb->journal;
436 struct buffer_head *bh = journal->j_bh;
437 struct ocfs2_dinode *fe;
438
439 mlog_entry_void();
440
441 fe = (struct ocfs2_dinode *)bh->b_data;
442 if (!OCFS2_IS_VALID_DINODE(fe)) {
443 /* This is called from startup/shutdown which will
444 * handle the errors in a specific manner, so no need
445 * to call ocfs2_error() here. */
446 mlog(ML_ERROR, "Journal dinode %llu has invalid "
447 "signature: %.*s",
448 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
449 fe->i_signature);
450 status = -EIO;
451 goto out;
452 }
453
454 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
455 if (dirty)
456 flags |= OCFS2_JOURNAL_DIRTY_FL;
457 else
458 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
459 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
460
461 status = ocfs2_write_block(osb, bh, journal->j_inode);
462 if (status < 0)
463 mlog_errno(status);
464
465 out:
466 mlog_exit(status);
467 return status;
468 }
469
470 /*
471 * If the journal has been kmalloc'd it needs to be freed after this
472 * call.
473 */
474 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
475 {
476 struct ocfs2_journal *journal = NULL;
477 int status = 0;
478 struct inode *inode = NULL;
479 int num_running_trans = 0;
480
481 mlog_entry_void();
482
483 BUG_ON(!osb);
484
485 journal = osb->journal;
486 if (!journal)
487 goto done;
488
489 inode = journal->j_inode;
490
491 if (journal->j_state != OCFS2_JOURNAL_LOADED)
492 goto done;
493
494 /* need to inc inode use count as journal_destroy will iput. */
495 if (!igrab(inode))
496 BUG();
497
498 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
499 if (num_running_trans > 0)
500 mlog(0, "Shutting down journal: must wait on %d "
501 "running transactions!\n",
502 num_running_trans);
503
504 /* Do a commit_cache here. It will flush our journal, *and*
505 * release any locks that are still held.
506 * set the SHUTDOWN flag and release the trans lock.
507 * the commit thread will take the trans lock for us below. */
508 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
509
510 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
511 * drop the trans_lock (which we want to hold until we
512 * completely destroy the journal. */
513 if (osb->commit_task) {
514 /* Wait for the commit thread */
515 mlog(0, "Waiting for ocfs2commit to exit....\n");
516 kthread_stop(osb->commit_task);
517 osb->commit_task = NULL;
518 }
519
520 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
521
522 if (ocfs2_mount_local(osb)) {
523 journal_lock_updates(journal->j_journal);
524 status = journal_flush(journal->j_journal);
525 journal_unlock_updates(journal->j_journal);
526 if (status < 0)
527 mlog_errno(status);
528 }
529
530 if (status == 0) {
531 /*
532 * Do not toggle if flush was unsuccessful otherwise
533 * will leave dirty metadata in a "clean" journal
534 */
535 status = ocfs2_journal_toggle_dirty(osb, 0);
536 if (status < 0)
537 mlog_errno(status);
538 }
539
540 /* Shutdown the kernel journal system */
541 journal_destroy(journal->j_journal);
542
543 OCFS2_I(inode)->ip_open_count--;
544
545 /* unlock our journal */
546 ocfs2_inode_unlock(inode, 1);
547
548 brelse(journal->j_bh);
549 journal->j_bh = NULL;
550
551 journal->j_state = OCFS2_JOURNAL_FREE;
552
553 // up_write(&journal->j_trans_barrier);
554 done:
555 if (inode)
556 iput(inode);
557 mlog_exit_void();
558 }
559
560 static void ocfs2_clear_journal_error(struct super_block *sb,
561 journal_t *journal,
562 int slot)
563 {
564 int olderr;
565
566 olderr = journal_errno(journal);
567 if (olderr) {
568 mlog(ML_ERROR, "File system error %d recorded in "
569 "journal %u.\n", olderr, slot);
570 mlog(ML_ERROR, "File system on device %s needs checking.\n",
571 sb->s_id);
572
573 journal_ack_err(journal);
574 journal_clear_err(journal);
575 }
576 }
577
578 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
579 {
580 int status = 0;
581 struct ocfs2_super *osb;
582
583 mlog_entry_void();
584
585 if (!journal)
586 BUG();
587
588 osb = journal->j_osb;
589
590 status = journal_load(journal->j_journal);
591 if (status < 0) {
592 mlog(ML_ERROR, "Failed to load journal!\n");
593 goto done;
594 }
595
596 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
597
598 status = ocfs2_journal_toggle_dirty(osb, 1);
599 if (status < 0) {
600 mlog_errno(status);
601 goto done;
602 }
603
604 /* Launch the commit thread */
605 if (!local) {
606 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
607 "ocfs2cmt");
608 if (IS_ERR(osb->commit_task)) {
609 status = PTR_ERR(osb->commit_task);
610 osb->commit_task = NULL;
611 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
612 "error=%d", status);
613 goto done;
614 }
615 } else
616 osb->commit_task = NULL;
617
618 done:
619 mlog_exit(status);
620 return status;
621 }
622
623
624 /* 'full' flag tells us whether we clear out all blocks or if we just
625 * mark the journal clean */
626 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
627 {
628 int status;
629
630 mlog_entry_void();
631
632 BUG_ON(!journal);
633
634 status = journal_wipe(journal->j_journal, full);
635 if (status < 0) {
636 mlog_errno(status);
637 goto bail;
638 }
639
640 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
641 if (status < 0)
642 mlog_errno(status);
643
644 bail:
645 mlog_exit(status);
646 return status;
647 }
648
649 /*
650 * JBD Might read a cached version of another nodes journal file. We
651 * don't want this as this file changes often and we get no
652 * notification on those changes. The only way to be sure that we've
653 * got the most up to date version of those blocks then is to force
654 * read them off disk. Just searching through the buffer cache won't
655 * work as there may be pages backing this file which are still marked
656 * up to date. We know things can't change on this file underneath us
657 * as we have the lock by now :)
658 */
659 static int ocfs2_force_read_journal(struct inode *inode)
660 {
661 int status = 0;
662 int i;
663 u64 v_blkno, p_blkno, p_blocks, num_blocks;
664 #define CONCURRENT_JOURNAL_FILL 32ULL
665 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
666
667 mlog_entry_void();
668
669 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
670
671 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
672 v_blkno = 0;
673 while (v_blkno < num_blocks) {
674 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
675 &p_blkno, &p_blocks, NULL);
676 if (status < 0) {
677 mlog_errno(status);
678 goto bail;
679 }
680
681 if (p_blocks > CONCURRENT_JOURNAL_FILL)
682 p_blocks = CONCURRENT_JOURNAL_FILL;
683
684 /* We are reading journal data which should not
685 * be put in the uptodate cache */
686 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
687 p_blkno, p_blocks, bhs, 0,
688 NULL);
689 if (status < 0) {
690 mlog_errno(status);
691 goto bail;
692 }
693
694 for(i = 0; i < p_blocks; i++) {
695 brelse(bhs[i]);
696 bhs[i] = NULL;
697 }
698
699 v_blkno += p_blocks;
700 }
701
702 bail:
703 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
704 if (bhs[i])
705 brelse(bhs[i]);
706 mlog_exit(status);
707 return status;
708 }
709
710 struct ocfs2_la_recovery_item {
711 struct list_head lri_list;
712 int lri_slot;
713 struct ocfs2_dinode *lri_la_dinode;
714 struct ocfs2_dinode *lri_tl_dinode;
715 };
716
717 /* Does the second half of the recovery process. By this point, the
718 * node is marked clean and can actually be considered recovered,
719 * hence it's no longer in the recovery map, but there's still some
720 * cleanup we can do which shouldn't happen within the recovery thread
721 * as locking in that context becomes very difficult if we are to take
722 * recovering nodes into account.
723 *
724 * NOTE: This function can and will sleep on recovery of other nodes
725 * during cluster locking, just like any other ocfs2 process.
726 */
727 void ocfs2_complete_recovery(struct work_struct *work)
728 {
729 int ret;
730 struct ocfs2_journal *journal =
731 container_of(work, struct ocfs2_journal, j_recovery_work);
732 struct ocfs2_super *osb = journal->j_osb;
733 struct ocfs2_dinode *la_dinode, *tl_dinode;
734 struct ocfs2_la_recovery_item *item, *n;
735 LIST_HEAD(tmp_la_list);
736
737 mlog_entry_void();
738
739 mlog(0, "completing recovery from keventd\n");
740
741 spin_lock(&journal->j_lock);
742 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
743 spin_unlock(&journal->j_lock);
744
745 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
746 list_del_init(&item->lri_list);
747
748 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
749
750 la_dinode = item->lri_la_dinode;
751 if (la_dinode) {
752 mlog(0, "Clean up local alloc %llu\n",
753 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
754
755 ret = ocfs2_complete_local_alloc_recovery(osb,
756 la_dinode);
757 if (ret < 0)
758 mlog_errno(ret);
759
760 kfree(la_dinode);
761 }
762
763 tl_dinode = item->lri_tl_dinode;
764 if (tl_dinode) {
765 mlog(0, "Clean up truncate log %llu\n",
766 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
767
768 ret = ocfs2_complete_truncate_log_recovery(osb,
769 tl_dinode);
770 if (ret < 0)
771 mlog_errno(ret);
772
773 kfree(tl_dinode);
774 }
775
776 ret = ocfs2_recover_orphans(osb, item->lri_slot);
777 if (ret < 0)
778 mlog_errno(ret);
779
780 kfree(item);
781 }
782
783 mlog(0, "Recovery completion\n");
784 mlog_exit_void();
785 }
786
787 /* NOTE: This function always eats your references to la_dinode and
788 * tl_dinode, either manually on error, or by passing them to
789 * ocfs2_complete_recovery */
790 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
791 int slot_num,
792 struct ocfs2_dinode *la_dinode,
793 struct ocfs2_dinode *tl_dinode)
794 {
795 struct ocfs2_la_recovery_item *item;
796
797 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
798 if (!item) {
799 /* Though we wish to avoid it, we are in fact safe in
800 * skipping local alloc cleanup as fsck.ocfs2 is more
801 * than capable of reclaiming unused space. */
802 if (la_dinode)
803 kfree(la_dinode);
804
805 if (tl_dinode)
806 kfree(tl_dinode);
807
808 mlog_errno(-ENOMEM);
809 return;
810 }
811
812 INIT_LIST_HEAD(&item->lri_list);
813 item->lri_la_dinode = la_dinode;
814 item->lri_slot = slot_num;
815 item->lri_tl_dinode = tl_dinode;
816
817 spin_lock(&journal->j_lock);
818 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
819 queue_work(ocfs2_wq, &journal->j_recovery_work);
820 spin_unlock(&journal->j_lock);
821 }
822
823 /* Called by the mount code to queue recovery the last part of
824 * recovery for it's own slot. */
825 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
826 {
827 struct ocfs2_journal *journal = osb->journal;
828
829 if (osb->dirty) {
830 /* No need to queue up our truncate_log as regular
831 * cleanup will catch that. */
832 ocfs2_queue_recovery_completion(journal,
833 osb->slot_num,
834 osb->local_alloc_copy,
835 NULL);
836 ocfs2_schedule_truncate_log_flush(osb, 0);
837
838 osb->local_alloc_copy = NULL;
839 osb->dirty = 0;
840 }
841 }
842
843 static int __ocfs2_recovery_thread(void *arg)
844 {
845 int status, node_num;
846 struct ocfs2_super *osb = arg;
847
848 mlog_entry_void();
849
850 status = ocfs2_wait_on_mount(osb);
851 if (status < 0) {
852 goto bail;
853 }
854
855 restart:
856 status = ocfs2_super_lock(osb, 1);
857 if (status < 0) {
858 mlog_errno(status);
859 goto bail;
860 }
861
862 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
863 node_num = ocfs2_node_map_first_set_bit(osb,
864 &osb->recovery_map);
865 if (node_num == O2NM_INVALID_NODE_NUM) {
866 mlog(0, "Out of nodes to recover.\n");
867 break;
868 }
869
870 status = ocfs2_recover_node(osb, node_num);
871 if (status < 0) {
872 mlog(ML_ERROR,
873 "Error %d recovering node %d on device (%u,%u)!\n",
874 status, node_num,
875 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
876 mlog(ML_ERROR, "Volume requires unmount.\n");
877 continue;
878 }
879
880 ocfs2_recovery_map_clear(osb, node_num);
881 }
882 ocfs2_super_unlock(osb, 1);
883
884 /* We always run recovery on our own orphan dir - the dead
885 * node(s) may have disallowd a previos inode delete. Re-processing
886 * is therefore required. */
887 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
888 NULL);
889
890 bail:
891 mutex_lock(&osb->recovery_lock);
892 if (!status &&
893 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
894 mutex_unlock(&osb->recovery_lock);
895 goto restart;
896 }
897
898 osb->recovery_thread_task = NULL;
899 mb(); /* sync with ocfs2_recovery_thread_running */
900 wake_up(&osb->recovery_event);
901
902 mutex_unlock(&osb->recovery_lock);
903
904 mlog_exit(status);
905 /* no one is callint kthread_stop() for us so the kthread() api
906 * requires that we call do_exit(). And it isn't exported, but
907 * complete_and_exit() seems to be a minimal wrapper around it. */
908 complete_and_exit(NULL, status);
909 return status;
910 }
911
912 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
913 {
914 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
915 node_num, osb->node_num);
916
917 mutex_lock(&osb->recovery_lock);
918 if (osb->disable_recovery)
919 goto out;
920
921 /* People waiting on recovery will wait on
922 * the recovery map to empty. */
923 if (!ocfs2_recovery_map_set(osb, node_num))
924 mlog(0, "node %d already be in recovery.\n", node_num);
925
926 mlog(0, "starting recovery thread...\n");
927
928 if (osb->recovery_thread_task)
929 goto out;
930
931 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
932 "ocfs2rec");
933 if (IS_ERR(osb->recovery_thread_task)) {
934 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
935 osb->recovery_thread_task = NULL;
936 }
937
938 out:
939 mutex_unlock(&osb->recovery_lock);
940 wake_up(&osb->recovery_event);
941
942 mlog_exit_void();
943 }
944
945 /* Does the actual journal replay and marks the journal inode as
946 * clean. Will only replay if the journal inode is marked dirty. */
947 static int ocfs2_replay_journal(struct ocfs2_super *osb,
948 int node_num,
949 int slot_num)
950 {
951 int status;
952 int got_lock = 0;
953 unsigned int flags;
954 struct inode *inode = NULL;
955 struct ocfs2_dinode *fe;
956 journal_t *journal = NULL;
957 struct buffer_head *bh = NULL;
958
959 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
960 slot_num);
961 if (inode == NULL) {
962 status = -EACCES;
963 mlog_errno(status);
964 goto done;
965 }
966 if (is_bad_inode(inode)) {
967 status = -EACCES;
968 iput(inode);
969 inode = NULL;
970 mlog_errno(status);
971 goto done;
972 }
973 SET_INODE_JOURNAL(inode);
974
975 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
976 if (status < 0) {
977 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
978 if (status != -ERESTARTSYS)
979 mlog(ML_ERROR, "Could not lock journal!\n");
980 goto done;
981 }
982 got_lock = 1;
983
984 fe = (struct ocfs2_dinode *) bh->b_data;
985
986 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
987
988 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
989 mlog(0, "No recovery required for node %d\n", node_num);
990 goto done;
991 }
992
993 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
994 node_num, slot_num,
995 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
996
997 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
998
999 status = ocfs2_force_read_journal(inode);
1000 if (status < 0) {
1001 mlog_errno(status);
1002 goto done;
1003 }
1004
1005 mlog(0, "calling journal_init_inode\n");
1006 journal = journal_init_inode(inode);
1007 if (journal == NULL) {
1008 mlog(ML_ERROR, "Linux journal layer error\n");
1009 status = -EIO;
1010 goto done;
1011 }
1012
1013 status = journal_load(journal);
1014 if (status < 0) {
1015 mlog_errno(status);
1016 if (!igrab(inode))
1017 BUG();
1018 journal_destroy(journal);
1019 goto done;
1020 }
1021
1022 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1023
1024 /* wipe the journal */
1025 mlog(0, "flushing the journal.\n");
1026 journal_lock_updates(journal);
1027 status = journal_flush(journal);
1028 journal_unlock_updates(journal);
1029 if (status < 0)
1030 mlog_errno(status);
1031
1032 /* This will mark the node clean */
1033 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1034 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1035 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1036
1037 status = ocfs2_write_block(osb, bh, inode);
1038 if (status < 0)
1039 mlog_errno(status);
1040
1041 if (!igrab(inode))
1042 BUG();
1043
1044 journal_destroy(journal);
1045
1046 done:
1047 /* drop the lock on this nodes journal */
1048 if (got_lock)
1049 ocfs2_inode_unlock(inode, 1);
1050
1051 if (inode)
1052 iput(inode);
1053
1054 if (bh)
1055 brelse(bh);
1056
1057 mlog_exit(status);
1058 return status;
1059 }
1060
1061 /*
1062 * Do the most important parts of node recovery:
1063 * - Replay it's journal
1064 * - Stamp a clean local allocator file
1065 * - Stamp a clean truncate log
1066 * - Mark the node clean
1067 *
1068 * If this function completes without error, a node in OCFS2 can be
1069 * said to have been safely recovered. As a result, failure during the
1070 * second part of a nodes recovery process (local alloc recovery) is
1071 * far less concerning.
1072 */
1073 static int ocfs2_recover_node(struct ocfs2_super *osb,
1074 int node_num)
1075 {
1076 int status = 0;
1077 int slot_num;
1078 struct ocfs2_slot_info *si = osb->slot_info;
1079 struct ocfs2_dinode *la_copy = NULL;
1080 struct ocfs2_dinode *tl_copy = NULL;
1081
1082 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1083 node_num, osb->node_num);
1084
1085 mlog(0, "checking node %d\n", node_num);
1086
1087 /* Should not ever be called to recover ourselves -- in that
1088 * case we should've called ocfs2_journal_load instead. */
1089 BUG_ON(osb->node_num == node_num);
1090
1091 slot_num = ocfs2_node_num_to_slot(si, node_num);
1092 if (slot_num == OCFS2_INVALID_SLOT) {
1093 status = 0;
1094 mlog(0, "no slot for this node, so no recovery required.\n");
1095 goto done;
1096 }
1097
1098 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1099
1100 status = ocfs2_replay_journal(osb, node_num, slot_num);
1101 if (status < 0) {
1102 mlog_errno(status);
1103 goto done;
1104 }
1105
1106 /* Stamp a clean local alloc file AFTER recovering the journal... */
1107 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1108 if (status < 0) {
1109 mlog_errno(status);
1110 goto done;
1111 }
1112
1113 /* An error from begin_truncate_log_recovery is not
1114 * serious enough to warrant halting the rest of
1115 * recovery. */
1116 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1117 if (status < 0)
1118 mlog_errno(status);
1119
1120 /* Likewise, this would be a strange but ultimately not so
1121 * harmful place to get an error... */
1122 ocfs2_clear_slot(si, slot_num);
1123 status = ocfs2_update_disk_slots(osb, si);
1124 if (status < 0)
1125 mlog_errno(status);
1126
1127 /* This will kfree the memory pointed to by la_copy and tl_copy */
1128 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1129 tl_copy);
1130
1131 status = 0;
1132 done:
1133
1134 mlog_exit(status);
1135 return status;
1136 }
1137
1138 /* Test node liveness by trylocking his journal. If we get the lock,
1139 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1140 * still alive (we couldn't get the lock) and < 0 on error. */
1141 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1142 int slot_num)
1143 {
1144 int status, flags;
1145 struct inode *inode = NULL;
1146
1147 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1148 slot_num);
1149 if (inode == NULL) {
1150 mlog(ML_ERROR, "access error\n");
1151 status = -EACCES;
1152 goto bail;
1153 }
1154 if (is_bad_inode(inode)) {
1155 mlog(ML_ERROR, "access error (bad inode)\n");
1156 iput(inode);
1157 inode = NULL;
1158 status = -EACCES;
1159 goto bail;
1160 }
1161 SET_INODE_JOURNAL(inode);
1162
1163 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1164 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1165 if (status < 0) {
1166 if (status != -EAGAIN)
1167 mlog_errno(status);
1168 goto bail;
1169 }
1170
1171 ocfs2_inode_unlock(inode, 1);
1172 bail:
1173 if (inode)
1174 iput(inode);
1175
1176 return status;
1177 }
1178
1179 /* Call this underneath ocfs2_super_lock. It also assumes that the
1180 * slot info struct has been updated from disk. */
1181 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1182 {
1183 int status, i, node_num;
1184 struct ocfs2_slot_info *si = osb->slot_info;
1185
1186 /* This is called with the super block cluster lock, so we
1187 * know that the slot map can't change underneath us. */
1188
1189 spin_lock(&si->si_lock);
1190 for(i = 0; i < si->si_num_slots; i++) {
1191 if (i == osb->slot_num)
1192 continue;
1193 if (ocfs2_is_empty_slot(si, i))
1194 continue;
1195
1196 node_num = si->si_global_node_nums[i];
1197 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1198 continue;
1199 spin_unlock(&si->si_lock);
1200
1201 /* Ok, we have a slot occupied by another node which
1202 * is not in the recovery map. We trylock his journal
1203 * file here to test if he's alive. */
1204 status = ocfs2_trylock_journal(osb, i);
1205 if (!status) {
1206 /* Since we're called from mount, we know that
1207 * the recovery thread can't race us on
1208 * setting / checking the recovery bits. */
1209 ocfs2_recovery_thread(osb, node_num);
1210 } else if ((status < 0) && (status != -EAGAIN)) {
1211 mlog_errno(status);
1212 goto bail;
1213 }
1214
1215 spin_lock(&si->si_lock);
1216 }
1217 spin_unlock(&si->si_lock);
1218
1219 status = 0;
1220 bail:
1221 mlog_exit(status);
1222 return status;
1223 }
1224
1225 struct ocfs2_orphan_filldir_priv {
1226 struct inode *head;
1227 struct ocfs2_super *osb;
1228 };
1229
1230 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1231 loff_t pos, u64 ino, unsigned type)
1232 {
1233 struct ocfs2_orphan_filldir_priv *p = priv;
1234 struct inode *iter;
1235
1236 if (name_len == 1 && !strncmp(".", name, 1))
1237 return 0;
1238 if (name_len == 2 && !strncmp("..", name, 2))
1239 return 0;
1240
1241 /* Skip bad inodes so that recovery can continue */
1242 iter = ocfs2_iget(p->osb, ino,
1243 OCFS2_FI_FLAG_ORPHAN_RECOVERY);
1244 if (IS_ERR(iter))
1245 return 0;
1246
1247 mlog(0, "queue orphan %llu\n",
1248 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1249 /* No locking is required for the next_orphan queue as there
1250 * is only ever a single process doing orphan recovery. */
1251 OCFS2_I(iter)->ip_next_orphan = p->head;
1252 p->head = iter;
1253
1254 return 0;
1255 }
1256
1257 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1258 int slot,
1259 struct inode **head)
1260 {
1261 int status;
1262 struct inode *orphan_dir_inode = NULL;
1263 struct ocfs2_orphan_filldir_priv priv;
1264 loff_t pos = 0;
1265
1266 priv.osb = osb;
1267 priv.head = *head;
1268
1269 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1270 ORPHAN_DIR_SYSTEM_INODE,
1271 slot);
1272 if (!orphan_dir_inode) {
1273 status = -ENOENT;
1274 mlog_errno(status);
1275 return status;
1276 }
1277
1278 mutex_lock(&orphan_dir_inode->i_mutex);
1279 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1280 if (status < 0) {
1281 mlog_errno(status);
1282 goto out;
1283 }
1284
1285 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1286 ocfs2_orphan_filldir);
1287 if (status) {
1288 mlog_errno(status);
1289 goto out_cluster;
1290 }
1291
1292 *head = priv.head;
1293
1294 out_cluster:
1295 ocfs2_inode_unlock(orphan_dir_inode, 0);
1296 out:
1297 mutex_unlock(&orphan_dir_inode->i_mutex);
1298 iput(orphan_dir_inode);
1299 return status;
1300 }
1301
1302 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1303 int slot)
1304 {
1305 int ret;
1306
1307 spin_lock(&osb->osb_lock);
1308 ret = !osb->osb_orphan_wipes[slot];
1309 spin_unlock(&osb->osb_lock);
1310 return ret;
1311 }
1312
1313 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1314 int slot)
1315 {
1316 spin_lock(&osb->osb_lock);
1317 /* Mark ourselves such that new processes in delete_inode()
1318 * know to quit early. */
1319 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1320 while (osb->osb_orphan_wipes[slot]) {
1321 /* If any processes are already in the middle of an
1322 * orphan wipe on this dir, then we need to wait for
1323 * them. */
1324 spin_unlock(&osb->osb_lock);
1325 wait_event_interruptible(osb->osb_wipe_event,
1326 ocfs2_orphan_recovery_can_continue(osb, slot));
1327 spin_lock(&osb->osb_lock);
1328 }
1329 spin_unlock(&osb->osb_lock);
1330 }
1331
1332 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1333 int slot)
1334 {
1335 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1336 }
1337
1338 /*
1339 * Orphan recovery. Each mounted node has it's own orphan dir which we
1340 * must run during recovery. Our strategy here is to build a list of
1341 * the inodes in the orphan dir and iget/iput them. The VFS does
1342 * (most) of the rest of the work.
1343 *
1344 * Orphan recovery can happen at any time, not just mount so we have a
1345 * couple of extra considerations.
1346 *
1347 * - We grab as many inodes as we can under the orphan dir lock -
1348 * doing iget() outside the orphan dir risks getting a reference on
1349 * an invalid inode.
1350 * - We must be sure not to deadlock with other processes on the
1351 * system wanting to run delete_inode(). This can happen when they go
1352 * to lock the orphan dir and the orphan recovery process attempts to
1353 * iget() inside the orphan dir lock. This can be avoided by
1354 * advertising our state to ocfs2_delete_inode().
1355 */
1356 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1357 int slot)
1358 {
1359 int ret = 0;
1360 struct inode *inode = NULL;
1361 struct inode *iter;
1362 struct ocfs2_inode_info *oi;
1363
1364 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1365
1366 ocfs2_mark_recovering_orphan_dir(osb, slot);
1367 ret = ocfs2_queue_orphans(osb, slot, &inode);
1368 ocfs2_clear_recovering_orphan_dir(osb, slot);
1369
1370 /* Error here should be noted, but we want to continue with as
1371 * many queued inodes as we've got. */
1372 if (ret)
1373 mlog_errno(ret);
1374
1375 while (inode) {
1376 oi = OCFS2_I(inode);
1377 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1378
1379 iter = oi->ip_next_orphan;
1380
1381 spin_lock(&oi->ip_lock);
1382 /* The remote delete code may have set these on the
1383 * assumption that the other node would wipe them
1384 * successfully. If they are still in the node's
1385 * orphan dir, we need to reset that state. */
1386 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1387
1388 /* Set the proper information to get us going into
1389 * ocfs2_delete_inode. */
1390 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1391 spin_unlock(&oi->ip_lock);
1392
1393 iput(inode);
1394
1395 inode = iter;
1396 }
1397
1398 return ret;
1399 }
1400
1401 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1402 {
1403 /* This check is good because ocfs2 will wait on our recovery
1404 * thread before changing it to something other than MOUNTED
1405 * or DISABLED. */
1406 wait_event(osb->osb_mount_event,
1407 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1408 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1409
1410 /* If there's an error on mount, then we may never get to the
1411 * MOUNTED flag, but this is set right before
1412 * dismount_volume() so we can trust it. */
1413 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1414 mlog(0, "mount error, exiting!\n");
1415 return -EBUSY;
1416 }
1417
1418 return 0;
1419 }
1420
1421 static int ocfs2_commit_thread(void *arg)
1422 {
1423 int status;
1424 struct ocfs2_super *osb = arg;
1425 struct ocfs2_journal *journal = osb->journal;
1426
1427 /* we can trust j_num_trans here because _should_stop() is only set in
1428 * shutdown and nobody other than ourselves should be able to start
1429 * transactions. committing on shutdown might take a few iterations
1430 * as final transactions put deleted inodes on the list */
1431 while (!(kthread_should_stop() &&
1432 atomic_read(&journal->j_num_trans) == 0)) {
1433
1434 wait_event_interruptible(osb->checkpoint_event,
1435 atomic_read(&journal->j_num_trans)
1436 || kthread_should_stop());
1437
1438 status = ocfs2_commit_cache(osb);
1439 if (status < 0)
1440 mlog_errno(status);
1441
1442 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1443 mlog(ML_KTHREAD,
1444 "commit_thread: %u transactions pending on "
1445 "shutdown\n",
1446 atomic_read(&journal->j_num_trans));
1447 }
1448 }
1449
1450 return 0;
1451 }
1452
1453 /* Look for a dirty journal without taking any cluster locks. Used for
1454 * hard readonly access to determine whether the file system journals
1455 * require recovery. */
1456 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1457 {
1458 int ret = 0;
1459 unsigned int slot;
1460 struct buffer_head *di_bh;
1461 struct ocfs2_dinode *di;
1462 struct inode *journal = NULL;
1463
1464 for(slot = 0; slot < osb->max_slots; slot++) {
1465 journal = ocfs2_get_system_file_inode(osb,
1466 JOURNAL_SYSTEM_INODE,
1467 slot);
1468 if (!journal || is_bad_inode(journal)) {
1469 ret = -EACCES;
1470 mlog_errno(ret);
1471 goto out;
1472 }
1473
1474 di_bh = NULL;
1475 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1476 0, journal);
1477 if (ret < 0) {
1478 mlog_errno(ret);
1479 goto out;
1480 }
1481
1482 di = (struct ocfs2_dinode *) di_bh->b_data;
1483
1484 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1485 OCFS2_JOURNAL_DIRTY_FL)
1486 ret = -EROFS;
1487
1488 brelse(di_bh);
1489 if (ret)
1490 break;
1491 }
1492
1493 out:
1494 if (journal)
1495 iput(journal);
1496
1497 return ret;
1498 }
This page took 0.062701 seconds and 5 git commands to generate.